mv643xx-eth: use an unique MDIO bus name.
[linux-2.6/btrfs-unstable.git] / fs / dcache.c
blob3c6d3113a255c7af1519fdb6aa1c211ec092e992
1 /*
2 * fs/dcache.c
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
9 /*
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include "internal.h"
41 #include "mount.h"
44 * Usage:
45 * dcache->d_inode->i_lock protects:
46 * - i_dentry, d_alias, d_inode of aliases
47 * dcache_hash_bucket lock protects:
48 * - the dcache hash table
49 * s_anon bl list spinlock protects:
50 * - the s_anon list (see __d_drop)
51 * dcache_lru_lock protects:
52 * - the dcache lru lists and counters
53 * d_lock protects:
54 * - d_flags
55 * - d_name
56 * - d_lru
57 * - d_count
58 * - d_unhashed()
59 * - d_parent and d_subdirs
60 * - childrens' d_child and d_parent
61 * - d_alias, d_inode
63 * Ordering:
64 * dentry->d_inode->i_lock
65 * dentry->d_lock
66 * dcache_lru_lock
67 * dcache_hash_bucket lock
68 * s_anon lock
70 * If there is an ancestor relationship:
71 * dentry->d_parent->...->d_parent->d_lock
72 * ...
73 * dentry->d_parent->d_lock
74 * dentry->d_lock
76 * If no ancestor relationship:
77 * if (dentry1 < dentry2)
78 * dentry1->d_lock
79 * dentry2->d_lock
81 int sysctl_vfs_cache_pressure __read_mostly = 100;
82 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
84 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
87 EXPORT_SYMBOL(rename_lock);
89 static struct kmem_cache *dentry_cache __read_mostly;
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
99 #define D_HASHBITS d_hash_shift
100 #define D_HASHMASK d_hash_mask
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
107 static inline struct hlist_bl_head *d_hash(struct dentry *parent,
108 unsigned long hash)
110 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
111 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
112 return dentry_hashtable + (hash & D_HASHMASK);
115 /* Statistics gathering. */
116 struct dentry_stat_t dentry_stat = {
117 .age_limit = 45,
120 static DEFINE_PER_CPU(unsigned int, nr_dentry);
122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
123 static int get_nr_dentry(void)
125 int i;
126 int sum = 0;
127 for_each_possible_cpu(i)
128 sum += per_cpu(nr_dentry, i);
129 return sum < 0 ? 0 : sum;
132 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
133 size_t *lenp, loff_t *ppos)
135 dentry_stat.nr_dentry = get_nr_dentry();
136 return proc_dointvec(table, write, buffer, lenp, ppos);
138 #endif
140 static void __d_free(struct rcu_head *head)
142 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
144 WARN_ON(!list_empty(&dentry->d_alias));
145 if (dname_external(dentry))
146 kfree(dentry->d_name.name);
147 kmem_cache_free(dentry_cache, dentry);
151 * no locks, please.
153 static void d_free(struct dentry *dentry)
155 BUG_ON(dentry->d_count);
156 this_cpu_dec(nr_dentry);
157 if (dentry->d_op && dentry->d_op->d_release)
158 dentry->d_op->d_release(dentry);
160 /* if dentry was never visible to RCU, immediate free is OK */
161 if (!(dentry->d_flags & DCACHE_RCUACCESS))
162 __d_free(&dentry->d_u.d_rcu);
163 else
164 call_rcu(&dentry->d_u.d_rcu, __d_free);
168 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
169 * @dentry: the target dentry
170 * After this call, in-progress rcu-walk path lookup will fail. This
171 * should be called after unhashing, and after changing d_inode (if
172 * the dentry has not already been unhashed).
174 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
176 assert_spin_locked(&dentry->d_lock);
177 /* Go through a barrier */
178 write_seqcount_barrier(&dentry->d_seq);
182 * Release the dentry's inode, using the filesystem
183 * d_iput() operation if defined. Dentry has no refcount
184 * and is unhashed.
186 static void dentry_iput(struct dentry * dentry)
187 __releases(dentry->d_lock)
188 __releases(dentry->d_inode->i_lock)
190 struct inode *inode = dentry->d_inode;
191 if (inode) {
192 dentry->d_inode = NULL;
193 list_del_init(&dentry->d_alias);
194 spin_unlock(&dentry->d_lock);
195 spin_unlock(&inode->i_lock);
196 if (!inode->i_nlink)
197 fsnotify_inoderemove(inode);
198 if (dentry->d_op && dentry->d_op->d_iput)
199 dentry->d_op->d_iput(dentry, inode);
200 else
201 iput(inode);
202 } else {
203 spin_unlock(&dentry->d_lock);
208 * Release the dentry's inode, using the filesystem
209 * d_iput() operation if defined. dentry remains in-use.
211 static void dentry_unlink_inode(struct dentry * dentry)
212 __releases(dentry->d_lock)
213 __releases(dentry->d_inode->i_lock)
215 struct inode *inode = dentry->d_inode;
216 dentry->d_inode = NULL;
217 list_del_init(&dentry->d_alias);
218 dentry_rcuwalk_barrier(dentry);
219 spin_unlock(&dentry->d_lock);
220 spin_unlock(&inode->i_lock);
221 if (!inode->i_nlink)
222 fsnotify_inoderemove(inode);
223 if (dentry->d_op && dentry->d_op->d_iput)
224 dentry->d_op->d_iput(dentry, inode);
225 else
226 iput(inode);
230 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
232 static void dentry_lru_add(struct dentry *dentry)
234 if (list_empty(&dentry->d_lru)) {
235 spin_lock(&dcache_lru_lock);
236 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
237 dentry->d_sb->s_nr_dentry_unused++;
238 dentry_stat.nr_unused++;
239 spin_unlock(&dcache_lru_lock);
243 static void __dentry_lru_del(struct dentry *dentry)
245 list_del_init(&dentry->d_lru);
246 dentry->d_sb->s_nr_dentry_unused--;
247 dentry_stat.nr_unused--;
251 * Remove a dentry with references from the LRU.
253 static void dentry_lru_del(struct dentry *dentry)
255 if (!list_empty(&dentry->d_lru)) {
256 spin_lock(&dcache_lru_lock);
257 __dentry_lru_del(dentry);
258 spin_unlock(&dcache_lru_lock);
263 * Remove a dentry that is unreferenced and about to be pruned
264 * (unhashed and destroyed) from the LRU, and inform the file system.
265 * This wrapper should be called _prior_ to unhashing a victim dentry.
267 static void dentry_lru_prune(struct dentry *dentry)
269 if (!list_empty(&dentry->d_lru)) {
270 if (dentry->d_flags & DCACHE_OP_PRUNE)
271 dentry->d_op->d_prune(dentry);
273 spin_lock(&dcache_lru_lock);
274 __dentry_lru_del(dentry);
275 spin_unlock(&dcache_lru_lock);
279 static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list)
281 spin_lock(&dcache_lru_lock);
282 if (list_empty(&dentry->d_lru)) {
283 list_add_tail(&dentry->d_lru, list);
284 dentry->d_sb->s_nr_dentry_unused++;
285 dentry_stat.nr_unused++;
286 } else {
287 list_move_tail(&dentry->d_lru, list);
289 spin_unlock(&dcache_lru_lock);
293 * d_kill - kill dentry and return parent
294 * @dentry: dentry to kill
295 * @parent: parent dentry
297 * The dentry must already be unhashed and removed from the LRU.
299 * If this is the root of the dentry tree, return NULL.
301 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
302 * d_kill.
304 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
305 __releases(dentry->d_lock)
306 __releases(parent->d_lock)
307 __releases(dentry->d_inode->i_lock)
309 list_del(&dentry->d_u.d_child);
311 * Inform try_to_ascend() that we are no longer attached to the
312 * dentry tree
314 dentry->d_flags |= DCACHE_DISCONNECTED;
315 if (parent)
316 spin_unlock(&parent->d_lock);
317 dentry_iput(dentry);
319 * dentry_iput drops the locks, at which point nobody (except
320 * transient RCU lookups) can reach this dentry.
322 d_free(dentry);
323 return parent;
327 * Unhash a dentry without inserting an RCU walk barrier or checking that
328 * dentry->d_lock is locked. The caller must take care of that, if
329 * appropriate.
331 static void __d_shrink(struct dentry *dentry)
333 if (!d_unhashed(dentry)) {
334 struct hlist_bl_head *b;
335 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
336 b = &dentry->d_sb->s_anon;
337 else
338 b = d_hash(dentry->d_parent, dentry->d_name.hash);
340 hlist_bl_lock(b);
341 __hlist_bl_del(&dentry->d_hash);
342 dentry->d_hash.pprev = NULL;
343 hlist_bl_unlock(b);
348 * d_drop - drop a dentry
349 * @dentry: dentry to drop
351 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
352 * be found through a VFS lookup any more. Note that this is different from
353 * deleting the dentry - d_delete will try to mark the dentry negative if
354 * possible, giving a successful _negative_ lookup, while d_drop will
355 * just make the cache lookup fail.
357 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
358 * reason (NFS timeouts or autofs deletes).
360 * __d_drop requires dentry->d_lock.
362 void __d_drop(struct dentry *dentry)
364 if (!d_unhashed(dentry)) {
365 __d_shrink(dentry);
366 dentry_rcuwalk_barrier(dentry);
369 EXPORT_SYMBOL(__d_drop);
371 void d_drop(struct dentry *dentry)
373 spin_lock(&dentry->d_lock);
374 __d_drop(dentry);
375 spin_unlock(&dentry->d_lock);
377 EXPORT_SYMBOL(d_drop);
380 * d_clear_need_lookup - drop a dentry from cache and clear the need lookup flag
381 * @dentry: dentry to drop
383 * This is called when we do a lookup on a placeholder dentry that needed to be
384 * looked up. The dentry should have been hashed in order for it to be found by
385 * the lookup code, but now needs to be unhashed while we do the actual lookup
386 * and clear the DCACHE_NEED_LOOKUP flag.
388 void d_clear_need_lookup(struct dentry *dentry)
390 spin_lock(&dentry->d_lock);
391 __d_drop(dentry);
392 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
393 spin_unlock(&dentry->d_lock);
395 EXPORT_SYMBOL(d_clear_need_lookup);
398 * Finish off a dentry we've decided to kill.
399 * dentry->d_lock must be held, returns with it unlocked.
400 * If ref is non-zero, then decrement the refcount too.
401 * Returns dentry requiring refcount drop, or NULL if we're done.
403 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
404 __releases(dentry->d_lock)
406 struct inode *inode;
407 struct dentry *parent;
409 inode = dentry->d_inode;
410 if (inode && !spin_trylock(&inode->i_lock)) {
411 relock:
412 spin_unlock(&dentry->d_lock);
413 cpu_relax();
414 return dentry; /* try again with same dentry */
416 if (IS_ROOT(dentry))
417 parent = NULL;
418 else
419 parent = dentry->d_parent;
420 if (parent && !spin_trylock(&parent->d_lock)) {
421 if (inode)
422 spin_unlock(&inode->i_lock);
423 goto relock;
426 if (ref)
427 dentry->d_count--;
429 * if dentry was on the d_lru list delete it from there.
430 * inform the fs via d_prune that this dentry is about to be
431 * unhashed and destroyed.
433 dentry_lru_prune(dentry);
434 /* if it was on the hash then remove it */
435 __d_drop(dentry);
436 return d_kill(dentry, parent);
440 * This is dput
442 * This is complicated by the fact that we do not want to put
443 * dentries that are no longer on any hash chain on the unused
444 * list: we'd much rather just get rid of them immediately.
446 * However, that implies that we have to traverse the dentry
447 * tree upwards to the parents which might _also_ now be
448 * scheduled for deletion (it may have been only waiting for
449 * its last child to go away).
451 * This tail recursion is done by hand as we don't want to depend
452 * on the compiler to always get this right (gcc generally doesn't).
453 * Real recursion would eat up our stack space.
457 * dput - release a dentry
458 * @dentry: dentry to release
460 * Release a dentry. This will drop the usage count and if appropriate
461 * call the dentry unlink method as well as removing it from the queues and
462 * releasing its resources. If the parent dentries were scheduled for release
463 * they too may now get deleted.
465 void dput(struct dentry *dentry)
467 if (!dentry)
468 return;
470 repeat:
471 if (dentry->d_count == 1)
472 might_sleep();
473 spin_lock(&dentry->d_lock);
474 BUG_ON(!dentry->d_count);
475 if (dentry->d_count > 1) {
476 dentry->d_count--;
477 spin_unlock(&dentry->d_lock);
478 return;
481 if (dentry->d_flags & DCACHE_OP_DELETE) {
482 if (dentry->d_op->d_delete(dentry))
483 goto kill_it;
486 /* Unreachable? Get rid of it */
487 if (d_unhashed(dentry))
488 goto kill_it;
491 * If this dentry needs lookup, don't set the referenced flag so that it
492 * is more likely to be cleaned up by the dcache shrinker in case of
493 * memory pressure.
495 if (!d_need_lookup(dentry))
496 dentry->d_flags |= DCACHE_REFERENCED;
497 dentry_lru_add(dentry);
499 dentry->d_count--;
500 spin_unlock(&dentry->d_lock);
501 return;
503 kill_it:
504 dentry = dentry_kill(dentry, 1);
505 if (dentry)
506 goto repeat;
508 EXPORT_SYMBOL(dput);
511 * d_invalidate - invalidate a dentry
512 * @dentry: dentry to invalidate
514 * Try to invalidate the dentry if it turns out to be
515 * possible. If there are other dentries that can be
516 * reached through this one we can't delete it and we
517 * return -EBUSY. On success we return 0.
519 * no dcache lock.
522 int d_invalidate(struct dentry * dentry)
525 * If it's already been dropped, return OK.
527 spin_lock(&dentry->d_lock);
528 if (d_unhashed(dentry)) {
529 spin_unlock(&dentry->d_lock);
530 return 0;
533 * Check whether to do a partial shrink_dcache
534 * to get rid of unused child entries.
536 if (!list_empty(&dentry->d_subdirs)) {
537 spin_unlock(&dentry->d_lock);
538 shrink_dcache_parent(dentry);
539 spin_lock(&dentry->d_lock);
543 * Somebody else still using it?
545 * If it's a directory, we can't drop it
546 * for fear of somebody re-populating it
547 * with children (even though dropping it
548 * would make it unreachable from the root,
549 * we might still populate it if it was a
550 * working directory or similar).
551 * We also need to leave mountpoints alone,
552 * directory or not.
554 if (dentry->d_count > 1 && dentry->d_inode) {
555 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
556 spin_unlock(&dentry->d_lock);
557 return -EBUSY;
561 __d_drop(dentry);
562 spin_unlock(&dentry->d_lock);
563 return 0;
565 EXPORT_SYMBOL(d_invalidate);
567 /* This must be called with d_lock held */
568 static inline void __dget_dlock(struct dentry *dentry)
570 dentry->d_count++;
573 static inline void __dget(struct dentry *dentry)
575 spin_lock(&dentry->d_lock);
576 __dget_dlock(dentry);
577 spin_unlock(&dentry->d_lock);
580 struct dentry *dget_parent(struct dentry *dentry)
582 struct dentry *ret;
584 repeat:
586 * Don't need rcu_dereference because we re-check it was correct under
587 * the lock.
589 rcu_read_lock();
590 ret = dentry->d_parent;
591 spin_lock(&ret->d_lock);
592 if (unlikely(ret != dentry->d_parent)) {
593 spin_unlock(&ret->d_lock);
594 rcu_read_unlock();
595 goto repeat;
597 rcu_read_unlock();
598 BUG_ON(!ret->d_count);
599 ret->d_count++;
600 spin_unlock(&ret->d_lock);
601 return ret;
603 EXPORT_SYMBOL(dget_parent);
606 * d_find_alias - grab a hashed alias of inode
607 * @inode: inode in question
608 * @want_discon: flag, used by d_splice_alias, to request
609 * that only a DISCONNECTED alias be returned.
611 * If inode has a hashed alias, or is a directory and has any alias,
612 * acquire the reference to alias and return it. Otherwise return NULL.
613 * Notice that if inode is a directory there can be only one alias and
614 * it can be unhashed only if it has no children, or if it is the root
615 * of a filesystem.
617 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
618 * any other hashed alias over that one unless @want_discon is set,
619 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
621 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
623 struct dentry *alias, *discon_alias;
625 again:
626 discon_alias = NULL;
627 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
628 spin_lock(&alias->d_lock);
629 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
630 if (IS_ROOT(alias) &&
631 (alias->d_flags & DCACHE_DISCONNECTED)) {
632 discon_alias = alias;
633 } else if (!want_discon) {
634 __dget_dlock(alias);
635 spin_unlock(&alias->d_lock);
636 return alias;
639 spin_unlock(&alias->d_lock);
641 if (discon_alias) {
642 alias = discon_alias;
643 spin_lock(&alias->d_lock);
644 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
645 if (IS_ROOT(alias) &&
646 (alias->d_flags & DCACHE_DISCONNECTED)) {
647 __dget_dlock(alias);
648 spin_unlock(&alias->d_lock);
649 return alias;
652 spin_unlock(&alias->d_lock);
653 goto again;
655 return NULL;
658 struct dentry *d_find_alias(struct inode *inode)
660 struct dentry *de = NULL;
662 if (!list_empty(&inode->i_dentry)) {
663 spin_lock(&inode->i_lock);
664 de = __d_find_alias(inode, 0);
665 spin_unlock(&inode->i_lock);
667 return de;
669 EXPORT_SYMBOL(d_find_alias);
672 * Try to kill dentries associated with this inode.
673 * WARNING: you must own a reference to inode.
675 void d_prune_aliases(struct inode *inode)
677 struct dentry *dentry;
678 restart:
679 spin_lock(&inode->i_lock);
680 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
681 spin_lock(&dentry->d_lock);
682 if (!dentry->d_count) {
683 __dget_dlock(dentry);
684 __d_drop(dentry);
685 spin_unlock(&dentry->d_lock);
686 spin_unlock(&inode->i_lock);
687 dput(dentry);
688 goto restart;
690 spin_unlock(&dentry->d_lock);
692 spin_unlock(&inode->i_lock);
694 EXPORT_SYMBOL(d_prune_aliases);
697 * Try to throw away a dentry - free the inode, dput the parent.
698 * Requires dentry->d_lock is held, and dentry->d_count == 0.
699 * Releases dentry->d_lock.
701 * This may fail if locks cannot be acquired no problem, just try again.
703 static void try_prune_one_dentry(struct dentry *dentry)
704 __releases(dentry->d_lock)
706 struct dentry *parent;
708 parent = dentry_kill(dentry, 0);
710 * If dentry_kill returns NULL, we have nothing more to do.
711 * if it returns the same dentry, trylocks failed. In either
712 * case, just loop again.
714 * Otherwise, we need to prune ancestors too. This is necessary
715 * to prevent quadratic behavior of shrink_dcache_parent(), but
716 * is also expected to be beneficial in reducing dentry cache
717 * fragmentation.
719 if (!parent)
720 return;
721 if (parent == dentry)
722 return;
724 /* Prune ancestors. */
725 dentry = parent;
726 while (dentry) {
727 spin_lock(&dentry->d_lock);
728 if (dentry->d_count > 1) {
729 dentry->d_count--;
730 spin_unlock(&dentry->d_lock);
731 return;
733 dentry = dentry_kill(dentry, 1);
737 static void shrink_dentry_list(struct list_head *list)
739 struct dentry *dentry;
741 rcu_read_lock();
742 for (;;) {
743 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
744 if (&dentry->d_lru == list)
745 break; /* empty */
746 spin_lock(&dentry->d_lock);
747 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
748 spin_unlock(&dentry->d_lock);
749 continue;
753 * We found an inuse dentry which was not removed from
754 * the LRU because of laziness during lookup. Do not free
755 * it - just keep it off the LRU list.
757 if (dentry->d_count) {
758 dentry_lru_del(dentry);
759 spin_unlock(&dentry->d_lock);
760 continue;
763 rcu_read_unlock();
765 try_prune_one_dentry(dentry);
767 rcu_read_lock();
769 rcu_read_unlock();
773 * prune_dcache_sb - shrink the dcache
774 * @sb: superblock
775 * @count: number of entries to try to free
777 * Attempt to shrink the superblock dcache LRU by @count entries. This is
778 * done when we need more memory an called from the superblock shrinker
779 * function.
781 * This function may fail to free any resources if all the dentries are in
782 * use.
784 void prune_dcache_sb(struct super_block *sb, int count)
786 struct dentry *dentry;
787 LIST_HEAD(referenced);
788 LIST_HEAD(tmp);
790 relock:
791 spin_lock(&dcache_lru_lock);
792 while (!list_empty(&sb->s_dentry_lru)) {
793 dentry = list_entry(sb->s_dentry_lru.prev,
794 struct dentry, d_lru);
795 BUG_ON(dentry->d_sb != sb);
797 if (!spin_trylock(&dentry->d_lock)) {
798 spin_unlock(&dcache_lru_lock);
799 cpu_relax();
800 goto relock;
803 if (dentry->d_flags & DCACHE_REFERENCED) {
804 dentry->d_flags &= ~DCACHE_REFERENCED;
805 list_move(&dentry->d_lru, &referenced);
806 spin_unlock(&dentry->d_lock);
807 } else {
808 list_move_tail(&dentry->d_lru, &tmp);
809 spin_unlock(&dentry->d_lock);
810 if (!--count)
811 break;
813 cond_resched_lock(&dcache_lru_lock);
815 if (!list_empty(&referenced))
816 list_splice(&referenced, &sb->s_dentry_lru);
817 spin_unlock(&dcache_lru_lock);
819 shrink_dentry_list(&tmp);
823 * shrink_dcache_sb - shrink dcache for a superblock
824 * @sb: superblock
826 * Shrink the dcache for the specified super block. This is used to free
827 * the dcache before unmounting a file system.
829 void shrink_dcache_sb(struct super_block *sb)
831 LIST_HEAD(tmp);
833 spin_lock(&dcache_lru_lock);
834 while (!list_empty(&sb->s_dentry_lru)) {
835 list_splice_init(&sb->s_dentry_lru, &tmp);
836 spin_unlock(&dcache_lru_lock);
837 shrink_dentry_list(&tmp);
838 spin_lock(&dcache_lru_lock);
840 spin_unlock(&dcache_lru_lock);
842 EXPORT_SYMBOL(shrink_dcache_sb);
845 * destroy a single subtree of dentries for unmount
846 * - see the comments on shrink_dcache_for_umount() for a description of the
847 * locking
849 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
851 struct dentry *parent;
853 BUG_ON(!IS_ROOT(dentry));
855 for (;;) {
856 /* descend to the first leaf in the current subtree */
857 while (!list_empty(&dentry->d_subdirs))
858 dentry = list_entry(dentry->d_subdirs.next,
859 struct dentry, d_u.d_child);
861 /* consume the dentries from this leaf up through its parents
862 * until we find one with children or run out altogether */
863 do {
864 struct inode *inode;
867 * remove the dentry from the lru, and inform
868 * the fs that this dentry is about to be
869 * unhashed and destroyed.
871 dentry_lru_prune(dentry);
872 __d_shrink(dentry);
874 if (dentry->d_count != 0) {
875 printk(KERN_ERR
876 "BUG: Dentry %p{i=%lx,n=%s}"
877 " still in use (%d)"
878 " [unmount of %s %s]\n",
879 dentry,
880 dentry->d_inode ?
881 dentry->d_inode->i_ino : 0UL,
882 dentry->d_name.name,
883 dentry->d_count,
884 dentry->d_sb->s_type->name,
885 dentry->d_sb->s_id);
886 BUG();
889 if (IS_ROOT(dentry)) {
890 parent = NULL;
891 list_del(&dentry->d_u.d_child);
892 } else {
893 parent = dentry->d_parent;
894 parent->d_count--;
895 list_del(&dentry->d_u.d_child);
898 inode = dentry->d_inode;
899 if (inode) {
900 dentry->d_inode = NULL;
901 list_del_init(&dentry->d_alias);
902 if (dentry->d_op && dentry->d_op->d_iput)
903 dentry->d_op->d_iput(dentry, inode);
904 else
905 iput(inode);
908 d_free(dentry);
910 /* finished when we fall off the top of the tree,
911 * otherwise we ascend to the parent and move to the
912 * next sibling if there is one */
913 if (!parent)
914 return;
915 dentry = parent;
916 } while (list_empty(&dentry->d_subdirs));
918 dentry = list_entry(dentry->d_subdirs.next,
919 struct dentry, d_u.d_child);
924 * destroy the dentries attached to a superblock on unmounting
925 * - we don't need to use dentry->d_lock because:
926 * - the superblock is detached from all mountings and open files, so the
927 * dentry trees will not be rearranged by the VFS
928 * - s_umount is write-locked, so the memory pressure shrinker will ignore
929 * any dentries belonging to this superblock that it comes across
930 * - the filesystem itself is no longer permitted to rearrange the dentries
931 * in this superblock
933 void shrink_dcache_for_umount(struct super_block *sb)
935 struct dentry *dentry;
937 if (down_read_trylock(&sb->s_umount))
938 BUG();
940 dentry = sb->s_root;
941 sb->s_root = NULL;
942 dentry->d_count--;
943 shrink_dcache_for_umount_subtree(dentry);
945 while (!hlist_bl_empty(&sb->s_anon)) {
946 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
947 shrink_dcache_for_umount_subtree(dentry);
952 * This tries to ascend one level of parenthood, but
953 * we can race with renaming, so we need to re-check
954 * the parenthood after dropping the lock and check
955 * that the sequence number still matches.
957 static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
959 struct dentry *new = old->d_parent;
961 rcu_read_lock();
962 spin_unlock(&old->d_lock);
963 spin_lock(&new->d_lock);
966 * might go back up the wrong parent if we have had a rename
967 * or deletion
969 if (new != old->d_parent ||
970 (old->d_flags & DCACHE_DISCONNECTED) ||
971 (!locked && read_seqretry(&rename_lock, seq))) {
972 spin_unlock(&new->d_lock);
973 new = NULL;
975 rcu_read_unlock();
976 return new;
981 * Search for at least 1 mount point in the dentry's subdirs.
982 * We descend to the next level whenever the d_subdirs
983 * list is non-empty and continue searching.
987 * have_submounts - check for mounts over a dentry
988 * @parent: dentry to check.
990 * Return true if the parent or its subdirectories contain
991 * a mount point
993 int have_submounts(struct dentry *parent)
995 struct dentry *this_parent;
996 struct list_head *next;
997 unsigned seq;
998 int locked = 0;
1000 seq = read_seqbegin(&rename_lock);
1001 again:
1002 this_parent = parent;
1004 if (d_mountpoint(parent))
1005 goto positive;
1006 spin_lock(&this_parent->d_lock);
1007 repeat:
1008 next = this_parent->d_subdirs.next;
1009 resume:
1010 while (next != &this_parent->d_subdirs) {
1011 struct list_head *tmp = next;
1012 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1013 next = tmp->next;
1015 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1016 /* Have we found a mount point ? */
1017 if (d_mountpoint(dentry)) {
1018 spin_unlock(&dentry->d_lock);
1019 spin_unlock(&this_parent->d_lock);
1020 goto positive;
1022 if (!list_empty(&dentry->d_subdirs)) {
1023 spin_unlock(&this_parent->d_lock);
1024 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1025 this_parent = dentry;
1026 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1027 goto repeat;
1029 spin_unlock(&dentry->d_lock);
1032 * All done at this level ... ascend and resume the search.
1034 if (this_parent != parent) {
1035 struct dentry *child = this_parent;
1036 this_parent = try_to_ascend(this_parent, locked, seq);
1037 if (!this_parent)
1038 goto rename_retry;
1039 next = child->d_u.d_child.next;
1040 goto resume;
1042 spin_unlock(&this_parent->d_lock);
1043 if (!locked && read_seqretry(&rename_lock, seq))
1044 goto rename_retry;
1045 if (locked)
1046 write_sequnlock(&rename_lock);
1047 return 0; /* No mount points found in tree */
1048 positive:
1049 if (!locked && read_seqretry(&rename_lock, seq))
1050 goto rename_retry;
1051 if (locked)
1052 write_sequnlock(&rename_lock);
1053 return 1;
1055 rename_retry:
1056 locked = 1;
1057 write_seqlock(&rename_lock);
1058 goto again;
1060 EXPORT_SYMBOL(have_submounts);
1063 * Search the dentry child list for the specified parent,
1064 * and move any unused dentries to the end of the unused
1065 * list for prune_dcache(). We descend to the next level
1066 * whenever the d_subdirs list is non-empty and continue
1067 * searching.
1069 * It returns zero iff there are no unused children,
1070 * otherwise it returns the number of children moved to
1071 * the end of the unused list. This may not be the total
1072 * number of unused children, because select_parent can
1073 * drop the lock and return early due to latency
1074 * constraints.
1076 static int select_parent(struct dentry *parent, struct list_head *dispose)
1078 struct dentry *this_parent;
1079 struct list_head *next;
1080 unsigned seq;
1081 int found = 0;
1082 int locked = 0;
1084 seq = read_seqbegin(&rename_lock);
1085 again:
1086 this_parent = parent;
1087 spin_lock(&this_parent->d_lock);
1088 repeat:
1089 next = this_parent->d_subdirs.next;
1090 resume:
1091 while (next != &this_parent->d_subdirs) {
1092 struct list_head *tmp = next;
1093 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1094 next = tmp->next;
1096 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1099 * move only zero ref count dentries to the dispose list.
1101 if (!dentry->d_count) {
1102 dentry_lru_move_list(dentry, dispose);
1103 found++;
1104 } else {
1105 dentry_lru_del(dentry);
1109 * We can return to the caller if we have found some (this
1110 * ensures forward progress). We'll be coming back to find
1111 * the rest.
1113 if (found && need_resched()) {
1114 spin_unlock(&dentry->d_lock);
1115 goto out;
1119 * Descend a level if the d_subdirs list is non-empty.
1121 if (!list_empty(&dentry->d_subdirs)) {
1122 spin_unlock(&this_parent->d_lock);
1123 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1124 this_parent = dentry;
1125 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1126 goto repeat;
1129 spin_unlock(&dentry->d_lock);
1132 * All done at this level ... ascend and resume the search.
1134 if (this_parent != parent) {
1135 struct dentry *child = this_parent;
1136 this_parent = try_to_ascend(this_parent, locked, seq);
1137 if (!this_parent)
1138 goto rename_retry;
1139 next = child->d_u.d_child.next;
1140 goto resume;
1142 out:
1143 spin_unlock(&this_parent->d_lock);
1144 if (!locked && read_seqretry(&rename_lock, seq))
1145 goto rename_retry;
1146 if (locked)
1147 write_sequnlock(&rename_lock);
1148 return found;
1150 rename_retry:
1151 if (found)
1152 return found;
1153 locked = 1;
1154 write_seqlock(&rename_lock);
1155 goto again;
1159 * shrink_dcache_parent - prune dcache
1160 * @parent: parent of entries to prune
1162 * Prune the dcache to remove unused children of the parent dentry.
1164 void shrink_dcache_parent(struct dentry * parent)
1166 LIST_HEAD(dispose);
1167 int found;
1169 while ((found = select_parent(parent, &dispose)) != 0)
1170 shrink_dentry_list(&dispose);
1172 EXPORT_SYMBOL(shrink_dcache_parent);
1175 * __d_alloc - allocate a dcache entry
1176 * @sb: filesystem it will belong to
1177 * @name: qstr of the name
1179 * Allocates a dentry. It returns %NULL if there is insufficient memory
1180 * available. On a success the dentry is returned. The name passed in is
1181 * copied and the copy passed in may be reused after this call.
1184 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1186 struct dentry *dentry;
1187 char *dname;
1189 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1190 if (!dentry)
1191 return NULL;
1193 if (name->len > DNAME_INLINE_LEN-1) {
1194 dname = kmalloc(name->len + 1, GFP_KERNEL);
1195 if (!dname) {
1196 kmem_cache_free(dentry_cache, dentry);
1197 return NULL;
1199 } else {
1200 dname = dentry->d_iname;
1202 dentry->d_name.name = dname;
1204 dentry->d_name.len = name->len;
1205 dentry->d_name.hash = name->hash;
1206 memcpy(dname, name->name, name->len);
1207 dname[name->len] = 0;
1209 dentry->d_count = 1;
1210 dentry->d_flags = 0;
1211 spin_lock_init(&dentry->d_lock);
1212 seqcount_init(&dentry->d_seq);
1213 dentry->d_inode = NULL;
1214 dentry->d_parent = dentry;
1215 dentry->d_sb = sb;
1216 dentry->d_op = NULL;
1217 dentry->d_fsdata = NULL;
1218 INIT_HLIST_BL_NODE(&dentry->d_hash);
1219 INIT_LIST_HEAD(&dentry->d_lru);
1220 INIT_LIST_HEAD(&dentry->d_subdirs);
1221 INIT_LIST_HEAD(&dentry->d_alias);
1222 INIT_LIST_HEAD(&dentry->d_u.d_child);
1223 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1225 this_cpu_inc(nr_dentry);
1227 return dentry;
1231 * d_alloc - allocate a dcache entry
1232 * @parent: parent of entry to allocate
1233 * @name: qstr of the name
1235 * Allocates a dentry. It returns %NULL if there is insufficient memory
1236 * available. On a success the dentry is returned. The name passed in is
1237 * copied and the copy passed in may be reused after this call.
1239 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1241 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1242 if (!dentry)
1243 return NULL;
1245 spin_lock(&parent->d_lock);
1247 * don't need child lock because it is not subject
1248 * to concurrency here
1250 __dget_dlock(parent);
1251 dentry->d_parent = parent;
1252 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1253 spin_unlock(&parent->d_lock);
1255 return dentry;
1257 EXPORT_SYMBOL(d_alloc);
1259 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1261 struct dentry *dentry = __d_alloc(sb, name);
1262 if (dentry)
1263 dentry->d_flags |= DCACHE_DISCONNECTED;
1264 return dentry;
1266 EXPORT_SYMBOL(d_alloc_pseudo);
1268 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1270 struct qstr q;
1272 q.name = name;
1273 q.len = strlen(name);
1274 q.hash = full_name_hash(q.name, q.len);
1275 return d_alloc(parent, &q);
1277 EXPORT_SYMBOL(d_alloc_name);
1279 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1281 WARN_ON_ONCE(dentry->d_op);
1282 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1283 DCACHE_OP_COMPARE |
1284 DCACHE_OP_REVALIDATE |
1285 DCACHE_OP_DELETE ));
1286 dentry->d_op = op;
1287 if (!op)
1288 return;
1289 if (op->d_hash)
1290 dentry->d_flags |= DCACHE_OP_HASH;
1291 if (op->d_compare)
1292 dentry->d_flags |= DCACHE_OP_COMPARE;
1293 if (op->d_revalidate)
1294 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1295 if (op->d_delete)
1296 dentry->d_flags |= DCACHE_OP_DELETE;
1297 if (op->d_prune)
1298 dentry->d_flags |= DCACHE_OP_PRUNE;
1301 EXPORT_SYMBOL(d_set_d_op);
1303 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1305 spin_lock(&dentry->d_lock);
1306 if (inode) {
1307 if (unlikely(IS_AUTOMOUNT(inode)))
1308 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1309 list_add(&dentry->d_alias, &inode->i_dentry);
1311 dentry->d_inode = inode;
1312 dentry_rcuwalk_barrier(dentry);
1313 spin_unlock(&dentry->d_lock);
1314 fsnotify_d_instantiate(dentry, inode);
1318 * d_instantiate - fill in inode information for a dentry
1319 * @entry: dentry to complete
1320 * @inode: inode to attach to this dentry
1322 * Fill in inode information in the entry.
1324 * This turns negative dentries into productive full members
1325 * of society.
1327 * NOTE! This assumes that the inode count has been incremented
1328 * (or otherwise set) by the caller to indicate that it is now
1329 * in use by the dcache.
1332 void d_instantiate(struct dentry *entry, struct inode * inode)
1334 BUG_ON(!list_empty(&entry->d_alias));
1335 if (inode)
1336 spin_lock(&inode->i_lock);
1337 __d_instantiate(entry, inode);
1338 if (inode)
1339 spin_unlock(&inode->i_lock);
1340 security_d_instantiate(entry, inode);
1342 EXPORT_SYMBOL(d_instantiate);
1345 * d_instantiate_unique - instantiate a non-aliased dentry
1346 * @entry: dentry to instantiate
1347 * @inode: inode to attach to this dentry
1349 * Fill in inode information in the entry. On success, it returns NULL.
1350 * If an unhashed alias of "entry" already exists, then we return the
1351 * aliased dentry instead and drop one reference to inode.
1353 * Note that in order to avoid conflicts with rename() etc, the caller
1354 * had better be holding the parent directory semaphore.
1356 * This also assumes that the inode count has been incremented
1357 * (or otherwise set) by the caller to indicate that it is now
1358 * in use by the dcache.
1360 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1361 struct inode *inode)
1363 struct dentry *alias;
1364 int len = entry->d_name.len;
1365 const char *name = entry->d_name.name;
1366 unsigned int hash = entry->d_name.hash;
1368 if (!inode) {
1369 __d_instantiate(entry, NULL);
1370 return NULL;
1373 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1374 struct qstr *qstr = &alias->d_name;
1377 * Don't need alias->d_lock here, because aliases with
1378 * d_parent == entry->d_parent are not subject to name or
1379 * parent changes, because the parent inode i_mutex is held.
1381 if (qstr->hash != hash)
1382 continue;
1383 if (alias->d_parent != entry->d_parent)
1384 continue;
1385 if (dentry_cmp(qstr->name, qstr->len, name, len))
1386 continue;
1387 __dget(alias);
1388 return alias;
1391 __d_instantiate(entry, inode);
1392 return NULL;
1395 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1397 struct dentry *result;
1399 BUG_ON(!list_empty(&entry->d_alias));
1401 if (inode)
1402 spin_lock(&inode->i_lock);
1403 result = __d_instantiate_unique(entry, inode);
1404 if (inode)
1405 spin_unlock(&inode->i_lock);
1407 if (!result) {
1408 security_d_instantiate(entry, inode);
1409 return NULL;
1412 BUG_ON(!d_unhashed(result));
1413 iput(inode);
1414 return result;
1417 EXPORT_SYMBOL(d_instantiate_unique);
1420 * d_alloc_root - allocate root dentry
1421 * @root_inode: inode to allocate the root for
1423 * Allocate a root ("/") dentry for the inode given. The inode is
1424 * instantiated and returned. %NULL is returned if there is insufficient
1425 * memory or the inode passed is %NULL.
1428 struct dentry * d_alloc_root(struct inode * root_inode)
1430 struct dentry *res = NULL;
1432 if (root_inode) {
1433 static const struct qstr name = { .name = "/", .len = 1 };
1435 res = __d_alloc(root_inode->i_sb, &name);
1436 if (res)
1437 d_instantiate(res, root_inode);
1439 return res;
1441 EXPORT_SYMBOL(d_alloc_root);
1443 struct dentry *d_make_root(struct inode *root_inode)
1445 struct dentry *res = NULL;
1447 if (root_inode) {
1448 static const struct qstr name = { .name = "/", .len = 1 };
1450 res = __d_alloc(root_inode->i_sb, &name);
1451 if (res)
1452 d_instantiate(res, root_inode);
1453 else
1454 iput(root_inode);
1456 return res;
1458 EXPORT_SYMBOL(d_make_root);
1460 static struct dentry * __d_find_any_alias(struct inode *inode)
1462 struct dentry *alias;
1464 if (list_empty(&inode->i_dentry))
1465 return NULL;
1466 alias = list_first_entry(&inode->i_dentry, struct dentry, d_alias);
1467 __dget(alias);
1468 return alias;
1471 static struct dentry * d_find_any_alias(struct inode *inode)
1473 struct dentry *de;
1475 spin_lock(&inode->i_lock);
1476 de = __d_find_any_alias(inode);
1477 spin_unlock(&inode->i_lock);
1478 return de;
1483 * d_obtain_alias - find or allocate a dentry for a given inode
1484 * @inode: inode to allocate the dentry for
1486 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1487 * similar open by handle operations. The returned dentry may be anonymous,
1488 * or may have a full name (if the inode was already in the cache).
1490 * When called on a directory inode, we must ensure that the inode only ever
1491 * has one dentry. If a dentry is found, that is returned instead of
1492 * allocating a new one.
1494 * On successful return, the reference to the inode has been transferred
1495 * to the dentry. In case of an error the reference on the inode is released.
1496 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1497 * be passed in and will be the error will be propagate to the return value,
1498 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1500 struct dentry *d_obtain_alias(struct inode *inode)
1502 static const struct qstr anonstring = { .name = "" };
1503 struct dentry *tmp;
1504 struct dentry *res;
1506 if (!inode)
1507 return ERR_PTR(-ESTALE);
1508 if (IS_ERR(inode))
1509 return ERR_CAST(inode);
1511 res = d_find_any_alias(inode);
1512 if (res)
1513 goto out_iput;
1515 tmp = __d_alloc(inode->i_sb, &anonstring);
1516 if (!tmp) {
1517 res = ERR_PTR(-ENOMEM);
1518 goto out_iput;
1521 spin_lock(&inode->i_lock);
1522 res = __d_find_any_alias(inode);
1523 if (res) {
1524 spin_unlock(&inode->i_lock);
1525 dput(tmp);
1526 goto out_iput;
1529 /* attach a disconnected dentry */
1530 spin_lock(&tmp->d_lock);
1531 tmp->d_inode = inode;
1532 tmp->d_flags |= DCACHE_DISCONNECTED;
1533 list_add(&tmp->d_alias, &inode->i_dentry);
1534 hlist_bl_lock(&tmp->d_sb->s_anon);
1535 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1536 hlist_bl_unlock(&tmp->d_sb->s_anon);
1537 spin_unlock(&tmp->d_lock);
1538 spin_unlock(&inode->i_lock);
1539 security_d_instantiate(tmp, inode);
1541 return tmp;
1543 out_iput:
1544 if (res && !IS_ERR(res))
1545 security_d_instantiate(res, inode);
1546 iput(inode);
1547 return res;
1549 EXPORT_SYMBOL(d_obtain_alias);
1552 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1553 * @inode: the inode which may have a disconnected dentry
1554 * @dentry: a negative dentry which we want to point to the inode.
1556 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1557 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1558 * and return it, else simply d_add the inode to the dentry and return NULL.
1560 * This is needed in the lookup routine of any filesystem that is exportable
1561 * (via knfsd) so that we can build dcache paths to directories effectively.
1563 * If a dentry was found and moved, then it is returned. Otherwise NULL
1564 * is returned. This matches the expected return value of ->lookup.
1567 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1569 struct dentry *new = NULL;
1571 if (IS_ERR(inode))
1572 return ERR_CAST(inode);
1574 if (inode && S_ISDIR(inode->i_mode)) {
1575 spin_lock(&inode->i_lock);
1576 new = __d_find_alias(inode, 1);
1577 if (new) {
1578 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1579 spin_unlock(&inode->i_lock);
1580 security_d_instantiate(new, inode);
1581 d_move(new, dentry);
1582 iput(inode);
1583 } else {
1584 /* already taking inode->i_lock, so d_add() by hand */
1585 __d_instantiate(dentry, inode);
1586 spin_unlock(&inode->i_lock);
1587 security_d_instantiate(dentry, inode);
1588 d_rehash(dentry);
1590 } else
1591 d_add(dentry, inode);
1592 return new;
1594 EXPORT_SYMBOL(d_splice_alias);
1597 * d_add_ci - lookup or allocate new dentry with case-exact name
1598 * @inode: the inode case-insensitive lookup has found
1599 * @dentry: the negative dentry that was passed to the parent's lookup func
1600 * @name: the case-exact name to be associated with the returned dentry
1602 * This is to avoid filling the dcache with case-insensitive names to the
1603 * same inode, only the actual correct case is stored in the dcache for
1604 * case-insensitive filesystems.
1606 * For a case-insensitive lookup match and if the the case-exact dentry
1607 * already exists in in the dcache, use it and return it.
1609 * If no entry exists with the exact case name, allocate new dentry with
1610 * the exact case, and return the spliced entry.
1612 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1613 struct qstr *name)
1615 int error;
1616 struct dentry *found;
1617 struct dentry *new;
1620 * First check if a dentry matching the name already exists,
1621 * if not go ahead and create it now.
1623 found = d_hash_and_lookup(dentry->d_parent, name);
1624 if (!found) {
1625 new = d_alloc(dentry->d_parent, name);
1626 if (!new) {
1627 error = -ENOMEM;
1628 goto err_out;
1631 found = d_splice_alias(inode, new);
1632 if (found) {
1633 dput(new);
1634 return found;
1636 return new;
1640 * If a matching dentry exists, and it's not negative use it.
1642 * Decrement the reference count to balance the iget() done
1643 * earlier on.
1645 if (found->d_inode) {
1646 if (unlikely(found->d_inode != inode)) {
1647 /* This can't happen because bad inodes are unhashed. */
1648 BUG_ON(!is_bad_inode(inode));
1649 BUG_ON(!is_bad_inode(found->d_inode));
1651 iput(inode);
1652 return found;
1656 * We are going to instantiate this dentry, unhash it and clear the
1657 * lookup flag so we can do that.
1659 if (unlikely(d_need_lookup(found)))
1660 d_clear_need_lookup(found);
1663 * Negative dentry: instantiate it unless the inode is a directory and
1664 * already has a dentry.
1666 new = d_splice_alias(inode, found);
1667 if (new) {
1668 dput(found);
1669 found = new;
1671 return found;
1673 err_out:
1674 iput(inode);
1675 return ERR_PTR(error);
1677 EXPORT_SYMBOL(d_add_ci);
1680 * __d_lookup_rcu - search for a dentry (racy, store-free)
1681 * @parent: parent dentry
1682 * @name: qstr of name we wish to find
1683 * @seq: returns d_seq value at the point where the dentry was found
1684 * @inode: returns dentry->d_inode when the inode was found valid.
1685 * Returns: dentry, or NULL
1687 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1688 * resolution (store-free path walking) design described in
1689 * Documentation/filesystems/path-lookup.txt.
1691 * This is not to be used outside core vfs.
1693 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1694 * held, and rcu_read_lock held. The returned dentry must not be stored into
1695 * without taking d_lock and checking d_seq sequence count against @seq
1696 * returned here.
1698 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1699 * function.
1701 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1702 * the returned dentry, so long as its parent's seqlock is checked after the
1703 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1704 * is formed, giving integrity down the path walk.
1706 struct dentry *__d_lookup_rcu(struct dentry *parent, struct qstr *name,
1707 unsigned *seq, struct inode **inode)
1709 unsigned int len = name->len;
1710 unsigned int hash = name->hash;
1711 const unsigned char *str = name->name;
1712 struct hlist_bl_head *b = d_hash(parent, hash);
1713 struct hlist_bl_node *node;
1714 struct dentry *dentry;
1717 * Note: There is significant duplication with __d_lookup_rcu which is
1718 * required to prevent single threaded performance regressions
1719 * especially on architectures where smp_rmb (in seqcounts) are costly.
1720 * Keep the two functions in sync.
1724 * The hash list is protected using RCU.
1726 * Carefully use d_seq when comparing a candidate dentry, to avoid
1727 * races with d_move().
1729 * It is possible that concurrent renames can mess up our list
1730 * walk here and result in missing our dentry, resulting in the
1731 * false-negative result. d_lookup() protects against concurrent
1732 * renames using rename_lock seqlock.
1734 * See Documentation/filesystems/path-lookup.txt for more details.
1736 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1737 struct inode *i;
1738 const char *tname;
1739 int tlen;
1741 if (dentry->d_name.hash != hash)
1742 continue;
1744 seqretry:
1745 *seq = read_seqcount_begin(&dentry->d_seq);
1746 if (dentry->d_parent != parent)
1747 continue;
1748 if (d_unhashed(dentry))
1749 continue;
1750 tlen = dentry->d_name.len;
1751 tname = dentry->d_name.name;
1752 i = dentry->d_inode;
1753 prefetch(tname);
1755 * This seqcount check is required to ensure name and
1756 * len are loaded atomically, so as not to walk off the
1757 * edge of memory when walking. If we could load this
1758 * atomically some other way, we could drop this check.
1760 if (read_seqcount_retry(&dentry->d_seq, *seq))
1761 goto seqretry;
1762 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
1763 if (parent->d_op->d_compare(parent, *inode,
1764 dentry, i,
1765 tlen, tname, name))
1766 continue;
1767 } else {
1768 if (dentry_cmp(tname, tlen, str, len))
1769 continue;
1772 * No extra seqcount check is required after the name
1773 * compare. The caller must perform a seqcount check in
1774 * order to do anything useful with the returned dentry
1775 * anyway.
1777 *inode = i;
1778 return dentry;
1780 return NULL;
1784 * d_lookup - search for a dentry
1785 * @parent: parent dentry
1786 * @name: qstr of name we wish to find
1787 * Returns: dentry, or NULL
1789 * d_lookup searches the children of the parent dentry for the name in
1790 * question. If the dentry is found its reference count is incremented and the
1791 * dentry is returned. The caller must use dput to free the entry when it has
1792 * finished using it. %NULL is returned if the dentry does not exist.
1794 struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1796 struct dentry *dentry;
1797 unsigned seq;
1799 do {
1800 seq = read_seqbegin(&rename_lock);
1801 dentry = __d_lookup(parent, name);
1802 if (dentry)
1803 break;
1804 } while (read_seqretry(&rename_lock, seq));
1805 return dentry;
1807 EXPORT_SYMBOL(d_lookup);
1810 * __d_lookup - search for a dentry (racy)
1811 * @parent: parent dentry
1812 * @name: qstr of name we wish to find
1813 * Returns: dentry, or NULL
1815 * __d_lookup is like d_lookup, however it may (rarely) return a
1816 * false-negative result due to unrelated rename activity.
1818 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1819 * however it must be used carefully, eg. with a following d_lookup in
1820 * the case of failure.
1822 * __d_lookup callers must be commented.
1824 struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1826 unsigned int len = name->len;
1827 unsigned int hash = name->hash;
1828 const unsigned char *str = name->name;
1829 struct hlist_bl_head *b = d_hash(parent, hash);
1830 struct hlist_bl_node *node;
1831 struct dentry *found = NULL;
1832 struct dentry *dentry;
1835 * Note: There is significant duplication with __d_lookup_rcu which is
1836 * required to prevent single threaded performance regressions
1837 * especially on architectures where smp_rmb (in seqcounts) are costly.
1838 * Keep the two functions in sync.
1842 * The hash list is protected using RCU.
1844 * Take d_lock when comparing a candidate dentry, to avoid races
1845 * with d_move().
1847 * It is possible that concurrent renames can mess up our list
1848 * walk here and result in missing our dentry, resulting in the
1849 * false-negative result. d_lookup() protects against concurrent
1850 * renames using rename_lock seqlock.
1852 * See Documentation/filesystems/path-lookup.txt for more details.
1854 rcu_read_lock();
1856 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1857 const char *tname;
1858 int tlen;
1860 if (dentry->d_name.hash != hash)
1861 continue;
1863 spin_lock(&dentry->d_lock);
1864 if (dentry->d_parent != parent)
1865 goto next;
1866 if (d_unhashed(dentry))
1867 goto next;
1870 * It is safe to compare names since d_move() cannot
1871 * change the qstr (protected by d_lock).
1873 tlen = dentry->d_name.len;
1874 tname = dentry->d_name.name;
1875 if (parent->d_flags & DCACHE_OP_COMPARE) {
1876 if (parent->d_op->d_compare(parent, parent->d_inode,
1877 dentry, dentry->d_inode,
1878 tlen, tname, name))
1879 goto next;
1880 } else {
1881 if (dentry_cmp(tname, tlen, str, len))
1882 goto next;
1885 dentry->d_count++;
1886 found = dentry;
1887 spin_unlock(&dentry->d_lock);
1888 break;
1889 next:
1890 spin_unlock(&dentry->d_lock);
1892 rcu_read_unlock();
1894 return found;
1898 * d_hash_and_lookup - hash the qstr then search for a dentry
1899 * @dir: Directory to search in
1900 * @name: qstr of name we wish to find
1902 * On hash failure or on lookup failure NULL is returned.
1904 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1906 struct dentry *dentry = NULL;
1909 * Check for a fs-specific hash function. Note that we must
1910 * calculate the standard hash first, as the d_op->d_hash()
1911 * routine may choose to leave the hash value unchanged.
1913 name->hash = full_name_hash(name->name, name->len);
1914 if (dir->d_flags & DCACHE_OP_HASH) {
1915 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
1916 goto out;
1918 dentry = d_lookup(dir, name);
1919 out:
1920 return dentry;
1924 * d_validate - verify dentry provided from insecure source (deprecated)
1925 * @dentry: The dentry alleged to be valid child of @dparent
1926 * @dparent: The parent dentry (known to be valid)
1928 * An insecure source has sent us a dentry, here we verify it and dget() it.
1929 * This is used by ncpfs in its readdir implementation.
1930 * Zero is returned in the dentry is invalid.
1932 * This function is slow for big directories, and deprecated, do not use it.
1934 int d_validate(struct dentry *dentry, struct dentry *dparent)
1936 struct dentry *child;
1938 spin_lock(&dparent->d_lock);
1939 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
1940 if (dentry == child) {
1941 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1942 __dget_dlock(dentry);
1943 spin_unlock(&dentry->d_lock);
1944 spin_unlock(&dparent->d_lock);
1945 return 1;
1948 spin_unlock(&dparent->d_lock);
1950 return 0;
1952 EXPORT_SYMBOL(d_validate);
1955 * When a file is deleted, we have two options:
1956 * - turn this dentry into a negative dentry
1957 * - unhash this dentry and free it.
1959 * Usually, we want to just turn this into
1960 * a negative dentry, but if anybody else is
1961 * currently using the dentry or the inode
1962 * we can't do that and we fall back on removing
1963 * it from the hash queues and waiting for
1964 * it to be deleted later when it has no users
1968 * d_delete - delete a dentry
1969 * @dentry: The dentry to delete
1971 * Turn the dentry into a negative dentry if possible, otherwise
1972 * remove it from the hash queues so it can be deleted later
1975 void d_delete(struct dentry * dentry)
1977 struct inode *inode;
1978 int isdir = 0;
1980 * Are we the only user?
1982 again:
1983 spin_lock(&dentry->d_lock);
1984 inode = dentry->d_inode;
1985 isdir = S_ISDIR(inode->i_mode);
1986 if (dentry->d_count == 1) {
1987 if (inode && !spin_trylock(&inode->i_lock)) {
1988 spin_unlock(&dentry->d_lock);
1989 cpu_relax();
1990 goto again;
1992 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
1993 dentry_unlink_inode(dentry);
1994 fsnotify_nameremove(dentry, isdir);
1995 return;
1998 if (!d_unhashed(dentry))
1999 __d_drop(dentry);
2001 spin_unlock(&dentry->d_lock);
2003 fsnotify_nameremove(dentry, isdir);
2005 EXPORT_SYMBOL(d_delete);
2007 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2009 BUG_ON(!d_unhashed(entry));
2010 hlist_bl_lock(b);
2011 entry->d_flags |= DCACHE_RCUACCESS;
2012 hlist_bl_add_head_rcu(&entry->d_hash, b);
2013 hlist_bl_unlock(b);
2016 static void _d_rehash(struct dentry * entry)
2018 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2022 * d_rehash - add an entry back to the hash
2023 * @entry: dentry to add to the hash
2025 * Adds a dentry to the hash according to its name.
2028 void d_rehash(struct dentry * entry)
2030 spin_lock(&entry->d_lock);
2031 _d_rehash(entry);
2032 spin_unlock(&entry->d_lock);
2034 EXPORT_SYMBOL(d_rehash);
2037 * dentry_update_name_case - update case insensitive dentry with a new name
2038 * @dentry: dentry to be updated
2039 * @name: new name
2041 * Update a case insensitive dentry with new case of name.
2043 * dentry must have been returned by d_lookup with name @name. Old and new
2044 * name lengths must match (ie. no d_compare which allows mismatched name
2045 * lengths).
2047 * Parent inode i_mutex must be held over d_lookup and into this call (to
2048 * keep renames and concurrent inserts, and readdir(2) away).
2050 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2052 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2053 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2055 spin_lock(&dentry->d_lock);
2056 write_seqcount_begin(&dentry->d_seq);
2057 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2058 write_seqcount_end(&dentry->d_seq);
2059 spin_unlock(&dentry->d_lock);
2061 EXPORT_SYMBOL(dentry_update_name_case);
2063 static void switch_names(struct dentry *dentry, struct dentry *target)
2065 if (dname_external(target)) {
2066 if (dname_external(dentry)) {
2068 * Both external: swap the pointers
2070 swap(target->d_name.name, dentry->d_name.name);
2071 } else {
2073 * dentry:internal, target:external. Steal target's
2074 * storage and make target internal.
2076 memcpy(target->d_iname, dentry->d_name.name,
2077 dentry->d_name.len + 1);
2078 dentry->d_name.name = target->d_name.name;
2079 target->d_name.name = target->d_iname;
2081 } else {
2082 if (dname_external(dentry)) {
2084 * dentry:external, target:internal. Give dentry's
2085 * storage to target and make dentry internal
2087 memcpy(dentry->d_iname, target->d_name.name,
2088 target->d_name.len + 1);
2089 target->d_name.name = dentry->d_name.name;
2090 dentry->d_name.name = dentry->d_iname;
2091 } else {
2093 * Both are internal. Just copy target to dentry
2095 memcpy(dentry->d_iname, target->d_name.name,
2096 target->d_name.len + 1);
2097 dentry->d_name.len = target->d_name.len;
2098 return;
2101 swap(dentry->d_name.len, target->d_name.len);
2104 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2107 * XXXX: do we really need to take target->d_lock?
2109 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2110 spin_lock(&target->d_parent->d_lock);
2111 else {
2112 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2113 spin_lock(&dentry->d_parent->d_lock);
2114 spin_lock_nested(&target->d_parent->d_lock,
2115 DENTRY_D_LOCK_NESTED);
2116 } else {
2117 spin_lock(&target->d_parent->d_lock);
2118 spin_lock_nested(&dentry->d_parent->d_lock,
2119 DENTRY_D_LOCK_NESTED);
2122 if (target < dentry) {
2123 spin_lock_nested(&target->d_lock, 2);
2124 spin_lock_nested(&dentry->d_lock, 3);
2125 } else {
2126 spin_lock_nested(&dentry->d_lock, 2);
2127 spin_lock_nested(&target->d_lock, 3);
2131 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2132 struct dentry *target)
2134 if (target->d_parent != dentry->d_parent)
2135 spin_unlock(&dentry->d_parent->d_lock);
2136 if (target->d_parent != target)
2137 spin_unlock(&target->d_parent->d_lock);
2141 * When switching names, the actual string doesn't strictly have to
2142 * be preserved in the target - because we're dropping the target
2143 * anyway. As such, we can just do a simple memcpy() to copy over
2144 * the new name before we switch.
2146 * Note that we have to be a lot more careful about getting the hash
2147 * switched - we have to switch the hash value properly even if it
2148 * then no longer matches the actual (corrupted) string of the target.
2149 * The hash value has to match the hash queue that the dentry is on..
2152 * __d_move - move a dentry
2153 * @dentry: entry to move
2154 * @target: new dentry
2156 * Update the dcache to reflect the move of a file name. Negative
2157 * dcache entries should not be moved in this way. Caller must hold
2158 * rename_lock, the i_mutex of the source and target directories,
2159 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2161 static void __d_move(struct dentry * dentry, struct dentry * target)
2163 if (!dentry->d_inode)
2164 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2166 BUG_ON(d_ancestor(dentry, target));
2167 BUG_ON(d_ancestor(target, dentry));
2169 dentry_lock_for_move(dentry, target);
2171 write_seqcount_begin(&dentry->d_seq);
2172 write_seqcount_begin(&target->d_seq);
2174 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2177 * Move the dentry to the target hash queue. Don't bother checking
2178 * for the same hash queue because of how unlikely it is.
2180 __d_drop(dentry);
2181 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2183 /* Unhash the target: dput() will then get rid of it */
2184 __d_drop(target);
2186 list_del(&dentry->d_u.d_child);
2187 list_del(&target->d_u.d_child);
2189 /* Switch the names.. */
2190 switch_names(dentry, target);
2191 swap(dentry->d_name.hash, target->d_name.hash);
2193 /* ... and switch the parents */
2194 if (IS_ROOT(dentry)) {
2195 dentry->d_parent = target->d_parent;
2196 target->d_parent = target;
2197 INIT_LIST_HEAD(&target->d_u.d_child);
2198 } else {
2199 swap(dentry->d_parent, target->d_parent);
2201 /* And add them back to the (new) parent lists */
2202 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2205 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2207 write_seqcount_end(&target->d_seq);
2208 write_seqcount_end(&dentry->d_seq);
2210 dentry_unlock_parents_for_move(dentry, target);
2211 spin_unlock(&target->d_lock);
2212 fsnotify_d_move(dentry);
2213 spin_unlock(&dentry->d_lock);
2217 * d_move - move a dentry
2218 * @dentry: entry to move
2219 * @target: new dentry
2221 * Update the dcache to reflect the move of a file name. Negative
2222 * dcache entries should not be moved in this way. See the locking
2223 * requirements for __d_move.
2225 void d_move(struct dentry *dentry, struct dentry *target)
2227 write_seqlock(&rename_lock);
2228 __d_move(dentry, target);
2229 write_sequnlock(&rename_lock);
2231 EXPORT_SYMBOL(d_move);
2234 * d_ancestor - search for an ancestor
2235 * @p1: ancestor dentry
2236 * @p2: child dentry
2238 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2239 * an ancestor of p2, else NULL.
2241 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2243 struct dentry *p;
2245 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2246 if (p->d_parent == p1)
2247 return p;
2249 return NULL;
2253 * This helper attempts to cope with remotely renamed directories
2255 * It assumes that the caller is already holding
2256 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2258 * Note: If ever the locking in lock_rename() changes, then please
2259 * remember to update this too...
2261 static struct dentry *__d_unalias(struct inode *inode,
2262 struct dentry *dentry, struct dentry *alias)
2264 struct mutex *m1 = NULL, *m2 = NULL;
2265 struct dentry *ret;
2267 /* If alias and dentry share a parent, then no extra locks required */
2268 if (alias->d_parent == dentry->d_parent)
2269 goto out_unalias;
2271 /* See lock_rename() */
2272 ret = ERR_PTR(-EBUSY);
2273 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2274 goto out_err;
2275 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2276 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2277 goto out_err;
2278 m2 = &alias->d_parent->d_inode->i_mutex;
2279 out_unalias:
2280 __d_move(alias, dentry);
2281 ret = alias;
2282 out_err:
2283 spin_unlock(&inode->i_lock);
2284 if (m2)
2285 mutex_unlock(m2);
2286 if (m1)
2287 mutex_unlock(m1);
2288 return ret;
2292 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2293 * named dentry in place of the dentry to be replaced.
2294 * returns with anon->d_lock held!
2296 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2298 struct dentry *dparent, *aparent;
2300 dentry_lock_for_move(anon, dentry);
2302 write_seqcount_begin(&dentry->d_seq);
2303 write_seqcount_begin(&anon->d_seq);
2305 dparent = dentry->d_parent;
2306 aparent = anon->d_parent;
2308 switch_names(dentry, anon);
2309 swap(dentry->d_name.hash, anon->d_name.hash);
2311 dentry->d_parent = (aparent == anon) ? dentry : aparent;
2312 list_del(&dentry->d_u.d_child);
2313 if (!IS_ROOT(dentry))
2314 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2315 else
2316 INIT_LIST_HEAD(&dentry->d_u.d_child);
2318 anon->d_parent = (dparent == dentry) ? anon : dparent;
2319 list_del(&anon->d_u.d_child);
2320 if (!IS_ROOT(anon))
2321 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2322 else
2323 INIT_LIST_HEAD(&anon->d_u.d_child);
2325 write_seqcount_end(&dentry->d_seq);
2326 write_seqcount_end(&anon->d_seq);
2328 dentry_unlock_parents_for_move(anon, dentry);
2329 spin_unlock(&dentry->d_lock);
2331 /* anon->d_lock still locked, returns locked */
2332 anon->d_flags &= ~DCACHE_DISCONNECTED;
2336 * d_materialise_unique - introduce an inode into the tree
2337 * @dentry: candidate dentry
2338 * @inode: inode to bind to the dentry, to which aliases may be attached
2340 * Introduces an dentry into the tree, substituting an extant disconnected
2341 * root directory alias in its place if there is one. Caller must hold the
2342 * i_mutex of the parent directory.
2344 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2346 struct dentry *actual;
2348 BUG_ON(!d_unhashed(dentry));
2350 if (!inode) {
2351 actual = dentry;
2352 __d_instantiate(dentry, NULL);
2353 d_rehash(actual);
2354 goto out_nolock;
2357 spin_lock(&inode->i_lock);
2359 if (S_ISDIR(inode->i_mode)) {
2360 struct dentry *alias;
2362 /* Does an aliased dentry already exist? */
2363 alias = __d_find_alias(inode, 0);
2364 if (alias) {
2365 actual = alias;
2366 write_seqlock(&rename_lock);
2368 if (d_ancestor(alias, dentry)) {
2369 /* Check for loops */
2370 actual = ERR_PTR(-ELOOP);
2371 } else if (IS_ROOT(alias)) {
2372 /* Is this an anonymous mountpoint that we
2373 * could splice into our tree? */
2374 __d_materialise_dentry(dentry, alias);
2375 write_sequnlock(&rename_lock);
2376 __d_drop(alias);
2377 goto found;
2378 } else {
2379 /* Nope, but we must(!) avoid directory
2380 * aliasing */
2381 actual = __d_unalias(inode, dentry, alias);
2383 write_sequnlock(&rename_lock);
2384 if (IS_ERR(actual)) {
2385 if (PTR_ERR(actual) == -ELOOP)
2386 pr_warn_ratelimited(
2387 "VFS: Lookup of '%s' in %s %s"
2388 " would have caused loop\n",
2389 dentry->d_name.name,
2390 inode->i_sb->s_type->name,
2391 inode->i_sb->s_id);
2392 dput(alias);
2394 goto out_nolock;
2398 /* Add a unique reference */
2399 actual = __d_instantiate_unique(dentry, inode);
2400 if (!actual)
2401 actual = dentry;
2402 else
2403 BUG_ON(!d_unhashed(actual));
2405 spin_lock(&actual->d_lock);
2406 found:
2407 _d_rehash(actual);
2408 spin_unlock(&actual->d_lock);
2409 spin_unlock(&inode->i_lock);
2410 out_nolock:
2411 if (actual == dentry) {
2412 security_d_instantiate(dentry, inode);
2413 return NULL;
2416 iput(inode);
2417 return actual;
2419 EXPORT_SYMBOL_GPL(d_materialise_unique);
2421 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2423 *buflen -= namelen;
2424 if (*buflen < 0)
2425 return -ENAMETOOLONG;
2426 *buffer -= namelen;
2427 memcpy(*buffer, str, namelen);
2428 return 0;
2431 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2433 return prepend(buffer, buflen, name->name, name->len);
2437 * prepend_path - Prepend path string to a buffer
2438 * @path: the dentry/vfsmount to report
2439 * @root: root vfsmnt/dentry
2440 * @buffer: pointer to the end of the buffer
2441 * @buflen: pointer to buffer length
2443 * Caller holds the rename_lock.
2445 static int prepend_path(const struct path *path,
2446 const struct path *root,
2447 char **buffer, int *buflen)
2449 struct dentry *dentry = path->dentry;
2450 struct vfsmount *vfsmnt = path->mnt;
2451 struct mount *mnt = real_mount(vfsmnt);
2452 bool slash = false;
2453 int error = 0;
2455 br_read_lock(vfsmount_lock);
2456 while (dentry != root->dentry || vfsmnt != root->mnt) {
2457 struct dentry * parent;
2459 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2460 /* Global root? */
2461 if (!mnt_has_parent(mnt))
2462 goto global_root;
2463 dentry = mnt->mnt_mountpoint;
2464 mnt = mnt->mnt_parent;
2465 vfsmnt = &mnt->mnt;
2466 continue;
2468 parent = dentry->d_parent;
2469 prefetch(parent);
2470 spin_lock(&dentry->d_lock);
2471 error = prepend_name(buffer, buflen, &dentry->d_name);
2472 spin_unlock(&dentry->d_lock);
2473 if (!error)
2474 error = prepend(buffer, buflen, "/", 1);
2475 if (error)
2476 break;
2478 slash = true;
2479 dentry = parent;
2482 if (!error && !slash)
2483 error = prepend(buffer, buflen, "/", 1);
2485 out:
2486 br_read_unlock(vfsmount_lock);
2487 return error;
2489 global_root:
2491 * Filesystems needing to implement special "root names"
2492 * should do so with ->d_dname()
2494 if (IS_ROOT(dentry) &&
2495 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2496 WARN(1, "Root dentry has weird name <%.*s>\n",
2497 (int) dentry->d_name.len, dentry->d_name.name);
2499 if (!slash)
2500 error = prepend(buffer, buflen, "/", 1);
2501 if (!error)
2502 error = real_mount(vfsmnt)->mnt_ns ? 1 : 2;
2503 goto out;
2507 * __d_path - return the path of a dentry
2508 * @path: the dentry/vfsmount to report
2509 * @root: root vfsmnt/dentry
2510 * @buf: buffer to return value in
2511 * @buflen: buffer length
2513 * Convert a dentry into an ASCII path name.
2515 * Returns a pointer into the buffer or an error code if the
2516 * path was too long.
2518 * "buflen" should be positive.
2520 * If the path is not reachable from the supplied root, return %NULL.
2522 char *__d_path(const struct path *path,
2523 const struct path *root,
2524 char *buf, int buflen)
2526 char *res = buf + buflen;
2527 int error;
2529 prepend(&res, &buflen, "\0", 1);
2530 write_seqlock(&rename_lock);
2531 error = prepend_path(path, root, &res, &buflen);
2532 write_sequnlock(&rename_lock);
2534 if (error < 0)
2535 return ERR_PTR(error);
2536 if (error > 0)
2537 return NULL;
2538 return res;
2541 char *d_absolute_path(const struct path *path,
2542 char *buf, int buflen)
2544 struct path root = {};
2545 char *res = buf + buflen;
2546 int error;
2548 prepend(&res, &buflen, "\0", 1);
2549 write_seqlock(&rename_lock);
2550 error = prepend_path(path, &root, &res, &buflen);
2551 write_sequnlock(&rename_lock);
2553 if (error > 1)
2554 error = -EINVAL;
2555 if (error < 0)
2556 return ERR_PTR(error);
2557 return res;
2561 * same as __d_path but appends "(deleted)" for unlinked files.
2563 static int path_with_deleted(const struct path *path,
2564 const struct path *root,
2565 char **buf, int *buflen)
2567 prepend(buf, buflen, "\0", 1);
2568 if (d_unlinked(path->dentry)) {
2569 int error = prepend(buf, buflen, " (deleted)", 10);
2570 if (error)
2571 return error;
2574 return prepend_path(path, root, buf, buflen);
2577 static int prepend_unreachable(char **buffer, int *buflen)
2579 return prepend(buffer, buflen, "(unreachable)", 13);
2583 * d_path - return the path of a dentry
2584 * @path: path to report
2585 * @buf: buffer to return value in
2586 * @buflen: buffer length
2588 * Convert a dentry into an ASCII path name. If the entry has been deleted
2589 * the string " (deleted)" is appended. Note that this is ambiguous.
2591 * Returns a pointer into the buffer or an error code if the path was
2592 * too long. Note: Callers should use the returned pointer, not the passed
2593 * in buffer, to use the name! The implementation often starts at an offset
2594 * into the buffer, and may leave 0 bytes at the start.
2596 * "buflen" should be positive.
2598 char *d_path(const struct path *path, char *buf, int buflen)
2600 char *res = buf + buflen;
2601 struct path root;
2602 int error;
2605 * We have various synthetic filesystems that never get mounted. On
2606 * these filesystems dentries are never used for lookup purposes, and
2607 * thus don't need to be hashed. They also don't need a name until a
2608 * user wants to identify the object in /proc/pid/fd/. The little hack
2609 * below allows us to generate a name for these objects on demand:
2611 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2612 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2614 get_fs_root(current->fs, &root);
2615 write_seqlock(&rename_lock);
2616 error = path_with_deleted(path, &root, &res, &buflen);
2617 if (error < 0)
2618 res = ERR_PTR(error);
2619 write_sequnlock(&rename_lock);
2620 path_put(&root);
2621 return res;
2623 EXPORT_SYMBOL(d_path);
2626 * d_path_with_unreachable - return the path of a dentry
2627 * @path: path to report
2628 * @buf: buffer to return value in
2629 * @buflen: buffer length
2631 * The difference from d_path() is that this prepends "(unreachable)"
2632 * to paths which are unreachable from the current process' root.
2634 char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2636 char *res = buf + buflen;
2637 struct path root;
2638 int error;
2640 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2641 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2643 get_fs_root(current->fs, &root);
2644 write_seqlock(&rename_lock);
2645 error = path_with_deleted(path, &root, &res, &buflen);
2646 if (error > 0)
2647 error = prepend_unreachable(&res, &buflen);
2648 write_sequnlock(&rename_lock);
2649 path_put(&root);
2650 if (error)
2651 res = ERR_PTR(error);
2653 return res;
2657 * Helper function for dentry_operations.d_dname() members
2659 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2660 const char *fmt, ...)
2662 va_list args;
2663 char temp[64];
2664 int sz;
2666 va_start(args, fmt);
2667 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2668 va_end(args);
2670 if (sz > sizeof(temp) || sz > buflen)
2671 return ERR_PTR(-ENAMETOOLONG);
2673 buffer += buflen - sz;
2674 return memcpy(buffer, temp, sz);
2678 * Write full pathname from the root of the filesystem into the buffer.
2680 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2682 char *end = buf + buflen;
2683 char *retval;
2685 prepend(&end, &buflen, "\0", 1);
2686 if (buflen < 1)
2687 goto Elong;
2688 /* Get '/' right */
2689 retval = end-1;
2690 *retval = '/';
2692 while (!IS_ROOT(dentry)) {
2693 struct dentry *parent = dentry->d_parent;
2694 int error;
2696 prefetch(parent);
2697 spin_lock(&dentry->d_lock);
2698 error = prepend_name(&end, &buflen, &dentry->d_name);
2699 spin_unlock(&dentry->d_lock);
2700 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2701 goto Elong;
2703 retval = end;
2704 dentry = parent;
2706 return retval;
2707 Elong:
2708 return ERR_PTR(-ENAMETOOLONG);
2711 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2713 char *retval;
2715 write_seqlock(&rename_lock);
2716 retval = __dentry_path(dentry, buf, buflen);
2717 write_sequnlock(&rename_lock);
2719 return retval;
2721 EXPORT_SYMBOL(dentry_path_raw);
2723 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2725 char *p = NULL;
2726 char *retval;
2728 write_seqlock(&rename_lock);
2729 if (d_unlinked(dentry)) {
2730 p = buf + buflen;
2731 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2732 goto Elong;
2733 buflen++;
2735 retval = __dentry_path(dentry, buf, buflen);
2736 write_sequnlock(&rename_lock);
2737 if (!IS_ERR(retval) && p)
2738 *p = '/'; /* restore '/' overriden with '\0' */
2739 return retval;
2740 Elong:
2741 return ERR_PTR(-ENAMETOOLONG);
2745 * NOTE! The user-level library version returns a
2746 * character pointer. The kernel system call just
2747 * returns the length of the buffer filled (which
2748 * includes the ending '\0' character), or a negative
2749 * error value. So libc would do something like
2751 * char *getcwd(char * buf, size_t size)
2753 * int retval;
2755 * retval = sys_getcwd(buf, size);
2756 * if (retval >= 0)
2757 * return buf;
2758 * errno = -retval;
2759 * return NULL;
2762 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2764 int error;
2765 struct path pwd, root;
2766 char *page = (char *) __get_free_page(GFP_USER);
2768 if (!page)
2769 return -ENOMEM;
2771 get_fs_root_and_pwd(current->fs, &root, &pwd);
2773 error = -ENOENT;
2774 write_seqlock(&rename_lock);
2775 if (!d_unlinked(pwd.dentry)) {
2776 unsigned long len;
2777 char *cwd = page + PAGE_SIZE;
2778 int buflen = PAGE_SIZE;
2780 prepend(&cwd, &buflen, "\0", 1);
2781 error = prepend_path(&pwd, &root, &cwd, &buflen);
2782 write_sequnlock(&rename_lock);
2784 if (error < 0)
2785 goto out;
2787 /* Unreachable from current root */
2788 if (error > 0) {
2789 error = prepend_unreachable(&cwd, &buflen);
2790 if (error)
2791 goto out;
2794 error = -ERANGE;
2795 len = PAGE_SIZE + page - cwd;
2796 if (len <= size) {
2797 error = len;
2798 if (copy_to_user(buf, cwd, len))
2799 error = -EFAULT;
2801 } else {
2802 write_sequnlock(&rename_lock);
2805 out:
2806 path_put(&pwd);
2807 path_put(&root);
2808 free_page((unsigned long) page);
2809 return error;
2813 * Test whether new_dentry is a subdirectory of old_dentry.
2815 * Trivially implemented using the dcache structure
2819 * is_subdir - is new dentry a subdirectory of old_dentry
2820 * @new_dentry: new dentry
2821 * @old_dentry: old dentry
2823 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2824 * Returns 0 otherwise.
2825 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2828 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2830 int result;
2831 unsigned seq;
2833 if (new_dentry == old_dentry)
2834 return 1;
2836 do {
2837 /* for restarting inner loop in case of seq retry */
2838 seq = read_seqbegin(&rename_lock);
2840 * Need rcu_readlock to protect against the d_parent trashing
2841 * due to d_move
2843 rcu_read_lock();
2844 if (d_ancestor(old_dentry, new_dentry))
2845 result = 1;
2846 else
2847 result = 0;
2848 rcu_read_unlock();
2849 } while (read_seqretry(&rename_lock, seq));
2851 return result;
2854 void d_genocide(struct dentry *root)
2856 struct dentry *this_parent;
2857 struct list_head *next;
2858 unsigned seq;
2859 int locked = 0;
2861 seq = read_seqbegin(&rename_lock);
2862 again:
2863 this_parent = root;
2864 spin_lock(&this_parent->d_lock);
2865 repeat:
2866 next = this_parent->d_subdirs.next;
2867 resume:
2868 while (next != &this_parent->d_subdirs) {
2869 struct list_head *tmp = next;
2870 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2871 next = tmp->next;
2873 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2874 if (d_unhashed(dentry) || !dentry->d_inode) {
2875 spin_unlock(&dentry->d_lock);
2876 continue;
2878 if (!list_empty(&dentry->d_subdirs)) {
2879 spin_unlock(&this_parent->d_lock);
2880 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
2881 this_parent = dentry;
2882 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
2883 goto repeat;
2885 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2886 dentry->d_flags |= DCACHE_GENOCIDE;
2887 dentry->d_count--;
2889 spin_unlock(&dentry->d_lock);
2891 if (this_parent != root) {
2892 struct dentry *child = this_parent;
2893 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2894 this_parent->d_flags |= DCACHE_GENOCIDE;
2895 this_parent->d_count--;
2897 this_parent = try_to_ascend(this_parent, locked, seq);
2898 if (!this_parent)
2899 goto rename_retry;
2900 next = child->d_u.d_child.next;
2901 goto resume;
2903 spin_unlock(&this_parent->d_lock);
2904 if (!locked && read_seqretry(&rename_lock, seq))
2905 goto rename_retry;
2906 if (locked)
2907 write_sequnlock(&rename_lock);
2908 return;
2910 rename_retry:
2911 locked = 1;
2912 write_seqlock(&rename_lock);
2913 goto again;
2917 * find_inode_number - check for dentry with name
2918 * @dir: directory to check
2919 * @name: Name to find.
2921 * Check whether a dentry already exists for the given name,
2922 * and return the inode number if it has an inode. Otherwise
2923 * 0 is returned.
2925 * This routine is used to post-process directory listings for
2926 * filesystems using synthetic inode numbers, and is necessary
2927 * to keep getcwd() working.
2930 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2932 struct dentry * dentry;
2933 ino_t ino = 0;
2935 dentry = d_hash_and_lookup(dir, name);
2936 if (dentry) {
2937 if (dentry->d_inode)
2938 ino = dentry->d_inode->i_ino;
2939 dput(dentry);
2941 return ino;
2943 EXPORT_SYMBOL(find_inode_number);
2945 static __initdata unsigned long dhash_entries;
2946 static int __init set_dhash_entries(char *str)
2948 if (!str)
2949 return 0;
2950 dhash_entries = simple_strtoul(str, &str, 0);
2951 return 1;
2953 __setup("dhash_entries=", set_dhash_entries);
2955 static void __init dcache_init_early(void)
2957 int loop;
2959 /* If hashes are distributed across NUMA nodes, defer
2960 * hash allocation until vmalloc space is available.
2962 if (hashdist)
2963 return;
2965 dentry_hashtable =
2966 alloc_large_system_hash("Dentry cache",
2967 sizeof(struct hlist_bl_head),
2968 dhash_entries,
2970 HASH_EARLY,
2971 &d_hash_shift,
2972 &d_hash_mask,
2975 for (loop = 0; loop < (1 << d_hash_shift); loop++)
2976 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
2979 static void __init dcache_init(void)
2981 int loop;
2984 * A constructor could be added for stable state like the lists,
2985 * but it is probably not worth it because of the cache nature
2986 * of the dcache.
2988 dentry_cache = KMEM_CACHE(dentry,
2989 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
2991 /* Hash may have been set up in dcache_init_early */
2992 if (!hashdist)
2993 return;
2995 dentry_hashtable =
2996 alloc_large_system_hash("Dentry cache",
2997 sizeof(struct hlist_bl_head),
2998 dhash_entries,
3001 &d_hash_shift,
3002 &d_hash_mask,
3005 for (loop = 0; loop < (1 << d_hash_shift); loop++)
3006 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3009 /* SLAB cache for __getname() consumers */
3010 struct kmem_cache *names_cachep __read_mostly;
3011 EXPORT_SYMBOL(names_cachep);
3013 EXPORT_SYMBOL(d_genocide);
3015 void __init vfs_caches_init_early(void)
3017 dcache_init_early();
3018 inode_init_early();
3021 void __init vfs_caches_init(unsigned long mempages)
3023 unsigned long reserve;
3025 /* Base hash sizes on available memory, with a reserve equal to
3026 150% of current kernel size */
3028 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3029 mempages -= reserve;
3031 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3032 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3034 dcache_init();
3035 inode_init();
3036 files_init(mempages);
3037 mnt_init();
3038 bdev_cache_init();
3039 chrdev_init();