drm/exynos: modify goto labels to meaningful names
[linux-2.6/btrfs-unstable.git] / drivers / md / dm-thin.c
blob53728be84dee35ac8dfabbf48087919841049f1a
1 /*
2 * Copyright (C) 2011-2012 Red Hat UK.
4 * This file is released under the GPL.
5 */
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/rculist.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/rbtree.h>
21 #define DM_MSG_PREFIX "thin"
24 * Tunable constants
26 #define ENDIO_HOOK_POOL_SIZE 1024
27 #define MAPPING_POOL_SIZE 1024
28 #define PRISON_CELLS 1024
29 #define COMMIT_PERIOD HZ
31 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
32 "A percentage of time allocated for copy on write");
35 * The block size of the device holding pool data must be
36 * between 64KB and 1GB.
38 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
39 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
42 * Device id is restricted to 24 bits.
44 #define MAX_DEV_ID ((1 << 24) - 1)
47 * How do we handle breaking sharing of data blocks?
48 * =================================================
50 * We use a standard copy-on-write btree to store the mappings for the
51 * devices (note I'm talking about copy-on-write of the metadata here, not
52 * the data). When you take an internal snapshot you clone the root node
53 * of the origin btree. After this there is no concept of an origin or a
54 * snapshot. They are just two device trees that happen to point to the
55 * same data blocks.
57 * When we get a write in we decide if it's to a shared data block using
58 * some timestamp magic. If it is, we have to break sharing.
60 * Let's say we write to a shared block in what was the origin. The
61 * steps are:
63 * i) plug io further to this physical block. (see bio_prison code).
65 * ii) quiesce any read io to that shared data block. Obviously
66 * including all devices that share this block. (see dm_deferred_set code)
68 * iii) copy the data block to a newly allocate block. This step can be
69 * missed out if the io covers the block. (schedule_copy).
71 * iv) insert the new mapping into the origin's btree
72 * (process_prepared_mapping). This act of inserting breaks some
73 * sharing of btree nodes between the two devices. Breaking sharing only
74 * effects the btree of that specific device. Btrees for the other
75 * devices that share the block never change. The btree for the origin
76 * device as it was after the last commit is untouched, ie. we're using
77 * persistent data structures in the functional programming sense.
79 * v) unplug io to this physical block, including the io that triggered
80 * the breaking of sharing.
82 * Steps (ii) and (iii) occur in parallel.
84 * The metadata _doesn't_ need to be committed before the io continues. We
85 * get away with this because the io is always written to a _new_ block.
86 * If there's a crash, then:
88 * - The origin mapping will point to the old origin block (the shared
89 * one). This will contain the data as it was before the io that triggered
90 * the breaking of sharing came in.
92 * - The snap mapping still points to the old block. As it would after
93 * the commit.
95 * The downside of this scheme is the timestamp magic isn't perfect, and
96 * will continue to think that data block in the snapshot device is shared
97 * even after the write to the origin has broken sharing. I suspect data
98 * blocks will typically be shared by many different devices, so we're
99 * breaking sharing n + 1 times, rather than n, where n is the number of
100 * devices that reference this data block. At the moment I think the
101 * benefits far, far outweigh the disadvantages.
104 /*----------------------------------------------------------------*/
107 * Key building.
109 static void build_data_key(struct dm_thin_device *td,
110 dm_block_t b, struct dm_cell_key *key)
112 key->virtual = 0;
113 key->dev = dm_thin_dev_id(td);
114 key->block = b;
117 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
118 struct dm_cell_key *key)
120 key->virtual = 1;
121 key->dev = dm_thin_dev_id(td);
122 key->block = b;
125 /*----------------------------------------------------------------*/
128 * A pool device ties together a metadata device and a data device. It
129 * also provides the interface for creating and destroying internal
130 * devices.
132 struct dm_thin_new_mapping;
135 * The pool runs in 4 modes. Ordered in degraded order for comparisons.
137 enum pool_mode {
138 PM_WRITE, /* metadata may be changed */
139 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */
140 PM_READ_ONLY, /* metadata may not be changed */
141 PM_FAIL, /* all I/O fails */
144 struct pool_features {
145 enum pool_mode mode;
147 bool zero_new_blocks:1;
148 bool discard_enabled:1;
149 bool discard_passdown:1;
150 bool error_if_no_space:1;
153 struct thin_c;
154 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
155 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
157 struct pool {
158 struct list_head list;
159 struct dm_target *ti; /* Only set if a pool target is bound */
161 struct mapped_device *pool_md;
162 struct block_device *md_dev;
163 struct dm_pool_metadata *pmd;
165 dm_block_t low_water_blocks;
166 uint32_t sectors_per_block;
167 int sectors_per_block_shift;
169 struct pool_features pf;
170 bool low_water_triggered:1; /* A dm event has been sent */
172 struct dm_bio_prison *prison;
173 struct dm_kcopyd_client *copier;
175 struct workqueue_struct *wq;
176 struct work_struct worker;
177 struct delayed_work waker;
179 unsigned long last_commit_jiffies;
180 unsigned ref_count;
182 spinlock_t lock;
183 struct bio_list deferred_flush_bios;
184 struct list_head prepared_mappings;
185 struct list_head prepared_discards;
186 struct list_head active_thins;
188 struct dm_deferred_set *shared_read_ds;
189 struct dm_deferred_set *all_io_ds;
191 struct dm_thin_new_mapping *next_mapping;
192 mempool_t *mapping_pool;
194 process_bio_fn process_bio;
195 process_bio_fn process_discard;
197 process_mapping_fn process_prepared_mapping;
198 process_mapping_fn process_prepared_discard;
201 static enum pool_mode get_pool_mode(struct pool *pool);
202 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
205 * Target context for a pool.
207 struct pool_c {
208 struct dm_target *ti;
209 struct pool *pool;
210 struct dm_dev *data_dev;
211 struct dm_dev *metadata_dev;
212 struct dm_target_callbacks callbacks;
214 dm_block_t low_water_blocks;
215 struct pool_features requested_pf; /* Features requested during table load */
216 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
220 * Target context for a thin.
222 struct thin_c {
223 struct list_head list;
224 struct dm_dev *pool_dev;
225 struct dm_dev *origin_dev;
226 dm_thin_id dev_id;
228 struct pool *pool;
229 struct dm_thin_device *td;
230 bool requeue_mode:1;
231 spinlock_t lock;
232 struct bio_list deferred_bio_list;
233 struct bio_list retry_on_resume_list;
234 struct rb_root sort_bio_list; /* sorted list of deferred bios */
237 /*----------------------------------------------------------------*/
240 * wake_worker() is used when new work is queued and when pool_resume is
241 * ready to continue deferred IO processing.
243 static void wake_worker(struct pool *pool)
245 queue_work(pool->wq, &pool->worker);
248 /*----------------------------------------------------------------*/
250 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
251 struct dm_bio_prison_cell **cell_result)
253 int r;
254 struct dm_bio_prison_cell *cell_prealloc;
257 * Allocate a cell from the prison's mempool.
258 * This might block but it can't fail.
260 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
262 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
263 if (r)
265 * We reused an old cell; we can get rid of
266 * the new one.
268 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
270 return r;
273 static void cell_release(struct pool *pool,
274 struct dm_bio_prison_cell *cell,
275 struct bio_list *bios)
277 dm_cell_release(pool->prison, cell, bios);
278 dm_bio_prison_free_cell(pool->prison, cell);
281 static void cell_release_no_holder(struct pool *pool,
282 struct dm_bio_prison_cell *cell,
283 struct bio_list *bios)
285 dm_cell_release_no_holder(pool->prison, cell, bios);
286 dm_bio_prison_free_cell(pool->prison, cell);
289 static void cell_defer_no_holder_no_free(struct thin_c *tc,
290 struct dm_bio_prison_cell *cell)
292 struct pool *pool = tc->pool;
293 unsigned long flags;
295 spin_lock_irqsave(&tc->lock, flags);
296 dm_cell_release_no_holder(pool->prison, cell, &tc->deferred_bio_list);
297 spin_unlock_irqrestore(&tc->lock, flags);
299 wake_worker(pool);
302 static void cell_error(struct pool *pool,
303 struct dm_bio_prison_cell *cell)
305 dm_cell_error(pool->prison, cell);
306 dm_bio_prison_free_cell(pool->prison, cell);
309 /*----------------------------------------------------------------*/
312 * A global list of pools that uses a struct mapped_device as a key.
314 static struct dm_thin_pool_table {
315 struct mutex mutex;
316 struct list_head pools;
317 } dm_thin_pool_table;
319 static void pool_table_init(void)
321 mutex_init(&dm_thin_pool_table.mutex);
322 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
325 static void __pool_table_insert(struct pool *pool)
327 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
328 list_add(&pool->list, &dm_thin_pool_table.pools);
331 static void __pool_table_remove(struct pool *pool)
333 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
334 list_del(&pool->list);
337 static struct pool *__pool_table_lookup(struct mapped_device *md)
339 struct pool *pool = NULL, *tmp;
341 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
343 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
344 if (tmp->pool_md == md) {
345 pool = tmp;
346 break;
350 return pool;
353 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
355 struct pool *pool = NULL, *tmp;
357 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
359 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
360 if (tmp->md_dev == md_dev) {
361 pool = tmp;
362 break;
366 return pool;
369 /*----------------------------------------------------------------*/
371 struct dm_thin_endio_hook {
372 struct thin_c *tc;
373 struct dm_deferred_entry *shared_read_entry;
374 struct dm_deferred_entry *all_io_entry;
375 struct dm_thin_new_mapping *overwrite_mapping;
376 struct rb_node rb_node;
379 static void requeue_bio_list(struct thin_c *tc, struct bio_list *master)
381 struct bio *bio;
382 struct bio_list bios;
383 unsigned long flags;
385 bio_list_init(&bios);
387 spin_lock_irqsave(&tc->lock, flags);
388 bio_list_merge(&bios, master);
389 bio_list_init(master);
390 spin_unlock_irqrestore(&tc->lock, flags);
392 while ((bio = bio_list_pop(&bios)))
393 bio_endio(bio, DM_ENDIO_REQUEUE);
396 static void requeue_io(struct thin_c *tc)
398 requeue_bio_list(tc, &tc->deferred_bio_list);
399 requeue_bio_list(tc, &tc->retry_on_resume_list);
402 static void error_thin_retry_list(struct thin_c *tc)
404 struct bio *bio;
405 unsigned long flags;
406 struct bio_list bios;
408 bio_list_init(&bios);
410 spin_lock_irqsave(&tc->lock, flags);
411 bio_list_merge(&bios, &tc->retry_on_resume_list);
412 bio_list_init(&tc->retry_on_resume_list);
413 spin_unlock_irqrestore(&tc->lock, flags);
415 while ((bio = bio_list_pop(&bios)))
416 bio_io_error(bio);
419 static void error_retry_list(struct pool *pool)
421 struct thin_c *tc;
423 rcu_read_lock();
424 list_for_each_entry_rcu(tc, &pool->active_thins, list)
425 error_thin_retry_list(tc);
426 rcu_read_unlock();
430 * This section of code contains the logic for processing a thin device's IO.
431 * Much of the code depends on pool object resources (lists, workqueues, etc)
432 * but most is exclusively called from the thin target rather than the thin-pool
433 * target.
436 static bool block_size_is_power_of_two(struct pool *pool)
438 return pool->sectors_per_block_shift >= 0;
441 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
443 struct pool *pool = tc->pool;
444 sector_t block_nr = bio->bi_iter.bi_sector;
446 if (block_size_is_power_of_two(pool))
447 block_nr >>= pool->sectors_per_block_shift;
448 else
449 (void) sector_div(block_nr, pool->sectors_per_block);
451 return block_nr;
454 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
456 struct pool *pool = tc->pool;
457 sector_t bi_sector = bio->bi_iter.bi_sector;
459 bio->bi_bdev = tc->pool_dev->bdev;
460 if (block_size_is_power_of_two(pool))
461 bio->bi_iter.bi_sector =
462 (block << pool->sectors_per_block_shift) |
463 (bi_sector & (pool->sectors_per_block - 1));
464 else
465 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
466 sector_div(bi_sector, pool->sectors_per_block);
469 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
471 bio->bi_bdev = tc->origin_dev->bdev;
474 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
476 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
477 dm_thin_changed_this_transaction(tc->td);
480 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
482 struct dm_thin_endio_hook *h;
484 if (bio->bi_rw & REQ_DISCARD)
485 return;
487 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
488 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
491 static void issue(struct thin_c *tc, struct bio *bio)
493 struct pool *pool = tc->pool;
494 unsigned long flags;
496 if (!bio_triggers_commit(tc, bio)) {
497 generic_make_request(bio);
498 return;
502 * Complete bio with an error if earlier I/O caused changes to
503 * the metadata that can't be committed e.g, due to I/O errors
504 * on the metadata device.
506 if (dm_thin_aborted_changes(tc->td)) {
507 bio_io_error(bio);
508 return;
512 * Batch together any bios that trigger commits and then issue a
513 * single commit for them in process_deferred_bios().
515 spin_lock_irqsave(&pool->lock, flags);
516 bio_list_add(&pool->deferred_flush_bios, bio);
517 spin_unlock_irqrestore(&pool->lock, flags);
520 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
522 remap_to_origin(tc, bio);
523 issue(tc, bio);
526 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
527 dm_block_t block)
529 remap(tc, bio, block);
530 issue(tc, bio);
533 /*----------------------------------------------------------------*/
536 * Bio endio functions.
538 struct dm_thin_new_mapping {
539 struct list_head list;
541 bool quiesced:1;
542 bool prepared:1;
543 bool pass_discard:1;
544 bool definitely_not_shared:1;
546 int err;
547 struct thin_c *tc;
548 dm_block_t virt_block;
549 dm_block_t data_block;
550 struct dm_bio_prison_cell *cell, *cell2;
553 * If the bio covers the whole area of a block then we can avoid
554 * zeroing or copying. Instead this bio is hooked. The bio will
555 * still be in the cell, so care has to be taken to avoid issuing
556 * the bio twice.
558 struct bio *bio;
559 bio_end_io_t *saved_bi_end_io;
562 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
564 struct pool *pool = m->tc->pool;
566 if (m->quiesced && m->prepared) {
567 list_add_tail(&m->list, &pool->prepared_mappings);
568 wake_worker(pool);
572 static void copy_complete(int read_err, unsigned long write_err, void *context)
574 unsigned long flags;
575 struct dm_thin_new_mapping *m = context;
576 struct pool *pool = m->tc->pool;
578 m->err = read_err || write_err ? -EIO : 0;
580 spin_lock_irqsave(&pool->lock, flags);
581 m->prepared = true;
582 __maybe_add_mapping(m);
583 spin_unlock_irqrestore(&pool->lock, flags);
586 static void overwrite_endio(struct bio *bio, int err)
588 unsigned long flags;
589 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
590 struct dm_thin_new_mapping *m = h->overwrite_mapping;
591 struct pool *pool = m->tc->pool;
593 m->err = err;
595 spin_lock_irqsave(&pool->lock, flags);
596 m->prepared = true;
597 __maybe_add_mapping(m);
598 spin_unlock_irqrestore(&pool->lock, flags);
601 /*----------------------------------------------------------------*/
604 * Workqueue.
608 * Prepared mapping jobs.
612 * This sends the bios in the cell back to the deferred_bios list.
614 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
616 struct pool *pool = tc->pool;
617 unsigned long flags;
619 spin_lock_irqsave(&tc->lock, flags);
620 cell_release(pool, cell, &tc->deferred_bio_list);
621 spin_unlock_irqrestore(&tc->lock, flags);
623 wake_worker(pool);
627 * Same as cell_defer above, except it omits the original holder of the cell.
629 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
631 struct pool *pool = tc->pool;
632 unsigned long flags;
634 spin_lock_irqsave(&tc->lock, flags);
635 cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
636 spin_unlock_irqrestore(&tc->lock, flags);
638 wake_worker(pool);
641 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
643 if (m->bio) {
644 m->bio->bi_end_io = m->saved_bi_end_io;
645 atomic_inc(&m->bio->bi_remaining);
647 cell_error(m->tc->pool, m->cell);
648 list_del(&m->list);
649 mempool_free(m, m->tc->pool->mapping_pool);
652 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
654 struct thin_c *tc = m->tc;
655 struct pool *pool = tc->pool;
656 struct bio *bio;
657 int r;
659 bio = m->bio;
660 if (bio) {
661 bio->bi_end_io = m->saved_bi_end_io;
662 atomic_inc(&bio->bi_remaining);
665 if (m->err) {
666 cell_error(pool, m->cell);
667 goto out;
671 * Commit the prepared block into the mapping btree.
672 * Any I/O for this block arriving after this point will get
673 * remapped to it directly.
675 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
676 if (r) {
677 metadata_operation_failed(pool, "dm_thin_insert_block", r);
678 cell_error(pool, m->cell);
679 goto out;
683 * Release any bios held while the block was being provisioned.
684 * If we are processing a write bio that completely covers the block,
685 * we already processed it so can ignore it now when processing
686 * the bios in the cell.
688 if (bio) {
689 cell_defer_no_holder(tc, m->cell);
690 bio_endio(bio, 0);
691 } else
692 cell_defer(tc, m->cell);
694 out:
695 list_del(&m->list);
696 mempool_free(m, pool->mapping_pool);
699 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
701 struct thin_c *tc = m->tc;
703 bio_io_error(m->bio);
704 cell_defer_no_holder(tc, m->cell);
705 cell_defer_no_holder(tc, m->cell2);
706 mempool_free(m, tc->pool->mapping_pool);
709 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
711 struct thin_c *tc = m->tc;
713 inc_all_io_entry(tc->pool, m->bio);
714 cell_defer_no_holder(tc, m->cell);
715 cell_defer_no_holder(tc, m->cell2);
717 if (m->pass_discard)
718 if (m->definitely_not_shared)
719 remap_and_issue(tc, m->bio, m->data_block);
720 else {
721 bool used = false;
722 if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
723 bio_endio(m->bio, 0);
724 else
725 remap_and_issue(tc, m->bio, m->data_block);
727 else
728 bio_endio(m->bio, 0);
730 mempool_free(m, tc->pool->mapping_pool);
733 static void process_prepared_discard(struct dm_thin_new_mapping *m)
735 int r;
736 struct thin_c *tc = m->tc;
738 r = dm_thin_remove_block(tc->td, m->virt_block);
739 if (r)
740 DMERR_LIMIT("dm_thin_remove_block() failed");
742 process_prepared_discard_passdown(m);
745 static void process_prepared(struct pool *pool, struct list_head *head,
746 process_mapping_fn *fn)
748 unsigned long flags;
749 struct list_head maps;
750 struct dm_thin_new_mapping *m, *tmp;
752 INIT_LIST_HEAD(&maps);
753 spin_lock_irqsave(&pool->lock, flags);
754 list_splice_init(head, &maps);
755 spin_unlock_irqrestore(&pool->lock, flags);
757 list_for_each_entry_safe(m, tmp, &maps, list)
758 (*fn)(m);
762 * Deferred bio jobs.
764 static int io_overlaps_block(struct pool *pool, struct bio *bio)
766 return bio->bi_iter.bi_size ==
767 (pool->sectors_per_block << SECTOR_SHIFT);
770 static int io_overwrites_block(struct pool *pool, struct bio *bio)
772 return (bio_data_dir(bio) == WRITE) &&
773 io_overlaps_block(pool, bio);
776 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
777 bio_end_io_t *fn)
779 *save = bio->bi_end_io;
780 bio->bi_end_io = fn;
783 static int ensure_next_mapping(struct pool *pool)
785 if (pool->next_mapping)
786 return 0;
788 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
790 return pool->next_mapping ? 0 : -ENOMEM;
793 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
795 struct dm_thin_new_mapping *m = pool->next_mapping;
797 BUG_ON(!pool->next_mapping);
799 memset(m, 0, sizeof(struct dm_thin_new_mapping));
800 INIT_LIST_HEAD(&m->list);
801 m->bio = NULL;
803 pool->next_mapping = NULL;
805 return m;
808 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
809 struct dm_dev *origin, dm_block_t data_origin,
810 dm_block_t data_dest,
811 struct dm_bio_prison_cell *cell, struct bio *bio)
813 int r;
814 struct pool *pool = tc->pool;
815 struct dm_thin_new_mapping *m = get_next_mapping(pool);
817 m->tc = tc;
818 m->virt_block = virt_block;
819 m->data_block = data_dest;
820 m->cell = cell;
822 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
823 m->quiesced = true;
826 * IO to pool_dev remaps to the pool target's data_dev.
828 * If the whole block of data is being overwritten, we can issue the
829 * bio immediately. Otherwise we use kcopyd to clone the data first.
831 if (io_overwrites_block(pool, bio)) {
832 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
834 h->overwrite_mapping = m;
835 m->bio = bio;
836 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
837 inc_all_io_entry(pool, bio);
838 remap_and_issue(tc, bio, data_dest);
839 } else {
840 struct dm_io_region from, to;
842 from.bdev = origin->bdev;
843 from.sector = data_origin * pool->sectors_per_block;
844 from.count = pool->sectors_per_block;
846 to.bdev = tc->pool_dev->bdev;
847 to.sector = data_dest * pool->sectors_per_block;
848 to.count = pool->sectors_per_block;
850 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
851 0, copy_complete, m);
852 if (r < 0) {
853 mempool_free(m, pool->mapping_pool);
854 DMERR_LIMIT("dm_kcopyd_copy() failed");
855 cell_error(pool, cell);
860 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
861 dm_block_t data_origin, dm_block_t data_dest,
862 struct dm_bio_prison_cell *cell, struct bio *bio)
864 schedule_copy(tc, virt_block, tc->pool_dev,
865 data_origin, data_dest, cell, bio);
868 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
869 dm_block_t data_dest,
870 struct dm_bio_prison_cell *cell, struct bio *bio)
872 schedule_copy(tc, virt_block, tc->origin_dev,
873 virt_block, data_dest, cell, bio);
876 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
877 dm_block_t data_block, struct dm_bio_prison_cell *cell,
878 struct bio *bio)
880 struct pool *pool = tc->pool;
881 struct dm_thin_new_mapping *m = get_next_mapping(pool);
883 m->quiesced = true;
884 m->prepared = false;
885 m->tc = tc;
886 m->virt_block = virt_block;
887 m->data_block = data_block;
888 m->cell = cell;
891 * If the whole block of data is being overwritten or we are not
892 * zeroing pre-existing data, we can issue the bio immediately.
893 * Otherwise we use kcopyd to zero the data first.
895 if (!pool->pf.zero_new_blocks)
896 process_prepared_mapping(m);
898 else if (io_overwrites_block(pool, bio)) {
899 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
901 h->overwrite_mapping = m;
902 m->bio = bio;
903 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
904 inc_all_io_entry(pool, bio);
905 remap_and_issue(tc, bio, data_block);
906 } else {
907 int r;
908 struct dm_io_region to;
910 to.bdev = tc->pool_dev->bdev;
911 to.sector = data_block * pool->sectors_per_block;
912 to.count = pool->sectors_per_block;
914 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
915 if (r < 0) {
916 mempool_free(m, pool->mapping_pool);
917 DMERR_LIMIT("dm_kcopyd_zero() failed");
918 cell_error(pool, cell);
924 * A non-zero return indicates read_only or fail_io mode.
925 * Many callers don't care about the return value.
927 static int commit(struct pool *pool)
929 int r;
931 if (get_pool_mode(pool) != PM_WRITE)
932 return -EINVAL;
934 r = dm_pool_commit_metadata(pool->pmd);
935 if (r)
936 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
938 return r;
941 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
943 unsigned long flags;
945 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
946 DMWARN("%s: reached low water mark for data device: sending event.",
947 dm_device_name(pool->pool_md));
948 spin_lock_irqsave(&pool->lock, flags);
949 pool->low_water_triggered = true;
950 spin_unlock_irqrestore(&pool->lock, flags);
951 dm_table_event(pool->ti->table);
955 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
957 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
959 int r;
960 dm_block_t free_blocks;
961 struct pool *pool = tc->pool;
963 if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
964 return -EINVAL;
966 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
967 if (r) {
968 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
969 return r;
972 check_low_water_mark(pool, free_blocks);
974 if (!free_blocks) {
976 * Try to commit to see if that will free up some
977 * more space.
979 r = commit(pool);
980 if (r)
981 return r;
983 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
984 if (r) {
985 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
986 return r;
989 if (!free_blocks) {
990 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
991 return -ENOSPC;
995 r = dm_pool_alloc_data_block(pool->pmd, result);
996 if (r) {
997 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
998 return r;
1001 return 0;
1005 * If we have run out of space, queue bios until the device is
1006 * resumed, presumably after having been reloaded with more space.
1008 static void retry_on_resume(struct bio *bio)
1010 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1011 struct thin_c *tc = h->tc;
1012 unsigned long flags;
1014 spin_lock_irqsave(&tc->lock, flags);
1015 bio_list_add(&tc->retry_on_resume_list, bio);
1016 spin_unlock_irqrestore(&tc->lock, flags);
1019 static bool should_error_unserviceable_bio(struct pool *pool)
1021 enum pool_mode m = get_pool_mode(pool);
1023 switch (m) {
1024 case PM_WRITE:
1025 /* Shouldn't get here */
1026 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1027 return true;
1029 case PM_OUT_OF_DATA_SPACE:
1030 return pool->pf.error_if_no_space;
1032 case PM_READ_ONLY:
1033 case PM_FAIL:
1034 return true;
1035 default:
1036 /* Shouldn't get here */
1037 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1038 return true;
1042 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1044 if (should_error_unserviceable_bio(pool))
1045 bio_io_error(bio);
1046 else
1047 retry_on_resume(bio);
1050 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1052 struct bio *bio;
1053 struct bio_list bios;
1055 if (should_error_unserviceable_bio(pool)) {
1056 cell_error(pool, cell);
1057 return;
1060 bio_list_init(&bios);
1061 cell_release(pool, cell, &bios);
1063 if (should_error_unserviceable_bio(pool))
1064 while ((bio = bio_list_pop(&bios)))
1065 bio_io_error(bio);
1066 else
1067 while ((bio = bio_list_pop(&bios)))
1068 retry_on_resume(bio);
1071 static void process_discard(struct thin_c *tc, struct bio *bio)
1073 int r;
1074 unsigned long flags;
1075 struct pool *pool = tc->pool;
1076 struct dm_bio_prison_cell *cell, *cell2;
1077 struct dm_cell_key key, key2;
1078 dm_block_t block = get_bio_block(tc, bio);
1079 struct dm_thin_lookup_result lookup_result;
1080 struct dm_thin_new_mapping *m;
1082 build_virtual_key(tc->td, block, &key);
1083 if (bio_detain(tc->pool, &key, bio, &cell))
1084 return;
1086 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1087 switch (r) {
1088 case 0:
1090 * Check nobody is fiddling with this pool block. This can
1091 * happen if someone's in the process of breaking sharing
1092 * on this block.
1094 build_data_key(tc->td, lookup_result.block, &key2);
1095 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1096 cell_defer_no_holder(tc, cell);
1097 break;
1100 if (io_overlaps_block(pool, bio)) {
1102 * IO may still be going to the destination block. We must
1103 * quiesce before we can do the removal.
1105 m = get_next_mapping(pool);
1106 m->tc = tc;
1107 m->pass_discard = pool->pf.discard_passdown;
1108 m->definitely_not_shared = !lookup_result.shared;
1109 m->virt_block = block;
1110 m->data_block = lookup_result.block;
1111 m->cell = cell;
1112 m->cell2 = cell2;
1113 m->bio = bio;
1115 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1116 spin_lock_irqsave(&pool->lock, flags);
1117 list_add_tail(&m->list, &pool->prepared_discards);
1118 spin_unlock_irqrestore(&pool->lock, flags);
1119 wake_worker(pool);
1121 } else {
1122 inc_all_io_entry(pool, bio);
1123 cell_defer_no_holder(tc, cell);
1124 cell_defer_no_holder(tc, cell2);
1127 * The DM core makes sure that the discard doesn't span
1128 * a block boundary. So we submit the discard of a
1129 * partial block appropriately.
1131 if ((!lookup_result.shared) && pool->pf.discard_passdown)
1132 remap_and_issue(tc, bio, lookup_result.block);
1133 else
1134 bio_endio(bio, 0);
1136 break;
1138 case -ENODATA:
1140 * It isn't provisioned, just forget it.
1142 cell_defer_no_holder(tc, cell);
1143 bio_endio(bio, 0);
1144 break;
1146 default:
1147 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1148 __func__, r);
1149 cell_defer_no_holder(tc, cell);
1150 bio_io_error(bio);
1151 break;
1155 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1156 struct dm_cell_key *key,
1157 struct dm_thin_lookup_result *lookup_result,
1158 struct dm_bio_prison_cell *cell)
1160 int r;
1161 dm_block_t data_block;
1162 struct pool *pool = tc->pool;
1164 r = alloc_data_block(tc, &data_block);
1165 switch (r) {
1166 case 0:
1167 schedule_internal_copy(tc, block, lookup_result->block,
1168 data_block, cell, bio);
1169 break;
1171 case -ENOSPC:
1172 retry_bios_on_resume(pool, cell);
1173 break;
1175 default:
1176 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1177 __func__, r);
1178 cell_error(pool, cell);
1179 break;
1183 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1184 dm_block_t block,
1185 struct dm_thin_lookup_result *lookup_result)
1187 struct dm_bio_prison_cell *cell;
1188 struct pool *pool = tc->pool;
1189 struct dm_cell_key key;
1192 * If cell is already occupied, then sharing is already in the process
1193 * of being broken so we have nothing further to do here.
1195 build_data_key(tc->td, lookup_result->block, &key);
1196 if (bio_detain(pool, &key, bio, &cell))
1197 return;
1199 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size)
1200 break_sharing(tc, bio, block, &key, lookup_result, cell);
1201 else {
1202 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1204 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1205 inc_all_io_entry(pool, bio);
1206 cell_defer_no_holder(tc, cell);
1208 remap_and_issue(tc, bio, lookup_result->block);
1212 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1213 struct dm_bio_prison_cell *cell)
1215 int r;
1216 dm_block_t data_block;
1217 struct pool *pool = tc->pool;
1220 * Remap empty bios (flushes) immediately, without provisioning.
1222 if (!bio->bi_iter.bi_size) {
1223 inc_all_io_entry(pool, bio);
1224 cell_defer_no_holder(tc, cell);
1226 remap_and_issue(tc, bio, 0);
1227 return;
1231 * Fill read bios with zeroes and complete them immediately.
1233 if (bio_data_dir(bio) == READ) {
1234 zero_fill_bio(bio);
1235 cell_defer_no_holder(tc, cell);
1236 bio_endio(bio, 0);
1237 return;
1240 r = alloc_data_block(tc, &data_block);
1241 switch (r) {
1242 case 0:
1243 if (tc->origin_dev)
1244 schedule_external_copy(tc, block, data_block, cell, bio);
1245 else
1246 schedule_zero(tc, block, data_block, cell, bio);
1247 break;
1249 case -ENOSPC:
1250 retry_bios_on_resume(pool, cell);
1251 break;
1253 default:
1254 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1255 __func__, r);
1256 cell_error(pool, cell);
1257 break;
1261 static void process_bio(struct thin_c *tc, struct bio *bio)
1263 int r;
1264 struct pool *pool = tc->pool;
1265 dm_block_t block = get_bio_block(tc, bio);
1266 struct dm_bio_prison_cell *cell;
1267 struct dm_cell_key key;
1268 struct dm_thin_lookup_result lookup_result;
1271 * If cell is already occupied, then the block is already
1272 * being provisioned so we have nothing further to do here.
1274 build_virtual_key(tc->td, block, &key);
1275 if (bio_detain(pool, &key, bio, &cell))
1276 return;
1278 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1279 switch (r) {
1280 case 0:
1281 if (lookup_result.shared) {
1282 process_shared_bio(tc, bio, block, &lookup_result);
1283 cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1284 } else {
1285 inc_all_io_entry(pool, bio);
1286 cell_defer_no_holder(tc, cell);
1288 remap_and_issue(tc, bio, lookup_result.block);
1290 break;
1292 case -ENODATA:
1293 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1294 inc_all_io_entry(pool, bio);
1295 cell_defer_no_holder(tc, cell);
1297 remap_to_origin_and_issue(tc, bio);
1298 } else
1299 provision_block(tc, bio, block, cell);
1300 break;
1302 default:
1303 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1304 __func__, r);
1305 cell_defer_no_holder(tc, cell);
1306 bio_io_error(bio);
1307 break;
1311 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1313 int r;
1314 int rw = bio_data_dir(bio);
1315 dm_block_t block = get_bio_block(tc, bio);
1316 struct dm_thin_lookup_result lookup_result;
1318 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1319 switch (r) {
1320 case 0:
1321 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size)
1322 handle_unserviceable_bio(tc->pool, bio);
1323 else {
1324 inc_all_io_entry(tc->pool, bio);
1325 remap_and_issue(tc, bio, lookup_result.block);
1327 break;
1329 case -ENODATA:
1330 if (rw != READ) {
1331 handle_unserviceable_bio(tc->pool, bio);
1332 break;
1335 if (tc->origin_dev) {
1336 inc_all_io_entry(tc->pool, bio);
1337 remap_to_origin_and_issue(tc, bio);
1338 break;
1341 zero_fill_bio(bio);
1342 bio_endio(bio, 0);
1343 break;
1345 default:
1346 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1347 __func__, r);
1348 bio_io_error(bio);
1349 break;
1353 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1355 bio_endio(bio, 0);
1358 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1360 bio_io_error(bio);
1364 * FIXME: should we also commit due to size of transaction, measured in
1365 * metadata blocks?
1367 static int need_commit_due_to_time(struct pool *pool)
1369 return jiffies < pool->last_commit_jiffies ||
1370 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1373 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1374 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1376 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1378 struct rb_node **rbp, *parent;
1379 struct dm_thin_endio_hook *pbd;
1380 sector_t bi_sector = bio->bi_iter.bi_sector;
1382 rbp = &tc->sort_bio_list.rb_node;
1383 parent = NULL;
1384 while (*rbp) {
1385 parent = *rbp;
1386 pbd = thin_pbd(parent);
1388 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1389 rbp = &(*rbp)->rb_left;
1390 else
1391 rbp = &(*rbp)->rb_right;
1394 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1395 rb_link_node(&pbd->rb_node, parent, rbp);
1396 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
1399 static void __extract_sorted_bios(struct thin_c *tc)
1401 struct rb_node *node;
1402 struct dm_thin_endio_hook *pbd;
1403 struct bio *bio;
1405 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
1406 pbd = thin_pbd(node);
1407 bio = thin_bio(pbd);
1409 bio_list_add(&tc->deferred_bio_list, bio);
1410 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
1413 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
1416 static void __sort_thin_deferred_bios(struct thin_c *tc)
1418 struct bio *bio;
1419 struct bio_list bios;
1421 bio_list_init(&bios);
1422 bio_list_merge(&bios, &tc->deferred_bio_list);
1423 bio_list_init(&tc->deferred_bio_list);
1425 /* Sort deferred_bio_list using rb-tree */
1426 while ((bio = bio_list_pop(&bios)))
1427 __thin_bio_rb_add(tc, bio);
1430 * Transfer the sorted bios in sort_bio_list back to
1431 * deferred_bio_list to allow lockless submission of
1432 * all bios.
1434 __extract_sorted_bios(tc);
1437 static void process_thin_deferred_bios(struct thin_c *tc)
1439 struct pool *pool = tc->pool;
1440 unsigned long flags;
1441 struct bio *bio;
1442 struct bio_list bios;
1443 struct blk_plug plug;
1445 if (tc->requeue_mode) {
1446 requeue_bio_list(tc, &tc->deferred_bio_list);
1447 return;
1450 bio_list_init(&bios);
1452 spin_lock_irqsave(&tc->lock, flags);
1454 if (bio_list_empty(&tc->deferred_bio_list)) {
1455 spin_unlock_irqrestore(&tc->lock, flags);
1456 return;
1459 __sort_thin_deferred_bios(tc);
1461 bio_list_merge(&bios, &tc->deferred_bio_list);
1462 bio_list_init(&tc->deferred_bio_list);
1464 spin_unlock_irqrestore(&tc->lock, flags);
1466 blk_start_plug(&plug);
1467 while ((bio = bio_list_pop(&bios))) {
1469 * If we've got no free new_mapping structs, and processing
1470 * this bio might require one, we pause until there are some
1471 * prepared mappings to process.
1473 if (ensure_next_mapping(pool)) {
1474 spin_lock_irqsave(&tc->lock, flags);
1475 bio_list_add(&tc->deferred_bio_list, bio);
1476 bio_list_merge(&tc->deferred_bio_list, &bios);
1477 spin_unlock_irqrestore(&tc->lock, flags);
1478 break;
1481 if (bio->bi_rw & REQ_DISCARD)
1482 pool->process_discard(tc, bio);
1483 else
1484 pool->process_bio(tc, bio);
1486 blk_finish_plug(&plug);
1489 static void process_deferred_bios(struct pool *pool)
1491 unsigned long flags;
1492 struct bio *bio;
1493 struct bio_list bios;
1494 struct thin_c *tc;
1496 rcu_read_lock();
1497 list_for_each_entry_rcu(tc, &pool->active_thins, list)
1498 process_thin_deferred_bios(tc);
1499 rcu_read_unlock();
1502 * If there are any deferred flush bios, we must commit
1503 * the metadata before issuing them.
1505 bio_list_init(&bios);
1506 spin_lock_irqsave(&pool->lock, flags);
1507 bio_list_merge(&bios, &pool->deferred_flush_bios);
1508 bio_list_init(&pool->deferred_flush_bios);
1509 spin_unlock_irqrestore(&pool->lock, flags);
1511 if (bio_list_empty(&bios) &&
1512 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
1513 return;
1515 if (commit(pool)) {
1516 while ((bio = bio_list_pop(&bios)))
1517 bio_io_error(bio);
1518 return;
1520 pool->last_commit_jiffies = jiffies;
1522 while ((bio = bio_list_pop(&bios)))
1523 generic_make_request(bio);
1526 static void do_worker(struct work_struct *ws)
1528 struct pool *pool = container_of(ws, struct pool, worker);
1530 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1531 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1532 process_deferred_bios(pool);
1536 * We want to commit periodically so that not too much
1537 * unwritten data builds up.
1539 static void do_waker(struct work_struct *ws)
1541 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1542 wake_worker(pool);
1543 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1546 /*----------------------------------------------------------------*/
1548 struct noflush_work {
1549 struct work_struct worker;
1550 struct thin_c *tc;
1552 atomic_t complete;
1553 wait_queue_head_t wait;
1556 static void complete_noflush_work(struct noflush_work *w)
1558 atomic_set(&w->complete, 1);
1559 wake_up(&w->wait);
1562 static void do_noflush_start(struct work_struct *ws)
1564 struct noflush_work *w = container_of(ws, struct noflush_work, worker);
1565 w->tc->requeue_mode = true;
1566 requeue_io(w->tc);
1567 complete_noflush_work(w);
1570 static void do_noflush_stop(struct work_struct *ws)
1572 struct noflush_work *w = container_of(ws, struct noflush_work, worker);
1573 w->tc->requeue_mode = false;
1574 complete_noflush_work(w);
1577 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
1579 struct noflush_work w;
1581 INIT_WORK(&w.worker, fn);
1582 w.tc = tc;
1583 atomic_set(&w.complete, 0);
1584 init_waitqueue_head(&w.wait);
1586 queue_work(tc->pool->wq, &w.worker);
1588 wait_event(w.wait, atomic_read(&w.complete));
1591 /*----------------------------------------------------------------*/
1593 static enum pool_mode get_pool_mode(struct pool *pool)
1595 return pool->pf.mode;
1598 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
1600 dm_table_event(pool->ti->table);
1601 DMINFO("%s: switching pool to %s mode",
1602 dm_device_name(pool->pool_md), new_mode);
1605 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
1607 struct pool_c *pt = pool->ti->private;
1608 bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
1609 enum pool_mode old_mode = get_pool_mode(pool);
1612 * Never allow the pool to transition to PM_WRITE mode if user
1613 * intervention is required to verify metadata and data consistency.
1615 if (new_mode == PM_WRITE && needs_check) {
1616 DMERR("%s: unable to switch pool to write mode until repaired.",
1617 dm_device_name(pool->pool_md));
1618 if (old_mode != new_mode)
1619 new_mode = old_mode;
1620 else
1621 new_mode = PM_READ_ONLY;
1624 * If we were in PM_FAIL mode, rollback of metadata failed. We're
1625 * not going to recover without a thin_repair. So we never let the
1626 * pool move out of the old mode.
1628 if (old_mode == PM_FAIL)
1629 new_mode = old_mode;
1631 switch (new_mode) {
1632 case PM_FAIL:
1633 if (old_mode != new_mode)
1634 notify_of_pool_mode_change(pool, "failure");
1635 dm_pool_metadata_read_only(pool->pmd);
1636 pool->process_bio = process_bio_fail;
1637 pool->process_discard = process_bio_fail;
1638 pool->process_prepared_mapping = process_prepared_mapping_fail;
1639 pool->process_prepared_discard = process_prepared_discard_fail;
1641 error_retry_list(pool);
1642 break;
1644 case PM_READ_ONLY:
1645 if (old_mode != new_mode)
1646 notify_of_pool_mode_change(pool, "read-only");
1647 dm_pool_metadata_read_only(pool->pmd);
1648 pool->process_bio = process_bio_read_only;
1649 pool->process_discard = process_bio_success;
1650 pool->process_prepared_mapping = process_prepared_mapping_fail;
1651 pool->process_prepared_discard = process_prepared_discard_passdown;
1653 error_retry_list(pool);
1654 break;
1656 case PM_OUT_OF_DATA_SPACE:
1658 * Ideally we'd never hit this state; the low water mark
1659 * would trigger userland to extend the pool before we
1660 * completely run out of data space. However, many small
1661 * IOs to unprovisioned space can consume data space at an
1662 * alarming rate. Adjust your low water mark if you're
1663 * frequently seeing this mode.
1665 if (old_mode != new_mode)
1666 notify_of_pool_mode_change(pool, "out-of-data-space");
1667 pool->process_bio = process_bio_read_only;
1668 pool->process_discard = process_discard;
1669 pool->process_prepared_mapping = process_prepared_mapping;
1670 pool->process_prepared_discard = process_prepared_discard_passdown;
1671 break;
1673 case PM_WRITE:
1674 if (old_mode != new_mode)
1675 notify_of_pool_mode_change(pool, "write");
1676 dm_pool_metadata_read_write(pool->pmd);
1677 pool->process_bio = process_bio;
1678 pool->process_discard = process_discard;
1679 pool->process_prepared_mapping = process_prepared_mapping;
1680 pool->process_prepared_discard = process_prepared_discard;
1681 break;
1684 pool->pf.mode = new_mode;
1686 * The pool mode may have changed, sync it so bind_control_target()
1687 * doesn't cause an unexpected mode transition on resume.
1689 pt->adjusted_pf.mode = new_mode;
1692 static void abort_transaction(struct pool *pool)
1694 const char *dev_name = dm_device_name(pool->pool_md);
1696 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1697 if (dm_pool_abort_metadata(pool->pmd)) {
1698 DMERR("%s: failed to abort metadata transaction", dev_name);
1699 set_pool_mode(pool, PM_FAIL);
1702 if (dm_pool_metadata_set_needs_check(pool->pmd)) {
1703 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1704 set_pool_mode(pool, PM_FAIL);
1708 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
1710 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1711 dm_device_name(pool->pool_md), op, r);
1713 abort_transaction(pool);
1714 set_pool_mode(pool, PM_READ_ONLY);
1717 /*----------------------------------------------------------------*/
1720 * Mapping functions.
1724 * Called only while mapping a thin bio to hand it over to the workqueue.
1726 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1728 unsigned long flags;
1729 struct pool *pool = tc->pool;
1731 spin_lock_irqsave(&tc->lock, flags);
1732 bio_list_add(&tc->deferred_bio_list, bio);
1733 spin_unlock_irqrestore(&tc->lock, flags);
1735 wake_worker(pool);
1738 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1740 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1742 h->tc = tc;
1743 h->shared_read_entry = NULL;
1744 h->all_io_entry = NULL;
1745 h->overwrite_mapping = NULL;
1749 * Non-blocking function called from the thin target's map function.
1751 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1753 int r;
1754 struct thin_c *tc = ti->private;
1755 dm_block_t block = get_bio_block(tc, bio);
1756 struct dm_thin_device *td = tc->td;
1757 struct dm_thin_lookup_result result;
1758 struct dm_bio_prison_cell cell1, cell2;
1759 struct dm_bio_prison_cell *cell_result;
1760 struct dm_cell_key key;
1762 thin_hook_bio(tc, bio);
1764 if (tc->requeue_mode) {
1765 bio_endio(bio, DM_ENDIO_REQUEUE);
1766 return DM_MAPIO_SUBMITTED;
1769 if (get_pool_mode(tc->pool) == PM_FAIL) {
1770 bio_io_error(bio);
1771 return DM_MAPIO_SUBMITTED;
1774 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1775 thin_defer_bio(tc, bio);
1776 return DM_MAPIO_SUBMITTED;
1779 r = dm_thin_find_block(td, block, 0, &result);
1782 * Note that we defer readahead too.
1784 switch (r) {
1785 case 0:
1786 if (unlikely(result.shared)) {
1788 * We have a race condition here between the
1789 * result.shared value returned by the lookup and
1790 * snapshot creation, which may cause new
1791 * sharing.
1793 * To avoid this always quiesce the origin before
1794 * taking the snap. You want to do this anyway to
1795 * ensure a consistent application view
1796 * (i.e. lockfs).
1798 * More distant ancestors are irrelevant. The
1799 * shared flag will be set in their case.
1801 thin_defer_bio(tc, bio);
1802 return DM_MAPIO_SUBMITTED;
1805 build_virtual_key(tc->td, block, &key);
1806 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1807 return DM_MAPIO_SUBMITTED;
1809 build_data_key(tc->td, result.block, &key);
1810 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1811 cell_defer_no_holder_no_free(tc, &cell1);
1812 return DM_MAPIO_SUBMITTED;
1815 inc_all_io_entry(tc->pool, bio);
1816 cell_defer_no_holder_no_free(tc, &cell2);
1817 cell_defer_no_holder_no_free(tc, &cell1);
1819 remap(tc, bio, result.block);
1820 return DM_MAPIO_REMAPPED;
1822 case -ENODATA:
1823 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1825 * This block isn't provisioned, and we have no way
1826 * of doing so.
1828 handle_unserviceable_bio(tc->pool, bio);
1829 return DM_MAPIO_SUBMITTED;
1831 /* fall through */
1833 case -EWOULDBLOCK:
1835 * In future, the failed dm_thin_find_block above could
1836 * provide the hint to load the metadata into cache.
1838 thin_defer_bio(tc, bio);
1839 return DM_MAPIO_SUBMITTED;
1841 default:
1843 * Must always call bio_io_error on failure.
1844 * dm_thin_find_block can fail with -EINVAL if the
1845 * pool is switched to fail-io mode.
1847 bio_io_error(bio);
1848 return DM_MAPIO_SUBMITTED;
1852 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1854 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1855 struct request_queue *q;
1857 if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
1858 return 1;
1860 q = bdev_get_queue(pt->data_dev->bdev);
1861 return bdi_congested(&q->backing_dev_info, bdi_bits);
1864 static void requeue_bios(struct pool *pool)
1866 unsigned long flags;
1867 struct thin_c *tc;
1869 rcu_read_lock();
1870 list_for_each_entry_rcu(tc, &pool->active_thins, list) {
1871 spin_lock_irqsave(&tc->lock, flags);
1872 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
1873 bio_list_init(&tc->retry_on_resume_list);
1874 spin_unlock_irqrestore(&tc->lock, flags);
1876 rcu_read_unlock();
1879 /*----------------------------------------------------------------
1880 * Binding of control targets to a pool object
1881 *--------------------------------------------------------------*/
1882 static bool data_dev_supports_discard(struct pool_c *pt)
1884 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1886 return q && blk_queue_discard(q);
1889 static bool is_factor(sector_t block_size, uint32_t n)
1891 return !sector_div(block_size, n);
1895 * If discard_passdown was enabled verify that the data device
1896 * supports discards. Disable discard_passdown if not.
1898 static void disable_passdown_if_not_supported(struct pool_c *pt)
1900 struct pool *pool = pt->pool;
1901 struct block_device *data_bdev = pt->data_dev->bdev;
1902 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1903 sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1904 const char *reason = NULL;
1905 char buf[BDEVNAME_SIZE];
1907 if (!pt->adjusted_pf.discard_passdown)
1908 return;
1910 if (!data_dev_supports_discard(pt))
1911 reason = "discard unsupported";
1913 else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1914 reason = "max discard sectors smaller than a block";
1916 else if (data_limits->discard_granularity > block_size)
1917 reason = "discard granularity larger than a block";
1919 else if (!is_factor(block_size, data_limits->discard_granularity))
1920 reason = "discard granularity not a factor of block size";
1922 if (reason) {
1923 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1924 pt->adjusted_pf.discard_passdown = false;
1928 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1930 struct pool_c *pt = ti->private;
1933 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
1935 enum pool_mode old_mode = get_pool_mode(pool);
1936 enum pool_mode new_mode = pt->adjusted_pf.mode;
1939 * Don't change the pool's mode until set_pool_mode() below.
1940 * Otherwise the pool's process_* function pointers may
1941 * not match the desired pool mode.
1943 pt->adjusted_pf.mode = old_mode;
1945 pool->ti = ti;
1946 pool->pf = pt->adjusted_pf;
1947 pool->low_water_blocks = pt->low_water_blocks;
1949 set_pool_mode(pool, new_mode);
1951 return 0;
1954 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1956 if (pool->ti == ti)
1957 pool->ti = NULL;
1960 /*----------------------------------------------------------------
1961 * Pool creation
1962 *--------------------------------------------------------------*/
1963 /* Initialize pool features. */
1964 static void pool_features_init(struct pool_features *pf)
1966 pf->mode = PM_WRITE;
1967 pf->zero_new_blocks = true;
1968 pf->discard_enabled = true;
1969 pf->discard_passdown = true;
1970 pf->error_if_no_space = false;
1973 static void __pool_destroy(struct pool *pool)
1975 __pool_table_remove(pool);
1977 if (dm_pool_metadata_close(pool->pmd) < 0)
1978 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1980 dm_bio_prison_destroy(pool->prison);
1981 dm_kcopyd_client_destroy(pool->copier);
1983 if (pool->wq)
1984 destroy_workqueue(pool->wq);
1986 if (pool->next_mapping)
1987 mempool_free(pool->next_mapping, pool->mapping_pool);
1988 mempool_destroy(pool->mapping_pool);
1989 dm_deferred_set_destroy(pool->shared_read_ds);
1990 dm_deferred_set_destroy(pool->all_io_ds);
1991 kfree(pool);
1994 static struct kmem_cache *_new_mapping_cache;
1996 static struct pool *pool_create(struct mapped_device *pool_md,
1997 struct block_device *metadata_dev,
1998 unsigned long block_size,
1999 int read_only, char **error)
2001 int r;
2002 void *err_p;
2003 struct pool *pool;
2004 struct dm_pool_metadata *pmd;
2005 bool format_device = read_only ? false : true;
2007 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2008 if (IS_ERR(pmd)) {
2009 *error = "Error creating metadata object";
2010 return (struct pool *)pmd;
2013 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2014 if (!pool) {
2015 *error = "Error allocating memory for pool";
2016 err_p = ERR_PTR(-ENOMEM);
2017 goto bad_pool;
2020 pool->pmd = pmd;
2021 pool->sectors_per_block = block_size;
2022 if (block_size & (block_size - 1))
2023 pool->sectors_per_block_shift = -1;
2024 else
2025 pool->sectors_per_block_shift = __ffs(block_size);
2026 pool->low_water_blocks = 0;
2027 pool_features_init(&pool->pf);
2028 pool->prison = dm_bio_prison_create(PRISON_CELLS);
2029 if (!pool->prison) {
2030 *error = "Error creating pool's bio prison";
2031 err_p = ERR_PTR(-ENOMEM);
2032 goto bad_prison;
2035 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2036 if (IS_ERR(pool->copier)) {
2037 r = PTR_ERR(pool->copier);
2038 *error = "Error creating pool's kcopyd client";
2039 err_p = ERR_PTR(r);
2040 goto bad_kcopyd_client;
2044 * Create singlethreaded workqueue that will service all devices
2045 * that use this metadata.
2047 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2048 if (!pool->wq) {
2049 *error = "Error creating pool's workqueue";
2050 err_p = ERR_PTR(-ENOMEM);
2051 goto bad_wq;
2054 INIT_WORK(&pool->worker, do_worker);
2055 INIT_DELAYED_WORK(&pool->waker, do_waker);
2056 spin_lock_init(&pool->lock);
2057 bio_list_init(&pool->deferred_flush_bios);
2058 INIT_LIST_HEAD(&pool->prepared_mappings);
2059 INIT_LIST_HEAD(&pool->prepared_discards);
2060 INIT_LIST_HEAD(&pool->active_thins);
2061 pool->low_water_triggered = false;
2063 pool->shared_read_ds = dm_deferred_set_create();
2064 if (!pool->shared_read_ds) {
2065 *error = "Error creating pool's shared read deferred set";
2066 err_p = ERR_PTR(-ENOMEM);
2067 goto bad_shared_read_ds;
2070 pool->all_io_ds = dm_deferred_set_create();
2071 if (!pool->all_io_ds) {
2072 *error = "Error creating pool's all io deferred set";
2073 err_p = ERR_PTR(-ENOMEM);
2074 goto bad_all_io_ds;
2077 pool->next_mapping = NULL;
2078 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2079 _new_mapping_cache);
2080 if (!pool->mapping_pool) {
2081 *error = "Error creating pool's mapping mempool";
2082 err_p = ERR_PTR(-ENOMEM);
2083 goto bad_mapping_pool;
2086 pool->ref_count = 1;
2087 pool->last_commit_jiffies = jiffies;
2088 pool->pool_md = pool_md;
2089 pool->md_dev = metadata_dev;
2090 __pool_table_insert(pool);
2092 return pool;
2094 bad_mapping_pool:
2095 dm_deferred_set_destroy(pool->all_io_ds);
2096 bad_all_io_ds:
2097 dm_deferred_set_destroy(pool->shared_read_ds);
2098 bad_shared_read_ds:
2099 destroy_workqueue(pool->wq);
2100 bad_wq:
2101 dm_kcopyd_client_destroy(pool->copier);
2102 bad_kcopyd_client:
2103 dm_bio_prison_destroy(pool->prison);
2104 bad_prison:
2105 kfree(pool);
2106 bad_pool:
2107 if (dm_pool_metadata_close(pmd))
2108 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2110 return err_p;
2113 static void __pool_inc(struct pool *pool)
2115 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2116 pool->ref_count++;
2119 static void __pool_dec(struct pool *pool)
2121 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2122 BUG_ON(!pool->ref_count);
2123 if (!--pool->ref_count)
2124 __pool_destroy(pool);
2127 static struct pool *__pool_find(struct mapped_device *pool_md,
2128 struct block_device *metadata_dev,
2129 unsigned long block_size, int read_only,
2130 char **error, int *created)
2132 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2134 if (pool) {
2135 if (pool->pool_md != pool_md) {
2136 *error = "metadata device already in use by a pool";
2137 return ERR_PTR(-EBUSY);
2139 __pool_inc(pool);
2141 } else {
2142 pool = __pool_table_lookup(pool_md);
2143 if (pool) {
2144 if (pool->md_dev != metadata_dev) {
2145 *error = "different pool cannot replace a pool";
2146 return ERR_PTR(-EINVAL);
2148 __pool_inc(pool);
2150 } else {
2151 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2152 *created = 1;
2156 return pool;
2159 /*----------------------------------------------------------------
2160 * Pool target methods
2161 *--------------------------------------------------------------*/
2162 static void pool_dtr(struct dm_target *ti)
2164 struct pool_c *pt = ti->private;
2166 mutex_lock(&dm_thin_pool_table.mutex);
2168 unbind_control_target(pt->pool, ti);
2169 __pool_dec(pt->pool);
2170 dm_put_device(ti, pt->metadata_dev);
2171 dm_put_device(ti, pt->data_dev);
2172 kfree(pt);
2174 mutex_unlock(&dm_thin_pool_table.mutex);
2177 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2178 struct dm_target *ti)
2180 int r;
2181 unsigned argc;
2182 const char *arg_name;
2184 static struct dm_arg _args[] = {
2185 {0, 4, "Invalid number of pool feature arguments"},
2189 * No feature arguments supplied.
2191 if (!as->argc)
2192 return 0;
2194 r = dm_read_arg_group(_args, as, &argc, &ti->error);
2195 if (r)
2196 return -EINVAL;
2198 while (argc && !r) {
2199 arg_name = dm_shift_arg(as);
2200 argc--;
2202 if (!strcasecmp(arg_name, "skip_block_zeroing"))
2203 pf->zero_new_blocks = false;
2205 else if (!strcasecmp(arg_name, "ignore_discard"))
2206 pf->discard_enabled = false;
2208 else if (!strcasecmp(arg_name, "no_discard_passdown"))
2209 pf->discard_passdown = false;
2211 else if (!strcasecmp(arg_name, "read_only"))
2212 pf->mode = PM_READ_ONLY;
2214 else if (!strcasecmp(arg_name, "error_if_no_space"))
2215 pf->error_if_no_space = true;
2217 else {
2218 ti->error = "Unrecognised pool feature requested";
2219 r = -EINVAL;
2220 break;
2224 return r;
2227 static void metadata_low_callback(void *context)
2229 struct pool *pool = context;
2231 DMWARN("%s: reached low water mark for metadata device: sending event.",
2232 dm_device_name(pool->pool_md));
2234 dm_table_event(pool->ti->table);
2237 static sector_t get_dev_size(struct block_device *bdev)
2239 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
2242 static void warn_if_metadata_device_too_big(struct block_device *bdev)
2244 sector_t metadata_dev_size = get_dev_size(bdev);
2245 char buffer[BDEVNAME_SIZE];
2247 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
2248 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2249 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
2252 static sector_t get_metadata_dev_size(struct block_device *bdev)
2254 sector_t metadata_dev_size = get_dev_size(bdev);
2256 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
2257 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
2259 return metadata_dev_size;
2262 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
2264 sector_t metadata_dev_size = get_metadata_dev_size(bdev);
2266 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
2268 return metadata_dev_size;
2272 * When a metadata threshold is crossed a dm event is triggered, and
2273 * userland should respond by growing the metadata device. We could let
2274 * userland set the threshold, like we do with the data threshold, but I'm
2275 * not sure they know enough to do this well.
2277 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
2280 * 4M is ample for all ops with the possible exception of thin
2281 * device deletion which is harmless if it fails (just retry the
2282 * delete after you've grown the device).
2284 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
2285 return min((dm_block_t)1024ULL /* 4M */, quarter);
2289 * thin-pool <metadata dev> <data dev>
2290 * <data block size (sectors)>
2291 * <low water mark (blocks)>
2292 * [<#feature args> [<arg>]*]
2294 * Optional feature arguments are:
2295 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2296 * ignore_discard: disable discard
2297 * no_discard_passdown: don't pass discards down to the data device
2298 * read_only: Don't allow any changes to be made to the pool metadata.
2299 * error_if_no_space: error IOs, instead of queueing, if no space.
2301 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2303 int r, pool_created = 0;
2304 struct pool_c *pt;
2305 struct pool *pool;
2306 struct pool_features pf;
2307 struct dm_arg_set as;
2308 struct dm_dev *data_dev;
2309 unsigned long block_size;
2310 dm_block_t low_water_blocks;
2311 struct dm_dev *metadata_dev;
2312 fmode_t metadata_mode;
2315 * FIXME Remove validation from scope of lock.
2317 mutex_lock(&dm_thin_pool_table.mutex);
2319 if (argc < 4) {
2320 ti->error = "Invalid argument count";
2321 r = -EINVAL;
2322 goto out_unlock;
2325 as.argc = argc;
2326 as.argv = argv;
2329 * Set default pool features.
2331 pool_features_init(&pf);
2333 dm_consume_args(&as, 4);
2334 r = parse_pool_features(&as, &pf, ti);
2335 if (r)
2336 goto out_unlock;
2338 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2339 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2340 if (r) {
2341 ti->error = "Error opening metadata block device";
2342 goto out_unlock;
2344 warn_if_metadata_device_too_big(metadata_dev->bdev);
2346 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2347 if (r) {
2348 ti->error = "Error getting data device";
2349 goto out_metadata;
2352 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2353 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2354 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2355 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2356 ti->error = "Invalid block size";
2357 r = -EINVAL;
2358 goto out;
2361 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2362 ti->error = "Invalid low water mark";
2363 r = -EINVAL;
2364 goto out;
2367 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2368 if (!pt) {
2369 r = -ENOMEM;
2370 goto out;
2373 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2374 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2375 if (IS_ERR(pool)) {
2376 r = PTR_ERR(pool);
2377 goto out_free_pt;
2381 * 'pool_created' reflects whether this is the first table load.
2382 * Top level discard support is not allowed to be changed after
2383 * initial load. This would require a pool reload to trigger thin
2384 * device changes.
2386 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2387 ti->error = "Discard support cannot be disabled once enabled";
2388 r = -EINVAL;
2389 goto out_flags_changed;
2392 pt->pool = pool;
2393 pt->ti = ti;
2394 pt->metadata_dev = metadata_dev;
2395 pt->data_dev = data_dev;
2396 pt->low_water_blocks = low_water_blocks;
2397 pt->adjusted_pf = pt->requested_pf = pf;
2398 ti->num_flush_bios = 1;
2401 * Only need to enable discards if the pool should pass
2402 * them down to the data device. The thin device's discard
2403 * processing will cause mappings to be removed from the btree.
2405 ti->discard_zeroes_data_unsupported = true;
2406 if (pf.discard_enabled && pf.discard_passdown) {
2407 ti->num_discard_bios = 1;
2410 * Setting 'discards_supported' circumvents the normal
2411 * stacking of discard limits (this keeps the pool and
2412 * thin devices' discard limits consistent).
2414 ti->discards_supported = true;
2416 ti->private = pt;
2418 r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2419 calc_metadata_threshold(pt),
2420 metadata_low_callback,
2421 pool);
2422 if (r)
2423 goto out_free_pt;
2425 pt->callbacks.congested_fn = pool_is_congested;
2426 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2428 mutex_unlock(&dm_thin_pool_table.mutex);
2430 return 0;
2432 out_flags_changed:
2433 __pool_dec(pool);
2434 out_free_pt:
2435 kfree(pt);
2436 out:
2437 dm_put_device(ti, data_dev);
2438 out_metadata:
2439 dm_put_device(ti, metadata_dev);
2440 out_unlock:
2441 mutex_unlock(&dm_thin_pool_table.mutex);
2443 return r;
2446 static int pool_map(struct dm_target *ti, struct bio *bio)
2448 int r;
2449 struct pool_c *pt = ti->private;
2450 struct pool *pool = pt->pool;
2451 unsigned long flags;
2454 * As this is a singleton target, ti->begin is always zero.
2456 spin_lock_irqsave(&pool->lock, flags);
2457 bio->bi_bdev = pt->data_dev->bdev;
2458 r = DM_MAPIO_REMAPPED;
2459 spin_unlock_irqrestore(&pool->lock, flags);
2461 return r;
2464 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2466 int r;
2467 struct pool_c *pt = ti->private;
2468 struct pool *pool = pt->pool;
2469 sector_t data_size = ti->len;
2470 dm_block_t sb_data_size;
2472 *need_commit = false;
2474 (void) sector_div(data_size, pool->sectors_per_block);
2476 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2477 if (r) {
2478 DMERR("%s: failed to retrieve data device size",
2479 dm_device_name(pool->pool_md));
2480 return r;
2483 if (data_size < sb_data_size) {
2484 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2485 dm_device_name(pool->pool_md),
2486 (unsigned long long)data_size, sb_data_size);
2487 return -EINVAL;
2489 } else if (data_size > sb_data_size) {
2490 if (dm_pool_metadata_needs_check(pool->pmd)) {
2491 DMERR("%s: unable to grow the data device until repaired.",
2492 dm_device_name(pool->pool_md));
2493 return 0;
2496 if (sb_data_size)
2497 DMINFO("%s: growing the data device from %llu to %llu blocks",
2498 dm_device_name(pool->pool_md),
2499 sb_data_size, (unsigned long long)data_size);
2500 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2501 if (r) {
2502 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
2503 return r;
2506 *need_commit = true;
2509 return 0;
2512 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2514 int r;
2515 struct pool_c *pt = ti->private;
2516 struct pool *pool = pt->pool;
2517 dm_block_t metadata_dev_size, sb_metadata_dev_size;
2519 *need_commit = false;
2521 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2523 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2524 if (r) {
2525 DMERR("%s: failed to retrieve metadata device size",
2526 dm_device_name(pool->pool_md));
2527 return r;
2530 if (metadata_dev_size < sb_metadata_dev_size) {
2531 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2532 dm_device_name(pool->pool_md),
2533 metadata_dev_size, sb_metadata_dev_size);
2534 return -EINVAL;
2536 } else if (metadata_dev_size > sb_metadata_dev_size) {
2537 if (dm_pool_metadata_needs_check(pool->pmd)) {
2538 DMERR("%s: unable to grow the metadata device until repaired.",
2539 dm_device_name(pool->pool_md));
2540 return 0;
2543 warn_if_metadata_device_too_big(pool->md_dev);
2544 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
2545 dm_device_name(pool->pool_md),
2546 sb_metadata_dev_size, metadata_dev_size);
2547 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2548 if (r) {
2549 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
2550 return r;
2553 *need_commit = true;
2556 return 0;
2560 * Retrieves the number of blocks of the data device from
2561 * the superblock and compares it to the actual device size,
2562 * thus resizing the data device in case it has grown.
2564 * This both copes with opening preallocated data devices in the ctr
2565 * being followed by a resume
2566 * -and-
2567 * calling the resume method individually after userspace has
2568 * grown the data device in reaction to a table event.
2570 static int pool_preresume(struct dm_target *ti)
2572 int r;
2573 bool need_commit1, need_commit2;
2574 struct pool_c *pt = ti->private;
2575 struct pool *pool = pt->pool;
2578 * Take control of the pool object.
2580 r = bind_control_target(pool, ti);
2581 if (r)
2582 return r;
2584 r = maybe_resize_data_dev(ti, &need_commit1);
2585 if (r)
2586 return r;
2588 r = maybe_resize_metadata_dev(ti, &need_commit2);
2589 if (r)
2590 return r;
2592 if (need_commit1 || need_commit2)
2593 (void) commit(pool);
2595 return 0;
2598 static void pool_resume(struct dm_target *ti)
2600 struct pool_c *pt = ti->private;
2601 struct pool *pool = pt->pool;
2602 unsigned long flags;
2604 spin_lock_irqsave(&pool->lock, flags);
2605 pool->low_water_triggered = false;
2606 spin_unlock_irqrestore(&pool->lock, flags);
2607 requeue_bios(pool);
2609 do_waker(&pool->waker.work);
2612 static void pool_postsuspend(struct dm_target *ti)
2614 struct pool_c *pt = ti->private;
2615 struct pool *pool = pt->pool;
2617 cancel_delayed_work(&pool->waker);
2618 flush_workqueue(pool->wq);
2619 (void) commit(pool);
2622 static int check_arg_count(unsigned argc, unsigned args_required)
2624 if (argc != args_required) {
2625 DMWARN("Message received with %u arguments instead of %u.",
2626 argc, args_required);
2627 return -EINVAL;
2630 return 0;
2633 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2635 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2636 *dev_id <= MAX_DEV_ID)
2637 return 0;
2639 if (warning)
2640 DMWARN("Message received with invalid device id: %s", arg);
2642 return -EINVAL;
2645 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2647 dm_thin_id dev_id;
2648 int r;
2650 r = check_arg_count(argc, 2);
2651 if (r)
2652 return r;
2654 r = read_dev_id(argv[1], &dev_id, 1);
2655 if (r)
2656 return r;
2658 r = dm_pool_create_thin(pool->pmd, dev_id);
2659 if (r) {
2660 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2661 argv[1]);
2662 return r;
2665 return 0;
2668 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2670 dm_thin_id dev_id;
2671 dm_thin_id origin_dev_id;
2672 int r;
2674 r = check_arg_count(argc, 3);
2675 if (r)
2676 return r;
2678 r = read_dev_id(argv[1], &dev_id, 1);
2679 if (r)
2680 return r;
2682 r = read_dev_id(argv[2], &origin_dev_id, 1);
2683 if (r)
2684 return r;
2686 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2687 if (r) {
2688 DMWARN("Creation of new snapshot %s of device %s failed.",
2689 argv[1], argv[2]);
2690 return r;
2693 return 0;
2696 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2698 dm_thin_id dev_id;
2699 int r;
2701 r = check_arg_count(argc, 2);
2702 if (r)
2703 return r;
2705 r = read_dev_id(argv[1], &dev_id, 1);
2706 if (r)
2707 return r;
2709 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2710 if (r)
2711 DMWARN("Deletion of thin device %s failed.", argv[1]);
2713 return r;
2716 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2718 dm_thin_id old_id, new_id;
2719 int r;
2721 r = check_arg_count(argc, 3);
2722 if (r)
2723 return r;
2725 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2726 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2727 return -EINVAL;
2730 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2731 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2732 return -EINVAL;
2735 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2736 if (r) {
2737 DMWARN("Failed to change transaction id from %s to %s.",
2738 argv[1], argv[2]);
2739 return r;
2742 return 0;
2745 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2747 int r;
2749 r = check_arg_count(argc, 1);
2750 if (r)
2751 return r;
2753 (void) commit(pool);
2755 r = dm_pool_reserve_metadata_snap(pool->pmd);
2756 if (r)
2757 DMWARN("reserve_metadata_snap message failed.");
2759 return r;
2762 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2764 int r;
2766 r = check_arg_count(argc, 1);
2767 if (r)
2768 return r;
2770 r = dm_pool_release_metadata_snap(pool->pmd);
2771 if (r)
2772 DMWARN("release_metadata_snap message failed.");
2774 return r;
2778 * Messages supported:
2779 * create_thin <dev_id>
2780 * create_snap <dev_id> <origin_id>
2781 * delete <dev_id>
2782 * trim <dev_id> <new_size_in_sectors>
2783 * set_transaction_id <current_trans_id> <new_trans_id>
2784 * reserve_metadata_snap
2785 * release_metadata_snap
2787 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2789 int r = -EINVAL;
2790 struct pool_c *pt = ti->private;
2791 struct pool *pool = pt->pool;
2793 if (!strcasecmp(argv[0], "create_thin"))
2794 r = process_create_thin_mesg(argc, argv, pool);
2796 else if (!strcasecmp(argv[0], "create_snap"))
2797 r = process_create_snap_mesg(argc, argv, pool);
2799 else if (!strcasecmp(argv[0], "delete"))
2800 r = process_delete_mesg(argc, argv, pool);
2802 else if (!strcasecmp(argv[0], "set_transaction_id"))
2803 r = process_set_transaction_id_mesg(argc, argv, pool);
2805 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2806 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2808 else if (!strcasecmp(argv[0], "release_metadata_snap"))
2809 r = process_release_metadata_snap_mesg(argc, argv, pool);
2811 else
2812 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2814 if (!r)
2815 (void) commit(pool);
2817 return r;
2820 static void emit_flags(struct pool_features *pf, char *result,
2821 unsigned sz, unsigned maxlen)
2823 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2824 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
2825 pf->error_if_no_space;
2826 DMEMIT("%u ", count);
2828 if (!pf->zero_new_blocks)
2829 DMEMIT("skip_block_zeroing ");
2831 if (!pf->discard_enabled)
2832 DMEMIT("ignore_discard ");
2834 if (!pf->discard_passdown)
2835 DMEMIT("no_discard_passdown ");
2837 if (pf->mode == PM_READ_ONLY)
2838 DMEMIT("read_only ");
2840 if (pf->error_if_no_space)
2841 DMEMIT("error_if_no_space ");
2845 * Status line is:
2846 * <transaction id> <used metadata sectors>/<total metadata sectors>
2847 * <used data sectors>/<total data sectors> <held metadata root>
2849 static void pool_status(struct dm_target *ti, status_type_t type,
2850 unsigned status_flags, char *result, unsigned maxlen)
2852 int r;
2853 unsigned sz = 0;
2854 uint64_t transaction_id;
2855 dm_block_t nr_free_blocks_data;
2856 dm_block_t nr_free_blocks_metadata;
2857 dm_block_t nr_blocks_data;
2858 dm_block_t nr_blocks_metadata;
2859 dm_block_t held_root;
2860 char buf[BDEVNAME_SIZE];
2861 char buf2[BDEVNAME_SIZE];
2862 struct pool_c *pt = ti->private;
2863 struct pool *pool = pt->pool;
2865 switch (type) {
2866 case STATUSTYPE_INFO:
2867 if (get_pool_mode(pool) == PM_FAIL) {
2868 DMEMIT("Fail");
2869 break;
2872 /* Commit to ensure statistics aren't out-of-date */
2873 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2874 (void) commit(pool);
2876 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2877 if (r) {
2878 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
2879 dm_device_name(pool->pool_md), r);
2880 goto err;
2883 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2884 if (r) {
2885 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
2886 dm_device_name(pool->pool_md), r);
2887 goto err;
2890 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2891 if (r) {
2892 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
2893 dm_device_name(pool->pool_md), r);
2894 goto err;
2897 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2898 if (r) {
2899 DMERR("%s: dm_pool_get_free_block_count returned %d",
2900 dm_device_name(pool->pool_md), r);
2901 goto err;
2904 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2905 if (r) {
2906 DMERR("%s: dm_pool_get_data_dev_size returned %d",
2907 dm_device_name(pool->pool_md), r);
2908 goto err;
2911 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2912 if (r) {
2913 DMERR("%s: dm_pool_get_metadata_snap returned %d",
2914 dm_device_name(pool->pool_md), r);
2915 goto err;
2918 DMEMIT("%llu %llu/%llu %llu/%llu ",
2919 (unsigned long long)transaction_id,
2920 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2921 (unsigned long long)nr_blocks_metadata,
2922 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2923 (unsigned long long)nr_blocks_data);
2925 if (held_root)
2926 DMEMIT("%llu ", held_root);
2927 else
2928 DMEMIT("- ");
2930 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
2931 DMEMIT("out_of_data_space ");
2932 else if (pool->pf.mode == PM_READ_ONLY)
2933 DMEMIT("ro ");
2934 else
2935 DMEMIT("rw ");
2937 if (!pool->pf.discard_enabled)
2938 DMEMIT("ignore_discard ");
2939 else if (pool->pf.discard_passdown)
2940 DMEMIT("discard_passdown ");
2941 else
2942 DMEMIT("no_discard_passdown ");
2944 if (pool->pf.error_if_no_space)
2945 DMEMIT("error_if_no_space ");
2946 else
2947 DMEMIT("queue_if_no_space ");
2949 break;
2951 case STATUSTYPE_TABLE:
2952 DMEMIT("%s %s %lu %llu ",
2953 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2954 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2955 (unsigned long)pool->sectors_per_block,
2956 (unsigned long long)pt->low_water_blocks);
2957 emit_flags(&pt->requested_pf, result, sz, maxlen);
2958 break;
2960 return;
2962 err:
2963 DMEMIT("Error");
2966 static int pool_iterate_devices(struct dm_target *ti,
2967 iterate_devices_callout_fn fn, void *data)
2969 struct pool_c *pt = ti->private;
2971 return fn(ti, pt->data_dev, 0, ti->len, data);
2974 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2975 struct bio_vec *biovec, int max_size)
2977 struct pool_c *pt = ti->private;
2978 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2980 if (!q->merge_bvec_fn)
2981 return max_size;
2983 bvm->bi_bdev = pt->data_dev->bdev;
2985 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2988 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
2990 struct pool *pool = pt->pool;
2991 struct queue_limits *data_limits;
2993 limits->max_discard_sectors = pool->sectors_per_block;
2996 * discard_granularity is just a hint, and not enforced.
2998 if (pt->adjusted_pf.discard_passdown) {
2999 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
3000 limits->discard_granularity = data_limits->discard_granularity;
3001 } else
3002 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
3005 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3007 struct pool_c *pt = ti->private;
3008 struct pool *pool = pt->pool;
3009 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3012 * If the system-determined stacked limits are compatible with the
3013 * pool's blocksize (io_opt is a factor) do not override them.
3015 if (io_opt_sectors < pool->sectors_per_block ||
3016 do_div(io_opt_sectors, pool->sectors_per_block)) {
3017 blk_limits_io_min(limits, 0);
3018 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3022 * pt->adjusted_pf is a staging area for the actual features to use.
3023 * They get transferred to the live pool in bind_control_target()
3024 * called from pool_preresume().
3026 if (!pt->adjusted_pf.discard_enabled) {
3028 * Must explicitly disallow stacking discard limits otherwise the
3029 * block layer will stack them if pool's data device has support.
3030 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3031 * user to see that, so make sure to set all discard limits to 0.
3033 limits->discard_granularity = 0;
3034 return;
3037 disable_passdown_if_not_supported(pt);
3039 set_discard_limits(pt, limits);
3042 static struct target_type pool_target = {
3043 .name = "thin-pool",
3044 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3045 DM_TARGET_IMMUTABLE,
3046 .version = {1, 12, 0},
3047 .module = THIS_MODULE,
3048 .ctr = pool_ctr,
3049 .dtr = pool_dtr,
3050 .map = pool_map,
3051 .postsuspend = pool_postsuspend,
3052 .preresume = pool_preresume,
3053 .resume = pool_resume,
3054 .message = pool_message,
3055 .status = pool_status,
3056 .merge = pool_merge,
3057 .iterate_devices = pool_iterate_devices,
3058 .io_hints = pool_io_hints,
3061 /*----------------------------------------------------------------
3062 * Thin target methods
3063 *--------------------------------------------------------------*/
3064 static void thin_dtr(struct dm_target *ti)
3066 struct thin_c *tc = ti->private;
3067 unsigned long flags;
3069 spin_lock_irqsave(&tc->pool->lock, flags);
3070 list_del_rcu(&tc->list);
3071 spin_unlock_irqrestore(&tc->pool->lock, flags);
3072 synchronize_rcu();
3074 mutex_lock(&dm_thin_pool_table.mutex);
3076 __pool_dec(tc->pool);
3077 dm_pool_close_thin_device(tc->td);
3078 dm_put_device(ti, tc->pool_dev);
3079 if (tc->origin_dev)
3080 dm_put_device(ti, tc->origin_dev);
3081 kfree(tc);
3083 mutex_unlock(&dm_thin_pool_table.mutex);
3087 * Thin target parameters:
3089 * <pool_dev> <dev_id> [origin_dev]
3091 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3092 * dev_id: the internal device identifier
3093 * origin_dev: a device external to the pool that should act as the origin
3095 * If the pool device has discards disabled, they get disabled for the thin
3096 * device as well.
3098 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
3100 int r;
3101 struct thin_c *tc;
3102 struct dm_dev *pool_dev, *origin_dev;
3103 struct mapped_device *pool_md;
3105 mutex_lock(&dm_thin_pool_table.mutex);
3107 if (argc != 2 && argc != 3) {
3108 ti->error = "Invalid argument count";
3109 r = -EINVAL;
3110 goto out_unlock;
3113 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
3114 if (!tc) {
3115 ti->error = "Out of memory";
3116 r = -ENOMEM;
3117 goto out_unlock;
3119 spin_lock_init(&tc->lock);
3120 bio_list_init(&tc->deferred_bio_list);
3121 bio_list_init(&tc->retry_on_resume_list);
3122 tc->sort_bio_list = RB_ROOT;
3124 if (argc == 3) {
3125 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
3126 if (r) {
3127 ti->error = "Error opening origin device";
3128 goto bad_origin_dev;
3130 tc->origin_dev = origin_dev;
3133 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
3134 if (r) {
3135 ti->error = "Error opening pool device";
3136 goto bad_pool_dev;
3138 tc->pool_dev = pool_dev;
3140 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
3141 ti->error = "Invalid device id";
3142 r = -EINVAL;
3143 goto bad_common;
3146 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
3147 if (!pool_md) {
3148 ti->error = "Couldn't get pool mapped device";
3149 r = -EINVAL;
3150 goto bad_common;
3153 tc->pool = __pool_table_lookup(pool_md);
3154 if (!tc->pool) {
3155 ti->error = "Couldn't find pool object";
3156 r = -EINVAL;
3157 goto bad_pool_lookup;
3159 __pool_inc(tc->pool);
3161 if (get_pool_mode(tc->pool) == PM_FAIL) {
3162 ti->error = "Couldn't open thin device, Pool is in fail mode";
3163 r = -EINVAL;
3164 goto bad_thin_open;
3167 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
3168 if (r) {
3169 ti->error = "Couldn't open thin internal device";
3170 goto bad_thin_open;
3173 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
3174 if (r)
3175 goto bad_target_max_io_len;
3177 ti->num_flush_bios = 1;
3178 ti->flush_supported = true;
3179 ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
3181 /* In case the pool supports discards, pass them on. */
3182 ti->discard_zeroes_data_unsupported = true;
3183 if (tc->pool->pf.discard_enabled) {
3184 ti->discards_supported = true;
3185 ti->num_discard_bios = 1;
3186 /* Discard bios must be split on a block boundary */
3187 ti->split_discard_bios = true;
3190 dm_put(pool_md);
3192 mutex_unlock(&dm_thin_pool_table.mutex);
3194 spin_lock(&tc->pool->lock);
3195 list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
3196 spin_unlock(&tc->pool->lock);
3198 * This synchronize_rcu() call is needed here otherwise we risk a
3199 * wake_worker() call finding no bios to process (because the newly
3200 * added tc isn't yet visible). So this reduces latency since we
3201 * aren't then dependent on the periodic commit to wake_worker().
3203 synchronize_rcu();
3205 return 0;
3207 bad_target_max_io_len:
3208 dm_pool_close_thin_device(tc->td);
3209 bad_thin_open:
3210 __pool_dec(tc->pool);
3211 bad_pool_lookup:
3212 dm_put(pool_md);
3213 bad_common:
3214 dm_put_device(ti, tc->pool_dev);
3215 bad_pool_dev:
3216 if (tc->origin_dev)
3217 dm_put_device(ti, tc->origin_dev);
3218 bad_origin_dev:
3219 kfree(tc);
3220 out_unlock:
3221 mutex_unlock(&dm_thin_pool_table.mutex);
3223 return r;
3226 static int thin_map(struct dm_target *ti, struct bio *bio)
3228 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
3230 return thin_bio_map(ti, bio);
3233 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
3235 unsigned long flags;
3236 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
3237 struct list_head work;
3238 struct dm_thin_new_mapping *m, *tmp;
3239 struct pool *pool = h->tc->pool;
3241 if (h->shared_read_entry) {
3242 INIT_LIST_HEAD(&work);
3243 dm_deferred_entry_dec(h->shared_read_entry, &work);
3245 spin_lock_irqsave(&pool->lock, flags);
3246 list_for_each_entry_safe(m, tmp, &work, list) {
3247 list_del(&m->list);
3248 m->quiesced = true;
3249 __maybe_add_mapping(m);
3251 spin_unlock_irqrestore(&pool->lock, flags);
3254 if (h->all_io_entry) {
3255 INIT_LIST_HEAD(&work);
3256 dm_deferred_entry_dec(h->all_io_entry, &work);
3257 if (!list_empty(&work)) {
3258 spin_lock_irqsave(&pool->lock, flags);
3259 list_for_each_entry_safe(m, tmp, &work, list)
3260 list_add_tail(&m->list, &pool->prepared_discards);
3261 spin_unlock_irqrestore(&pool->lock, flags);
3262 wake_worker(pool);
3266 return 0;
3269 static void thin_presuspend(struct dm_target *ti)
3271 struct thin_c *tc = ti->private;
3273 if (dm_noflush_suspending(ti))
3274 noflush_work(tc, do_noflush_start);
3277 static void thin_postsuspend(struct dm_target *ti)
3279 struct thin_c *tc = ti->private;
3282 * The dm_noflush_suspending flag has been cleared by now, so
3283 * unfortunately we must always run this.
3285 noflush_work(tc, do_noflush_stop);
3289 * <nr mapped sectors> <highest mapped sector>
3291 static void thin_status(struct dm_target *ti, status_type_t type,
3292 unsigned status_flags, char *result, unsigned maxlen)
3294 int r;
3295 ssize_t sz = 0;
3296 dm_block_t mapped, highest;
3297 char buf[BDEVNAME_SIZE];
3298 struct thin_c *tc = ti->private;
3300 if (get_pool_mode(tc->pool) == PM_FAIL) {
3301 DMEMIT("Fail");
3302 return;
3305 if (!tc->td)
3306 DMEMIT("-");
3307 else {
3308 switch (type) {
3309 case STATUSTYPE_INFO:
3310 r = dm_thin_get_mapped_count(tc->td, &mapped);
3311 if (r) {
3312 DMERR("dm_thin_get_mapped_count returned %d", r);
3313 goto err;
3316 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3317 if (r < 0) {
3318 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
3319 goto err;
3322 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3323 if (r)
3324 DMEMIT("%llu", ((highest + 1) *
3325 tc->pool->sectors_per_block) - 1);
3326 else
3327 DMEMIT("-");
3328 break;
3330 case STATUSTYPE_TABLE:
3331 DMEMIT("%s %lu",
3332 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3333 (unsigned long) tc->dev_id);
3334 if (tc->origin_dev)
3335 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3336 break;
3340 return;
3342 err:
3343 DMEMIT("Error");
3346 static int thin_iterate_devices(struct dm_target *ti,
3347 iterate_devices_callout_fn fn, void *data)
3349 sector_t blocks;
3350 struct thin_c *tc = ti->private;
3351 struct pool *pool = tc->pool;
3354 * We can't call dm_pool_get_data_dev_size() since that blocks. So
3355 * we follow a more convoluted path through to the pool's target.
3357 if (!pool->ti)
3358 return 0; /* nothing is bound */
3360 blocks = pool->ti->len;
3361 (void) sector_div(blocks, pool->sectors_per_block);
3362 if (blocks)
3363 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3365 return 0;
3368 static struct target_type thin_target = {
3369 .name = "thin",
3370 .version = {1, 12, 0},
3371 .module = THIS_MODULE,
3372 .ctr = thin_ctr,
3373 .dtr = thin_dtr,
3374 .map = thin_map,
3375 .end_io = thin_endio,
3376 .presuspend = thin_presuspend,
3377 .postsuspend = thin_postsuspend,
3378 .status = thin_status,
3379 .iterate_devices = thin_iterate_devices,
3382 /*----------------------------------------------------------------*/
3384 static int __init dm_thin_init(void)
3386 int r;
3388 pool_table_init();
3390 r = dm_register_target(&thin_target);
3391 if (r)
3392 return r;
3394 r = dm_register_target(&pool_target);
3395 if (r)
3396 goto bad_pool_target;
3398 r = -ENOMEM;
3400 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3401 if (!_new_mapping_cache)
3402 goto bad_new_mapping_cache;
3404 return 0;
3406 bad_new_mapping_cache:
3407 dm_unregister_target(&pool_target);
3408 bad_pool_target:
3409 dm_unregister_target(&thin_target);
3411 return r;
3414 static void dm_thin_exit(void)
3416 dm_unregister_target(&thin_target);
3417 dm_unregister_target(&pool_target);
3419 kmem_cache_destroy(_new_mapping_cache);
3422 module_init(dm_thin_init);
3423 module_exit(dm_thin_exit);
3425 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3426 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3427 MODULE_LICENSE("GPL");