tcp: speedup SIOCINQ ioctl
[linux-2.6/btrfs-unstable.git] / net / ipv4 / tcp.c
blobeace049da052befb0adf86c483b46fc8683e5419
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
20 * Fixes:
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
25 * (tcp_err()).
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
36 * unknown sockets.
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
39 * syn rule wrong]
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
45 * escape still
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
49 * facilities
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
54 * bit to skb ops.
55 * Alan Cox : Tidied tcp_data to avoid a potential
56 * nasty.
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
68 * sockets.
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
72 * state ack error.
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
77 * fixes
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
83 * completely
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
91 * (not yet usable)
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
104 * all cases.
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
109 * works now.
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
111 * BSD api.
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
119 * fixed ports.
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
125 * socket close.
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
130 * accept.
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
141 * close.
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
147 * comments.
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
155 * resemble the RFC.
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
160 * generates them.
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
173 * but it's a start!
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
194 * improvement.
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
213 * Description of States:
215 * TCP_SYN_SENT sent a connection request, waiting for ack
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
220 * TCP_ESTABLISHED connection established
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226 * to shutdown
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
245 * TCP_CLOSE socket is finished
248 #define pr_fmt(fmt) "TCP: " fmt
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/init.h>
256 #include <linux/fs.h>
257 #include <linux/skbuff.h>
258 #include <linux/scatterlist.h>
259 #include <linux/splice.h>
260 #include <linux/net.h>
261 #include <linux/socket.h>
262 #include <linux/random.h>
263 #include <linux/bootmem.h>
264 #include <linux/highmem.h>
265 #include <linux/swap.h>
266 #include <linux/cache.h>
267 #include <linux/err.h>
268 #include <linux/crypto.h>
269 #include <linux/time.h>
270 #include <linux/slab.h>
272 #include <net/icmp.h>
273 #include <net/inet_common.h>
274 #include <net/tcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/netdma.h>
278 #include <net/sock.h>
280 #include <asm/uaccess.h>
281 #include <asm/ioctls.h>
283 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
285 struct percpu_counter tcp_orphan_count;
286 EXPORT_SYMBOL_GPL(tcp_orphan_count);
288 int sysctl_tcp_wmem[3] __read_mostly;
289 int sysctl_tcp_rmem[3] __read_mostly;
291 EXPORT_SYMBOL(sysctl_tcp_rmem);
292 EXPORT_SYMBOL(sysctl_tcp_wmem);
294 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
295 EXPORT_SYMBOL(tcp_memory_allocated);
298 * Current number of TCP sockets.
300 struct percpu_counter tcp_sockets_allocated;
301 EXPORT_SYMBOL(tcp_sockets_allocated);
304 * TCP splice context
306 struct tcp_splice_state {
307 struct pipe_inode_info *pipe;
308 size_t len;
309 unsigned int flags;
313 * Pressure flag: try to collapse.
314 * Technical note: it is used by multiple contexts non atomically.
315 * All the __sk_mem_schedule() is of this nature: accounting
316 * is strict, actions are advisory and have some latency.
318 int tcp_memory_pressure __read_mostly;
319 EXPORT_SYMBOL(tcp_memory_pressure);
321 void tcp_enter_memory_pressure(struct sock *sk)
323 if (!tcp_memory_pressure) {
324 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
325 tcp_memory_pressure = 1;
328 EXPORT_SYMBOL(tcp_enter_memory_pressure);
330 /* Convert seconds to retransmits based on initial and max timeout */
331 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
333 u8 res = 0;
335 if (seconds > 0) {
336 int period = timeout;
338 res = 1;
339 while (seconds > period && res < 255) {
340 res++;
341 timeout <<= 1;
342 if (timeout > rto_max)
343 timeout = rto_max;
344 period += timeout;
347 return res;
350 /* Convert retransmits to seconds based on initial and max timeout */
351 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
353 int period = 0;
355 if (retrans > 0) {
356 period = timeout;
357 while (--retrans) {
358 timeout <<= 1;
359 if (timeout > rto_max)
360 timeout = rto_max;
361 period += timeout;
364 return period;
367 /* Address-family independent initialization for a tcp_sock.
369 * NOTE: A lot of things set to zero explicitly by call to
370 * sk_alloc() so need not be done here.
372 void tcp_init_sock(struct sock *sk)
374 struct inet_connection_sock *icsk = inet_csk(sk);
375 struct tcp_sock *tp = tcp_sk(sk);
377 skb_queue_head_init(&tp->out_of_order_queue);
378 tcp_init_xmit_timers(sk);
379 tcp_prequeue_init(tp);
380 INIT_LIST_HEAD(&tp->tsq_node);
382 icsk->icsk_rto = TCP_TIMEOUT_INIT;
383 tp->mdev = TCP_TIMEOUT_INIT;
385 /* So many TCP implementations out there (incorrectly) count the
386 * initial SYN frame in their delayed-ACK and congestion control
387 * algorithms that we must have the following bandaid to talk
388 * efficiently to them. -DaveM
390 tp->snd_cwnd = TCP_INIT_CWND;
392 /* See draft-stevens-tcpca-spec-01 for discussion of the
393 * initialization of these values.
395 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
396 tp->snd_cwnd_clamp = ~0;
397 tp->mss_cache = TCP_MSS_DEFAULT;
399 tp->reordering = sysctl_tcp_reordering;
400 tcp_enable_early_retrans(tp);
401 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
403 sk->sk_state = TCP_CLOSE;
405 sk->sk_write_space = sk_stream_write_space;
406 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
408 icsk->icsk_sync_mss = tcp_sync_mss;
410 /* TCP Cookie Transactions */
411 if (sysctl_tcp_cookie_size > 0) {
412 /* Default, cookies without s_data_payload. */
413 tp->cookie_values =
414 kzalloc(sizeof(*tp->cookie_values),
415 sk->sk_allocation);
416 if (tp->cookie_values != NULL)
417 kref_init(&tp->cookie_values->kref);
419 /* Presumed zeroed, in order of appearance:
420 * cookie_in_always, cookie_out_never,
421 * s_data_constant, s_data_in, s_data_out
423 sk->sk_sndbuf = sysctl_tcp_wmem[1];
424 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
426 local_bh_disable();
427 sock_update_memcg(sk);
428 sk_sockets_allocated_inc(sk);
429 local_bh_enable();
431 EXPORT_SYMBOL(tcp_init_sock);
434 * Wait for a TCP event.
436 * Note that we don't need to lock the socket, as the upper poll layers
437 * take care of normal races (between the test and the event) and we don't
438 * go look at any of the socket buffers directly.
440 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
442 unsigned int mask;
443 struct sock *sk = sock->sk;
444 const struct tcp_sock *tp = tcp_sk(sk);
446 sock_poll_wait(file, sk_sleep(sk), wait);
447 if (sk->sk_state == TCP_LISTEN)
448 return inet_csk_listen_poll(sk);
450 /* Socket is not locked. We are protected from async events
451 * by poll logic and correct handling of state changes
452 * made by other threads is impossible in any case.
455 mask = 0;
458 * POLLHUP is certainly not done right. But poll() doesn't
459 * have a notion of HUP in just one direction, and for a
460 * socket the read side is more interesting.
462 * Some poll() documentation says that POLLHUP is incompatible
463 * with the POLLOUT/POLLWR flags, so somebody should check this
464 * all. But careful, it tends to be safer to return too many
465 * bits than too few, and you can easily break real applications
466 * if you don't tell them that something has hung up!
468 * Check-me.
470 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
471 * our fs/select.c). It means that after we received EOF,
472 * poll always returns immediately, making impossible poll() on write()
473 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
474 * if and only if shutdown has been made in both directions.
475 * Actually, it is interesting to look how Solaris and DUX
476 * solve this dilemma. I would prefer, if POLLHUP were maskable,
477 * then we could set it on SND_SHUTDOWN. BTW examples given
478 * in Stevens' books assume exactly this behaviour, it explains
479 * why POLLHUP is incompatible with POLLOUT. --ANK
481 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
482 * blocking on fresh not-connected or disconnected socket. --ANK
484 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
485 mask |= POLLHUP;
486 if (sk->sk_shutdown & RCV_SHUTDOWN)
487 mask |= POLLIN | POLLRDNORM | POLLRDHUP;
489 /* Connected or passive Fast Open socket? */
490 if (sk->sk_state != TCP_SYN_SENT &&
491 (sk->sk_state != TCP_SYN_RECV || tp->fastopen_rsk != NULL)) {
492 int target = sock_rcvlowat(sk, 0, INT_MAX);
494 if (tp->urg_seq == tp->copied_seq &&
495 !sock_flag(sk, SOCK_URGINLINE) &&
496 tp->urg_data)
497 target++;
499 /* Potential race condition. If read of tp below will
500 * escape above sk->sk_state, we can be illegally awaken
501 * in SYN_* states. */
502 if (tp->rcv_nxt - tp->copied_seq >= target)
503 mask |= POLLIN | POLLRDNORM;
505 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
506 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
507 mask |= POLLOUT | POLLWRNORM;
508 } else { /* send SIGIO later */
509 set_bit(SOCK_ASYNC_NOSPACE,
510 &sk->sk_socket->flags);
511 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
513 /* Race breaker. If space is freed after
514 * wspace test but before the flags are set,
515 * IO signal will be lost.
517 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
518 mask |= POLLOUT | POLLWRNORM;
520 } else
521 mask |= POLLOUT | POLLWRNORM;
523 if (tp->urg_data & TCP_URG_VALID)
524 mask |= POLLPRI;
526 /* This barrier is coupled with smp_wmb() in tcp_reset() */
527 smp_rmb();
528 if (sk->sk_err)
529 mask |= POLLERR;
531 return mask;
533 EXPORT_SYMBOL(tcp_poll);
535 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
537 struct tcp_sock *tp = tcp_sk(sk);
538 int answ;
539 bool slow;
541 switch (cmd) {
542 case SIOCINQ:
543 if (sk->sk_state == TCP_LISTEN)
544 return -EINVAL;
546 slow = lock_sock_fast(sk);
547 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
548 answ = 0;
549 else if (sock_flag(sk, SOCK_URGINLINE) ||
550 !tp->urg_data ||
551 before(tp->urg_seq, tp->copied_seq) ||
552 !before(tp->urg_seq, tp->rcv_nxt)) {
554 answ = tp->rcv_nxt - tp->copied_seq;
556 /* Subtract 1, if FIN was received */
557 if (answ && sock_flag(sk, SOCK_DONE))
558 answ--;
559 } else
560 answ = tp->urg_seq - tp->copied_seq;
561 unlock_sock_fast(sk, slow);
562 break;
563 case SIOCATMARK:
564 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
565 break;
566 case SIOCOUTQ:
567 if (sk->sk_state == TCP_LISTEN)
568 return -EINVAL;
570 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
571 answ = 0;
572 else
573 answ = tp->write_seq - tp->snd_una;
574 break;
575 case SIOCOUTQNSD:
576 if (sk->sk_state == TCP_LISTEN)
577 return -EINVAL;
579 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
580 answ = 0;
581 else
582 answ = tp->write_seq - tp->snd_nxt;
583 break;
584 default:
585 return -ENOIOCTLCMD;
588 return put_user(answ, (int __user *)arg);
590 EXPORT_SYMBOL(tcp_ioctl);
592 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
594 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
595 tp->pushed_seq = tp->write_seq;
598 static inline bool forced_push(const struct tcp_sock *tp)
600 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
603 static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
605 struct tcp_sock *tp = tcp_sk(sk);
606 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
608 skb->csum = 0;
609 tcb->seq = tcb->end_seq = tp->write_seq;
610 tcb->tcp_flags = TCPHDR_ACK;
611 tcb->sacked = 0;
612 skb_header_release(skb);
613 tcp_add_write_queue_tail(sk, skb);
614 sk->sk_wmem_queued += skb->truesize;
615 sk_mem_charge(sk, skb->truesize);
616 if (tp->nonagle & TCP_NAGLE_PUSH)
617 tp->nonagle &= ~TCP_NAGLE_PUSH;
620 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
622 if (flags & MSG_OOB)
623 tp->snd_up = tp->write_seq;
626 static inline void tcp_push(struct sock *sk, int flags, int mss_now,
627 int nonagle)
629 if (tcp_send_head(sk)) {
630 struct tcp_sock *tp = tcp_sk(sk);
632 if (!(flags & MSG_MORE) || forced_push(tp))
633 tcp_mark_push(tp, tcp_write_queue_tail(sk));
635 tcp_mark_urg(tp, flags);
636 __tcp_push_pending_frames(sk, mss_now,
637 (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
641 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
642 unsigned int offset, size_t len)
644 struct tcp_splice_state *tss = rd_desc->arg.data;
645 int ret;
647 ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
648 tss->flags);
649 if (ret > 0)
650 rd_desc->count -= ret;
651 return ret;
654 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
656 /* Store TCP splice context information in read_descriptor_t. */
657 read_descriptor_t rd_desc = {
658 .arg.data = tss,
659 .count = tss->len,
662 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
666 * tcp_splice_read - splice data from TCP socket to a pipe
667 * @sock: socket to splice from
668 * @ppos: position (not valid)
669 * @pipe: pipe to splice to
670 * @len: number of bytes to splice
671 * @flags: splice modifier flags
673 * Description:
674 * Will read pages from given socket and fill them into a pipe.
677 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
678 struct pipe_inode_info *pipe, size_t len,
679 unsigned int flags)
681 struct sock *sk = sock->sk;
682 struct tcp_splice_state tss = {
683 .pipe = pipe,
684 .len = len,
685 .flags = flags,
687 long timeo;
688 ssize_t spliced;
689 int ret;
691 sock_rps_record_flow(sk);
693 * We can't seek on a socket input
695 if (unlikely(*ppos))
696 return -ESPIPE;
698 ret = spliced = 0;
700 lock_sock(sk);
702 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
703 while (tss.len) {
704 ret = __tcp_splice_read(sk, &tss);
705 if (ret < 0)
706 break;
707 else if (!ret) {
708 if (spliced)
709 break;
710 if (sock_flag(sk, SOCK_DONE))
711 break;
712 if (sk->sk_err) {
713 ret = sock_error(sk);
714 break;
716 if (sk->sk_shutdown & RCV_SHUTDOWN)
717 break;
718 if (sk->sk_state == TCP_CLOSE) {
720 * This occurs when user tries to read
721 * from never connected socket.
723 if (!sock_flag(sk, SOCK_DONE))
724 ret = -ENOTCONN;
725 break;
727 if (!timeo) {
728 ret = -EAGAIN;
729 break;
731 sk_wait_data(sk, &timeo);
732 if (signal_pending(current)) {
733 ret = sock_intr_errno(timeo);
734 break;
736 continue;
738 tss.len -= ret;
739 spliced += ret;
741 if (!timeo)
742 break;
743 release_sock(sk);
744 lock_sock(sk);
746 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
747 (sk->sk_shutdown & RCV_SHUTDOWN) ||
748 signal_pending(current))
749 break;
752 release_sock(sk);
754 if (spliced)
755 return spliced;
757 return ret;
759 EXPORT_SYMBOL(tcp_splice_read);
761 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
763 struct sk_buff *skb;
765 /* The TCP header must be at least 32-bit aligned. */
766 size = ALIGN(size, 4);
768 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
769 if (skb) {
770 if (sk_wmem_schedule(sk, skb->truesize)) {
771 skb_reserve(skb, sk->sk_prot->max_header);
773 * Make sure that we have exactly size bytes
774 * available to the caller, no more, no less.
776 skb->avail_size = size;
777 return skb;
779 __kfree_skb(skb);
780 } else {
781 sk->sk_prot->enter_memory_pressure(sk);
782 sk_stream_moderate_sndbuf(sk);
784 return NULL;
787 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
788 int large_allowed)
790 struct tcp_sock *tp = tcp_sk(sk);
791 u32 xmit_size_goal, old_size_goal;
793 xmit_size_goal = mss_now;
795 if (large_allowed && sk_can_gso(sk)) {
796 xmit_size_goal = ((sk->sk_gso_max_size - 1) -
797 inet_csk(sk)->icsk_af_ops->net_header_len -
798 inet_csk(sk)->icsk_ext_hdr_len -
799 tp->tcp_header_len);
801 /* TSQ : try to have two TSO segments in flight */
802 xmit_size_goal = min_t(u32, xmit_size_goal,
803 sysctl_tcp_limit_output_bytes >> 1);
805 xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
807 /* We try hard to avoid divides here */
808 old_size_goal = tp->xmit_size_goal_segs * mss_now;
810 if (likely(old_size_goal <= xmit_size_goal &&
811 old_size_goal + mss_now > xmit_size_goal)) {
812 xmit_size_goal = old_size_goal;
813 } else {
814 tp->xmit_size_goal_segs =
815 min_t(u16, xmit_size_goal / mss_now,
816 sk->sk_gso_max_segs);
817 xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
821 return max(xmit_size_goal, mss_now);
824 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
826 int mss_now;
828 mss_now = tcp_current_mss(sk);
829 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
831 return mss_now;
834 static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
835 size_t psize, int flags)
837 struct tcp_sock *tp = tcp_sk(sk);
838 int mss_now, size_goal;
839 int err;
840 ssize_t copied;
841 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
843 /* Wait for a connection to finish. One exception is TCP Fast Open
844 * (passive side) where data is allowed to be sent before a connection
845 * is fully established.
847 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
848 !tcp_passive_fastopen(sk)) {
849 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
850 goto out_err;
853 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
855 mss_now = tcp_send_mss(sk, &size_goal, flags);
856 copied = 0;
858 err = -EPIPE;
859 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
860 goto out_err;
862 while (psize > 0) {
863 struct sk_buff *skb = tcp_write_queue_tail(sk);
864 struct page *page = pages[poffset / PAGE_SIZE];
865 int copy, i;
866 int offset = poffset % PAGE_SIZE;
867 int size = min_t(size_t, psize, PAGE_SIZE - offset);
868 bool can_coalesce;
870 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
871 new_segment:
872 if (!sk_stream_memory_free(sk))
873 goto wait_for_sndbuf;
875 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
876 if (!skb)
877 goto wait_for_memory;
879 skb_entail(sk, skb);
880 copy = size_goal;
883 if (copy > size)
884 copy = size;
886 i = skb_shinfo(skb)->nr_frags;
887 can_coalesce = skb_can_coalesce(skb, i, page, offset);
888 if (!can_coalesce && i >= MAX_SKB_FRAGS) {
889 tcp_mark_push(tp, skb);
890 goto new_segment;
892 if (!sk_wmem_schedule(sk, copy))
893 goto wait_for_memory;
895 if (can_coalesce) {
896 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
897 } else {
898 get_page(page);
899 skb_fill_page_desc(skb, i, page, offset, copy);
902 skb->len += copy;
903 skb->data_len += copy;
904 skb->truesize += copy;
905 sk->sk_wmem_queued += copy;
906 sk_mem_charge(sk, copy);
907 skb->ip_summed = CHECKSUM_PARTIAL;
908 tp->write_seq += copy;
909 TCP_SKB_CB(skb)->end_seq += copy;
910 skb_shinfo(skb)->gso_segs = 0;
912 if (!copied)
913 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
915 copied += copy;
916 poffset += copy;
917 if (!(psize -= copy))
918 goto out;
920 if (skb->len < size_goal || (flags & MSG_OOB))
921 continue;
923 if (forced_push(tp)) {
924 tcp_mark_push(tp, skb);
925 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
926 } else if (skb == tcp_send_head(sk))
927 tcp_push_one(sk, mss_now);
928 continue;
930 wait_for_sndbuf:
931 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
932 wait_for_memory:
933 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
935 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
936 goto do_error;
938 mss_now = tcp_send_mss(sk, &size_goal, flags);
941 out:
942 if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
943 tcp_push(sk, flags, mss_now, tp->nonagle);
944 return copied;
946 do_error:
947 if (copied)
948 goto out;
949 out_err:
950 return sk_stream_error(sk, flags, err);
953 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
954 size_t size, int flags)
956 ssize_t res;
958 if (!(sk->sk_route_caps & NETIF_F_SG) ||
959 !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
960 return sock_no_sendpage(sk->sk_socket, page, offset, size,
961 flags);
963 lock_sock(sk);
964 res = do_tcp_sendpages(sk, &page, offset, size, flags);
965 release_sock(sk);
966 return res;
968 EXPORT_SYMBOL(tcp_sendpage);
970 static inline int select_size(const struct sock *sk, bool sg)
972 const struct tcp_sock *tp = tcp_sk(sk);
973 int tmp = tp->mss_cache;
975 if (sg) {
976 if (sk_can_gso(sk)) {
977 /* Small frames wont use a full page:
978 * Payload will immediately follow tcp header.
980 tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
981 } else {
982 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
984 if (tmp >= pgbreak &&
985 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
986 tmp = pgbreak;
990 return tmp;
993 void tcp_free_fastopen_req(struct tcp_sock *tp)
995 if (tp->fastopen_req != NULL) {
996 kfree(tp->fastopen_req);
997 tp->fastopen_req = NULL;
1001 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *size)
1003 struct tcp_sock *tp = tcp_sk(sk);
1004 int err, flags;
1006 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1007 return -EOPNOTSUPP;
1008 if (tp->fastopen_req != NULL)
1009 return -EALREADY; /* Another Fast Open is in progress */
1011 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1012 sk->sk_allocation);
1013 if (unlikely(tp->fastopen_req == NULL))
1014 return -ENOBUFS;
1015 tp->fastopen_req->data = msg;
1017 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1018 err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1019 msg->msg_namelen, flags);
1020 *size = tp->fastopen_req->copied;
1021 tcp_free_fastopen_req(tp);
1022 return err;
1025 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1026 size_t size)
1028 struct iovec *iov;
1029 struct tcp_sock *tp = tcp_sk(sk);
1030 struct sk_buff *skb;
1031 int iovlen, flags, err, copied = 0;
1032 int mss_now = 0, size_goal, copied_syn = 0, offset = 0;
1033 bool sg;
1034 long timeo;
1036 lock_sock(sk);
1038 flags = msg->msg_flags;
1039 if (flags & MSG_FASTOPEN) {
1040 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn);
1041 if (err == -EINPROGRESS && copied_syn > 0)
1042 goto out;
1043 else if (err)
1044 goto out_err;
1045 offset = copied_syn;
1048 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1050 /* Wait for a connection to finish. One exception is TCP Fast Open
1051 * (passive side) where data is allowed to be sent before a connection
1052 * is fully established.
1054 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1055 !tcp_passive_fastopen(sk)) {
1056 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
1057 goto do_error;
1060 if (unlikely(tp->repair)) {
1061 if (tp->repair_queue == TCP_RECV_QUEUE) {
1062 copied = tcp_send_rcvq(sk, msg, size);
1063 goto out;
1066 err = -EINVAL;
1067 if (tp->repair_queue == TCP_NO_QUEUE)
1068 goto out_err;
1070 /* 'common' sending to sendq */
1073 /* This should be in poll */
1074 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1076 mss_now = tcp_send_mss(sk, &size_goal, flags);
1078 /* Ok commence sending. */
1079 iovlen = msg->msg_iovlen;
1080 iov = msg->msg_iov;
1081 copied = 0;
1083 err = -EPIPE;
1084 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1085 goto out_err;
1087 sg = !!(sk->sk_route_caps & NETIF_F_SG);
1089 while (--iovlen >= 0) {
1090 size_t seglen = iov->iov_len;
1091 unsigned char __user *from = iov->iov_base;
1093 iov++;
1094 if (unlikely(offset > 0)) { /* Skip bytes copied in SYN */
1095 if (offset >= seglen) {
1096 offset -= seglen;
1097 continue;
1099 seglen -= offset;
1100 from += offset;
1101 offset = 0;
1104 while (seglen > 0) {
1105 int copy = 0;
1106 int max = size_goal;
1108 skb = tcp_write_queue_tail(sk);
1109 if (tcp_send_head(sk)) {
1110 if (skb->ip_summed == CHECKSUM_NONE)
1111 max = mss_now;
1112 copy = max - skb->len;
1115 if (copy <= 0) {
1116 new_segment:
1117 /* Allocate new segment. If the interface is SG,
1118 * allocate skb fitting to single page.
1120 if (!sk_stream_memory_free(sk))
1121 goto wait_for_sndbuf;
1123 skb = sk_stream_alloc_skb(sk,
1124 select_size(sk, sg),
1125 sk->sk_allocation);
1126 if (!skb)
1127 goto wait_for_memory;
1130 * Check whether we can use HW checksum.
1132 if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
1133 skb->ip_summed = CHECKSUM_PARTIAL;
1135 skb_entail(sk, skb);
1136 copy = size_goal;
1137 max = size_goal;
1140 /* Try to append data to the end of skb. */
1141 if (copy > seglen)
1142 copy = seglen;
1144 /* Where to copy to? */
1145 if (skb_availroom(skb) > 0) {
1146 /* We have some space in skb head. Superb! */
1147 copy = min_t(int, copy, skb_availroom(skb));
1148 err = skb_add_data_nocache(sk, skb, from, copy);
1149 if (err)
1150 goto do_fault;
1151 } else {
1152 bool merge = true;
1153 int i = skb_shinfo(skb)->nr_frags;
1154 struct page_frag *pfrag = sk_page_frag(sk);
1156 if (!sk_page_frag_refill(sk, pfrag))
1157 goto wait_for_memory;
1159 if (!skb_can_coalesce(skb, i, pfrag->page,
1160 pfrag->offset)) {
1161 if (i == MAX_SKB_FRAGS || !sg) {
1162 tcp_mark_push(tp, skb);
1163 goto new_segment;
1165 merge = false;
1168 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1170 if (!sk_wmem_schedule(sk, copy))
1171 goto wait_for_memory;
1173 err = skb_copy_to_page_nocache(sk, from, skb,
1174 pfrag->page,
1175 pfrag->offset,
1176 copy);
1177 if (err)
1178 goto do_error;
1180 /* Update the skb. */
1181 if (merge) {
1182 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1183 } else {
1184 skb_fill_page_desc(skb, i, pfrag->page,
1185 pfrag->offset, copy);
1186 get_page(pfrag->page);
1188 pfrag->offset += copy;
1191 if (!copied)
1192 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1194 tp->write_seq += copy;
1195 TCP_SKB_CB(skb)->end_seq += copy;
1196 skb_shinfo(skb)->gso_segs = 0;
1198 from += copy;
1199 copied += copy;
1200 if ((seglen -= copy) == 0 && iovlen == 0)
1201 goto out;
1203 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1204 continue;
1206 if (forced_push(tp)) {
1207 tcp_mark_push(tp, skb);
1208 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1209 } else if (skb == tcp_send_head(sk))
1210 tcp_push_one(sk, mss_now);
1211 continue;
1213 wait_for_sndbuf:
1214 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1215 wait_for_memory:
1216 if (copied && likely(!tp->repair))
1217 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1219 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1220 goto do_error;
1222 mss_now = tcp_send_mss(sk, &size_goal, flags);
1226 out:
1227 if (copied && likely(!tp->repair))
1228 tcp_push(sk, flags, mss_now, tp->nonagle);
1229 release_sock(sk);
1230 return copied + copied_syn;
1232 do_fault:
1233 if (!skb->len) {
1234 tcp_unlink_write_queue(skb, sk);
1235 /* It is the one place in all of TCP, except connection
1236 * reset, where we can be unlinking the send_head.
1238 tcp_check_send_head(sk, skb);
1239 sk_wmem_free_skb(sk, skb);
1242 do_error:
1243 if (copied + copied_syn)
1244 goto out;
1245 out_err:
1246 err = sk_stream_error(sk, flags, err);
1247 release_sock(sk);
1248 return err;
1250 EXPORT_SYMBOL(tcp_sendmsg);
1253 * Handle reading urgent data. BSD has very simple semantics for
1254 * this, no blocking and very strange errors 8)
1257 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1259 struct tcp_sock *tp = tcp_sk(sk);
1261 /* No URG data to read. */
1262 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1263 tp->urg_data == TCP_URG_READ)
1264 return -EINVAL; /* Yes this is right ! */
1266 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1267 return -ENOTCONN;
1269 if (tp->urg_data & TCP_URG_VALID) {
1270 int err = 0;
1271 char c = tp->urg_data;
1273 if (!(flags & MSG_PEEK))
1274 tp->urg_data = TCP_URG_READ;
1276 /* Read urgent data. */
1277 msg->msg_flags |= MSG_OOB;
1279 if (len > 0) {
1280 if (!(flags & MSG_TRUNC))
1281 err = memcpy_toiovec(msg->msg_iov, &c, 1);
1282 len = 1;
1283 } else
1284 msg->msg_flags |= MSG_TRUNC;
1286 return err ? -EFAULT : len;
1289 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1290 return 0;
1292 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1293 * the available implementations agree in this case:
1294 * this call should never block, independent of the
1295 * blocking state of the socket.
1296 * Mike <pall@rz.uni-karlsruhe.de>
1298 return -EAGAIN;
1301 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1303 struct sk_buff *skb;
1304 int copied = 0, err = 0;
1306 /* XXX -- need to support SO_PEEK_OFF */
1308 skb_queue_walk(&sk->sk_write_queue, skb) {
1309 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, skb->len);
1310 if (err)
1311 break;
1313 copied += skb->len;
1316 return err ?: copied;
1319 /* Clean up the receive buffer for full frames taken by the user,
1320 * then send an ACK if necessary. COPIED is the number of bytes
1321 * tcp_recvmsg has given to the user so far, it speeds up the
1322 * calculation of whether or not we must ACK for the sake of
1323 * a window update.
1325 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1327 struct tcp_sock *tp = tcp_sk(sk);
1328 bool time_to_ack = false;
1330 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1332 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1333 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1334 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1336 if (inet_csk_ack_scheduled(sk)) {
1337 const struct inet_connection_sock *icsk = inet_csk(sk);
1338 /* Delayed ACKs frequently hit locked sockets during bulk
1339 * receive. */
1340 if (icsk->icsk_ack.blocked ||
1341 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1342 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1344 * If this read emptied read buffer, we send ACK, if
1345 * connection is not bidirectional, user drained
1346 * receive buffer and there was a small segment
1347 * in queue.
1349 (copied > 0 &&
1350 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1351 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1352 !icsk->icsk_ack.pingpong)) &&
1353 !atomic_read(&sk->sk_rmem_alloc)))
1354 time_to_ack = true;
1357 /* We send an ACK if we can now advertise a non-zero window
1358 * which has been raised "significantly".
1360 * Even if window raised up to infinity, do not send window open ACK
1361 * in states, where we will not receive more. It is useless.
1363 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1364 __u32 rcv_window_now = tcp_receive_window(tp);
1366 /* Optimize, __tcp_select_window() is not cheap. */
1367 if (2*rcv_window_now <= tp->window_clamp) {
1368 __u32 new_window = __tcp_select_window(sk);
1370 /* Send ACK now, if this read freed lots of space
1371 * in our buffer. Certainly, new_window is new window.
1372 * We can advertise it now, if it is not less than current one.
1373 * "Lots" means "at least twice" here.
1375 if (new_window && new_window >= 2 * rcv_window_now)
1376 time_to_ack = true;
1379 if (time_to_ack)
1380 tcp_send_ack(sk);
1383 static void tcp_prequeue_process(struct sock *sk)
1385 struct sk_buff *skb;
1386 struct tcp_sock *tp = tcp_sk(sk);
1388 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1390 /* RX process wants to run with disabled BHs, though it is not
1391 * necessary */
1392 local_bh_disable();
1393 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1394 sk_backlog_rcv(sk, skb);
1395 local_bh_enable();
1397 /* Clear memory counter. */
1398 tp->ucopy.memory = 0;
1401 #ifdef CONFIG_NET_DMA
1402 static void tcp_service_net_dma(struct sock *sk, bool wait)
1404 dma_cookie_t done, used;
1405 dma_cookie_t last_issued;
1406 struct tcp_sock *tp = tcp_sk(sk);
1408 if (!tp->ucopy.dma_chan)
1409 return;
1411 last_issued = tp->ucopy.dma_cookie;
1412 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1414 do {
1415 if (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1416 last_issued, &done,
1417 &used) == DMA_SUCCESS) {
1418 /* Safe to free early-copied skbs now */
1419 __skb_queue_purge(&sk->sk_async_wait_queue);
1420 break;
1421 } else {
1422 struct sk_buff *skb;
1423 while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1424 (dma_async_is_complete(skb->dma_cookie, done,
1425 used) == DMA_SUCCESS)) {
1426 __skb_dequeue(&sk->sk_async_wait_queue);
1427 kfree_skb(skb);
1430 } while (wait);
1432 #endif
1434 static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1436 struct sk_buff *skb;
1437 u32 offset;
1439 skb_queue_walk(&sk->sk_receive_queue, skb) {
1440 offset = seq - TCP_SKB_CB(skb)->seq;
1441 if (tcp_hdr(skb)->syn)
1442 offset--;
1443 if (offset < skb->len || tcp_hdr(skb)->fin) {
1444 *off = offset;
1445 return skb;
1448 return NULL;
1452 * This routine provides an alternative to tcp_recvmsg() for routines
1453 * that would like to handle copying from skbuffs directly in 'sendfile'
1454 * fashion.
1455 * Note:
1456 * - It is assumed that the socket was locked by the caller.
1457 * - The routine does not block.
1458 * - At present, there is no support for reading OOB data
1459 * or for 'peeking' the socket using this routine
1460 * (although both would be easy to implement).
1462 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1463 sk_read_actor_t recv_actor)
1465 struct sk_buff *skb;
1466 struct tcp_sock *tp = tcp_sk(sk);
1467 u32 seq = tp->copied_seq;
1468 u32 offset;
1469 int copied = 0;
1471 if (sk->sk_state == TCP_LISTEN)
1472 return -ENOTCONN;
1473 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1474 if (offset < skb->len) {
1475 int used;
1476 size_t len;
1478 len = skb->len - offset;
1479 /* Stop reading if we hit a patch of urgent data */
1480 if (tp->urg_data) {
1481 u32 urg_offset = tp->urg_seq - seq;
1482 if (urg_offset < len)
1483 len = urg_offset;
1484 if (!len)
1485 break;
1487 used = recv_actor(desc, skb, offset, len);
1488 if (used < 0) {
1489 if (!copied)
1490 copied = used;
1491 break;
1492 } else if (used <= len) {
1493 seq += used;
1494 copied += used;
1495 offset += used;
1498 * If recv_actor drops the lock (e.g. TCP splice
1499 * receive) the skb pointer might be invalid when
1500 * getting here: tcp_collapse might have deleted it
1501 * while aggregating skbs from the socket queue.
1503 skb = tcp_recv_skb(sk, seq-1, &offset);
1504 if (!skb || (offset+1 != skb->len))
1505 break;
1507 if (tcp_hdr(skb)->fin) {
1508 sk_eat_skb(sk, skb, false);
1509 ++seq;
1510 break;
1512 sk_eat_skb(sk, skb, false);
1513 if (!desc->count)
1514 break;
1515 tp->copied_seq = seq;
1517 tp->copied_seq = seq;
1519 tcp_rcv_space_adjust(sk);
1521 /* Clean up data we have read: This will do ACK frames. */
1522 if (copied > 0)
1523 tcp_cleanup_rbuf(sk, copied);
1524 return copied;
1526 EXPORT_SYMBOL(tcp_read_sock);
1529 * This routine copies from a sock struct into the user buffer.
1531 * Technical note: in 2.3 we work on _locked_ socket, so that
1532 * tricks with *seq access order and skb->users are not required.
1533 * Probably, code can be easily improved even more.
1536 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1537 size_t len, int nonblock, int flags, int *addr_len)
1539 struct tcp_sock *tp = tcp_sk(sk);
1540 int copied = 0;
1541 u32 peek_seq;
1542 u32 *seq;
1543 unsigned long used;
1544 int err;
1545 int target; /* Read at least this many bytes */
1546 long timeo;
1547 struct task_struct *user_recv = NULL;
1548 bool copied_early = false;
1549 struct sk_buff *skb;
1550 u32 urg_hole = 0;
1552 lock_sock(sk);
1554 err = -ENOTCONN;
1555 if (sk->sk_state == TCP_LISTEN)
1556 goto out;
1558 timeo = sock_rcvtimeo(sk, nonblock);
1560 /* Urgent data needs to be handled specially. */
1561 if (flags & MSG_OOB)
1562 goto recv_urg;
1564 if (unlikely(tp->repair)) {
1565 err = -EPERM;
1566 if (!(flags & MSG_PEEK))
1567 goto out;
1569 if (tp->repair_queue == TCP_SEND_QUEUE)
1570 goto recv_sndq;
1572 err = -EINVAL;
1573 if (tp->repair_queue == TCP_NO_QUEUE)
1574 goto out;
1576 /* 'common' recv queue MSG_PEEK-ing */
1579 seq = &tp->copied_seq;
1580 if (flags & MSG_PEEK) {
1581 peek_seq = tp->copied_seq;
1582 seq = &peek_seq;
1585 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1587 #ifdef CONFIG_NET_DMA
1588 tp->ucopy.dma_chan = NULL;
1589 preempt_disable();
1590 skb = skb_peek_tail(&sk->sk_receive_queue);
1592 int available = 0;
1594 if (skb)
1595 available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1596 if ((available < target) &&
1597 (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1598 !sysctl_tcp_low_latency &&
1599 net_dma_find_channel()) {
1600 preempt_enable_no_resched();
1601 tp->ucopy.pinned_list =
1602 dma_pin_iovec_pages(msg->msg_iov, len);
1603 } else {
1604 preempt_enable_no_resched();
1607 #endif
1609 do {
1610 u32 offset;
1612 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1613 if (tp->urg_data && tp->urg_seq == *seq) {
1614 if (copied)
1615 break;
1616 if (signal_pending(current)) {
1617 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1618 break;
1622 /* Next get a buffer. */
1624 skb_queue_walk(&sk->sk_receive_queue, skb) {
1625 /* Now that we have two receive queues this
1626 * shouldn't happen.
1628 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1629 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1630 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1631 flags))
1632 break;
1634 offset = *seq - TCP_SKB_CB(skb)->seq;
1635 if (tcp_hdr(skb)->syn)
1636 offset--;
1637 if (offset < skb->len)
1638 goto found_ok_skb;
1639 if (tcp_hdr(skb)->fin)
1640 goto found_fin_ok;
1641 WARN(!(flags & MSG_PEEK),
1642 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1643 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1646 /* Well, if we have backlog, try to process it now yet. */
1648 if (copied >= target && !sk->sk_backlog.tail)
1649 break;
1651 if (copied) {
1652 if (sk->sk_err ||
1653 sk->sk_state == TCP_CLOSE ||
1654 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1655 !timeo ||
1656 signal_pending(current))
1657 break;
1658 } else {
1659 if (sock_flag(sk, SOCK_DONE))
1660 break;
1662 if (sk->sk_err) {
1663 copied = sock_error(sk);
1664 break;
1667 if (sk->sk_shutdown & RCV_SHUTDOWN)
1668 break;
1670 if (sk->sk_state == TCP_CLOSE) {
1671 if (!sock_flag(sk, SOCK_DONE)) {
1672 /* This occurs when user tries to read
1673 * from never connected socket.
1675 copied = -ENOTCONN;
1676 break;
1678 break;
1681 if (!timeo) {
1682 copied = -EAGAIN;
1683 break;
1686 if (signal_pending(current)) {
1687 copied = sock_intr_errno(timeo);
1688 break;
1692 tcp_cleanup_rbuf(sk, copied);
1694 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1695 /* Install new reader */
1696 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1697 user_recv = current;
1698 tp->ucopy.task = user_recv;
1699 tp->ucopy.iov = msg->msg_iov;
1702 tp->ucopy.len = len;
1704 WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1705 !(flags & (MSG_PEEK | MSG_TRUNC)));
1707 /* Ugly... If prequeue is not empty, we have to
1708 * process it before releasing socket, otherwise
1709 * order will be broken at second iteration.
1710 * More elegant solution is required!!!
1712 * Look: we have the following (pseudo)queues:
1714 * 1. packets in flight
1715 * 2. backlog
1716 * 3. prequeue
1717 * 4. receive_queue
1719 * Each queue can be processed only if the next ones
1720 * are empty. At this point we have empty receive_queue.
1721 * But prequeue _can_ be not empty after 2nd iteration,
1722 * when we jumped to start of loop because backlog
1723 * processing added something to receive_queue.
1724 * We cannot release_sock(), because backlog contains
1725 * packets arrived _after_ prequeued ones.
1727 * Shortly, algorithm is clear --- to process all
1728 * the queues in order. We could make it more directly,
1729 * requeueing packets from backlog to prequeue, if
1730 * is not empty. It is more elegant, but eats cycles,
1731 * unfortunately.
1733 if (!skb_queue_empty(&tp->ucopy.prequeue))
1734 goto do_prequeue;
1736 /* __ Set realtime policy in scheduler __ */
1739 #ifdef CONFIG_NET_DMA
1740 if (tp->ucopy.dma_chan) {
1741 if (tp->rcv_wnd == 0 &&
1742 !skb_queue_empty(&sk->sk_async_wait_queue)) {
1743 tcp_service_net_dma(sk, true);
1744 tcp_cleanup_rbuf(sk, copied);
1745 } else
1746 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1748 #endif
1749 if (copied >= target) {
1750 /* Do not sleep, just process backlog. */
1751 release_sock(sk);
1752 lock_sock(sk);
1753 } else
1754 sk_wait_data(sk, &timeo);
1756 #ifdef CONFIG_NET_DMA
1757 tcp_service_net_dma(sk, false); /* Don't block */
1758 tp->ucopy.wakeup = 0;
1759 #endif
1761 if (user_recv) {
1762 int chunk;
1764 /* __ Restore normal policy in scheduler __ */
1766 if ((chunk = len - tp->ucopy.len) != 0) {
1767 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1768 len -= chunk;
1769 copied += chunk;
1772 if (tp->rcv_nxt == tp->copied_seq &&
1773 !skb_queue_empty(&tp->ucopy.prequeue)) {
1774 do_prequeue:
1775 tcp_prequeue_process(sk);
1777 if ((chunk = len - tp->ucopy.len) != 0) {
1778 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1779 len -= chunk;
1780 copied += chunk;
1784 if ((flags & MSG_PEEK) &&
1785 (peek_seq - copied - urg_hole != tp->copied_seq)) {
1786 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1787 current->comm,
1788 task_pid_nr(current));
1789 peek_seq = tp->copied_seq;
1791 continue;
1793 found_ok_skb:
1794 /* Ok so how much can we use? */
1795 used = skb->len - offset;
1796 if (len < used)
1797 used = len;
1799 /* Do we have urgent data here? */
1800 if (tp->urg_data) {
1801 u32 urg_offset = tp->urg_seq - *seq;
1802 if (urg_offset < used) {
1803 if (!urg_offset) {
1804 if (!sock_flag(sk, SOCK_URGINLINE)) {
1805 ++*seq;
1806 urg_hole++;
1807 offset++;
1808 used--;
1809 if (!used)
1810 goto skip_copy;
1812 } else
1813 used = urg_offset;
1817 if (!(flags & MSG_TRUNC)) {
1818 #ifdef CONFIG_NET_DMA
1819 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1820 tp->ucopy.dma_chan = net_dma_find_channel();
1822 if (tp->ucopy.dma_chan) {
1823 tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1824 tp->ucopy.dma_chan, skb, offset,
1825 msg->msg_iov, used,
1826 tp->ucopy.pinned_list);
1828 if (tp->ucopy.dma_cookie < 0) {
1830 pr_alert("%s: dma_cookie < 0\n",
1831 __func__);
1833 /* Exception. Bailout! */
1834 if (!copied)
1835 copied = -EFAULT;
1836 break;
1839 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1841 if ((offset + used) == skb->len)
1842 copied_early = true;
1844 } else
1845 #endif
1847 err = skb_copy_datagram_iovec(skb, offset,
1848 msg->msg_iov, used);
1849 if (err) {
1850 /* Exception. Bailout! */
1851 if (!copied)
1852 copied = -EFAULT;
1853 break;
1858 *seq += used;
1859 copied += used;
1860 len -= used;
1862 tcp_rcv_space_adjust(sk);
1864 skip_copy:
1865 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1866 tp->urg_data = 0;
1867 tcp_fast_path_check(sk);
1869 if (used + offset < skb->len)
1870 continue;
1872 if (tcp_hdr(skb)->fin)
1873 goto found_fin_ok;
1874 if (!(flags & MSG_PEEK)) {
1875 sk_eat_skb(sk, skb, copied_early);
1876 copied_early = false;
1878 continue;
1880 found_fin_ok:
1881 /* Process the FIN. */
1882 ++*seq;
1883 if (!(flags & MSG_PEEK)) {
1884 sk_eat_skb(sk, skb, copied_early);
1885 copied_early = false;
1887 break;
1888 } while (len > 0);
1890 if (user_recv) {
1891 if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1892 int chunk;
1894 tp->ucopy.len = copied > 0 ? len : 0;
1896 tcp_prequeue_process(sk);
1898 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1899 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1900 len -= chunk;
1901 copied += chunk;
1905 tp->ucopy.task = NULL;
1906 tp->ucopy.len = 0;
1909 #ifdef CONFIG_NET_DMA
1910 tcp_service_net_dma(sk, true); /* Wait for queue to drain */
1911 tp->ucopy.dma_chan = NULL;
1913 if (tp->ucopy.pinned_list) {
1914 dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1915 tp->ucopy.pinned_list = NULL;
1917 #endif
1919 /* According to UNIX98, msg_name/msg_namelen are ignored
1920 * on connected socket. I was just happy when found this 8) --ANK
1923 /* Clean up data we have read: This will do ACK frames. */
1924 tcp_cleanup_rbuf(sk, copied);
1926 release_sock(sk);
1927 return copied;
1929 out:
1930 release_sock(sk);
1931 return err;
1933 recv_urg:
1934 err = tcp_recv_urg(sk, msg, len, flags);
1935 goto out;
1937 recv_sndq:
1938 err = tcp_peek_sndq(sk, msg, len);
1939 goto out;
1941 EXPORT_SYMBOL(tcp_recvmsg);
1943 void tcp_set_state(struct sock *sk, int state)
1945 int oldstate = sk->sk_state;
1947 switch (state) {
1948 case TCP_ESTABLISHED:
1949 if (oldstate != TCP_ESTABLISHED)
1950 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1951 break;
1953 case TCP_CLOSE:
1954 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1955 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1957 sk->sk_prot->unhash(sk);
1958 if (inet_csk(sk)->icsk_bind_hash &&
1959 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1960 inet_put_port(sk);
1961 /* fall through */
1962 default:
1963 if (oldstate == TCP_ESTABLISHED)
1964 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1967 /* Change state AFTER socket is unhashed to avoid closed
1968 * socket sitting in hash tables.
1970 sk->sk_state = state;
1972 #ifdef STATE_TRACE
1973 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1974 #endif
1976 EXPORT_SYMBOL_GPL(tcp_set_state);
1979 * State processing on a close. This implements the state shift for
1980 * sending our FIN frame. Note that we only send a FIN for some
1981 * states. A shutdown() may have already sent the FIN, or we may be
1982 * closed.
1985 static const unsigned char new_state[16] = {
1986 /* current state: new state: action: */
1987 /* (Invalid) */ TCP_CLOSE,
1988 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1989 /* TCP_SYN_SENT */ TCP_CLOSE,
1990 /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1991 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1,
1992 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2,
1993 /* TCP_TIME_WAIT */ TCP_CLOSE,
1994 /* TCP_CLOSE */ TCP_CLOSE,
1995 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN,
1996 /* TCP_LAST_ACK */ TCP_LAST_ACK,
1997 /* TCP_LISTEN */ TCP_CLOSE,
1998 /* TCP_CLOSING */ TCP_CLOSING,
2001 static int tcp_close_state(struct sock *sk)
2003 int next = (int)new_state[sk->sk_state];
2004 int ns = next & TCP_STATE_MASK;
2006 tcp_set_state(sk, ns);
2008 return next & TCP_ACTION_FIN;
2012 * Shutdown the sending side of a connection. Much like close except
2013 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2016 void tcp_shutdown(struct sock *sk, int how)
2018 /* We need to grab some memory, and put together a FIN,
2019 * and then put it into the queue to be sent.
2020 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2022 if (!(how & SEND_SHUTDOWN))
2023 return;
2025 /* If we've already sent a FIN, or it's a closed state, skip this. */
2026 if ((1 << sk->sk_state) &
2027 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2028 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2029 /* Clear out any half completed packets. FIN if needed. */
2030 if (tcp_close_state(sk))
2031 tcp_send_fin(sk);
2034 EXPORT_SYMBOL(tcp_shutdown);
2036 bool tcp_check_oom(struct sock *sk, int shift)
2038 bool too_many_orphans, out_of_socket_memory;
2040 too_many_orphans = tcp_too_many_orphans(sk, shift);
2041 out_of_socket_memory = tcp_out_of_memory(sk);
2043 if (too_many_orphans)
2044 net_info_ratelimited("too many orphaned sockets\n");
2045 if (out_of_socket_memory)
2046 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2047 return too_many_orphans || out_of_socket_memory;
2050 void tcp_close(struct sock *sk, long timeout)
2052 struct sk_buff *skb;
2053 int data_was_unread = 0;
2054 int state;
2056 lock_sock(sk);
2057 sk->sk_shutdown = SHUTDOWN_MASK;
2059 if (sk->sk_state == TCP_LISTEN) {
2060 tcp_set_state(sk, TCP_CLOSE);
2062 /* Special case. */
2063 inet_csk_listen_stop(sk);
2065 goto adjudge_to_death;
2068 /* We need to flush the recv. buffs. We do this only on the
2069 * descriptor close, not protocol-sourced closes, because the
2070 * reader process may not have drained the data yet!
2072 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2073 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
2074 tcp_hdr(skb)->fin;
2075 data_was_unread += len;
2076 __kfree_skb(skb);
2079 sk_mem_reclaim(sk);
2081 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2082 if (sk->sk_state == TCP_CLOSE)
2083 goto adjudge_to_death;
2085 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2086 * data was lost. To witness the awful effects of the old behavior of
2087 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2088 * GET in an FTP client, suspend the process, wait for the client to
2089 * advertise a zero window, then kill -9 the FTP client, wheee...
2090 * Note: timeout is always zero in such a case.
2092 if (unlikely(tcp_sk(sk)->repair)) {
2093 sk->sk_prot->disconnect(sk, 0);
2094 } else if (data_was_unread) {
2095 /* Unread data was tossed, zap the connection. */
2096 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2097 tcp_set_state(sk, TCP_CLOSE);
2098 tcp_send_active_reset(sk, sk->sk_allocation);
2099 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2100 /* Check zero linger _after_ checking for unread data. */
2101 sk->sk_prot->disconnect(sk, 0);
2102 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2103 } else if (tcp_close_state(sk)) {
2104 /* We FIN if the application ate all the data before
2105 * zapping the connection.
2108 /* RED-PEN. Formally speaking, we have broken TCP state
2109 * machine. State transitions:
2111 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2112 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2113 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2115 * are legal only when FIN has been sent (i.e. in window),
2116 * rather than queued out of window. Purists blame.
2118 * F.e. "RFC state" is ESTABLISHED,
2119 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2121 * The visible declinations are that sometimes
2122 * we enter time-wait state, when it is not required really
2123 * (harmless), do not send active resets, when they are
2124 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2125 * they look as CLOSING or LAST_ACK for Linux)
2126 * Probably, I missed some more holelets.
2127 * --ANK
2128 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2129 * in a single packet! (May consider it later but will
2130 * probably need API support or TCP_CORK SYN-ACK until
2131 * data is written and socket is closed.)
2133 tcp_send_fin(sk);
2136 sk_stream_wait_close(sk, timeout);
2138 adjudge_to_death:
2139 state = sk->sk_state;
2140 sock_hold(sk);
2141 sock_orphan(sk);
2143 /* It is the last release_sock in its life. It will remove backlog. */
2144 release_sock(sk);
2147 /* Now socket is owned by kernel and we acquire BH lock
2148 to finish close. No need to check for user refs.
2150 local_bh_disable();
2151 bh_lock_sock(sk);
2152 WARN_ON(sock_owned_by_user(sk));
2154 percpu_counter_inc(sk->sk_prot->orphan_count);
2156 /* Have we already been destroyed by a softirq or backlog? */
2157 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2158 goto out;
2160 /* This is a (useful) BSD violating of the RFC. There is a
2161 * problem with TCP as specified in that the other end could
2162 * keep a socket open forever with no application left this end.
2163 * We use a 3 minute timeout (about the same as BSD) then kill
2164 * our end. If they send after that then tough - BUT: long enough
2165 * that we won't make the old 4*rto = almost no time - whoops
2166 * reset mistake.
2168 * Nope, it was not mistake. It is really desired behaviour
2169 * f.e. on http servers, when such sockets are useless, but
2170 * consume significant resources. Let's do it with special
2171 * linger2 option. --ANK
2174 if (sk->sk_state == TCP_FIN_WAIT2) {
2175 struct tcp_sock *tp = tcp_sk(sk);
2176 if (tp->linger2 < 0) {
2177 tcp_set_state(sk, TCP_CLOSE);
2178 tcp_send_active_reset(sk, GFP_ATOMIC);
2179 NET_INC_STATS_BH(sock_net(sk),
2180 LINUX_MIB_TCPABORTONLINGER);
2181 } else {
2182 const int tmo = tcp_fin_time(sk);
2184 if (tmo > TCP_TIMEWAIT_LEN) {
2185 inet_csk_reset_keepalive_timer(sk,
2186 tmo - TCP_TIMEWAIT_LEN);
2187 } else {
2188 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2189 goto out;
2193 if (sk->sk_state != TCP_CLOSE) {
2194 sk_mem_reclaim(sk);
2195 if (tcp_check_oom(sk, 0)) {
2196 tcp_set_state(sk, TCP_CLOSE);
2197 tcp_send_active_reset(sk, GFP_ATOMIC);
2198 NET_INC_STATS_BH(sock_net(sk),
2199 LINUX_MIB_TCPABORTONMEMORY);
2203 if (sk->sk_state == TCP_CLOSE) {
2204 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2205 /* We could get here with a non-NULL req if the socket is
2206 * aborted (e.g., closed with unread data) before 3WHS
2207 * finishes.
2209 if (req != NULL)
2210 reqsk_fastopen_remove(sk, req, false);
2211 inet_csk_destroy_sock(sk);
2213 /* Otherwise, socket is reprieved until protocol close. */
2215 out:
2216 bh_unlock_sock(sk);
2217 local_bh_enable();
2218 sock_put(sk);
2220 EXPORT_SYMBOL(tcp_close);
2222 /* These states need RST on ABORT according to RFC793 */
2224 static inline bool tcp_need_reset(int state)
2226 return (1 << state) &
2227 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2228 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2231 int tcp_disconnect(struct sock *sk, int flags)
2233 struct inet_sock *inet = inet_sk(sk);
2234 struct inet_connection_sock *icsk = inet_csk(sk);
2235 struct tcp_sock *tp = tcp_sk(sk);
2236 int err = 0;
2237 int old_state = sk->sk_state;
2239 if (old_state != TCP_CLOSE)
2240 tcp_set_state(sk, TCP_CLOSE);
2242 /* ABORT function of RFC793 */
2243 if (old_state == TCP_LISTEN) {
2244 inet_csk_listen_stop(sk);
2245 } else if (unlikely(tp->repair)) {
2246 sk->sk_err = ECONNABORTED;
2247 } else if (tcp_need_reset(old_state) ||
2248 (tp->snd_nxt != tp->write_seq &&
2249 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2250 /* The last check adjusts for discrepancy of Linux wrt. RFC
2251 * states
2253 tcp_send_active_reset(sk, gfp_any());
2254 sk->sk_err = ECONNRESET;
2255 } else if (old_state == TCP_SYN_SENT)
2256 sk->sk_err = ECONNRESET;
2258 tcp_clear_xmit_timers(sk);
2259 __skb_queue_purge(&sk->sk_receive_queue);
2260 tcp_write_queue_purge(sk);
2261 __skb_queue_purge(&tp->out_of_order_queue);
2262 #ifdef CONFIG_NET_DMA
2263 __skb_queue_purge(&sk->sk_async_wait_queue);
2264 #endif
2266 inet->inet_dport = 0;
2268 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2269 inet_reset_saddr(sk);
2271 sk->sk_shutdown = 0;
2272 sock_reset_flag(sk, SOCK_DONE);
2273 tp->srtt = 0;
2274 if ((tp->write_seq += tp->max_window + 2) == 0)
2275 tp->write_seq = 1;
2276 icsk->icsk_backoff = 0;
2277 tp->snd_cwnd = 2;
2278 icsk->icsk_probes_out = 0;
2279 tp->packets_out = 0;
2280 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2281 tp->snd_cwnd_cnt = 0;
2282 tp->bytes_acked = 0;
2283 tp->window_clamp = 0;
2284 tcp_set_ca_state(sk, TCP_CA_Open);
2285 tcp_clear_retrans(tp);
2286 inet_csk_delack_init(sk);
2287 tcp_init_send_head(sk);
2288 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2289 __sk_dst_reset(sk);
2291 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2293 sk->sk_error_report(sk);
2294 return err;
2296 EXPORT_SYMBOL(tcp_disconnect);
2298 void tcp_sock_destruct(struct sock *sk)
2300 inet_sock_destruct(sk);
2302 kfree(inet_csk(sk)->icsk_accept_queue.fastopenq);
2305 static inline bool tcp_can_repair_sock(const struct sock *sk)
2307 return capable(CAP_NET_ADMIN) &&
2308 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2311 static int tcp_repair_options_est(struct tcp_sock *tp,
2312 struct tcp_repair_opt __user *optbuf, unsigned int len)
2314 struct tcp_repair_opt opt;
2316 while (len >= sizeof(opt)) {
2317 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2318 return -EFAULT;
2320 optbuf++;
2321 len -= sizeof(opt);
2323 switch (opt.opt_code) {
2324 case TCPOPT_MSS:
2325 tp->rx_opt.mss_clamp = opt.opt_val;
2326 break;
2327 case TCPOPT_WINDOW:
2329 u16 snd_wscale = opt.opt_val & 0xFFFF;
2330 u16 rcv_wscale = opt.opt_val >> 16;
2332 if (snd_wscale > 14 || rcv_wscale > 14)
2333 return -EFBIG;
2335 tp->rx_opt.snd_wscale = snd_wscale;
2336 tp->rx_opt.rcv_wscale = rcv_wscale;
2337 tp->rx_opt.wscale_ok = 1;
2339 break;
2340 case TCPOPT_SACK_PERM:
2341 if (opt.opt_val != 0)
2342 return -EINVAL;
2344 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2345 if (sysctl_tcp_fack)
2346 tcp_enable_fack(tp);
2347 break;
2348 case TCPOPT_TIMESTAMP:
2349 if (opt.opt_val != 0)
2350 return -EINVAL;
2352 tp->rx_opt.tstamp_ok = 1;
2353 break;
2357 return 0;
2361 * Socket option code for TCP.
2363 static int do_tcp_setsockopt(struct sock *sk, int level,
2364 int optname, char __user *optval, unsigned int optlen)
2366 struct tcp_sock *tp = tcp_sk(sk);
2367 struct inet_connection_sock *icsk = inet_csk(sk);
2368 int val;
2369 int err = 0;
2371 /* These are data/string values, all the others are ints */
2372 switch (optname) {
2373 case TCP_CONGESTION: {
2374 char name[TCP_CA_NAME_MAX];
2376 if (optlen < 1)
2377 return -EINVAL;
2379 val = strncpy_from_user(name, optval,
2380 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2381 if (val < 0)
2382 return -EFAULT;
2383 name[val] = 0;
2385 lock_sock(sk);
2386 err = tcp_set_congestion_control(sk, name);
2387 release_sock(sk);
2388 return err;
2390 case TCP_COOKIE_TRANSACTIONS: {
2391 struct tcp_cookie_transactions ctd;
2392 struct tcp_cookie_values *cvp = NULL;
2394 if (sizeof(ctd) > optlen)
2395 return -EINVAL;
2396 if (copy_from_user(&ctd, optval, sizeof(ctd)))
2397 return -EFAULT;
2399 if (ctd.tcpct_used > sizeof(ctd.tcpct_value) ||
2400 ctd.tcpct_s_data_desired > TCP_MSS_DESIRED)
2401 return -EINVAL;
2403 if (ctd.tcpct_cookie_desired == 0) {
2404 /* default to global value */
2405 } else if ((0x1 & ctd.tcpct_cookie_desired) ||
2406 ctd.tcpct_cookie_desired > TCP_COOKIE_MAX ||
2407 ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) {
2408 return -EINVAL;
2411 if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) {
2412 /* Supercedes all other values */
2413 lock_sock(sk);
2414 if (tp->cookie_values != NULL) {
2415 kref_put(&tp->cookie_values->kref,
2416 tcp_cookie_values_release);
2417 tp->cookie_values = NULL;
2419 tp->rx_opt.cookie_in_always = 0; /* false */
2420 tp->rx_opt.cookie_out_never = 1; /* true */
2421 release_sock(sk);
2422 return err;
2425 /* Allocate ancillary memory before locking.
2427 if (ctd.tcpct_used > 0 ||
2428 (tp->cookie_values == NULL &&
2429 (sysctl_tcp_cookie_size > 0 ||
2430 ctd.tcpct_cookie_desired > 0 ||
2431 ctd.tcpct_s_data_desired > 0))) {
2432 cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used,
2433 GFP_KERNEL);
2434 if (cvp == NULL)
2435 return -ENOMEM;
2437 kref_init(&cvp->kref);
2439 lock_sock(sk);
2440 tp->rx_opt.cookie_in_always =
2441 (TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags);
2442 tp->rx_opt.cookie_out_never = 0; /* false */
2444 if (tp->cookie_values != NULL) {
2445 if (cvp != NULL) {
2446 /* Changed values are recorded by a changed
2447 * pointer, ensuring the cookie will differ,
2448 * without separately hashing each value later.
2450 kref_put(&tp->cookie_values->kref,
2451 tcp_cookie_values_release);
2452 } else {
2453 cvp = tp->cookie_values;
2457 if (cvp != NULL) {
2458 cvp->cookie_desired = ctd.tcpct_cookie_desired;
2460 if (ctd.tcpct_used > 0) {
2461 memcpy(cvp->s_data_payload, ctd.tcpct_value,
2462 ctd.tcpct_used);
2463 cvp->s_data_desired = ctd.tcpct_used;
2464 cvp->s_data_constant = 1; /* true */
2465 } else {
2466 /* No constant payload data. */
2467 cvp->s_data_desired = ctd.tcpct_s_data_desired;
2468 cvp->s_data_constant = 0; /* false */
2471 tp->cookie_values = cvp;
2473 release_sock(sk);
2474 return err;
2476 default:
2477 /* fallthru */
2478 break;
2481 if (optlen < sizeof(int))
2482 return -EINVAL;
2484 if (get_user(val, (int __user *)optval))
2485 return -EFAULT;
2487 lock_sock(sk);
2489 switch (optname) {
2490 case TCP_MAXSEG:
2491 /* Values greater than interface MTU won't take effect. However
2492 * at the point when this call is done we typically don't yet
2493 * know which interface is going to be used */
2494 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2495 err = -EINVAL;
2496 break;
2498 tp->rx_opt.user_mss = val;
2499 break;
2501 case TCP_NODELAY:
2502 if (val) {
2503 /* TCP_NODELAY is weaker than TCP_CORK, so that
2504 * this option on corked socket is remembered, but
2505 * it is not activated until cork is cleared.
2507 * However, when TCP_NODELAY is set we make
2508 * an explicit push, which overrides even TCP_CORK
2509 * for currently queued segments.
2511 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2512 tcp_push_pending_frames(sk);
2513 } else {
2514 tp->nonagle &= ~TCP_NAGLE_OFF;
2516 break;
2518 case TCP_THIN_LINEAR_TIMEOUTS:
2519 if (val < 0 || val > 1)
2520 err = -EINVAL;
2521 else
2522 tp->thin_lto = val;
2523 break;
2525 case TCP_THIN_DUPACK:
2526 if (val < 0 || val > 1)
2527 err = -EINVAL;
2528 else
2529 tp->thin_dupack = val;
2530 if (tp->thin_dupack)
2531 tcp_disable_early_retrans(tp);
2532 break;
2534 case TCP_REPAIR:
2535 if (!tcp_can_repair_sock(sk))
2536 err = -EPERM;
2537 else if (val == 1) {
2538 tp->repair = 1;
2539 sk->sk_reuse = SK_FORCE_REUSE;
2540 tp->repair_queue = TCP_NO_QUEUE;
2541 } else if (val == 0) {
2542 tp->repair = 0;
2543 sk->sk_reuse = SK_NO_REUSE;
2544 tcp_send_window_probe(sk);
2545 } else
2546 err = -EINVAL;
2548 break;
2550 case TCP_REPAIR_QUEUE:
2551 if (!tp->repair)
2552 err = -EPERM;
2553 else if (val < TCP_QUEUES_NR)
2554 tp->repair_queue = val;
2555 else
2556 err = -EINVAL;
2557 break;
2559 case TCP_QUEUE_SEQ:
2560 if (sk->sk_state != TCP_CLOSE)
2561 err = -EPERM;
2562 else if (tp->repair_queue == TCP_SEND_QUEUE)
2563 tp->write_seq = val;
2564 else if (tp->repair_queue == TCP_RECV_QUEUE)
2565 tp->rcv_nxt = val;
2566 else
2567 err = -EINVAL;
2568 break;
2570 case TCP_REPAIR_OPTIONS:
2571 if (!tp->repair)
2572 err = -EINVAL;
2573 else if (sk->sk_state == TCP_ESTABLISHED)
2574 err = tcp_repair_options_est(tp,
2575 (struct tcp_repair_opt __user *)optval,
2576 optlen);
2577 else
2578 err = -EPERM;
2579 break;
2581 case TCP_CORK:
2582 /* When set indicates to always queue non-full frames.
2583 * Later the user clears this option and we transmit
2584 * any pending partial frames in the queue. This is
2585 * meant to be used alongside sendfile() to get properly
2586 * filled frames when the user (for example) must write
2587 * out headers with a write() call first and then use
2588 * sendfile to send out the data parts.
2590 * TCP_CORK can be set together with TCP_NODELAY and it is
2591 * stronger than TCP_NODELAY.
2593 if (val) {
2594 tp->nonagle |= TCP_NAGLE_CORK;
2595 } else {
2596 tp->nonagle &= ~TCP_NAGLE_CORK;
2597 if (tp->nonagle&TCP_NAGLE_OFF)
2598 tp->nonagle |= TCP_NAGLE_PUSH;
2599 tcp_push_pending_frames(sk);
2601 break;
2603 case TCP_KEEPIDLE:
2604 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2605 err = -EINVAL;
2606 else {
2607 tp->keepalive_time = val * HZ;
2608 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2609 !((1 << sk->sk_state) &
2610 (TCPF_CLOSE | TCPF_LISTEN))) {
2611 u32 elapsed = keepalive_time_elapsed(tp);
2612 if (tp->keepalive_time > elapsed)
2613 elapsed = tp->keepalive_time - elapsed;
2614 else
2615 elapsed = 0;
2616 inet_csk_reset_keepalive_timer(sk, elapsed);
2619 break;
2620 case TCP_KEEPINTVL:
2621 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2622 err = -EINVAL;
2623 else
2624 tp->keepalive_intvl = val * HZ;
2625 break;
2626 case TCP_KEEPCNT:
2627 if (val < 1 || val > MAX_TCP_KEEPCNT)
2628 err = -EINVAL;
2629 else
2630 tp->keepalive_probes = val;
2631 break;
2632 case TCP_SYNCNT:
2633 if (val < 1 || val > MAX_TCP_SYNCNT)
2634 err = -EINVAL;
2635 else
2636 icsk->icsk_syn_retries = val;
2637 break;
2639 case TCP_LINGER2:
2640 if (val < 0)
2641 tp->linger2 = -1;
2642 else if (val > sysctl_tcp_fin_timeout / HZ)
2643 tp->linger2 = 0;
2644 else
2645 tp->linger2 = val * HZ;
2646 break;
2648 case TCP_DEFER_ACCEPT:
2649 /* Translate value in seconds to number of retransmits */
2650 icsk->icsk_accept_queue.rskq_defer_accept =
2651 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2652 TCP_RTO_MAX / HZ);
2653 break;
2655 case TCP_WINDOW_CLAMP:
2656 if (!val) {
2657 if (sk->sk_state != TCP_CLOSE) {
2658 err = -EINVAL;
2659 break;
2661 tp->window_clamp = 0;
2662 } else
2663 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2664 SOCK_MIN_RCVBUF / 2 : val;
2665 break;
2667 case TCP_QUICKACK:
2668 if (!val) {
2669 icsk->icsk_ack.pingpong = 1;
2670 } else {
2671 icsk->icsk_ack.pingpong = 0;
2672 if ((1 << sk->sk_state) &
2673 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2674 inet_csk_ack_scheduled(sk)) {
2675 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2676 tcp_cleanup_rbuf(sk, 1);
2677 if (!(val & 1))
2678 icsk->icsk_ack.pingpong = 1;
2681 break;
2683 #ifdef CONFIG_TCP_MD5SIG
2684 case TCP_MD5SIG:
2685 /* Read the IP->Key mappings from userspace */
2686 err = tp->af_specific->md5_parse(sk, optval, optlen);
2687 break;
2688 #endif
2689 case TCP_USER_TIMEOUT:
2690 /* Cap the max timeout in ms TCP will retry/retrans
2691 * before giving up and aborting (ETIMEDOUT) a connection.
2693 if (val < 0)
2694 err = -EINVAL;
2695 else
2696 icsk->icsk_user_timeout = msecs_to_jiffies(val);
2697 break;
2699 case TCP_FASTOPEN:
2700 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2701 TCPF_LISTEN)))
2702 err = fastopen_init_queue(sk, val);
2703 else
2704 err = -EINVAL;
2705 break;
2706 default:
2707 err = -ENOPROTOOPT;
2708 break;
2711 release_sock(sk);
2712 return err;
2715 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2716 unsigned int optlen)
2718 const struct inet_connection_sock *icsk = inet_csk(sk);
2720 if (level != SOL_TCP)
2721 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2722 optval, optlen);
2723 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2725 EXPORT_SYMBOL(tcp_setsockopt);
2727 #ifdef CONFIG_COMPAT
2728 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2729 char __user *optval, unsigned int optlen)
2731 if (level != SOL_TCP)
2732 return inet_csk_compat_setsockopt(sk, level, optname,
2733 optval, optlen);
2734 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2736 EXPORT_SYMBOL(compat_tcp_setsockopt);
2737 #endif
2739 /* Return information about state of tcp endpoint in API format. */
2740 void tcp_get_info(const struct sock *sk, struct tcp_info *info)
2742 const struct tcp_sock *tp = tcp_sk(sk);
2743 const struct inet_connection_sock *icsk = inet_csk(sk);
2744 u32 now = tcp_time_stamp;
2746 memset(info, 0, sizeof(*info));
2748 info->tcpi_state = sk->sk_state;
2749 info->tcpi_ca_state = icsk->icsk_ca_state;
2750 info->tcpi_retransmits = icsk->icsk_retransmits;
2751 info->tcpi_probes = icsk->icsk_probes_out;
2752 info->tcpi_backoff = icsk->icsk_backoff;
2754 if (tp->rx_opt.tstamp_ok)
2755 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2756 if (tcp_is_sack(tp))
2757 info->tcpi_options |= TCPI_OPT_SACK;
2758 if (tp->rx_opt.wscale_ok) {
2759 info->tcpi_options |= TCPI_OPT_WSCALE;
2760 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2761 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2764 if (tp->ecn_flags & TCP_ECN_OK)
2765 info->tcpi_options |= TCPI_OPT_ECN;
2766 if (tp->ecn_flags & TCP_ECN_SEEN)
2767 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2769 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2770 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2771 info->tcpi_snd_mss = tp->mss_cache;
2772 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2774 if (sk->sk_state == TCP_LISTEN) {
2775 info->tcpi_unacked = sk->sk_ack_backlog;
2776 info->tcpi_sacked = sk->sk_max_ack_backlog;
2777 } else {
2778 info->tcpi_unacked = tp->packets_out;
2779 info->tcpi_sacked = tp->sacked_out;
2781 info->tcpi_lost = tp->lost_out;
2782 info->tcpi_retrans = tp->retrans_out;
2783 info->tcpi_fackets = tp->fackets_out;
2785 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2786 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2787 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2789 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2790 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2791 info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2792 info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2793 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2794 info->tcpi_snd_cwnd = tp->snd_cwnd;
2795 info->tcpi_advmss = tp->advmss;
2796 info->tcpi_reordering = tp->reordering;
2798 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2799 info->tcpi_rcv_space = tp->rcvq_space.space;
2801 info->tcpi_total_retrans = tp->total_retrans;
2803 EXPORT_SYMBOL_GPL(tcp_get_info);
2805 static int do_tcp_getsockopt(struct sock *sk, int level,
2806 int optname, char __user *optval, int __user *optlen)
2808 struct inet_connection_sock *icsk = inet_csk(sk);
2809 struct tcp_sock *tp = tcp_sk(sk);
2810 int val, len;
2812 if (get_user(len, optlen))
2813 return -EFAULT;
2815 len = min_t(unsigned int, len, sizeof(int));
2817 if (len < 0)
2818 return -EINVAL;
2820 switch (optname) {
2821 case TCP_MAXSEG:
2822 val = tp->mss_cache;
2823 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2824 val = tp->rx_opt.user_mss;
2825 if (tp->repair)
2826 val = tp->rx_opt.mss_clamp;
2827 break;
2828 case TCP_NODELAY:
2829 val = !!(tp->nonagle&TCP_NAGLE_OFF);
2830 break;
2831 case TCP_CORK:
2832 val = !!(tp->nonagle&TCP_NAGLE_CORK);
2833 break;
2834 case TCP_KEEPIDLE:
2835 val = keepalive_time_when(tp) / HZ;
2836 break;
2837 case TCP_KEEPINTVL:
2838 val = keepalive_intvl_when(tp) / HZ;
2839 break;
2840 case TCP_KEEPCNT:
2841 val = keepalive_probes(tp);
2842 break;
2843 case TCP_SYNCNT:
2844 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2845 break;
2846 case TCP_LINGER2:
2847 val = tp->linger2;
2848 if (val >= 0)
2849 val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2850 break;
2851 case TCP_DEFER_ACCEPT:
2852 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2853 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2854 break;
2855 case TCP_WINDOW_CLAMP:
2856 val = tp->window_clamp;
2857 break;
2858 case TCP_INFO: {
2859 struct tcp_info info;
2861 if (get_user(len, optlen))
2862 return -EFAULT;
2864 tcp_get_info(sk, &info);
2866 len = min_t(unsigned int, len, sizeof(info));
2867 if (put_user(len, optlen))
2868 return -EFAULT;
2869 if (copy_to_user(optval, &info, len))
2870 return -EFAULT;
2871 return 0;
2873 case TCP_QUICKACK:
2874 val = !icsk->icsk_ack.pingpong;
2875 break;
2877 case TCP_CONGESTION:
2878 if (get_user(len, optlen))
2879 return -EFAULT;
2880 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2881 if (put_user(len, optlen))
2882 return -EFAULT;
2883 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2884 return -EFAULT;
2885 return 0;
2887 case TCP_COOKIE_TRANSACTIONS: {
2888 struct tcp_cookie_transactions ctd;
2889 struct tcp_cookie_values *cvp = tp->cookie_values;
2891 if (get_user(len, optlen))
2892 return -EFAULT;
2893 if (len < sizeof(ctd))
2894 return -EINVAL;
2896 memset(&ctd, 0, sizeof(ctd));
2897 ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ?
2898 TCP_COOKIE_IN_ALWAYS : 0)
2899 | (tp->rx_opt.cookie_out_never ?
2900 TCP_COOKIE_OUT_NEVER : 0);
2902 if (cvp != NULL) {
2903 ctd.tcpct_flags |= (cvp->s_data_in ?
2904 TCP_S_DATA_IN : 0)
2905 | (cvp->s_data_out ?
2906 TCP_S_DATA_OUT : 0);
2908 ctd.tcpct_cookie_desired = cvp->cookie_desired;
2909 ctd.tcpct_s_data_desired = cvp->s_data_desired;
2911 memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0],
2912 cvp->cookie_pair_size);
2913 ctd.tcpct_used = cvp->cookie_pair_size;
2916 if (put_user(sizeof(ctd), optlen))
2917 return -EFAULT;
2918 if (copy_to_user(optval, &ctd, sizeof(ctd)))
2919 return -EFAULT;
2920 return 0;
2922 case TCP_THIN_LINEAR_TIMEOUTS:
2923 val = tp->thin_lto;
2924 break;
2925 case TCP_THIN_DUPACK:
2926 val = tp->thin_dupack;
2927 break;
2929 case TCP_REPAIR:
2930 val = tp->repair;
2931 break;
2933 case TCP_REPAIR_QUEUE:
2934 if (tp->repair)
2935 val = tp->repair_queue;
2936 else
2937 return -EINVAL;
2938 break;
2940 case TCP_QUEUE_SEQ:
2941 if (tp->repair_queue == TCP_SEND_QUEUE)
2942 val = tp->write_seq;
2943 else if (tp->repair_queue == TCP_RECV_QUEUE)
2944 val = tp->rcv_nxt;
2945 else
2946 return -EINVAL;
2947 break;
2949 case TCP_USER_TIMEOUT:
2950 val = jiffies_to_msecs(icsk->icsk_user_timeout);
2951 break;
2952 default:
2953 return -ENOPROTOOPT;
2956 if (put_user(len, optlen))
2957 return -EFAULT;
2958 if (copy_to_user(optval, &val, len))
2959 return -EFAULT;
2960 return 0;
2963 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2964 int __user *optlen)
2966 struct inet_connection_sock *icsk = inet_csk(sk);
2968 if (level != SOL_TCP)
2969 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2970 optval, optlen);
2971 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2973 EXPORT_SYMBOL(tcp_getsockopt);
2975 #ifdef CONFIG_COMPAT
2976 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2977 char __user *optval, int __user *optlen)
2979 if (level != SOL_TCP)
2980 return inet_csk_compat_getsockopt(sk, level, optname,
2981 optval, optlen);
2982 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2984 EXPORT_SYMBOL(compat_tcp_getsockopt);
2985 #endif
2987 struct sk_buff *tcp_tso_segment(struct sk_buff *skb,
2988 netdev_features_t features)
2990 struct sk_buff *segs = ERR_PTR(-EINVAL);
2991 struct tcphdr *th;
2992 unsigned int thlen;
2993 unsigned int seq;
2994 __be32 delta;
2995 unsigned int oldlen;
2996 unsigned int mss;
2998 if (!pskb_may_pull(skb, sizeof(*th)))
2999 goto out;
3001 th = tcp_hdr(skb);
3002 thlen = th->doff * 4;
3003 if (thlen < sizeof(*th))
3004 goto out;
3006 if (!pskb_may_pull(skb, thlen))
3007 goto out;
3009 oldlen = (u16)~skb->len;
3010 __skb_pull(skb, thlen);
3012 mss = skb_shinfo(skb)->gso_size;
3013 if (unlikely(skb->len <= mss))
3014 goto out;
3016 if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
3017 /* Packet is from an untrusted source, reset gso_segs. */
3018 int type = skb_shinfo(skb)->gso_type;
3020 if (unlikely(type &
3021 ~(SKB_GSO_TCPV4 |
3022 SKB_GSO_DODGY |
3023 SKB_GSO_TCP_ECN |
3024 SKB_GSO_TCPV6 |
3025 0) ||
3026 !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
3027 goto out;
3029 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
3031 segs = NULL;
3032 goto out;
3035 segs = skb_segment(skb, features);
3036 if (IS_ERR(segs))
3037 goto out;
3039 delta = htonl(oldlen + (thlen + mss));
3041 skb = segs;
3042 th = tcp_hdr(skb);
3043 seq = ntohl(th->seq);
3045 do {
3046 th->fin = th->psh = 0;
3048 th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
3049 (__force u32)delta));
3050 if (skb->ip_summed != CHECKSUM_PARTIAL)
3051 th->check =
3052 csum_fold(csum_partial(skb_transport_header(skb),
3053 thlen, skb->csum));
3055 seq += mss;
3056 skb = skb->next;
3057 th = tcp_hdr(skb);
3059 th->seq = htonl(seq);
3060 th->cwr = 0;
3061 } while (skb->next);
3063 delta = htonl(oldlen + (skb->tail - skb->transport_header) +
3064 skb->data_len);
3065 th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
3066 (__force u32)delta));
3067 if (skb->ip_summed != CHECKSUM_PARTIAL)
3068 th->check = csum_fold(csum_partial(skb_transport_header(skb),
3069 thlen, skb->csum));
3071 out:
3072 return segs;
3074 EXPORT_SYMBOL(tcp_tso_segment);
3076 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3078 struct sk_buff **pp = NULL;
3079 struct sk_buff *p;
3080 struct tcphdr *th;
3081 struct tcphdr *th2;
3082 unsigned int len;
3083 unsigned int thlen;
3084 __be32 flags;
3085 unsigned int mss = 1;
3086 unsigned int hlen;
3087 unsigned int off;
3088 int flush = 1;
3089 int i;
3091 off = skb_gro_offset(skb);
3092 hlen = off + sizeof(*th);
3093 th = skb_gro_header_fast(skb, off);
3094 if (skb_gro_header_hard(skb, hlen)) {
3095 th = skb_gro_header_slow(skb, hlen, off);
3096 if (unlikely(!th))
3097 goto out;
3100 thlen = th->doff * 4;
3101 if (thlen < sizeof(*th))
3102 goto out;
3104 hlen = off + thlen;
3105 if (skb_gro_header_hard(skb, hlen)) {
3106 th = skb_gro_header_slow(skb, hlen, off);
3107 if (unlikely(!th))
3108 goto out;
3111 skb_gro_pull(skb, thlen);
3113 len = skb_gro_len(skb);
3114 flags = tcp_flag_word(th);
3116 for (; (p = *head); head = &p->next) {
3117 if (!NAPI_GRO_CB(p)->same_flow)
3118 continue;
3120 th2 = tcp_hdr(p);
3122 if (*(u32 *)&th->source ^ *(u32 *)&th2->source) {
3123 NAPI_GRO_CB(p)->same_flow = 0;
3124 continue;
3127 goto found;
3130 goto out_check_final;
3132 found:
3133 flush = NAPI_GRO_CB(p)->flush;
3134 flush |= (__force int)(flags & TCP_FLAG_CWR);
3135 flush |= (__force int)((flags ^ tcp_flag_word(th2)) &
3136 ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH));
3137 flush |= (__force int)(th->ack_seq ^ th2->ack_seq);
3138 for (i = sizeof(*th); i < thlen; i += 4)
3139 flush |= *(u32 *)((u8 *)th + i) ^
3140 *(u32 *)((u8 *)th2 + i);
3142 mss = skb_shinfo(p)->gso_size;
3144 flush |= (len - 1) >= mss;
3145 flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
3147 if (flush || skb_gro_receive(head, skb)) {
3148 mss = 1;
3149 goto out_check_final;
3152 p = *head;
3153 th2 = tcp_hdr(p);
3154 tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
3156 out_check_final:
3157 flush = len < mss;
3158 flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH |
3159 TCP_FLAG_RST | TCP_FLAG_SYN |
3160 TCP_FLAG_FIN));
3162 if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
3163 pp = head;
3165 out:
3166 NAPI_GRO_CB(skb)->flush |= flush;
3168 return pp;
3170 EXPORT_SYMBOL(tcp_gro_receive);
3172 int tcp_gro_complete(struct sk_buff *skb)
3174 struct tcphdr *th = tcp_hdr(skb);
3176 skb->csum_start = skb_transport_header(skb) - skb->head;
3177 skb->csum_offset = offsetof(struct tcphdr, check);
3178 skb->ip_summed = CHECKSUM_PARTIAL;
3180 skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
3182 if (th->cwr)
3183 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
3185 return 0;
3187 EXPORT_SYMBOL(tcp_gro_complete);
3189 #ifdef CONFIG_TCP_MD5SIG
3190 static unsigned long tcp_md5sig_users;
3191 static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool;
3192 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
3194 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool)
3196 int cpu;
3198 for_each_possible_cpu(cpu) {
3199 struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu);
3201 if (p->md5_desc.tfm)
3202 crypto_free_hash(p->md5_desc.tfm);
3204 free_percpu(pool);
3207 void tcp_free_md5sig_pool(void)
3209 struct tcp_md5sig_pool __percpu *pool = NULL;
3211 spin_lock_bh(&tcp_md5sig_pool_lock);
3212 if (--tcp_md5sig_users == 0) {
3213 pool = tcp_md5sig_pool;
3214 tcp_md5sig_pool = NULL;
3216 spin_unlock_bh(&tcp_md5sig_pool_lock);
3217 if (pool)
3218 __tcp_free_md5sig_pool(pool);
3220 EXPORT_SYMBOL(tcp_free_md5sig_pool);
3222 static struct tcp_md5sig_pool __percpu *
3223 __tcp_alloc_md5sig_pool(struct sock *sk)
3225 int cpu;
3226 struct tcp_md5sig_pool __percpu *pool;
3228 pool = alloc_percpu(struct tcp_md5sig_pool);
3229 if (!pool)
3230 return NULL;
3232 for_each_possible_cpu(cpu) {
3233 struct crypto_hash *hash;
3235 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
3236 if (!hash || IS_ERR(hash))
3237 goto out_free;
3239 per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash;
3241 return pool;
3242 out_free:
3243 __tcp_free_md5sig_pool(pool);
3244 return NULL;
3247 struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *sk)
3249 struct tcp_md5sig_pool __percpu *pool;
3250 bool alloc = false;
3252 retry:
3253 spin_lock_bh(&tcp_md5sig_pool_lock);
3254 pool = tcp_md5sig_pool;
3255 if (tcp_md5sig_users++ == 0) {
3256 alloc = true;
3257 spin_unlock_bh(&tcp_md5sig_pool_lock);
3258 } else if (!pool) {
3259 tcp_md5sig_users--;
3260 spin_unlock_bh(&tcp_md5sig_pool_lock);
3261 cpu_relax();
3262 goto retry;
3263 } else
3264 spin_unlock_bh(&tcp_md5sig_pool_lock);
3266 if (alloc) {
3267 /* we cannot hold spinlock here because this may sleep. */
3268 struct tcp_md5sig_pool __percpu *p;
3270 p = __tcp_alloc_md5sig_pool(sk);
3271 spin_lock_bh(&tcp_md5sig_pool_lock);
3272 if (!p) {
3273 tcp_md5sig_users--;
3274 spin_unlock_bh(&tcp_md5sig_pool_lock);
3275 return NULL;
3277 pool = tcp_md5sig_pool;
3278 if (pool) {
3279 /* oops, it has already been assigned. */
3280 spin_unlock_bh(&tcp_md5sig_pool_lock);
3281 __tcp_free_md5sig_pool(p);
3282 } else {
3283 tcp_md5sig_pool = pool = p;
3284 spin_unlock_bh(&tcp_md5sig_pool_lock);
3287 return pool;
3289 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3293 * tcp_get_md5sig_pool - get md5sig_pool for this user
3295 * We use percpu structure, so if we succeed, we exit with preemption
3296 * and BH disabled, to make sure another thread or softirq handling
3297 * wont try to get same context.
3299 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3301 struct tcp_md5sig_pool __percpu *p;
3303 local_bh_disable();
3305 spin_lock(&tcp_md5sig_pool_lock);
3306 p = tcp_md5sig_pool;
3307 if (p)
3308 tcp_md5sig_users++;
3309 spin_unlock(&tcp_md5sig_pool_lock);
3311 if (p)
3312 return this_cpu_ptr(p);
3314 local_bh_enable();
3315 return NULL;
3317 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3319 void tcp_put_md5sig_pool(void)
3321 local_bh_enable();
3322 tcp_free_md5sig_pool();
3324 EXPORT_SYMBOL(tcp_put_md5sig_pool);
3326 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3327 const struct tcphdr *th)
3329 struct scatterlist sg;
3330 struct tcphdr hdr;
3331 int err;
3333 /* We are not allowed to change tcphdr, make a local copy */
3334 memcpy(&hdr, th, sizeof(hdr));
3335 hdr.check = 0;
3337 /* options aren't included in the hash */
3338 sg_init_one(&sg, &hdr, sizeof(hdr));
3339 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
3340 return err;
3342 EXPORT_SYMBOL(tcp_md5_hash_header);
3344 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3345 const struct sk_buff *skb, unsigned int header_len)
3347 struct scatterlist sg;
3348 const struct tcphdr *tp = tcp_hdr(skb);
3349 struct hash_desc *desc = &hp->md5_desc;
3350 unsigned int i;
3351 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3352 skb_headlen(skb) - header_len : 0;
3353 const struct skb_shared_info *shi = skb_shinfo(skb);
3354 struct sk_buff *frag_iter;
3356 sg_init_table(&sg, 1);
3358 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3359 if (crypto_hash_update(desc, &sg, head_data_len))
3360 return 1;
3362 for (i = 0; i < shi->nr_frags; ++i) {
3363 const struct skb_frag_struct *f = &shi->frags[i];
3364 struct page *page = skb_frag_page(f);
3365 sg_set_page(&sg, page, skb_frag_size(f), f->page_offset);
3366 if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3367 return 1;
3370 skb_walk_frags(skb, frag_iter)
3371 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3372 return 1;
3374 return 0;
3376 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3378 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3380 struct scatterlist sg;
3382 sg_init_one(&sg, key->key, key->keylen);
3383 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3385 EXPORT_SYMBOL(tcp_md5_hash_key);
3387 #endif
3389 /* Each Responder maintains up to two secret values concurrently for
3390 * efficient secret rollover. Each secret value has 4 states:
3392 * Generating. (tcp_secret_generating != tcp_secret_primary)
3393 * Generates new Responder-Cookies, but not yet used for primary
3394 * verification. This is a short-term state, typically lasting only
3395 * one round trip time (RTT).
3397 * Primary. (tcp_secret_generating == tcp_secret_primary)
3398 * Used both for generation and primary verification.
3400 * Retiring. (tcp_secret_retiring != tcp_secret_secondary)
3401 * Used for verification, until the first failure that can be
3402 * verified by the newer Generating secret. At that time, this
3403 * cookie's state is changed to Secondary, and the Generating
3404 * cookie's state is changed to Primary. This is a short-term state,
3405 * typically lasting only one round trip time (RTT).
3407 * Secondary. (tcp_secret_retiring == tcp_secret_secondary)
3408 * Used for secondary verification, after primary verification
3409 * failures. This state lasts no more than twice the Maximum Segment
3410 * Lifetime (2MSL). Then, the secret is discarded.
3412 struct tcp_cookie_secret {
3413 /* The secret is divided into two parts. The digest part is the
3414 * equivalent of previously hashing a secret and saving the state,
3415 * and serves as an initialization vector (IV). The message part
3416 * serves as the trailing secret.
3418 u32 secrets[COOKIE_WORKSPACE_WORDS];
3419 unsigned long expires;
3422 #define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL)
3423 #define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2)
3424 #define TCP_SECRET_LIFE (HZ * 600)
3426 static struct tcp_cookie_secret tcp_secret_one;
3427 static struct tcp_cookie_secret tcp_secret_two;
3429 /* Essentially a circular list, without dynamic allocation. */
3430 static struct tcp_cookie_secret *tcp_secret_generating;
3431 static struct tcp_cookie_secret *tcp_secret_primary;
3432 static struct tcp_cookie_secret *tcp_secret_retiring;
3433 static struct tcp_cookie_secret *tcp_secret_secondary;
3435 static DEFINE_SPINLOCK(tcp_secret_locker);
3437 /* Select a pseudo-random word in the cookie workspace.
3439 static inline u32 tcp_cookie_work(const u32 *ws, const int n)
3441 return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])];
3444 /* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed.
3445 * Called in softirq context.
3446 * Returns: 0 for success.
3448 int tcp_cookie_generator(u32 *bakery)
3450 unsigned long jiffy = jiffies;
3452 if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) {
3453 spin_lock_bh(&tcp_secret_locker);
3454 if (!time_after_eq(jiffy, tcp_secret_generating->expires)) {
3455 /* refreshed by another */
3456 memcpy(bakery,
3457 &tcp_secret_generating->secrets[0],
3458 COOKIE_WORKSPACE_WORDS);
3459 } else {
3460 /* still needs refreshing */
3461 get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS);
3463 /* The first time, paranoia assumes that the
3464 * randomization function isn't as strong. But,
3465 * this secret initialization is delayed until
3466 * the last possible moment (packet arrival).
3467 * Although that time is observable, it is
3468 * unpredictably variable. Mash in the most
3469 * volatile clock bits available, and expire the
3470 * secret extra quickly.
3472 if (unlikely(tcp_secret_primary->expires ==
3473 tcp_secret_secondary->expires)) {
3474 struct timespec tv;
3476 getnstimeofday(&tv);
3477 bakery[COOKIE_DIGEST_WORDS+0] ^=
3478 (u32)tv.tv_nsec;
3480 tcp_secret_secondary->expires = jiffy
3481 + TCP_SECRET_1MSL
3482 + (0x0f & tcp_cookie_work(bakery, 0));
3483 } else {
3484 tcp_secret_secondary->expires = jiffy
3485 + TCP_SECRET_LIFE
3486 + (0xff & tcp_cookie_work(bakery, 1));
3487 tcp_secret_primary->expires = jiffy
3488 + TCP_SECRET_2MSL
3489 + (0x1f & tcp_cookie_work(bakery, 2));
3491 memcpy(&tcp_secret_secondary->secrets[0],
3492 bakery, COOKIE_WORKSPACE_WORDS);
3494 rcu_assign_pointer(tcp_secret_generating,
3495 tcp_secret_secondary);
3496 rcu_assign_pointer(tcp_secret_retiring,
3497 tcp_secret_primary);
3499 * Neither call_rcu() nor synchronize_rcu() needed.
3500 * Retiring data is not freed. It is replaced after
3501 * further (locked) pointer updates, and a quiet time
3502 * (minimum 1MSL, maximum LIFE - 2MSL).
3505 spin_unlock_bh(&tcp_secret_locker);
3506 } else {
3507 rcu_read_lock_bh();
3508 memcpy(bakery,
3509 &rcu_dereference(tcp_secret_generating)->secrets[0],
3510 COOKIE_WORKSPACE_WORDS);
3511 rcu_read_unlock_bh();
3513 return 0;
3515 EXPORT_SYMBOL(tcp_cookie_generator);
3517 void tcp_done(struct sock *sk)
3519 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3521 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3522 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3524 tcp_set_state(sk, TCP_CLOSE);
3525 tcp_clear_xmit_timers(sk);
3526 if (req != NULL)
3527 reqsk_fastopen_remove(sk, req, false);
3529 sk->sk_shutdown = SHUTDOWN_MASK;
3531 if (!sock_flag(sk, SOCK_DEAD))
3532 sk->sk_state_change(sk);
3533 else
3534 inet_csk_destroy_sock(sk);
3536 EXPORT_SYMBOL_GPL(tcp_done);
3538 extern struct tcp_congestion_ops tcp_reno;
3540 static __initdata unsigned long thash_entries;
3541 static int __init set_thash_entries(char *str)
3543 ssize_t ret;
3545 if (!str)
3546 return 0;
3548 ret = kstrtoul(str, 0, &thash_entries);
3549 if (ret)
3550 return 0;
3552 return 1;
3554 __setup("thash_entries=", set_thash_entries);
3556 void tcp_init_mem(struct net *net)
3558 unsigned long limit = nr_free_buffer_pages() / 8;
3559 limit = max(limit, 128UL);
3560 net->ipv4.sysctl_tcp_mem[0] = limit / 4 * 3;
3561 net->ipv4.sysctl_tcp_mem[1] = limit;
3562 net->ipv4.sysctl_tcp_mem[2] = net->ipv4.sysctl_tcp_mem[0] * 2;
3565 void __init tcp_init(void)
3567 struct sk_buff *skb = NULL;
3568 unsigned long limit;
3569 int max_rshare, max_wshare, cnt;
3570 unsigned int i;
3571 unsigned long jiffy = jiffies;
3573 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3575 percpu_counter_init(&tcp_sockets_allocated, 0);
3576 percpu_counter_init(&tcp_orphan_count, 0);
3577 tcp_hashinfo.bind_bucket_cachep =
3578 kmem_cache_create("tcp_bind_bucket",
3579 sizeof(struct inet_bind_bucket), 0,
3580 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3582 /* Size and allocate the main established and bind bucket
3583 * hash tables.
3585 * The methodology is similar to that of the buffer cache.
3587 tcp_hashinfo.ehash =
3588 alloc_large_system_hash("TCP established",
3589 sizeof(struct inet_ehash_bucket),
3590 thash_entries,
3591 (totalram_pages >= 128 * 1024) ?
3592 13 : 15,
3594 NULL,
3595 &tcp_hashinfo.ehash_mask,
3597 thash_entries ? 0 : 512 * 1024);
3598 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
3599 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3600 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
3602 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3603 panic("TCP: failed to alloc ehash_locks");
3604 tcp_hashinfo.bhash =
3605 alloc_large_system_hash("TCP bind",
3606 sizeof(struct inet_bind_hashbucket),
3607 tcp_hashinfo.ehash_mask + 1,
3608 (totalram_pages >= 128 * 1024) ?
3609 13 : 15,
3611 &tcp_hashinfo.bhash_size,
3612 NULL,
3614 64 * 1024);
3615 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3616 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3617 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3618 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3622 cnt = tcp_hashinfo.ehash_mask + 1;
3624 tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3625 sysctl_tcp_max_orphans = cnt / 2;
3626 sysctl_max_syn_backlog = max(128, cnt / 256);
3628 tcp_init_mem(&init_net);
3629 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3630 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3631 max_wshare = min(4UL*1024*1024, limit);
3632 max_rshare = min(6UL*1024*1024, limit);
3634 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3635 sysctl_tcp_wmem[1] = 16*1024;
3636 sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3638 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3639 sysctl_tcp_rmem[1] = 87380;
3640 sysctl_tcp_rmem[2] = max(87380, max_rshare);
3642 pr_info("Hash tables configured (established %u bind %u)\n",
3643 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3645 tcp_metrics_init();
3647 tcp_register_congestion_control(&tcp_reno);
3649 memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets));
3650 memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets));
3651 tcp_secret_one.expires = jiffy; /* past due */
3652 tcp_secret_two.expires = jiffy; /* past due */
3653 tcp_secret_generating = &tcp_secret_one;
3654 tcp_secret_primary = &tcp_secret_one;
3655 tcp_secret_retiring = &tcp_secret_two;
3656 tcp_secret_secondary = &tcp_secret_two;
3657 tcp_tasklet_init();