[media] media: davinci: vpif: Switch to pad-level DV operations
[linux-2.6/btrfs-unstable.git] / fs / f2fs / checkpoint.c
blob4aa521aa9bc3a794fbe52625e689b93140ed38a5
1 /*
2 * fs/f2fs/checkpoint.c
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include <trace/events/f2fs.h>
25 static struct kmem_cache *orphan_entry_slab;
26 static struct kmem_cache *inode_entry_slab;
29 * We guarantee no failure on the returned page.
31 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
33 struct address_space *mapping = META_MAPPING(sbi);
34 struct page *page = NULL;
35 repeat:
36 page = grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
37 if (!page) {
38 cond_resched();
39 goto repeat;
42 SetPageUptodate(page);
43 return page;
47 * We guarantee no failure on the returned page.
49 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
51 struct address_space *mapping = META_MAPPING(sbi);
52 struct page *page;
53 repeat:
54 page = grab_cache_page(mapping, index);
55 if (!page) {
56 cond_resched();
57 goto repeat;
59 if (PageUptodate(page))
60 goto out;
62 if (f2fs_submit_page_bio(sbi, page, index,
63 READ_SYNC | REQ_META | REQ_PRIO))
64 goto repeat;
66 lock_page(page);
67 if (unlikely(page->mapping != mapping)) {
68 f2fs_put_page(page, 1);
69 goto repeat;
71 out:
72 mark_page_accessed(page);
73 return page;
76 inline int get_max_meta_blks(struct f2fs_sb_info *sbi, int type)
78 switch (type) {
79 case META_NAT:
80 return NM_I(sbi)->max_nid / NAT_ENTRY_PER_BLOCK;
81 case META_SIT:
82 return SIT_BLK_CNT(sbi);
83 case META_SSA:
84 case META_CP:
85 return 0;
86 default:
87 BUG();
92 * Readahead CP/NAT/SIT/SSA pages
94 int ra_meta_pages(struct f2fs_sb_info *sbi, int start, int nrpages, int type)
96 block_t prev_blk_addr = 0;
97 struct page *page;
98 int blkno = start;
99 int max_blks = get_max_meta_blks(sbi, type);
101 struct f2fs_io_info fio = {
102 .type = META,
103 .rw = READ_SYNC | REQ_META | REQ_PRIO
106 for (; nrpages-- > 0; blkno++) {
107 block_t blk_addr;
109 switch (type) {
110 case META_NAT:
111 /* get nat block addr */
112 if (unlikely(blkno >= max_blks))
113 blkno = 0;
114 blk_addr = current_nat_addr(sbi,
115 blkno * NAT_ENTRY_PER_BLOCK);
116 break;
117 case META_SIT:
118 /* get sit block addr */
119 if (unlikely(blkno >= max_blks))
120 goto out;
121 blk_addr = current_sit_addr(sbi,
122 blkno * SIT_ENTRY_PER_BLOCK);
123 if (blkno != start && prev_blk_addr + 1 != blk_addr)
124 goto out;
125 prev_blk_addr = blk_addr;
126 break;
127 case META_SSA:
128 case META_CP:
129 /* get ssa/cp block addr */
130 blk_addr = blkno;
131 break;
132 default:
133 BUG();
136 page = grab_cache_page(META_MAPPING(sbi), blk_addr);
137 if (!page)
138 continue;
139 if (PageUptodate(page)) {
140 mark_page_accessed(page);
141 f2fs_put_page(page, 1);
142 continue;
145 f2fs_submit_page_mbio(sbi, page, blk_addr, &fio);
146 mark_page_accessed(page);
147 f2fs_put_page(page, 0);
149 out:
150 f2fs_submit_merged_bio(sbi, META, READ);
151 return blkno - start;
154 static int f2fs_write_meta_page(struct page *page,
155 struct writeback_control *wbc)
157 struct inode *inode = page->mapping->host;
158 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
160 if (unlikely(sbi->por_doing))
161 goto redirty_out;
162 if (wbc->for_reclaim)
163 goto redirty_out;
165 /* Should not write any meta pages, if any IO error was occurred */
166 if (unlikely(is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)))
167 goto no_write;
169 f2fs_wait_on_page_writeback(page, META);
170 write_meta_page(sbi, page);
171 no_write:
172 dec_page_count(sbi, F2FS_DIRTY_META);
173 unlock_page(page);
174 return 0;
176 redirty_out:
177 dec_page_count(sbi, F2FS_DIRTY_META);
178 wbc->pages_skipped++;
179 account_page_redirty(page);
180 set_page_dirty(page);
181 return AOP_WRITEPAGE_ACTIVATE;
184 static int f2fs_write_meta_pages(struct address_space *mapping,
185 struct writeback_control *wbc)
187 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
188 long diff, written;
190 /* collect a number of dirty meta pages and write together */
191 if (wbc->for_kupdate ||
192 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
193 goto skip_write;
195 /* if mounting is failed, skip writing node pages */
196 mutex_lock(&sbi->cp_mutex);
197 diff = nr_pages_to_write(sbi, META, wbc);
198 written = sync_meta_pages(sbi, META, wbc->nr_to_write);
199 mutex_unlock(&sbi->cp_mutex);
200 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
201 return 0;
203 skip_write:
204 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
205 return 0;
208 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
209 long nr_to_write)
211 struct address_space *mapping = META_MAPPING(sbi);
212 pgoff_t index = 0, end = LONG_MAX;
213 struct pagevec pvec;
214 long nwritten = 0;
215 struct writeback_control wbc = {
216 .for_reclaim = 0,
219 pagevec_init(&pvec, 0);
221 while (index <= end) {
222 int i, nr_pages;
223 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
224 PAGECACHE_TAG_DIRTY,
225 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
226 if (unlikely(nr_pages == 0))
227 break;
229 for (i = 0; i < nr_pages; i++) {
230 struct page *page = pvec.pages[i];
232 lock_page(page);
234 if (unlikely(page->mapping != mapping)) {
235 continue_unlock:
236 unlock_page(page);
237 continue;
239 if (!PageDirty(page)) {
240 /* someone wrote it for us */
241 goto continue_unlock;
244 if (!clear_page_dirty_for_io(page))
245 goto continue_unlock;
247 if (f2fs_write_meta_page(page, &wbc)) {
248 unlock_page(page);
249 break;
251 nwritten++;
252 if (unlikely(nwritten >= nr_to_write))
253 break;
255 pagevec_release(&pvec);
256 cond_resched();
259 if (nwritten)
260 f2fs_submit_merged_bio(sbi, type, WRITE);
262 return nwritten;
265 static int f2fs_set_meta_page_dirty(struct page *page)
267 struct address_space *mapping = page->mapping;
268 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
270 trace_f2fs_set_page_dirty(page, META);
272 SetPageUptodate(page);
273 if (!PageDirty(page)) {
274 __set_page_dirty_nobuffers(page);
275 inc_page_count(sbi, F2FS_DIRTY_META);
276 return 1;
278 return 0;
281 const struct address_space_operations f2fs_meta_aops = {
282 .writepage = f2fs_write_meta_page,
283 .writepages = f2fs_write_meta_pages,
284 .set_page_dirty = f2fs_set_meta_page_dirty,
287 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
289 int err = 0;
291 spin_lock(&sbi->orphan_inode_lock);
292 if (unlikely(sbi->n_orphans >= sbi->max_orphans))
293 err = -ENOSPC;
294 else
295 sbi->n_orphans++;
296 spin_unlock(&sbi->orphan_inode_lock);
298 return err;
301 void release_orphan_inode(struct f2fs_sb_info *sbi)
303 spin_lock(&sbi->orphan_inode_lock);
304 f2fs_bug_on(sbi->n_orphans == 0);
305 sbi->n_orphans--;
306 spin_unlock(&sbi->orphan_inode_lock);
309 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
311 struct list_head *head;
312 struct orphan_inode_entry *new, *orphan;
314 new = f2fs_kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
315 new->ino = ino;
317 spin_lock(&sbi->orphan_inode_lock);
318 head = &sbi->orphan_inode_list;
319 list_for_each_entry(orphan, head, list) {
320 if (orphan->ino == ino) {
321 spin_unlock(&sbi->orphan_inode_lock);
322 kmem_cache_free(orphan_entry_slab, new);
323 return;
326 if (orphan->ino > ino)
327 break;
330 /* add new orphan entry into list which is sorted by inode number */
331 list_add_tail(&new->list, &orphan->list);
332 spin_unlock(&sbi->orphan_inode_lock);
335 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
337 struct list_head *head;
338 struct orphan_inode_entry *orphan;
340 spin_lock(&sbi->orphan_inode_lock);
341 head = &sbi->orphan_inode_list;
342 list_for_each_entry(orphan, head, list) {
343 if (orphan->ino == ino) {
344 list_del(&orphan->list);
345 f2fs_bug_on(sbi->n_orphans == 0);
346 sbi->n_orphans--;
347 spin_unlock(&sbi->orphan_inode_lock);
348 kmem_cache_free(orphan_entry_slab, orphan);
349 return;
352 spin_unlock(&sbi->orphan_inode_lock);
355 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
357 struct inode *inode = f2fs_iget(sbi->sb, ino);
358 f2fs_bug_on(IS_ERR(inode));
359 clear_nlink(inode);
361 /* truncate all the data during iput */
362 iput(inode);
365 void recover_orphan_inodes(struct f2fs_sb_info *sbi)
367 block_t start_blk, orphan_blkaddr, i, j;
369 if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
370 return;
372 sbi->por_doing = true;
373 start_blk = __start_cp_addr(sbi) + 1;
374 orphan_blkaddr = __start_sum_addr(sbi) - 1;
376 ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP);
378 for (i = 0; i < orphan_blkaddr; i++) {
379 struct page *page = get_meta_page(sbi, start_blk + i);
380 struct f2fs_orphan_block *orphan_blk;
382 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
383 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
384 nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
385 recover_orphan_inode(sbi, ino);
387 f2fs_put_page(page, 1);
389 /* clear Orphan Flag */
390 clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
391 sbi->por_doing = false;
392 return;
395 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
397 struct list_head *head;
398 struct f2fs_orphan_block *orphan_blk = NULL;
399 unsigned int nentries = 0;
400 unsigned short index;
401 unsigned short orphan_blocks = (unsigned short)((sbi->n_orphans +
402 (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
403 struct page *page = NULL;
404 struct orphan_inode_entry *orphan = NULL;
406 for (index = 0; index < orphan_blocks; index++)
407 grab_meta_page(sbi, start_blk + index);
409 index = 1;
410 spin_lock(&sbi->orphan_inode_lock);
411 head = &sbi->orphan_inode_list;
413 /* loop for each orphan inode entry and write them in Jornal block */
414 list_for_each_entry(orphan, head, list) {
415 if (!page) {
416 page = find_get_page(META_MAPPING(sbi), start_blk++);
417 f2fs_bug_on(!page);
418 orphan_blk =
419 (struct f2fs_orphan_block *)page_address(page);
420 memset(orphan_blk, 0, sizeof(*orphan_blk));
421 f2fs_put_page(page, 0);
424 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
426 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
428 * an orphan block is full of 1020 entries,
429 * then we need to flush current orphan blocks
430 * and bring another one in memory
432 orphan_blk->blk_addr = cpu_to_le16(index);
433 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
434 orphan_blk->entry_count = cpu_to_le32(nentries);
435 set_page_dirty(page);
436 f2fs_put_page(page, 1);
437 index++;
438 nentries = 0;
439 page = NULL;
443 if (page) {
444 orphan_blk->blk_addr = cpu_to_le16(index);
445 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
446 orphan_blk->entry_count = cpu_to_le32(nentries);
447 set_page_dirty(page);
448 f2fs_put_page(page, 1);
451 spin_unlock(&sbi->orphan_inode_lock);
454 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
455 block_t cp_addr, unsigned long long *version)
457 struct page *cp_page_1, *cp_page_2 = NULL;
458 unsigned long blk_size = sbi->blocksize;
459 struct f2fs_checkpoint *cp_block;
460 unsigned long long cur_version = 0, pre_version = 0;
461 size_t crc_offset;
462 __u32 crc = 0;
464 /* Read the 1st cp block in this CP pack */
465 cp_page_1 = get_meta_page(sbi, cp_addr);
467 /* get the version number */
468 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
469 crc_offset = le32_to_cpu(cp_block->checksum_offset);
470 if (crc_offset >= blk_size)
471 goto invalid_cp1;
473 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
474 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
475 goto invalid_cp1;
477 pre_version = cur_cp_version(cp_block);
479 /* Read the 2nd cp block in this CP pack */
480 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
481 cp_page_2 = get_meta_page(sbi, cp_addr);
483 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
484 crc_offset = le32_to_cpu(cp_block->checksum_offset);
485 if (crc_offset >= blk_size)
486 goto invalid_cp2;
488 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
489 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
490 goto invalid_cp2;
492 cur_version = cur_cp_version(cp_block);
494 if (cur_version == pre_version) {
495 *version = cur_version;
496 f2fs_put_page(cp_page_2, 1);
497 return cp_page_1;
499 invalid_cp2:
500 f2fs_put_page(cp_page_2, 1);
501 invalid_cp1:
502 f2fs_put_page(cp_page_1, 1);
503 return NULL;
506 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
508 struct f2fs_checkpoint *cp_block;
509 struct f2fs_super_block *fsb = sbi->raw_super;
510 struct page *cp1, *cp2, *cur_page;
511 unsigned long blk_size = sbi->blocksize;
512 unsigned long long cp1_version = 0, cp2_version = 0;
513 unsigned long long cp_start_blk_no;
515 sbi->ckpt = kzalloc(blk_size, GFP_KERNEL);
516 if (!sbi->ckpt)
517 return -ENOMEM;
519 * Finding out valid cp block involves read both
520 * sets( cp pack1 and cp pack 2)
522 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
523 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
525 /* The second checkpoint pack should start at the next segment */
526 cp_start_blk_no += ((unsigned long long)1) <<
527 le32_to_cpu(fsb->log_blocks_per_seg);
528 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
530 if (cp1 && cp2) {
531 if (ver_after(cp2_version, cp1_version))
532 cur_page = cp2;
533 else
534 cur_page = cp1;
535 } else if (cp1) {
536 cur_page = cp1;
537 } else if (cp2) {
538 cur_page = cp2;
539 } else {
540 goto fail_no_cp;
543 cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
544 memcpy(sbi->ckpt, cp_block, blk_size);
546 f2fs_put_page(cp1, 1);
547 f2fs_put_page(cp2, 1);
548 return 0;
550 fail_no_cp:
551 kfree(sbi->ckpt);
552 return -EINVAL;
555 static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
557 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
558 struct list_head *head = &sbi->dir_inode_list;
559 struct dir_inode_entry *entry;
561 list_for_each_entry(entry, head, list)
562 if (unlikely(entry->inode == inode))
563 return -EEXIST;
565 list_add_tail(&new->list, head);
566 stat_inc_dirty_dir(sbi);
567 return 0;
570 void set_dirty_dir_page(struct inode *inode, struct page *page)
572 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
573 struct dir_inode_entry *new;
574 int ret = 0;
576 if (!S_ISDIR(inode->i_mode))
577 return;
579 new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
580 new->inode = inode;
581 INIT_LIST_HEAD(&new->list);
583 spin_lock(&sbi->dir_inode_lock);
584 ret = __add_dirty_inode(inode, new);
585 inode_inc_dirty_dents(inode);
586 SetPagePrivate(page);
587 spin_unlock(&sbi->dir_inode_lock);
589 if (ret)
590 kmem_cache_free(inode_entry_slab, new);
593 void add_dirty_dir_inode(struct inode *inode)
595 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
596 struct dir_inode_entry *new =
597 f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
598 int ret = 0;
600 new->inode = inode;
601 INIT_LIST_HEAD(&new->list);
603 spin_lock(&sbi->dir_inode_lock);
604 ret = __add_dirty_inode(inode, new);
605 spin_unlock(&sbi->dir_inode_lock);
607 if (ret)
608 kmem_cache_free(inode_entry_slab, new);
611 void remove_dirty_dir_inode(struct inode *inode)
613 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
614 struct list_head *head;
615 struct dir_inode_entry *entry;
617 if (!S_ISDIR(inode->i_mode))
618 return;
620 spin_lock(&sbi->dir_inode_lock);
621 if (get_dirty_dents(inode)) {
622 spin_unlock(&sbi->dir_inode_lock);
623 return;
626 head = &sbi->dir_inode_list;
627 list_for_each_entry(entry, head, list) {
628 if (entry->inode == inode) {
629 list_del(&entry->list);
630 stat_dec_dirty_dir(sbi);
631 spin_unlock(&sbi->dir_inode_lock);
632 kmem_cache_free(inode_entry_slab, entry);
633 goto done;
636 spin_unlock(&sbi->dir_inode_lock);
638 done:
639 /* Only from the recovery routine */
640 if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
641 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
642 iput(inode);
646 struct inode *check_dirty_dir_inode(struct f2fs_sb_info *sbi, nid_t ino)
649 struct list_head *head;
650 struct inode *inode = NULL;
651 struct dir_inode_entry *entry;
653 spin_lock(&sbi->dir_inode_lock);
655 head = &sbi->dir_inode_list;
656 list_for_each_entry(entry, head, list) {
657 if (entry->inode->i_ino == ino) {
658 inode = entry->inode;
659 break;
662 spin_unlock(&sbi->dir_inode_lock);
663 return inode;
666 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
668 struct list_head *head;
669 struct dir_inode_entry *entry;
670 struct inode *inode;
671 retry:
672 spin_lock(&sbi->dir_inode_lock);
674 head = &sbi->dir_inode_list;
675 if (list_empty(head)) {
676 spin_unlock(&sbi->dir_inode_lock);
677 return;
679 entry = list_entry(head->next, struct dir_inode_entry, list);
680 inode = igrab(entry->inode);
681 spin_unlock(&sbi->dir_inode_lock);
682 if (inode) {
683 filemap_fdatawrite(inode->i_mapping);
684 iput(inode);
685 } else {
687 * We should submit bio, since it exists several
688 * wribacking dentry pages in the freeing inode.
690 f2fs_submit_merged_bio(sbi, DATA, WRITE);
692 goto retry;
696 * Freeze all the FS-operations for checkpoint.
698 static void block_operations(struct f2fs_sb_info *sbi)
700 struct writeback_control wbc = {
701 .sync_mode = WB_SYNC_ALL,
702 .nr_to_write = LONG_MAX,
703 .for_reclaim = 0,
705 struct blk_plug plug;
707 blk_start_plug(&plug);
709 retry_flush_dents:
710 f2fs_lock_all(sbi);
711 /* write all the dirty dentry pages */
712 if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
713 f2fs_unlock_all(sbi);
714 sync_dirty_dir_inodes(sbi);
715 goto retry_flush_dents;
719 * POR: we should ensure that there is no dirty node pages
720 * until finishing nat/sit flush.
722 retry_flush_nodes:
723 mutex_lock(&sbi->node_write);
725 if (get_pages(sbi, F2FS_DIRTY_NODES)) {
726 mutex_unlock(&sbi->node_write);
727 sync_node_pages(sbi, 0, &wbc);
728 goto retry_flush_nodes;
730 blk_finish_plug(&plug);
733 static void unblock_operations(struct f2fs_sb_info *sbi)
735 mutex_unlock(&sbi->node_write);
736 f2fs_unlock_all(sbi);
739 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
741 DEFINE_WAIT(wait);
743 for (;;) {
744 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
746 if (!get_pages(sbi, F2FS_WRITEBACK))
747 break;
749 io_schedule();
751 finish_wait(&sbi->cp_wait, &wait);
754 static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
756 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
757 nid_t last_nid = 0;
758 block_t start_blk;
759 struct page *cp_page;
760 unsigned int data_sum_blocks, orphan_blocks;
761 __u32 crc32 = 0;
762 void *kaddr;
763 int i;
765 /* Flush all the NAT/SIT pages */
766 while (get_pages(sbi, F2FS_DIRTY_META))
767 sync_meta_pages(sbi, META, LONG_MAX);
769 next_free_nid(sbi, &last_nid);
772 * modify checkpoint
773 * version number is already updated
775 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
776 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
777 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
778 for (i = 0; i < 3; i++) {
779 ckpt->cur_node_segno[i] =
780 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
781 ckpt->cur_node_blkoff[i] =
782 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
783 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
784 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
786 for (i = 0; i < 3; i++) {
787 ckpt->cur_data_segno[i] =
788 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
789 ckpt->cur_data_blkoff[i] =
790 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
791 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
792 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
795 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
796 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
797 ckpt->next_free_nid = cpu_to_le32(last_nid);
799 /* 2 cp + n data seg summary + orphan inode blocks */
800 data_sum_blocks = npages_for_summary_flush(sbi);
801 if (data_sum_blocks < 3)
802 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
803 else
804 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
806 orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
807 / F2FS_ORPHANS_PER_BLOCK;
808 ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks);
810 if (is_umount) {
811 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
812 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
813 data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE);
814 } else {
815 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
816 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
817 data_sum_blocks + orphan_blocks);
820 if (sbi->n_orphans)
821 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
822 else
823 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
825 /* update SIT/NAT bitmap */
826 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
827 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
829 crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
830 *((__le32 *)((unsigned char *)ckpt +
831 le32_to_cpu(ckpt->checksum_offset)))
832 = cpu_to_le32(crc32);
834 start_blk = __start_cp_addr(sbi);
836 /* write out checkpoint buffer at block 0 */
837 cp_page = grab_meta_page(sbi, start_blk++);
838 kaddr = page_address(cp_page);
839 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
840 set_page_dirty(cp_page);
841 f2fs_put_page(cp_page, 1);
843 if (sbi->n_orphans) {
844 write_orphan_inodes(sbi, start_blk);
845 start_blk += orphan_blocks;
848 write_data_summaries(sbi, start_blk);
849 start_blk += data_sum_blocks;
850 if (is_umount) {
851 write_node_summaries(sbi, start_blk);
852 start_blk += NR_CURSEG_NODE_TYPE;
855 /* writeout checkpoint block */
856 cp_page = grab_meta_page(sbi, start_blk);
857 kaddr = page_address(cp_page);
858 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
859 set_page_dirty(cp_page);
860 f2fs_put_page(cp_page, 1);
862 /* wait for previous submitted node/meta pages writeback */
863 wait_on_all_pages_writeback(sbi);
865 filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
866 filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
868 /* update user_block_counts */
869 sbi->last_valid_block_count = sbi->total_valid_block_count;
870 sbi->alloc_valid_block_count = 0;
872 /* Here, we only have one bio having CP pack */
873 sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
875 if (unlikely(!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG))) {
876 clear_prefree_segments(sbi);
877 F2FS_RESET_SB_DIRT(sbi);
882 * We guarantee that this checkpoint procedure should not fail.
884 void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
886 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
887 unsigned long long ckpt_ver;
889 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops");
891 mutex_lock(&sbi->cp_mutex);
892 block_operations(sbi);
894 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops");
896 f2fs_submit_merged_bio(sbi, DATA, WRITE);
897 f2fs_submit_merged_bio(sbi, NODE, WRITE);
898 f2fs_submit_merged_bio(sbi, META, WRITE);
901 * update checkpoint pack index
902 * Increase the version number so that
903 * SIT entries and seg summaries are written at correct place
905 ckpt_ver = cur_cp_version(ckpt);
906 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
908 /* write cached NAT/SIT entries to NAT/SIT area */
909 flush_nat_entries(sbi);
910 flush_sit_entries(sbi);
912 /* unlock all the fs_lock[] in do_checkpoint() */
913 do_checkpoint(sbi, is_umount);
915 unblock_operations(sbi);
916 mutex_unlock(&sbi->cp_mutex);
918 stat_inc_cp_count(sbi->stat_info);
919 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint");
922 void init_orphan_info(struct f2fs_sb_info *sbi)
924 spin_lock_init(&sbi->orphan_inode_lock);
925 INIT_LIST_HEAD(&sbi->orphan_inode_list);
926 sbi->n_orphans = 0;
928 * considering 512 blocks in a segment 8 blocks are needed for cp
929 * and log segment summaries. Remaining blocks are used to keep
930 * orphan entries with the limitation one reserved segment
931 * for cp pack we can have max 1020*504 orphan entries
933 sbi->max_orphans = (sbi->blocks_per_seg - 2 - NR_CURSEG_TYPE)
934 * F2FS_ORPHANS_PER_BLOCK;
937 int __init create_checkpoint_caches(void)
939 orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
940 sizeof(struct orphan_inode_entry));
941 if (!orphan_entry_slab)
942 return -ENOMEM;
943 inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
944 sizeof(struct dir_inode_entry));
945 if (!inode_entry_slab) {
946 kmem_cache_destroy(orphan_entry_slab);
947 return -ENOMEM;
949 return 0;
952 void destroy_checkpoint_caches(void)
954 kmem_cache_destroy(orphan_entry_slab);
955 kmem_cache_destroy(inode_entry_slab);