1 /* LRW: as defined by Cyril Guyot in
2 * http://grouper.ieee.org/groups/1619/email/pdf00017.pdf
4 * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org>
7 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the Free
11 * Software Foundation; either version 2 of the License, or (at your option)
14 /* This implementation is checked against the test vectors in the above
15 * document and by a test vector provided by Ken Buchanan at
16 * http://www.mail-archive.com/stds-p1619@listserv.ieee.org/msg00173.html
18 * The test vectors are included in the testing module tcrypt.[ch] */
20 #include <crypto/internal/skcipher.h>
21 #include <crypto/scatterwalk.h>
22 #include <linux/err.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/scatterlist.h>
27 #include <linux/slab.h>
29 #include <crypto/b128ops.h>
30 #include <crypto/gf128mul.h>
32 #define LRW_BUFFER_SIZE 128u
34 #define LRW_BLOCK_SIZE 16
37 struct crypto_skcipher
*child
;
40 * optimizes multiplying a random (non incrementing, as at the
41 * start of a new sector) value with key2, we could also have
42 * used 4k optimization tables or no optimization at all. In the
43 * latter case we would have to store key2 here
45 struct gf128mul_64k
*table
;
49 * key2*{ 0,0,...0,0,0,0,1 }, key2*{ 0,0,...0,0,0,1,1 },
50 * key2*{ 0,0,...0,0,1,1,1 }, key2*{ 0,0,...0,1,1,1,1 }
51 * key2*{ 0,0,...1,1,1,1,1 }, etc
52 * needed for optimized multiplication of incrementing values
59 be128 buf
[LRW_BUFFER_SIZE
/ sizeof(be128
)];
65 struct scatterlist srcbuf
[2];
66 struct scatterlist dstbuf
[2];
67 struct scatterlist
*src
;
68 struct scatterlist
*dst
;
72 struct skcipher_request subreq
;
75 static inline void setbit128_bbe(void *b
, int bit
)
77 __set_bit(bit
^ (0x80 -
86 static int setkey(struct crypto_skcipher
*parent
, const u8
*key
,
89 struct priv
*ctx
= crypto_skcipher_ctx(parent
);
90 struct crypto_skcipher
*child
= ctx
->child
;
91 int err
, bsize
= LRW_BLOCK_SIZE
;
92 const u8
*tweak
= key
+ keylen
- bsize
;
96 crypto_skcipher_clear_flags(child
, CRYPTO_TFM_REQ_MASK
);
97 crypto_skcipher_set_flags(child
, crypto_skcipher_get_flags(parent
) &
99 err
= crypto_skcipher_setkey(child
, key
, keylen
- bsize
);
100 crypto_skcipher_set_flags(parent
, crypto_skcipher_get_flags(child
) &
101 CRYPTO_TFM_RES_MASK
);
106 gf128mul_free_64k(ctx
->table
);
108 /* initialize multiplication table for Key2 */
109 ctx
->table
= gf128mul_init_64k_bbe((be128
*)tweak
);
113 /* initialize optimization table */
114 for (i
= 0; i
< 128; i
++) {
115 setbit128_bbe(&tmp
, i
);
116 ctx
->mulinc
[i
] = tmp
;
117 gf128mul_64k_bbe(&ctx
->mulinc
[i
], ctx
->table
);
123 static inline void inc(be128
*iv
)
125 be64_add_cpu(&iv
->b
, 1);
127 be64_add_cpu(&iv
->a
, 1);
130 /* this returns the number of consequative 1 bits starting
131 * from the right, get_index128(00 00 00 00 00 00 ... 00 00 10 FB) = 2 */
132 static inline int get_index128(be128
*block
)
135 __be32
*p
= (__be32
*) block
;
137 for (p
+= 3, x
= 0; x
< 128; p
--, x
+= 32) {
138 u32 val
= be32_to_cpup(p
);
149 static int post_crypt(struct skcipher_request
*req
)
151 struct rctx
*rctx
= skcipher_request_ctx(req
);
152 be128
*buf
= rctx
->ext
?: rctx
->buf
;
153 struct skcipher_request
*subreq
;
154 const int bs
= LRW_BLOCK_SIZE
;
155 struct skcipher_walk w
;
156 struct scatterlist
*sg
;
160 subreq
= &rctx
->subreq
;
161 err
= skcipher_walk_virt(&w
, subreq
, false);
164 unsigned int avail
= w
.nbytes
;
167 wdst
= w
.dst
.virt
.addr
;
170 be128_xor(wdst
, buf
++, wdst
);
172 } while ((avail
-= bs
) >= bs
);
174 err
= skcipher_walk_done(&w
, avail
);
177 rctx
->left
-= subreq
->cryptlen
;
179 if (err
|| !rctx
->left
)
182 rctx
->dst
= rctx
->dstbuf
;
184 scatterwalk_done(&w
.out
, 0, 1);
186 offset
= w
.out
.offset
;
188 if (rctx
->dst
!= sg
) {
190 sg_unmark_end(rctx
->dst
);
191 scatterwalk_crypto_chain(rctx
->dst
, sg_next(sg
), 0, 2);
193 rctx
->dst
[0].length
-= offset
- sg
->offset
;
194 rctx
->dst
[0].offset
= offset
;
200 static int pre_crypt(struct skcipher_request
*req
)
202 struct crypto_skcipher
*tfm
= crypto_skcipher_reqtfm(req
);
203 struct rctx
*rctx
= skcipher_request_ctx(req
);
204 struct priv
*ctx
= crypto_skcipher_ctx(tfm
);
205 be128
*buf
= rctx
->ext
?: rctx
->buf
;
206 struct skcipher_request
*subreq
;
207 const int bs
= LRW_BLOCK_SIZE
;
208 struct skcipher_walk w
;
209 struct scatterlist
*sg
;
216 subreq
= &rctx
->subreq
;
217 skcipher_request_set_tfm(subreq
, tfm
);
219 cryptlen
= subreq
->cryptlen
;
220 more
= rctx
->left
> cryptlen
;
222 cryptlen
= rctx
->left
;
224 skcipher_request_set_crypt(subreq
, rctx
->src
, rctx
->dst
,
227 err
= skcipher_walk_virt(&w
, subreq
, false);
231 unsigned int avail
= w
.nbytes
;
235 wsrc
= w
.src
.virt
.addr
;
236 wdst
= w
.dst
.virt
.addr
;
240 be128_xor(wdst
++, &rctx
->t
, wsrc
++);
242 /* T <- I*Key2, using the optimization
243 * discussed in the specification */
244 be128_xor(&rctx
->t
, &rctx
->t
,
245 &ctx
->mulinc
[get_index128(iv
)]);
247 } while ((avail
-= bs
) >= bs
);
249 err
= skcipher_walk_done(&w
, avail
);
252 skcipher_request_set_tfm(subreq
, ctx
->child
);
253 skcipher_request_set_crypt(subreq
, rctx
->dst
, rctx
->dst
,
259 rctx
->src
= rctx
->srcbuf
;
261 scatterwalk_done(&w
.in
, 0, 1);
263 offset
= w
.in
.offset
;
265 if (rctx
->src
!= sg
) {
267 sg_unmark_end(rctx
->src
);
268 scatterwalk_crypto_chain(rctx
->src
, sg_next(sg
), 0, 2);
270 rctx
->src
[0].length
-= offset
- sg
->offset
;
271 rctx
->src
[0].offset
= offset
;
277 static int init_crypt(struct skcipher_request
*req
, crypto_completion_t done
)
279 struct priv
*ctx
= crypto_skcipher_ctx(crypto_skcipher_reqtfm(req
));
280 struct rctx
*rctx
= skcipher_request_ctx(req
);
281 struct skcipher_request
*subreq
;
284 subreq
= &rctx
->subreq
;
285 skcipher_request_set_callback(subreq
, req
->base
.flags
, done
, req
);
287 gfp
= req
->base
.flags
& CRYPTO_TFM_REQ_MAY_SLEEP
? GFP_KERNEL
:
291 subreq
->cryptlen
= LRW_BUFFER_SIZE
;
292 if (req
->cryptlen
> LRW_BUFFER_SIZE
) {
293 unsigned int n
= min(req
->cryptlen
, (unsigned int)PAGE_SIZE
);
295 rctx
->ext
= kmalloc(n
, gfp
);
297 subreq
->cryptlen
= n
;
300 rctx
->src
= req
->src
;
301 rctx
->dst
= req
->dst
;
302 rctx
->left
= req
->cryptlen
;
304 /* calculate first value of T */
305 memcpy(&rctx
->t
, req
->iv
, sizeof(rctx
->t
));
308 gf128mul_64k_bbe(&rctx
->t
, ctx
->table
);
313 static void exit_crypt(struct skcipher_request
*req
)
315 struct rctx
*rctx
= skcipher_request_ctx(req
);
323 static int do_encrypt(struct skcipher_request
*req
, int err
)
325 struct rctx
*rctx
= skcipher_request_ctx(req
);
326 struct skcipher_request
*subreq
;
328 subreq
= &rctx
->subreq
;
330 while (!err
&& rctx
->left
) {
331 err
= pre_crypt(req
) ?:
332 crypto_skcipher_encrypt(subreq
) ?:
335 if (err
== -EINPROGRESS
|| err
== -EBUSY
)
343 static void encrypt_done(struct crypto_async_request
*areq
, int err
)
345 struct skcipher_request
*req
= areq
->data
;
346 struct skcipher_request
*subreq
;
349 rctx
= skcipher_request_ctx(req
);
351 if (err
== -EINPROGRESS
) {
352 if (rctx
->left
!= req
->cryptlen
)
357 subreq
= &rctx
->subreq
;
358 subreq
->base
.flags
&= CRYPTO_TFM_REQ_MAY_BACKLOG
;
360 err
= do_encrypt(req
, err
?: post_crypt(req
));
365 skcipher_request_complete(req
, err
);
368 static int encrypt(struct skcipher_request
*req
)
370 return do_encrypt(req
, init_crypt(req
, encrypt_done
));
373 static int do_decrypt(struct skcipher_request
*req
, int err
)
375 struct rctx
*rctx
= skcipher_request_ctx(req
);
376 struct skcipher_request
*subreq
;
378 subreq
= &rctx
->subreq
;
380 while (!err
&& rctx
->left
) {
381 err
= pre_crypt(req
) ?:
382 crypto_skcipher_decrypt(subreq
) ?:
385 if (err
== -EINPROGRESS
|| err
== -EBUSY
)
393 static void decrypt_done(struct crypto_async_request
*areq
, int err
)
395 struct skcipher_request
*req
= areq
->data
;
396 struct skcipher_request
*subreq
;
399 rctx
= skcipher_request_ctx(req
);
401 if (err
== -EINPROGRESS
) {
402 if (rctx
->left
!= req
->cryptlen
)
407 subreq
= &rctx
->subreq
;
408 subreq
->base
.flags
&= CRYPTO_TFM_REQ_MAY_BACKLOG
;
410 err
= do_decrypt(req
, err
?: post_crypt(req
));
415 skcipher_request_complete(req
, err
);
418 static int decrypt(struct skcipher_request
*req
)
420 return do_decrypt(req
, init_crypt(req
, decrypt_done
));
423 static int init_tfm(struct crypto_skcipher
*tfm
)
425 struct skcipher_instance
*inst
= skcipher_alg_instance(tfm
);
426 struct crypto_skcipher_spawn
*spawn
= skcipher_instance_ctx(inst
);
427 struct priv
*ctx
= crypto_skcipher_ctx(tfm
);
428 struct crypto_skcipher
*cipher
;
430 cipher
= crypto_spawn_skcipher(spawn
);
432 return PTR_ERR(cipher
);
436 crypto_skcipher_set_reqsize(tfm
, crypto_skcipher_reqsize(cipher
) +
437 sizeof(struct rctx
));
442 static void exit_tfm(struct crypto_skcipher
*tfm
)
444 struct priv
*ctx
= crypto_skcipher_ctx(tfm
);
447 gf128mul_free_64k(ctx
->table
);
448 crypto_free_skcipher(ctx
->child
);
451 static void free(struct skcipher_instance
*inst
)
453 crypto_drop_skcipher(skcipher_instance_ctx(inst
));
457 static int create(struct crypto_template
*tmpl
, struct rtattr
**tb
)
459 struct crypto_skcipher_spawn
*spawn
;
460 struct skcipher_instance
*inst
;
461 struct crypto_attr_type
*algt
;
462 struct skcipher_alg
*alg
;
463 const char *cipher_name
;
464 char ecb_name
[CRYPTO_MAX_ALG_NAME
];
467 algt
= crypto_get_attr_type(tb
);
469 return PTR_ERR(algt
);
471 if ((algt
->type
^ CRYPTO_ALG_TYPE_SKCIPHER
) & algt
->mask
)
474 cipher_name
= crypto_attr_alg_name(tb
[1]);
475 if (IS_ERR(cipher_name
))
476 return PTR_ERR(cipher_name
);
478 inst
= kzalloc(sizeof(*inst
) + sizeof(*spawn
), GFP_KERNEL
);
482 spawn
= skcipher_instance_ctx(inst
);
484 crypto_set_skcipher_spawn(spawn
, skcipher_crypto_instance(inst
));
485 err
= crypto_grab_skcipher(spawn
, cipher_name
, 0,
486 crypto_requires_sync(algt
->type
,
488 if (err
== -ENOENT
) {
490 if (snprintf(ecb_name
, CRYPTO_MAX_ALG_NAME
, "ecb(%s)",
491 cipher_name
) >= CRYPTO_MAX_ALG_NAME
)
494 err
= crypto_grab_skcipher(spawn
, ecb_name
, 0,
495 crypto_requires_sync(algt
->type
,
502 alg
= crypto_skcipher_spawn_alg(spawn
);
505 if (alg
->base
.cra_blocksize
!= LRW_BLOCK_SIZE
)
508 if (crypto_skcipher_alg_ivsize(alg
))
511 err
= crypto_inst_setname(skcipher_crypto_instance(inst
), "lrw",
517 cipher_name
= alg
->base
.cra_name
;
519 /* Alas we screwed up the naming so we have to mangle the
522 if (!strncmp(cipher_name
, "ecb(", 4)) {
525 len
= strlcpy(ecb_name
, cipher_name
+ 4, sizeof(ecb_name
));
526 if (len
< 2 || len
>= sizeof(ecb_name
))
529 if (ecb_name
[len
- 1] != ')')
532 ecb_name
[len
- 1] = 0;
534 if (snprintf(inst
->alg
.base
.cra_name
, CRYPTO_MAX_ALG_NAME
,
535 "lrw(%s)", ecb_name
) >= CRYPTO_MAX_ALG_NAME
) {
542 inst
->alg
.base
.cra_flags
= alg
->base
.cra_flags
& CRYPTO_ALG_ASYNC
;
543 inst
->alg
.base
.cra_priority
= alg
->base
.cra_priority
;
544 inst
->alg
.base
.cra_blocksize
= LRW_BLOCK_SIZE
;
545 inst
->alg
.base
.cra_alignmask
= alg
->base
.cra_alignmask
|
546 (__alignof__(u64
) - 1);
548 inst
->alg
.ivsize
= LRW_BLOCK_SIZE
;
549 inst
->alg
.min_keysize
= crypto_skcipher_alg_min_keysize(alg
) +
551 inst
->alg
.max_keysize
= crypto_skcipher_alg_max_keysize(alg
) +
554 inst
->alg
.base
.cra_ctxsize
= sizeof(struct priv
);
556 inst
->alg
.init
= init_tfm
;
557 inst
->alg
.exit
= exit_tfm
;
559 inst
->alg
.setkey
= setkey
;
560 inst
->alg
.encrypt
= encrypt
;
561 inst
->alg
.decrypt
= decrypt
;
565 err
= skcipher_register_instance(tmpl
, inst
);
573 crypto_drop_skcipher(spawn
);
579 static struct crypto_template crypto_tmpl
= {
582 .module
= THIS_MODULE
,
585 static int __init
crypto_module_init(void)
587 return crypto_register_template(&crypto_tmpl
);
590 static void __exit
crypto_module_exit(void)
592 crypto_unregister_template(&crypto_tmpl
);
595 module_init(crypto_module_init
);
596 module_exit(crypto_module_exit
);
598 MODULE_LICENSE("GPL");
599 MODULE_DESCRIPTION("LRW block cipher mode");
600 MODULE_ALIAS_CRYPTO("lrw");