sata_sil24: Identify which card suffered IRQ status error
[linux-2.6/btrfs-unstable.git] / sound / soc / atmel / atmel_ssc_dai.c
blobde433cfd044ce2c2ce6599766e4d7cedef5798b3
1 /*
2 * atmel_ssc_dai.c -- ALSA SoC ATMEL SSC Audio Layer Platform driver
4 * Copyright (C) 2005 SAN People
5 * Copyright (C) 2008 Atmel
7 * Author: Sedji Gaouaou <sedji.gaouaou@atmel.com>
8 * ATMEL CORP.
10 * Based on at91-ssc.c by
11 * Frank Mandarino <fmandarino@endrelia.com>
12 * Based on pxa2xx Platform drivers by
13 * Liam Girdwood <lrg@slimlogic.co.uk>
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
20 * This program is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 * GNU General Public License for more details.
25 * You should have received a copy of the GNU General Public License
26 * along with this program; if not, write to the Free Software
27 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
30 #include <linux/init.h>
31 #include <linux/module.h>
32 #include <linux/interrupt.h>
33 #include <linux/device.h>
34 #include <linux/delay.h>
35 #include <linux/clk.h>
36 #include <linux/atmel_pdc.h>
38 #include <linux/atmel-ssc.h>
39 #include <sound/core.h>
40 #include <sound/pcm.h>
41 #include <sound/pcm_params.h>
42 #include <sound/initval.h>
43 #include <sound/soc.h>
45 #include "atmel-pcm.h"
46 #include "atmel_ssc_dai.h"
49 #define NUM_SSC_DEVICES 3
52 * SSC PDC registers required by the PCM DMA engine.
54 static struct atmel_pdc_regs pdc_tx_reg = {
55 .xpr = ATMEL_PDC_TPR,
56 .xcr = ATMEL_PDC_TCR,
57 .xnpr = ATMEL_PDC_TNPR,
58 .xncr = ATMEL_PDC_TNCR,
61 static struct atmel_pdc_regs pdc_rx_reg = {
62 .xpr = ATMEL_PDC_RPR,
63 .xcr = ATMEL_PDC_RCR,
64 .xnpr = ATMEL_PDC_RNPR,
65 .xncr = ATMEL_PDC_RNCR,
69 * SSC & PDC status bits for transmit and receive.
71 static struct atmel_ssc_mask ssc_tx_mask = {
72 .ssc_enable = SSC_BIT(CR_TXEN),
73 .ssc_disable = SSC_BIT(CR_TXDIS),
74 .ssc_endx = SSC_BIT(SR_ENDTX),
75 .ssc_endbuf = SSC_BIT(SR_TXBUFE),
76 .ssc_error = SSC_BIT(SR_OVRUN),
77 .pdc_enable = ATMEL_PDC_TXTEN,
78 .pdc_disable = ATMEL_PDC_TXTDIS,
81 static struct atmel_ssc_mask ssc_rx_mask = {
82 .ssc_enable = SSC_BIT(CR_RXEN),
83 .ssc_disable = SSC_BIT(CR_RXDIS),
84 .ssc_endx = SSC_BIT(SR_ENDRX),
85 .ssc_endbuf = SSC_BIT(SR_RXBUFF),
86 .ssc_error = SSC_BIT(SR_OVRUN),
87 .pdc_enable = ATMEL_PDC_RXTEN,
88 .pdc_disable = ATMEL_PDC_RXTDIS,
93 * DMA parameters.
95 static struct atmel_pcm_dma_params ssc_dma_params[NUM_SSC_DEVICES][2] = {
97 .name = "SSC0 PCM out",
98 .pdc = &pdc_tx_reg,
99 .mask = &ssc_tx_mask,
102 .name = "SSC0 PCM in",
103 .pdc = &pdc_rx_reg,
104 .mask = &ssc_rx_mask,
105 } },
107 .name = "SSC1 PCM out",
108 .pdc = &pdc_tx_reg,
109 .mask = &ssc_tx_mask,
112 .name = "SSC1 PCM in",
113 .pdc = &pdc_rx_reg,
114 .mask = &ssc_rx_mask,
115 } },
117 .name = "SSC2 PCM out",
118 .pdc = &pdc_tx_reg,
119 .mask = &ssc_tx_mask,
122 .name = "SSC2 PCM in",
123 .pdc = &pdc_rx_reg,
124 .mask = &ssc_rx_mask,
125 } },
129 static struct atmel_ssc_info ssc_info[NUM_SSC_DEVICES] = {
131 .name = "ssc0",
132 .lock = __SPIN_LOCK_UNLOCKED(ssc_info[0].lock),
133 .dir_mask = SSC_DIR_MASK_UNUSED,
134 .initialized = 0,
137 .name = "ssc1",
138 .lock = __SPIN_LOCK_UNLOCKED(ssc_info[1].lock),
139 .dir_mask = SSC_DIR_MASK_UNUSED,
140 .initialized = 0,
143 .name = "ssc2",
144 .lock = __SPIN_LOCK_UNLOCKED(ssc_info[2].lock),
145 .dir_mask = SSC_DIR_MASK_UNUSED,
146 .initialized = 0,
152 * SSC interrupt handler. Passes PDC interrupts to the DMA
153 * interrupt handler in the PCM driver.
155 static irqreturn_t atmel_ssc_interrupt(int irq, void *dev_id)
157 struct atmel_ssc_info *ssc_p = dev_id;
158 struct atmel_pcm_dma_params *dma_params;
159 u32 ssc_sr;
160 u32 ssc_substream_mask;
161 int i;
163 ssc_sr = (unsigned long)ssc_readl(ssc_p->ssc->regs, SR)
164 & (unsigned long)ssc_readl(ssc_p->ssc->regs, IMR);
167 * Loop through the substreams attached to this SSC. If
168 * a DMA-related interrupt occurred on that substream, call
169 * the DMA interrupt handler function, if one has been
170 * registered in the dma_params structure by the PCM driver.
172 for (i = 0; i < ARRAY_SIZE(ssc_p->dma_params); i++) {
173 dma_params = ssc_p->dma_params[i];
175 if ((dma_params != NULL) &&
176 (dma_params->dma_intr_handler != NULL)) {
177 ssc_substream_mask = (dma_params->mask->ssc_endx |
178 dma_params->mask->ssc_endbuf);
179 if (ssc_sr & ssc_substream_mask) {
180 dma_params->dma_intr_handler(ssc_sr,
181 dma_params->
182 substream);
187 return IRQ_HANDLED;
191 /*-------------------------------------------------------------------------*\
192 * DAI functions
193 \*-------------------------------------------------------------------------*/
195 * Startup. Only that one substream allowed in each direction.
197 static int atmel_ssc_startup(struct snd_pcm_substream *substream,
198 struct snd_soc_dai *dai)
200 struct atmel_ssc_info *ssc_p = &ssc_info[dai->id];
201 struct atmel_pcm_dma_params *dma_params;
202 int dir, dir_mask;
204 pr_debug("atmel_ssc_startup: SSC_SR=0x%u\n",
205 ssc_readl(ssc_p->ssc->regs, SR));
207 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
208 dir = 0;
209 dir_mask = SSC_DIR_MASK_PLAYBACK;
210 } else {
211 dir = 1;
212 dir_mask = SSC_DIR_MASK_CAPTURE;
215 dma_params = &ssc_dma_params[dai->id][dir];
216 dma_params->ssc = ssc_p->ssc;
217 dma_params->substream = substream;
219 ssc_p->dma_params[dir] = dma_params;
221 snd_soc_dai_set_dma_data(dai, substream, dma_params);
223 spin_lock_irq(&ssc_p->lock);
224 if (ssc_p->dir_mask & dir_mask) {
225 spin_unlock_irq(&ssc_p->lock);
226 return -EBUSY;
228 ssc_p->dir_mask |= dir_mask;
229 spin_unlock_irq(&ssc_p->lock);
231 return 0;
235 * Shutdown. Clear DMA parameters and shutdown the SSC if there
236 * are no other substreams open.
238 static void atmel_ssc_shutdown(struct snd_pcm_substream *substream,
239 struct snd_soc_dai *dai)
241 struct atmel_ssc_info *ssc_p = &ssc_info[dai->id];
242 struct atmel_pcm_dma_params *dma_params;
243 int dir, dir_mask;
245 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
246 dir = 0;
247 else
248 dir = 1;
250 dma_params = ssc_p->dma_params[dir];
252 if (dma_params != NULL) {
253 ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_disable);
254 pr_debug("atmel_ssc_shutdown: %s disabled SSC_SR=0x%08x\n",
255 (dir ? "receive" : "transmit"),
256 ssc_readl(ssc_p->ssc->regs, SR));
258 dma_params->ssc = NULL;
259 dma_params->substream = NULL;
260 ssc_p->dma_params[dir] = NULL;
263 dir_mask = 1 << dir;
265 spin_lock_irq(&ssc_p->lock);
266 ssc_p->dir_mask &= ~dir_mask;
267 if (!ssc_p->dir_mask) {
268 if (ssc_p->initialized) {
269 /* Shutdown the SSC clock. */
270 pr_debug("atmel_ssc_dau: Stopping clock\n");
271 clk_disable(ssc_p->ssc->clk);
273 free_irq(ssc_p->ssc->irq, ssc_p);
274 ssc_p->initialized = 0;
277 /* Reset the SSC */
278 ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_SWRST));
279 /* Clear the SSC dividers */
280 ssc_p->cmr_div = ssc_p->tcmr_period = ssc_p->rcmr_period = 0;
282 spin_unlock_irq(&ssc_p->lock);
287 * Record the DAI format for use in hw_params().
289 static int atmel_ssc_set_dai_fmt(struct snd_soc_dai *cpu_dai,
290 unsigned int fmt)
292 struct atmel_ssc_info *ssc_p = &ssc_info[cpu_dai->id];
294 ssc_p->daifmt = fmt;
295 return 0;
299 * Record SSC clock dividers for use in hw_params().
301 static int atmel_ssc_set_dai_clkdiv(struct snd_soc_dai *cpu_dai,
302 int div_id, int div)
304 struct atmel_ssc_info *ssc_p = &ssc_info[cpu_dai->id];
306 switch (div_id) {
307 case ATMEL_SSC_CMR_DIV:
309 * The same master clock divider is used for both
310 * transmit and receive, so if a value has already
311 * been set, it must match this value.
313 if (ssc_p->cmr_div == 0)
314 ssc_p->cmr_div = div;
315 else
316 if (div != ssc_p->cmr_div)
317 return -EBUSY;
318 break;
320 case ATMEL_SSC_TCMR_PERIOD:
321 ssc_p->tcmr_period = div;
322 break;
324 case ATMEL_SSC_RCMR_PERIOD:
325 ssc_p->rcmr_period = div;
326 break;
328 default:
329 return -EINVAL;
332 return 0;
336 * Configure the SSC.
338 static int atmel_ssc_hw_params(struct snd_pcm_substream *substream,
339 struct snd_pcm_hw_params *params,
340 struct snd_soc_dai *dai)
342 int id = dai->id;
343 struct atmel_ssc_info *ssc_p = &ssc_info[id];
344 struct ssc_device *ssc = ssc_p->ssc;
345 struct atmel_pcm_dma_params *dma_params;
346 int dir, channels, bits;
347 u32 tfmr, rfmr, tcmr, rcmr;
348 int start_event;
349 int ret;
352 * Currently, there is only one set of dma params for
353 * each direction. If more are added, this code will
354 * have to be changed to select the proper set.
356 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
357 dir = 0;
358 else
359 dir = 1;
361 dma_params = ssc_p->dma_params[dir];
363 channels = params_channels(params);
366 * Determine sample size in bits and the PDC increment.
368 switch (params_format(params)) {
369 case SNDRV_PCM_FORMAT_S8:
370 bits = 8;
371 dma_params->pdc_xfer_size = 1;
372 break;
373 case SNDRV_PCM_FORMAT_S16_LE:
374 bits = 16;
375 dma_params->pdc_xfer_size = 2;
376 break;
377 case SNDRV_PCM_FORMAT_S24_LE:
378 bits = 24;
379 dma_params->pdc_xfer_size = 4;
380 break;
381 case SNDRV_PCM_FORMAT_S32_LE:
382 bits = 32;
383 dma_params->pdc_xfer_size = 4;
384 break;
385 default:
386 printk(KERN_WARNING "atmel_ssc_dai: unsupported PCM format");
387 return -EINVAL;
391 * The SSC only supports up to 16-bit samples in I2S format, due
392 * to the size of the Frame Mode Register FSLEN field.
394 if ((ssc_p->daifmt & SND_SOC_DAIFMT_FORMAT_MASK) == SND_SOC_DAIFMT_I2S
395 && bits > 16) {
396 printk(KERN_WARNING
397 "atmel_ssc_dai: sample size %d "
398 "is too large for I2S\n", bits);
399 return -EINVAL;
403 * Compute SSC register settings.
405 switch (ssc_p->daifmt
406 & (SND_SOC_DAIFMT_FORMAT_MASK | SND_SOC_DAIFMT_MASTER_MASK)) {
408 case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBS_CFS:
410 * I2S format, SSC provides BCLK and LRC clocks.
412 * The SSC transmit and receive clocks are generated
413 * from the MCK divider, and the BCLK signal
414 * is output on the SSC TK line.
416 rcmr = SSC_BF(RCMR_PERIOD, ssc_p->rcmr_period)
417 | SSC_BF(RCMR_STTDLY, START_DELAY)
418 | SSC_BF(RCMR_START, SSC_START_FALLING_RF)
419 | SSC_BF(RCMR_CKI, SSC_CKI_RISING)
420 | SSC_BF(RCMR_CKO, SSC_CKO_NONE)
421 | SSC_BF(RCMR_CKS, SSC_CKS_DIV);
423 rfmr = SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
424 | SSC_BF(RFMR_FSOS, SSC_FSOS_NEGATIVE)
425 | SSC_BF(RFMR_FSLEN, (bits - 1))
426 | SSC_BF(RFMR_DATNB, (channels - 1))
427 | SSC_BIT(RFMR_MSBF)
428 | SSC_BF(RFMR_LOOP, 0)
429 | SSC_BF(RFMR_DATLEN, (bits - 1));
431 tcmr = SSC_BF(TCMR_PERIOD, ssc_p->tcmr_period)
432 | SSC_BF(TCMR_STTDLY, START_DELAY)
433 | SSC_BF(TCMR_START, SSC_START_FALLING_RF)
434 | SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
435 | SSC_BF(TCMR_CKO, SSC_CKO_CONTINUOUS)
436 | SSC_BF(TCMR_CKS, SSC_CKS_DIV);
438 tfmr = SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
439 | SSC_BF(TFMR_FSDEN, 0)
440 | SSC_BF(TFMR_FSOS, SSC_FSOS_NEGATIVE)
441 | SSC_BF(TFMR_FSLEN, (bits - 1))
442 | SSC_BF(TFMR_DATNB, (channels - 1))
443 | SSC_BIT(TFMR_MSBF)
444 | SSC_BF(TFMR_DATDEF, 0)
445 | SSC_BF(TFMR_DATLEN, (bits - 1));
446 break;
448 case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBM_CFM:
450 * I2S format, CODEC supplies BCLK and LRC clocks.
452 * The SSC transmit clock is obtained from the BCLK signal on
453 * on the TK line, and the SSC receive clock is
454 * generated from the transmit clock.
456 * For single channel data, one sample is transferred
457 * on the falling edge of the LRC clock.
458 * For two channel data, one sample is
459 * transferred on both edges of the LRC clock.
461 start_event = ((channels == 1)
462 ? SSC_START_FALLING_RF
463 : SSC_START_EDGE_RF);
465 rcmr = SSC_BF(RCMR_PERIOD, 0)
466 | SSC_BF(RCMR_STTDLY, START_DELAY)
467 | SSC_BF(RCMR_START, start_event)
468 | SSC_BF(RCMR_CKI, SSC_CKI_RISING)
469 | SSC_BF(RCMR_CKO, SSC_CKO_NONE)
470 | SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ?
471 SSC_CKS_PIN : SSC_CKS_CLOCK);
473 rfmr = SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
474 | SSC_BF(RFMR_FSOS, SSC_FSOS_NONE)
475 | SSC_BF(RFMR_FSLEN, 0)
476 | SSC_BF(RFMR_DATNB, 0)
477 | SSC_BIT(RFMR_MSBF)
478 | SSC_BF(RFMR_LOOP, 0)
479 | SSC_BF(RFMR_DATLEN, (bits - 1));
481 tcmr = SSC_BF(TCMR_PERIOD, 0)
482 | SSC_BF(TCMR_STTDLY, START_DELAY)
483 | SSC_BF(TCMR_START, start_event)
484 | SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
485 | SSC_BF(TCMR_CKO, SSC_CKO_NONE)
486 | SSC_BF(TCMR_CKS, ssc->clk_from_rk_pin ?
487 SSC_CKS_CLOCK : SSC_CKS_PIN);
489 tfmr = SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
490 | SSC_BF(TFMR_FSDEN, 0)
491 | SSC_BF(TFMR_FSOS, SSC_FSOS_NONE)
492 | SSC_BF(TFMR_FSLEN, 0)
493 | SSC_BF(TFMR_DATNB, 0)
494 | SSC_BIT(TFMR_MSBF)
495 | SSC_BF(TFMR_DATDEF, 0)
496 | SSC_BF(TFMR_DATLEN, (bits - 1));
497 break;
499 case SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_CBS_CFS:
501 * DSP/PCM Mode A format, SSC provides BCLK and LRC clocks.
503 * The SSC transmit and receive clocks are generated from the
504 * MCK divider, and the BCLK signal is output
505 * on the SSC TK line.
507 rcmr = SSC_BF(RCMR_PERIOD, ssc_p->rcmr_period)
508 | SSC_BF(RCMR_STTDLY, 1)
509 | SSC_BF(RCMR_START, SSC_START_RISING_RF)
510 | SSC_BF(RCMR_CKI, SSC_CKI_RISING)
511 | SSC_BF(RCMR_CKO, SSC_CKO_NONE)
512 | SSC_BF(RCMR_CKS, SSC_CKS_DIV);
514 rfmr = SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
515 | SSC_BF(RFMR_FSOS, SSC_FSOS_POSITIVE)
516 | SSC_BF(RFMR_FSLEN, 0)
517 | SSC_BF(RFMR_DATNB, (channels - 1))
518 | SSC_BIT(RFMR_MSBF)
519 | SSC_BF(RFMR_LOOP, 0)
520 | SSC_BF(RFMR_DATLEN, (bits - 1));
522 tcmr = SSC_BF(TCMR_PERIOD, ssc_p->tcmr_period)
523 | SSC_BF(TCMR_STTDLY, 1)
524 | SSC_BF(TCMR_START, SSC_START_RISING_RF)
525 | SSC_BF(TCMR_CKI, SSC_CKI_RISING)
526 | SSC_BF(TCMR_CKO, SSC_CKO_CONTINUOUS)
527 | SSC_BF(TCMR_CKS, SSC_CKS_DIV);
529 tfmr = SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
530 | SSC_BF(TFMR_FSDEN, 0)
531 | SSC_BF(TFMR_FSOS, SSC_FSOS_POSITIVE)
532 | SSC_BF(TFMR_FSLEN, 0)
533 | SSC_BF(TFMR_DATNB, (channels - 1))
534 | SSC_BIT(TFMR_MSBF)
535 | SSC_BF(TFMR_DATDEF, 0)
536 | SSC_BF(TFMR_DATLEN, (bits - 1));
537 break;
539 case SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_CBM_CFM:
541 * DSP/PCM Mode A format, CODEC supplies BCLK and LRC clocks.
543 * The SSC transmit clock is obtained from the BCLK signal on
544 * on the TK line, and the SSC receive clock is
545 * generated from the transmit clock.
547 * Data is transferred on first BCLK after LRC pulse rising
548 * edge.If stereo, the right channel data is contiguous with
549 * the left channel data.
551 rcmr = SSC_BF(RCMR_PERIOD, 0)
552 | SSC_BF(RCMR_STTDLY, START_DELAY)
553 | SSC_BF(RCMR_START, SSC_START_RISING_RF)
554 | SSC_BF(RCMR_CKI, SSC_CKI_RISING)
555 | SSC_BF(RCMR_CKO, SSC_CKO_NONE)
556 | SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ?
557 SSC_CKS_PIN : SSC_CKS_CLOCK);
559 rfmr = SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
560 | SSC_BF(RFMR_FSOS, SSC_FSOS_NONE)
561 | SSC_BF(RFMR_FSLEN, 0)
562 | SSC_BF(RFMR_DATNB, (channels - 1))
563 | SSC_BIT(RFMR_MSBF)
564 | SSC_BF(RFMR_LOOP, 0)
565 | SSC_BF(RFMR_DATLEN, (bits - 1));
567 tcmr = SSC_BF(TCMR_PERIOD, 0)
568 | SSC_BF(TCMR_STTDLY, START_DELAY)
569 | SSC_BF(TCMR_START, SSC_START_RISING_RF)
570 | SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
571 | SSC_BF(TCMR_CKO, SSC_CKO_NONE)
572 | SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ?
573 SSC_CKS_CLOCK : SSC_CKS_PIN);
575 tfmr = SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
576 | SSC_BF(TFMR_FSDEN, 0)
577 | SSC_BF(TFMR_FSOS, SSC_FSOS_NONE)
578 | SSC_BF(TFMR_FSLEN, 0)
579 | SSC_BF(TFMR_DATNB, (channels - 1))
580 | SSC_BIT(TFMR_MSBF)
581 | SSC_BF(TFMR_DATDEF, 0)
582 | SSC_BF(TFMR_DATLEN, (bits - 1));
583 break;
585 default:
586 printk(KERN_WARNING "atmel_ssc_dai: unsupported DAI format 0x%x\n",
587 ssc_p->daifmt);
588 return -EINVAL;
590 pr_debug("atmel_ssc_hw_params: "
591 "RCMR=%08x RFMR=%08x TCMR=%08x TFMR=%08x\n",
592 rcmr, rfmr, tcmr, tfmr);
594 if (!ssc_p->initialized) {
596 /* Enable PMC peripheral clock for this SSC */
597 pr_debug("atmel_ssc_dai: Starting clock\n");
598 clk_enable(ssc_p->ssc->clk);
600 /* Reset the SSC and its PDC registers */
601 ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_SWRST));
603 ssc_writel(ssc_p->ssc->regs, PDC_RPR, 0);
604 ssc_writel(ssc_p->ssc->regs, PDC_RCR, 0);
605 ssc_writel(ssc_p->ssc->regs, PDC_RNPR, 0);
606 ssc_writel(ssc_p->ssc->regs, PDC_RNCR, 0);
608 ssc_writel(ssc_p->ssc->regs, PDC_TPR, 0);
609 ssc_writel(ssc_p->ssc->regs, PDC_TCR, 0);
610 ssc_writel(ssc_p->ssc->regs, PDC_TNPR, 0);
611 ssc_writel(ssc_p->ssc->regs, PDC_TNCR, 0);
613 ret = request_irq(ssc_p->ssc->irq, atmel_ssc_interrupt, 0,
614 ssc_p->name, ssc_p);
615 if (ret < 0) {
616 printk(KERN_WARNING
617 "atmel_ssc_dai: request_irq failure\n");
618 pr_debug("Atmel_ssc_dai: Stoping clock\n");
619 clk_disable(ssc_p->ssc->clk);
620 return ret;
623 ssc_p->initialized = 1;
626 /* set SSC clock mode register */
627 ssc_writel(ssc_p->ssc->regs, CMR, ssc_p->cmr_div);
629 /* set receive clock mode and format */
630 ssc_writel(ssc_p->ssc->regs, RCMR, rcmr);
631 ssc_writel(ssc_p->ssc->regs, RFMR, rfmr);
633 /* set transmit clock mode and format */
634 ssc_writel(ssc_p->ssc->regs, TCMR, tcmr);
635 ssc_writel(ssc_p->ssc->regs, TFMR, tfmr);
637 pr_debug("atmel_ssc_dai,hw_params: SSC initialized\n");
638 return 0;
642 static int atmel_ssc_prepare(struct snd_pcm_substream *substream,
643 struct snd_soc_dai *dai)
645 struct atmel_ssc_info *ssc_p = &ssc_info[dai->id];
646 struct atmel_pcm_dma_params *dma_params;
647 int dir;
649 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
650 dir = 0;
651 else
652 dir = 1;
654 dma_params = ssc_p->dma_params[dir];
656 ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_disable);
657 ssc_writel(ssc_p->ssc->regs, IDR, dma_params->mask->ssc_error);
659 pr_debug("%s enabled SSC_SR=0x%08x\n",
660 dir ? "receive" : "transmit",
661 ssc_readl(ssc_p->ssc->regs, SR));
662 return 0;
665 static int atmel_ssc_trigger(struct snd_pcm_substream *substream,
666 int cmd, struct snd_soc_dai *dai)
668 struct atmel_ssc_info *ssc_p = &ssc_info[dai->id];
669 struct atmel_pcm_dma_params *dma_params;
670 int dir;
672 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
673 dir = 0;
674 else
675 dir = 1;
677 dma_params = ssc_p->dma_params[dir];
679 switch (cmd) {
680 case SNDRV_PCM_TRIGGER_START:
681 case SNDRV_PCM_TRIGGER_RESUME:
682 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
683 ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_enable);
684 break;
685 default:
686 ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_disable);
687 break;
690 return 0;
693 #ifdef CONFIG_PM
694 static int atmel_ssc_suspend(struct snd_soc_dai *cpu_dai)
696 struct atmel_ssc_info *ssc_p;
698 if (!cpu_dai->active)
699 return 0;
701 ssc_p = &ssc_info[cpu_dai->id];
703 /* Save the status register before disabling transmit and receive */
704 ssc_p->ssc_state.ssc_sr = ssc_readl(ssc_p->ssc->regs, SR);
705 ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_TXDIS) | SSC_BIT(CR_RXDIS));
707 /* Save the current interrupt mask, then disable unmasked interrupts */
708 ssc_p->ssc_state.ssc_imr = ssc_readl(ssc_p->ssc->regs, IMR);
709 ssc_writel(ssc_p->ssc->regs, IDR, ssc_p->ssc_state.ssc_imr);
711 ssc_p->ssc_state.ssc_cmr = ssc_readl(ssc_p->ssc->regs, CMR);
712 ssc_p->ssc_state.ssc_rcmr = ssc_readl(ssc_p->ssc->regs, RCMR);
713 ssc_p->ssc_state.ssc_rfmr = ssc_readl(ssc_p->ssc->regs, RFMR);
714 ssc_p->ssc_state.ssc_tcmr = ssc_readl(ssc_p->ssc->regs, TCMR);
715 ssc_p->ssc_state.ssc_tfmr = ssc_readl(ssc_p->ssc->regs, TFMR);
717 return 0;
722 static int atmel_ssc_resume(struct snd_soc_dai *cpu_dai)
724 struct atmel_ssc_info *ssc_p;
725 u32 cr;
727 if (!cpu_dai->active)
728 return 0;
730 ssc_p = &ssc_info[cpu_dai->id];
732 /* restore SSC register settings */
733 ssc_writel(ssc_p->ssc->regs, TFMR, ssc_p->ssc_state.ssc_tfmr);
734 ssc_writel(ssc_p->ssc->regs, TCMR, ssc_p->ssc_state.ssc_tcmr);
735 ssc_writel(ssc_p->ssc->regs, RFMR, ssc_p->ssc_state.ssc_rfmr);
736 ssc_writel(ssc_p->ssc->regs, RCMR, ssc_p->ssc_state.ssc_rcmr);
737 ssc_writel(ssc_p->ssc->regs, CMR, ssc_p->ssc_state.ssc_cmr);
739 /* re-enable interrupts */
740 ssc_writel(ssc_p->ssc->regs, IER, ssc_p->ssc_state.ssc_imr);
742 /* Re-enable receive and transmit as appropriate */
743 cr = 0;
744 cr |=
745 (ssc_p->ssc_state.ssc_sr & SSC_BIT(SR_RXEN)) ? SSC_BIT(CR_RXEN) : 0;
746 cr |=
747 (ssc_p->ssc_state.ssc_sr & SSC_BIT(SR_TXEN)) ? SSC_BIT(CR_TXEN) : 0;
748 ssc_writel(ssc_p->ssc->regs, CR, cr);
750 return 0;
752 #else /* CONFIG_PM */
753 # define atmel_ssc_suspend NULL
754 # define atmel_ssc_resume NULL
755 #endif /* CONFIG_PM */
757 #define ATMEL_SSC_RATES (SNDRV_PCM_RATE_8000_96000)
759 #define ATMEL_SSC_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE |\
760 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE)
762 static const struct snd_soc_dai_ops atmel_ssc_dai_ops = {
763 .startup = atmel_ssc_startup,
764 .shutdown = atmel_ssc_shutdown,
765 .prepare = atmel_ssc_prepare,
766 .trigger = atmel_ssc_trigger,
767 .hw_params = atmel_ssc_hw_params,
768 .set_fmt = atmel_ssc_set_dai_fmt,
769 .set_clkdiv = atmel_ssc_set_dai_clkdiv,
772 static struct snd_soc_dai_driver atmel_ssc_dai = {
773 .suspend = atmel_ssc_suspend,
774 .resume = atmel_ssc_resume,
775 .playback = {
776 .channels_min = 1,
777 .channels_max = 2,
778 .rates = ATMEL_SSC_RATES,
779 .formats = ATMEL_SSC_FORMATS,},
780 .capture = {
781 .channels_min = 1,
782 .channels_max = 2,
783 .rates = ATMEL_SSC_RATES,
784 .formats = ATMEL_SSC_FORMATS,},
785 .ops = &atmel_ssc_dai_ops,
788 static const struct snd_soc_component_driver atmel_ssc_component = {
789 .name = "atmel-ssc",
792 static int asoc_ssc_init(struct device *dev)
794 struct platform_device *pdev = to_platform_device(dev);
795 struct ssc_device *ssc = platform_get_drvdata(pdev);
796 int ret;
798 ret = snd_soc_register_component(dev, &atmel_ssc_component,
799 &atmel_ssc_dai, 1);
800 if (ret) {
801 dev_err(dev, "Could not register DAI: %d\n", ret);
802 goto err;
805 if (ssc->pdata->use_dma)
806 ret = atmel_pcm_dma_platform_register(dev);
807 else
808 ret = atmel_pcm_pdc_platform_register(dev);
810 if (ret) {
811 dev_err(dev, "Could not register PCM: %d\n", ret);
812 goto err_unregister_dai;
815 return 0;
817 err_unregister_dai:
818 snd_soc_unregister_component(dev);
819 err:
820 return ret;
823 static void asoc_ssc_exit(struct device *dev)
825 struct platform_device *pdev = to_platform_device(dev);
826 struct ssc_device *ssc = platform_get_drvdata(pdev);
828 if (ssc->pdata->use_dma)
829 atmel_pcm_dma_platform_unregister(dev);
830 else
831 atmel_pcm_pdc_platform_unregister(dev);
833 snd_soc_unregister_component(dev);
837 * atmel_ssc_set_audio - Allocate the specified SSC for audio use.
839 int atmel_ssc_set_audio(int ssc_id)
841 struct ssc_device *ssc;
842 int ret;
844 /* If we can grab the SSC briefly to parent the DAI device off it */
845 ssc = ssc_request(ssc_id);
846 if (IS_ERR(ssc)) {
847 pr_err("Unable to parent ASoC SSC DAI on SSC: %ld\n",
848 PTR_ERR(ssc));
849 return PTR_ERR(ssc);
850 } else {
851 ssc_info[ssc_id].ssc = ssc;
854 ret = asoc_ssc_init(&ssc->pdev->dev);
856 return ret;
858 EXPORT_SYMBOL_GPL(atmel_ssc_set_audio);
860 void atmel_ssc_put_audio(int ssc_id)
862 struct ssc_device *ssc = ssc_info[ssc_id].ssc;
864 asoc_ssc_exit(&ssc->pdev->dev);
865 ssc_free(ssc);
867 EXPORT_SYMBOL_GPL(atmel_ssc_put_audio);
869 /* Module information */
870 MODULE_AUTHOR("Sedji Gaouaou, sedji.gaouaou@atmel.com, www.atmel.com");
871 MODULE_DESCRIPTION("ATMEL SSC ASoC Interface");
872 MODULE_LICENSE("GPL");