arm64: migrate exception table users off module.h and onto extable.h
[linux-2.6/btrfs-unstable.git] / arch / arm64 / kernel / probes / kprobes.c
blobf5077ea7af6d65158f832f5cb555e41add26b21c
1 /*
2 * arch/arm64/kernel/probes/kprobes.c
4 * Kprobes support for ARM64
6 * Copyright (C) 2013 Linaro Limited.
7 * Author: Sandeepa Prabhu <sandeepa.prabhu@linaro.org>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
19 #include <linux/kasan.h>
20 #include <linux/kernel.h>
21 #include <linux/kprobes.h>
22 #include <linux/extable.h>
23 #include <linux/slab.h>
24 #include <linux/stop_machine.h>
25 #include <linux/stringify.h>
26 #include <asm/traps.h>
27 #include <asm/ptrace.h>
28 #include <asm/cacheflush.h>
29 #include <asm/debug-monitors.h>
30 #include <asm/system_misc.h>
31 #include <asm/insn.h>
32 #include <asm/uaccess.h>
33 #include <asm/irq.h>
34 #include <asm/sections.h>
36 #include "decode-insn.h"
38 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
39 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
41 static void __kprobes
42 post_kprobe_handler(struct kprobe_ctlblk *, struct pt_regs *);
44 static void __kprobes arch_prepare_ss_slot(struct kprobe *p)
46 /* prepare insn slot */
47 p->ainsn.insn[0] = cpu_to_le32(p->opcode);
49 flush_icache_range((uintptr_t) (p->ainsn.insn),
50 (uintptr_t) (p->ainsn.insn) +
51 MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
54 * Needs restoring of return address after stepping xol.
56 p->ainsn.restore = (unsigned long) p->addr +
57 sizeof(kprobe_opcode_t);
60 static void __kprobes arch_prepare_simulate(struct kprobe *p)
62 /* This instructions is not executed xol. No need to adjust the PC */
63 p->ainsn.restore = 0;
66 static void __kprobes arch_simulate_insn(struct kprobe *p, struct pt_regs *regs)
68 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
70 if (p->ainsn.handler)
71 p->ainsn.handler((u32)p->opcode, (long)p->addr, regs);
73 /* single step simulated, now go for post processing */
74 post_kprobe_handler(kcb, regs);
77 int __kprobes arch_prepare_kprobe(struct kprobe *p)
79 unsigned long probe_addr = (unsigned long)p->addr;
80 extern char __start_rodata[];
81 extern char __end_rodata[];
83 if (probe_addr & 0x3)
84 return -EINVAL;
86 /* copy instruction */
87 p->opcode = le32_to_cpu(*p->addr);
89 if (in_exception_text(probe_addr))
90 return -EINVAL;
91 if (probe_addr >= (unsigned long) __start_rodata &&
92 probe_addr <= (unsigned long) __end_rodata)
93 return -EINVAL;
95 /* decode instruction */
96 switch (arm_kprobe_decode_insn(p->addr, &p->ainsn)) {
97 case INSN_REJECTED: /* insn not supported */
98 return -EINVAL;
100 case INSN_GOOD_NO_SLOT: /* insn need simulation */
101 p->ainsn.insn = NULL;
102 break;
104 case INSN_GOOD: /* instruction uses slot */
105 p->ainsn.insn = get_insn_slot();
106 if (!p->ainsn.insn)
107 return -ENOMEM;
108 break;
111 /* prepare the instruction */
112 if (p->ainsn.insn)
113 arch_prepare_ss_slot(p);
114 else
115 arch_prepare_simulate(p);
117 return 0;
120 static int __kprobes patch_text(kprobe_opcode_t *addr, u32 opcode)
122 void *addrs[1];
123 u32 insns[1];
125 addrs[0] = (void *)addr;
126 insns[0] = (u32)opcode;
128 return aarch64_insn_patch_text(addrs, insns, 1);
131 /* arm kprobe: install breakpoint in text */
132 void __kprobes arch_arm_kprobe(struct kprobe *p)
134 patch_text(p->addr, BRK64_OPCODE_KPROBES);
137 /* disarm kprobe: remove breakpoint from text */
138 void __kprobes arch_disarm_kprobe(struct kprobe *p)
140 patch_text(p->addr, p->opcode);
143 void __kprobes arch_remove_kprobe(struct kprobe *p)
145 if (p->ainsn.insn) {
146 free_insn_slot(p->ainsn.insn, 0);
147 p->ainsn.insn = NULL;
151 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
153 kcb->prev_kprobe.kp = kprobe_running();
154 kcb->prev_kprobe.status = kcb->kprobe_status;
157 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
159 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
160 kcb->kprobe_status = kcb->prev_kprobe.status;
163 static void __kprobes set_current_kprobe(struct kprobe *p)
165 __this_cpu_write(current_kprobe, p);
169 * When PSTATE.D is set (masked), then software step exceptions can not be
170 * generated.
171 * SPSR's D bit shows the value of PSTATE.D immediately before the
172 * exception was taken. PSTATE.D is set while entering into any exception
173 * mode, however software clears it for any normal (none-debug-exception)
174 * mode in the exception entry. Therefore, when we are entering into kprobe
175 * breakpoint handler from any normal mode then SPSR.D bit is already
176 * cleared, however it is set when we are entering from any debug exception
177 * mode.
178 * Since we always need to generate single step exception after a kprobe
179 * breakpoint exception therefore we need to clear it unconditionally, when
180 * we become sure that the current breakpoint exception is for kprobe.
182 static void __kprobes
183 spsr_set_debug_flag(struct pt_regs *regs, int mask)
185 unsigned long spsr = regs->pstate;
187 if (mask)
188 spsr |= PSR_D_BIT;
189 else
190 spsr &= ~PSR_D_BIT;
192 regs->pstate = spsr;
196 * Interrupts need to be disabled before single-step mode is set, and not
197 * reenabled until after single-step mode ends.
198 * Without disabling interrupt on local CPU, there is a chance of
199 * interrupt occurrence in the period of exception return and start of
200 * out-of-line single-step, that result in wrongly single stepping
201 * into the interrupt handler.
203 static void __kprobes kprobes_save_local_irqflag(struct kprobe_ctlblk *kcb,
204 struct pt_regs *regs)
206 kcb->saved_irqflag = regs->pstate;
207 regs->pstate |= PSR_I_BIT;
210 static void __kprobes kprobes_restore_local_irqflag(struct kprobe_ctlblk *kcb,
211 struct pt_regs *regs)
213 if (kcb->saved_irqflag & PSR_I_BIT)
214 regs->pstate |= PSR_I_BIT;
215 else
216 regs->pstate &= ~PSR_I_BIT;
219 static void __kprobes
220 set_ss_context(struct kprobe_ctlblk *kcb, unsigned long addr)
222 kcb->ss_ctx.ss_pending = true;
223 kcb->ss_ctx.match_addr = addr + sizeof(kprobe_opcode_t);
226 static void __kprobes clear_ss_context(struct kprobe_ctlblk *kcb)
228 kcb->ss_ctx.ss_pending = false;
229 kcb->ss_ctx.match_addr = 0;
232 static void __kprobes setup_singlestep(struct kprobe *p,
233 struct pt_regs *regs,
234 struct kprobe_ctlblk *kcb, int reenter)
236 unsigned long slot;
238 if (reenter) {
239 save_previous_kprobe(kcb);
240 set_current_kprobe(p);
241 kcb->kprobe_status = KPROBE_REENTER;
242 } else {
243 kcb->kprobe_status = KPROBE_HIT_SS;
247 if (p->ainsn.insn) {
248 /* prepare for single stepping */
249 slot = (unsigned long)p->ainsn.insn;
251 set_ss_context(kcb, slot); /* mark pending ss */
253 spsr_set_debug_flag(regs, 0);
255 /* IRQs and single stepping do not mix well. */
256 kprobes_save_local_irqflag(kcb, regs);
257 kernel_enable_single_step(regs);
258 instruction_pointer_set(regs, slot);
259 } else {
260 /* insn simulation */
261 arch_simulate_insn(p, regs);
265 static int __kprobes reenter_kprobe(struct kprobe *p,
266 struct pt_regs *regs,
267 struct kprobe_ctlblk *kcb)
269 switch (kcb->kprobe_status) {
270 case KPROBE_HIT_SSDONE:
271 case KPROBE_HIT_ACTIVE:
272 kprobes_inc_nmissed_count(p);
273 setup_singlestep(p, regs, kcb, 1);
274 break;
275 case KPROBE_HIT_SS:
276 case KPROBE_REENTER:
277 pr_warn("Unrecoverable kprobe detected at %p.\n", p->addr);
278 dump_kprobe(p);
279 BUG();
280 break;
281 default:
282 WARN_ON(1);
283 return 0;
286 return 1;
289 static void __kprobes
290 post_kprobe_handler(struct kprobe_ctlblk *kcb, struct pt_regs *regs)
292 struct kprobe *cur = kprobe_running();
294 if (!cur)
295 return;
297 /* return addr restore if non-branching insn */
298 if (cur->ainsn.restore != 0)
299 instruction_pointer_set(regs, cur->ainsn.restore);
301 /* restore back original saved kprobe variables and continue */
302 if (kcb->kprobe_status == KPROBE_REENTER) {
303 restore_previous_kprobe(kcb);
304 return;
306 /* call post handler */
307 kcb->kprobe_status = KPROBE_HIT_SSDONE;
308 if (cur->post_handler) {
309 /* post_handler can hit breakpoint and single step
310 * again, so we enable D-flag for recursive exception.
312 cur->post_handler(cur, regs, 0);
315 reset_current_kprobe();
318 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
320 struct kprobe *cur = kprobe_running();
321 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
323 switch (kcb->kprobe_status) {
324 case KPROBE_HIT_SS:
325 case KPROBE_REENTER:
327 * We are here because the instruction being single
328 * stepped caused a page fault. We reset the current
329 * kprobe and the ip points back to the probe address
330 * and allow the page fault handler to continue as a
331 * normal page fault.
333 instruction_pointer_set(regs, (unsigned long) cur->addr);
334 if (!instruction_pointer(regs))
335 BUG();
337 kernel_disable_single_step();
339 if (kcb->kprobe_status == KPROBE_REENTER)
340 restore_previous_kprobe(kcb);
341 else
342 reset_current_kprobe();
344 break;
345 case KPROBE_HIT_ACTIVE:
346 case KPROBE_HIT_SSDONE:
348 * We increment the nmissed count for accounting,
349 * we can also use npre/npostfault count for accounting
350 * these specific fault cases.
352 kprobes_inc_nmissed_count(cur);
355 * We come here because instructions in the pre/post
356 * handler caused the page_fault, this could happen
357 * if handler tries to access user space by
358 * copy_from_user(), get_user() etc. Let the
359 * user-specified handler try to fix it first.
361 if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
362 return 1;
365 * In case the user-specified fault handler returned
366 * zero, try to fix up.
368 if (fixup_exception(regs))
369 return 1;
371 return 0;
374 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
375 unsigned long val, void *data)
377 return NOTIFY_DONE;
380 static void __kprobes kprobe_handler(struct pt_regs *regs)
382 struct kprobe *p, *cur_kprobe;
383 struct kprobe_ctlblk *kcb;
384 unsigned long addr = instruction_pointer(regs);
386 kcb = get_kprobe_ctlblk();
387 cur_kprobe = kprobe_running();
389 p = get_kprobe((kprobe_opcode_t *) addr);
391 if (p) {
392 if (cur_kprobe) {
393 if (reenter_kprobe(p, regs, kcb))
394 return;
395 } else {
396 /* Probe hit */
397 set_current_kprobe(p);
398 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
401 * If we have no pre-handler or it returned 0, we
402 * continue with normal processing. If we have a
403 * pre-handler and it returned non-zero, it prepped
404 * for calling the break_handler below on re-entry,
405 * so get out doing nothing more here.
407 * pre_handler can hit a breakpoint and can step thru
408 * before return, keep PSTATE D-flag enabled until
409 * pre_handler return back.
411 if (!p->pre_handler || !p->pre_handler(p, regs)) {
412 setup_singlestep(p, regs, kcb, 0);
413 return;
416 } else if ((le32_to_cpu(*(kprobe_opcode_t *) addr) ==
417 BRK64_OPCODE_KPROBES) && cur_kprobe) {
418 /* We probably hit a jprobe. Call its break handler. */
419 if (cur_kprobe->break_handler &&
420 cur_kprobe->break_handler(cur_kprobe, regs)) {
421 setup_singlestep(cur_kprobe, regs, kcb, 0);
422 return;
426 * The breakpoint instruction was removed right
427 * after we hit it. Another cpu has removed
428 * either a probepoint or a debugger breakpoint
429 * at this address. In either case, no further
430 * handling of this interrupt is appropriate.
431 * Return back to original instruction, and continue.
435 static int __kprobes
436 kprobe_ss_hit(struct kprobe_ctlblk *kcb, unsigned long addr)
438 if ((kcb->ss_ctx.ss_pending)
439 && (kcb->ss_ctx.match_addr == addr)) {
440 clear_ss_context(kcb); /* clear pending ss */
441 return DBG_HOOK_HANDLED;
443 /* not ours, kprobes should ignore it */
444 return DBG_HOOK_ERROR;
447 int __kprobes
448 kprobe_single_step_handler(struct pt_regs *regs, unsigned int esr)
450 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
451 int retval;
453 /* return error if this is not our step */
454 retval = kprobe_ss_hit(kcb, instruction_pointer(regs));
456 if (retval == DBG_HOOK_HANDLED) {
457 kprobes_restore_local_irqflag(kcb, regs);
458 kernel_disable_single_step();
460 post_kprobe_handler(kcb, regs);
463 return retval;
466 int __kprobes
467 kprobe_breakpoint_handler(struct pt_regs *regs, unsigned int esr)
469 kprobe_handler(regs);
470 return DBG_HOOK_HANDLED;
473 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
475 struct jprobe *jp = container_of(p, struct jprobe, kp);
476 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
478 kcb->jprobe_saved_regs = *regs;
480 * Since we can't be sure where in the stack frame "stacked"
481 * pass-by-value arguments are stored we just don't try to
482 * duplicate any of the stack. Do not use jprobes on functions that
483 * use more than 64 bytes (after padding each to an 8 byte boundary)
484 * of arguments, or pass individual arguments larger than 16 bytes.
487 instruction_pointer_set(regs, (unsigned long) jp->entry);
488 preempt_disable();
489 pause_graph_tracing();
490 return 1;
493 void __kprobes jprobe_return(void)
495 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
498 * Jprobe handler return by entering break exception,
499 * encoded same as kprobe, but with following conditions
500 * -a special PC to identify it from the other kprobes.
501 * -restore stack addr to original saved pt_regs
503 asm volatile(" mov sp, %0 \n"
504 "jprobe_return_break: brk %1 \n"
506 : "r" (kcb->jprobe_saved_regs.sp),
507 "I" (BRK64_ESR_KPROBES)
508 : "memory");
510 unreachable();
513 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
515 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
516 long stack_addr = kcb->jprobe_saved_regs.sp;
517 long orig_sp = kernel_stack_pointer(regs);
518 struct jprobe *jp = container_of(p, struct jprobe, kp);
519 extern const char jprobe_return_break[];
521 if (instruction_pointer(regs) != (u64) jprobe_return_break)
522 return 0;
524 if (orig_sp != stack_addr) {
525 struct pt_regs *saved_regs =
526 (struct pt_regs *)kcb->jprobe_saved_regs.sp;
527 pr_err("current sp %lx does not match saved sp %lx\n",
528 orig_sp, stack_addr);
529 pr_err("Saved registers for jprobe %p\n", jp);
530 show_regs(saved_regs);
531 pr_err("Current registers\n");
532 show_regs(regs);
533 BUG();
535 unpause_graph_tracing();
536 *regs = kcb->jprobe_saved_regs;
537 preempt_enable_no_resched();
538 return 1;
541 bool arch_within_kprobe_blacklist(unsigned long addr)
543 if ((addr >= (unsigned long)__kprobes_text_start &&
544 addr < (unsigned long)__kprobes_text_end) ||
545 (addr >= (unsigned long)__entry_text_start &&
546 addr < (unsigned long)__entry_text_end) ||
547 (addr >= (unsigned long)__idmap_text_start &&
548 addr < (unsigned long)__idmap_text_end) ||
549 !!search_exception_tables(addr))
550 return true;
552 if (!is_kernel_in_hyp_mode()) {
553 if ((addr >= (unsigned long)__hyp_text_start &&
554 addr < (unsigned long)__hyp_text_end) ||
555 (addr >= (unsigned long)__hyp_idmap_text_start &&
556 addr < (unsigned long)__hyp_idmap_text_end))
557 return true;
560 return false;
563 void __kprobes __used *trampoline_probe_handler(struct pt_regs *regs)
565 struct kretprobe_instance *ri = NULL;
566 struct hlist_head *head, empty_rp;
567 struct hlist_node *tmp;
568 unsigned long flags, orig_ret_address = 0;
569 unsigned long trampoline_address =
570 (unsigned long)&kretprobe_trampoline;
571 kprobe_opcode_t *correct_ret_addr = NULL;
573 INIT_HLIST_HEAD(&empty_rp);
574 kretprobe_hash_lock(current, &head, &flags);
577 * It is possible to have multiple instances associated with a given
578 * task either because multiple functions in the call path have
579 * return probes installed on them, and/or more than one
580 * return probe was registered for a target function.
582 * We can handle this because:
583 * - instances are always pushed into the head of the list
584 * - when multiple return probes are registered for the same
585 * function, the (chronologically) first instance's ret_addr
586 * will be the real return address, and all the rest will
587 * point to kretprobe_trampoline.
589 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
590 if (ri->task != current)
591 /* another task is sharing our hash bucket */
592 continue;
594 orig_ret_address = (unsigned long)ri->ret_addr;
596 if (orig_ret_address != trampoline_address)
598 * This is the real return address. Any other
599 * instances associated with this task are for
600 * other calls deeper on the call stack
602 break;
605 kretprobe_assert(ri, orig_ret_address, trampoline_address);
607 correct_ret_addr = ri->ret_addr;
608 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
609 if (ri->task != current)
610 /* another task is sharing our hash bucket */
611 continue;
613 orig_ret_address = (unsigned long)ri->ret_addr;
614 if (ri->rp && ri->rp->handler) {
615 __this_cpu_write(current_kprobe, &ri->rp->kp);
616 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
617 ri->ret_addr = correct_ret_addr;
618 ri->rp->handler(ri, regs);
619 __this_cpu_write(current_kprobe, NULL);
622 recycle_rp_inst(ri, &empty_rp);
624 if (orig_ret_address != trampoline_address)
626 * This is the real return address. Any other
627 * instances associated with this task are for
628 * other calls deeper on the call stack
630 break;
633 kretprobe_hash_unlock(current, &flags);
635 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
636 hlist_del(&ri->hlist);
637 kfree(ri);
639 return (void *)orig_ret_address;
642 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
643 struct pt_regs *regs)
645 ri->ret_addr = (kprobe_opcode_t *)regs->regs[30];
647 /* replace return addr (x30) with trampoline */
648 regs->regs[30] = (long)&kretprobe_trampoline;
651 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
653 return 0;
656 int __init arch_init_kprobes(void)
658 return 0;