writeback: do not sleep on the congestion queue if there are no congested BDIs or...
[linux-2.6/btrfs-unstable.git] / include / linux / mmzone.h
blob39c24ebe9cfd4e75b8841deec06aa6d78c91c2ad
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <generated/bounds.h>
19 #include <asm/atomic.h>
20 #include <asm/page.h>
22 /* Free memory management - zoned buddy allocator. */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coelesce naturally under reasonable reclaim pressure and those which
34 * will not.
36 #define PAGE_ALLOC_COSTLY_ORDER 3
38 #define MIGRATE_UNMOVABLE 0
39 #define MIGRATE_RECLAIMABLE 1
40 #define MIGRATE_MOVABLE 2
41 #define MIGRATE_PCPTYPES 3 /* the number of types on the pcp lists */
42 #define MIGRATE_RESERVE 3
43 #define MIGRATE_ISOLATE 4 /* can't allocate from here */
44 #define MIGRATE_TYPES 5
46 #define for_each_migratetype_order(order, type) \
47 for (order = 0; order < MAX_ORDER; order++) \
48 for (type = 0; type < MIGRATE_TYPES; type++)
50 extern int page_group_by_mobility_disabled;
52 static inline int get_pageblock_migratetype(struct page *page)
54 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
57 struct free_area {
58 struct list_head free_list[MIGRATE_TYPES];
59 unsigned long nr_free;
62 struct pglist_data;
65 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
66 * So add a wild amount of padding here to ensure that they fall into separate
67 * cachelines. There are very few zone structures in the machine, so space
68 * consumption is not a concern here.
70 #if defined(CONFIG_SMP)
71 struct zone_padding {
72 char x[0];
73 } ____cacheline_internodealigned_in_smp;
74 #define ZONE_PADDING(name) struct zone_padding name;
75 #else
76 #define ZONE_PADDING(name)
77 #endif
79 enum zone_stat_item {
80 /* First 128 byte cacheline (assuming 64 bit words) */
81 NR_FREE_PAGES,
82 NR_LRU_BASE,
83 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
84 NR_ACTIVE_ANON, /* " " " " " */
85 NR_INACTIVE_FILE, /* " " " " " */
86 NR_ACTIVE_FILE, /* " " " " " */
87 NR_UNEVICTABLE, /* " " " " " */
88 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
89 NR_ANON_PAGES, /* Mapped anonymous pages */
90 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
91 only modified from process context */
92 NR_FILE_PAGES,
93 NR_FILE_DIRTY,
94 NR_WRITEBACK,
95 NR_SLAB_RECLAIMABLE,
96 NR_SLAB_UNRECLAIMABLE,
97 NR_PAGETABLE, /* used for pagetables */
98 NR_KERNEL_STACK,
99 /* Second 128 byte cacheline */
100 NR_UNSTABLE_NFS, /* NFS unstable pages */
101 NR_BOUNCE,
102 NR_VMSCAN_WRITE,
103 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
104 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
105 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
106 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
107 NR_DIRTIED, /* page dirtyings since bootup */
108 NR_WRITTEN, /* page writings since bootup */
109 #ifdef CONFIG_NUMA
110 NUMA_HIT, /* allocated in intended node */
111 NUMA_MISS, /* allocated in non intended node */
112 NUMA_FOREIGN, /* was intended here, hit elsewhere */
113 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
114 NUMA_LOCAL, /* allocation from local node */
115 NUMA_OTHER, /* allocation from other node */
116 #endif
117 NR_VM_ZONE_STAT_ITEMS };
120 * We do arithmetic on the LRU lists in various places in the code,
121 * so it is important to keep the active lists LRU_ACTIVE higher in
122 * the array than the corresponding inactive lists, and to keep
123 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
125 * This has to be kept in sync with the statistics in zone_stat_item
126 * above and the descriptions in vmstat_text in mm/vmstat.c
128 #define LRU_BASE 0
129 #define LRU_ACTIVE 1
130 #define LRU_FILE 2
132 enum lru_list {
133 LRU_INACTIVE_ANON = LRU_BASE,
134 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
135 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
136 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
137 LRU_UNEVICTABLE,
138 NR_LRU_LISTS
141 #define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++)
143 #define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++)
145 static inline int is_file_lru(enum lru_list l)
147 return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE);
150 static inline int is_active_lru(enum lru_list l)
152 return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE);
155 static inline int is_unevictable_lru(enum lru_list l)
157 return (l == LRU_UNEVICTABLE);
160 enum zone_watermarks {
161 WMARK_MIN,
162 WMARK_LOW,
163 WMARK_HIGH,
164 NR_WMARK
167 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
168 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
169 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
171 struct per_cpu_pages {
172 int count; /* number of pages in the list */
173 int high; /* high watermark, emptying needed */
174 int batch; /* chunk size for buddy add/remove */
176 /* Lists of pages, one per migrate type stored on the pcp-lists */
177 struct list_head lists[MIGRATE_PCPTYPES];
180 struct per_cpu_pageset {
181 struct per_cpu_pages pcp;
182 #ifdef CONFIG_NUMA
183 s8 expire;
184 #endif
185 #ifdef CONFIG_SMP
186 s8 stat_threshold;
187 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
188 #endif
191 #endif /* !__GENERATING_BOUNDS.H */
193 enum zone_type {
194 #ifdef CONFIG_ZONE_DMA
196 * ZONE_DMA is used when there are devices that are not able
197 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
198 * carve out the portion of memory that is needed for these devices.
199 * The range is arch specific.
201 * Some examples
203 * Architecture Limit
204 * ---------------------------
205 * parisc, ia64, sparc <4G
206 * s390 <2G
207 * arm Various
208 * alpha Unlimited or 0-16MB.
210 * i386, x86_64 and multiple other arches
211 * <16M.
213 ZONE_DMA,
214 #endif
215 #ifdef CONFIG_ZONE_DMA32
217 * x86_64 needs two ZONE_DMAs because it supports devices that are
218 * only able to do DMA to the lower 16M but also 32 bit devices that
219 * can only do DMA areas below 4G.
221 ZONE_DMA32,
222 #endif
224 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
225 * performed on pages in ZONE_NORMAL if the DMA devices support
226 * transfers to all addressable memory.
228 ZONE_NORMAL,
229 #ifdef CONFIG_HIGHMEM
231 * A memory area that is only addressable by the kernel through
232 * mapping portions into its own address space. This is for example
233 * used by i386 to allow the kernel to address the memory beyond
234 * 900MB. The kernel will set up special mappings (page
235 * table entries on i386) for each page that the kernel needs to
236 * access.
238 ZONE_HIGHMEM,
239 #endif
240 ZONE_MOVABLE,
241 __MAX_NR_ZONES
244 #ifndef __GENERATING_BOUNDS_H
247 * When a memory allocation must conform to specific limitations (such
248 * as being suitable for DMA) the caller will pass in hints to the
249 * allocator in the gfp_mask, in the zone modifier bits. These bits
250 * are used to select a priority ordered list of memory zones which
251 * match the requested limits. See gfp_zone() in include/linux/gfp.h
254 #if MAX_NR_ZONES < 2
255 #define ZONES_SHIFT 0
256 #elif MAX_NR_ZONES <= 2
257 #define ZONES_SHIFT 1
258 #elif MAX_NR_ZONES <= 4
259 #define ZONES_SHIFT 2
260 #else
261 #error ZONES_SHIFT -- too many zones configured adjust calculation
262 #endif
264 struct zone_reclaim_stat {
266 * The pageout code in vmscan.c keeps track of how many of the
267 * mem/swap backed and file backed pages are refeferenced.
268 * The higher the rotated/scanned ratio, the more valuable
269 * that cache is.
271 * The anon LRU stats live in [0], file LRU stats in [1]
273 unsigned long recent_rotated[2];
274 unsigned long recent_scanned[2];
277 * accumulated for batching
279 unsigned long nr_saved_scan[NR_LRU_LISTS];
282 struct zone {
283 /* Fields commonly accessed by the page allocator */
285 /* zone watermarks, access with *_wmark_pages(zone) macros */
286 unsigned long watermark[NR_WMARK];
289 * When free pages are below this point, additional steps are taken
290 * when reading the number of free pages to avoid per-cpu counter
291 * drift allowing watermarks to be breached
293 unsigned long percpu_drift_mark;
296 * We don't know if the memory that we're going to allocate will be freeable
297 * or/and it will be released eventually, so to avoid totally wasting several
298 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
299 * to run OOM on the lower zones despite there's tons of freeable ram
300 * on the higher zones). This array is recalculated at runtime if the
301 * sysctl_lowmem_reserve_ratio sysctl changes.
303 unsigned long lowmem_reserve[MAX_NR_ZONES];
305 #ifdef CONFIG_NUMA
306 int node;
308 * zone reclaim becomes active if more unmapped pages exist.
310 unsigned long min_unmapped_pages;
311 unsigned long min_slab_pages;
312 #endif
313 struct per_cpu_pageset __percpu *pageset;
315 * free areas of different sizes
317 spinlock_t lock;
318 int all_unreclaimable; /* All pages pinned */
319 #ifdef CONFIG_MEMORY_HOTPLUG
320 /* see spanned/present_pages for more description */
321 seqlock_t span_seqlock;
322 #endif
323 struct free_area free_area[MAX_ORDER];
325 #ifndef CONFIG_SPARSEMEM
327 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
328 * In SPARSEMEM, this map is stored in struct mem_section
330 unsigned long *pageblock_flags;
331 #endif /* CONFIG_SPARSEMEM */
333 #ifdef CONFIG_COMPACTION
335 * On compaction failure, 1<<compact_defer_shift compactions
336 * are skipped before trying again. The number attempted since
337 * last failure is tracked with compact_considered.
339 unsigned int compact_considered;
340 unsigned int compact_defer_shift;
341 #endif
343 ZONE_PADDING(_pad1_)
345 /* Fields commonly accessed by the page reclaim scanner */
346 spinlock_t lru_lock;
347 struct zone_lru {
348 struct list_head list;
349 } lru[NR_LRU_LISTS];
351 struct zone_reclaim_stat reclaim_stat;
353 unsigned long pages_scanned; /* since last reclaim */
354 unsigned long flags; /* zone flags, see below */
356 /* Zone statistics */
357 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
360 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
361 * this zone's LRU. Maintained by the pageout code.
363 unsigned int inactive_ratio;
366 ZONE_PADDING(_pad2_)
367 /* Rarely used or read-mostly fields */
370 * wait_table -- the array holding the hash table
371 * wait_table_hash_nr_entries -- the size of the hash table array
372 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
374 * The purpose of all these is to keep track of the people
375 * waiting for a page to become available and make them
376 * runnable again when possible. The trouble is that this
377 * consumes a lot of space, especially when so few things
378 * wait on pages at a given time. So instead of using
379 * per-page waitqueues, we use a waitqueue hash table.
381 * The bucket discipline is to sleep on the same queue when
382 * colliding and wake all in that wait queue when removing.
383 * When something wakes, it must check to be sure its page is
384 * truly available, a la thundering herd. The cost of a
385 * collision is great, but given the expected load of the
386 * table, they should be so rare as to be outweighed by the
387 * benefits from the saved space.
389 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
390 * primary users of these fields, and in mm/page_alloc.c
391 * free_area_init_core() performs the initialization of them.
393 wait_queue_head_t * wait_table;
394 unsigned long wait_table_hash_nr_entries;
395 unsigned long wait_table_bits;
398 * Discontig memory support fields.
400 struct pglist_data *zone_pgdat;
401 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
402 unsigned long zone_start_pfn;
405 * zone_start_pfn, spanned_pages and present_pages are all
406 * protected by span_seqlock. It is a seqlock because it has
407 * to be read outside of zone->lock, and it is done in the main
408 * allocator path. But, it is written quite infrequently.
410 * The lock is declared along with zone->lock because it is
411 * frequently read in proximity to zone->lock. It's good to
412 * give them a chance of being in the same cacheline.
414 unsigned long spanned_pages; /* total size, including holes */
415 unsigned long present_pages; /* amount of memory (excluding holes) */
418 * rarely used fields:
420 const char *name;
421 } ____cacheline_internodealigned_in_smp;
423 typedef enum {
424 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
425 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
426 ZONE_CONGESTED, /* zone has many dirty pages backed by
427 * a congested BDI
429 } zone_flags_t;
431 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
433 set_bit(flag, &zone->flags);
436 static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
438 return test_and_set_bit(flag, &zone->flags);
441 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
443 clear_bit(flag, &zone->flags);
446 static inline int zone_is_reclaim_congested(const struct zone *zone)
448 return test_bit(ZONE_CONGESTED, &zone->flags);
451 static inline int zone_is_reclaim_locked(const struct zone *zone)
453 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
456 static inline int zone_is_oom_locked(const struct zone *zone)
458 return test_bit(ZONE_OOM_LOCKED, &zone->flags);
461 #ifdef CONFIG_SMP
462 unsigned long zone_nr_free_pages(struct zone *zone);
463 #else
464 #define zone_nr_free_pages(zone) zone_page_state(zone, NR_FREE_PAGES)
465 #endif /* CONFIG_SMP */
468 * The "priority" of VM scanning is how much of the queues we will scan in one
469 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
470 * queues ("queue_length >> 12") during an aging round.
472 #define DEF_PRIORITY 12
474 /* Maximum number of zones on a zonelist */
475 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
477 #ifdef CONFIG_NUMA
480 * The NUMA zonelists are doubled becausse we need zonelists that restrict the
481 * allocations to a single node for GFP_THISNODE.
483 * [0] : Zonelist with fallback
484 * [1] : No fallback (GFP_THISNODE)
486 #define MAX_ZONELISTS 2
490 * We cache key information from each zonelist for smaller cache
491 * footprint when scanning for free pages in get_page_from_freelist().
493 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
494 * up short of free memory since the last time (last_fullzone_zap)
495 * we zero'd fullzones.
496 * 2) The array z_to_n[] maps each zone in the zonelist to its node
497 * id, so that we can efficiently evaluate whether that node is
498 * set in the current tasks mems_allowed.
500 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
501 * indexed by a zones offset in the zonelist zones[] array.
503 * The get_page_from_freelist() routine does two scans. During the
504 * first scan, we skip zones whose corresponding bit in 'fullzones'
505 * is set or whose corresponding node in current->mems_allowed (which
506 * comes from cpusets) is not set. During the second scan, we bypass
507 * this zonelist_cache, to ensure we look methodically at each zone.
509 * Once per second, we zero out (zap) fullzones, forcing us to
510 * reconsider nodes that might have regained more free memory.
511 * The field last_full_zap is the time we last zapped fullzones.
513 * This mechanism reduces the amount of time we waste repeatedly
514 * reexaming zones for free memory when they just came up low on
515 * memory momentarilly ago.
517 * The zonelist_cache struct members logically belong in struct
518 * zonelist. However, the mempolicy zonelists constructed for
519 * MPOL_BIND are intentionally variable length (and usually much
520 * shorter). A general purpose mechanism for handling structs with
521 * multiple variable length members is more mechanism than we want
522 * here. We resort to some special case hackery instead.
524 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
525 * part because they are shorter), so we put the fixed length stuff
526 * at the front of the zonelist struct, ending in a variable length
527 * zones[], as is needed by MPOL_BIND.
529 * Then we put the optional zonelist cache on the end of the zonelist
530 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
531 * the fixed length portion at the front of the struct. This pointer
532 * both enables us to find the zonelist cache, and in the case of
533 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
534 * to know that the zonelist cache is not there.
536 * The end result is that struct zonelists come in two flavors:
537 * 1) The full, fixed length version, shown below, and
538 * 2) The custom zonelists for MPOL_BIND.
539 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
541 * Even though there may be multiple CPU cores on a node modifying
542 * fullzones or last_full_zap in the same zonelist_cache at the same
543 * time, we don't lock it. This is just hint data - if it is wrong now
544 * and then, the allocator will still function, perhaps a bit slower.
548 struct zonelist_cache {
549 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
550 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
551 unsigned long last_full_zap; /* when last zap'd (jiffies) */
553 #else
554 #define MAX_ZONELISTS 1
555 struct zonelist_cache;
556 #endif
559 * This struct contains information about a zone in a zonelist. It is stored
560 * here to avoid dereferences into large structures and lookups of tables
562 struct zoneref {
563 struct zone *zone; /* Pointer to actual zone */
564 int zone_idx; /* zone_idx(zoneref->zone) */
568 * One allocation request operates on a zonelist. A zonelist
569 * is a list of zones, the first one is the 'goal' of the
570 * allocation, the other zones are fallback zones, in decreasing
571 * priority.
573 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
574 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
576 * To speed the reading of the zonelist, the zonerefs contain the zone index
577 * of the entry being read. Helper functions to access information given
578 * a struct zoneref are
580 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
581 * zonelist_zone_idx() - Return the index of the zone for an entry
582 * zonelist_node_idx() - Return the index of the node for an entry
584 struct zonelist {
585 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
586 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
587 #ifdef CONFIG_NUMA
588 struct zonelist_cache zlcache; // optional ...
589 #endif
592 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
593 struct node_active_region {
594 unsigned long start_pfn;
595 unsigned long end_pfn;
596 int nid;
598 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
600 #ifndef CONFIG_DISCONTIGMEM
601 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
602 extern struct page *mem_map;
603 #endif
606 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
607 * (mostly NUMA machines?) to denote a higher-level memory zone than the
608 * zone denotes.
610 * On NUMA machines, each NUMA node would have a pg_data_t to describe
611 * it's memory layout.
613 * Memory statistics and page replacement data structures are maintained on a
614 * per-zone basis.
616 struct bootmem_data;
617 typedef struct pglist_data {
618 struct zone node_zones[MAX_NR_ZONES];
619 struct zonelist node_zonelists[MAX_ZONELISTS];
620 int nr_zones;
621 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
622 struct page *node_mem_map;
623 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
624 struct page_cgroup *node_page_cgroup;
625 #endif
626 #endif
627 #ifndef CONFIG_NO_BOOTMEM
628 struct bootmem_data *bdata;
629 #endif
630 #ifdef CONFIG_MEMORY_HOTPLUG
632 * Must be held any time you expect node_start_pfn, node_present_pages
633 * or node_spanned_pages stay constant. Holding this will also
634 * guarantee that any pfn_valid() stays that way.
636 * Nests above zone->lock and zone->size_seqlock.
638 spinlock_t node_size_lock;
639 #endif
640 unsigned long node_start_pfn;
641 unsigned long node_present_pages; /* total number of physical pages */
642 unsigned long node_spanned_pages; /* total size of physical page
643 range, including holes */
644 int node_id;
645 wait_queue_head_t kswapd_wait;
646 struct task_struct *kswapd;
647 int kswapd_max_order;
648 } pg_data_t;
650 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
651 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
652 #ifdef CONFIG_FLAT_NODE_MEM_MAP
653 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
654 #else
655 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
656 #endif
657 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
659 #include <linux/memory_hotplug.h>
661 extern struct mutex zonelists_mutex;
662 void build_all_zonelists(void *data);
663 void wakeup_kswapd(struct zone *zone, int order);
664 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
665 int classzone_idx, int alloc_flags);
666 enum memmap_context {
667 MEMMAP_EARLY,
668 MEMMAP_HOTPLUG,
670 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
671 unsigned long size,
672 enum memmap_context context);
674 #ifdef CONFIG_HAVE_MEMORY_PRESENT
675 void memory_present(int nid, unsigned long start, unsigned long end);
676 #else
677 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
678 #endif
680 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
681 int local_memory_node(int node_id);
682 #else
683 static inline int local_memory_node(int node_id) { return node_id; };
684 #endif
686 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
687 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
688 #endif
691 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
693 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
695 static inline int populated_zone(struct zone *zone)
697 return (!!zone->present_pages);
700 extern int movable_zone;
702 static inline int zone_movable_is_highmem(void)
704 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
705 return movable_zone == ZONE_HIGHMEM;
706 #else
707 return 0;
708 #endif
711 static inline int is_highmem_idx(enum zone_type idx)
713 #ifdef CONFIG_HIGHMEM
714 return (idx == ZONE_HIGHMEM ||
715 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
716 #else
717 return 0;
718 #endif
721 static inline int is_normal_idx(enum zone_type idx)
723 return (idx == ZONE_NORMAL);
727 * is_highmem - helper function to quickly check if a struct zone is a
728 * highmem zone or not. This is an attempt to keep references
729 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
730 * @zone - pointer to struct zone variable
732 static inline int is_highmem(struct zone *zone)
734 #ifdef CONFIG_HIGHMEM
735 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
736 return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
737 (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
738 zone_movable_is_highmem());
739 #else
740 return 0;
741 #endif
744 static inline int is_normal(struct zone *zone)
746 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
749 static inline int is_dma32(struct zone *zone)
751 #ifdef CONFIG_ZONE_DMA32
752 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
753 #else
754 return 0;
755 #endif
758 static inline int is_dma(struct zone *zone)
760 #ifdef CONFIG_ZONE_DMA
761 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
762 #else
763 return 0;
764 #endif
767 /* These two functions are used to setup the per zone pages min values */
768 struct ctl_table;
769 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
770 void __user *, size_t *, loff_t *);
771 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
772 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
773 void __user *, size_t *, loff_t *);
774 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
775 void __user *, size_t *, loff_t *);
776 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
777 void __user *, size_t *, loff_t *);
778 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
779 void __user *, size_t *, loff_t *);
781 extern int numa_zonelist_order_handler(struct ctl_table *, int,
782 void __user *, size_t *, loff_t *);
783 extern char numa_zonelist_order[];
784 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
786 #ifndef CONFIG_NEED_MULTIPLE_NODES
788 extern struct pglist_data contig_page_data;
789 #define NODE_DATA(nid) (&contig_page_data)
790 #define NODE_MEM_MAP(nid) mem_map
792 #else /* CONFIG_NEED_MULTIPLE_NODES */
794 #include <asm/mmzone.h>
796 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
798 extern struct pglist_data *first_online_pgdat(void);
799 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
800 extern struct zone *next_zone(struct zone *zone);
803 * for_each_online_pgdat - helper macro to iterate over all online nodes
804 * @pgdat - pointer to a pg_data_t variable
806 #define for_each_online_pgdat(pgdat) \
807 for (pgdat = first_online_pgdat(); \
808 pgdat; \
809 pgdat = next_online_pgdat(pgdat))
811 * for_each_zone - helper macro to iterate over all memory zones
812 * @zone - pointer to struct zone variable
814 * The user only needs to declare the zone variable, for_each_zone
815 * fills it in.
817 #define for_each_zone(zone) \
818 for (zone = (first_online_pgdat())->node_zones; \
819 zone; \
820 zone = next_zone(zone))
822 #define for_each_populated_zone(zone) \
823 for (zone = (first_online_pgdat())->node_zones; \
824 zone; \
825 zone = next_zone(zone)) \
826 if (!populated_zone(zone)) \
827 ; /* do nothing */ \
828 else
830 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
832 return zoneref->zone;
835 static inline int zonelist_zone_idx(struct zoneref *zoneref)
837 return zoneref->zone_idx;
840 static inline int zonelist_node_idx(struct zoneref *zoneref)
842 #ifdef CONFIG_NUMA
843 /* zone_to_nid not available in this context */
844 return zoneref->zone->node;
845 #else
846 return 0;
847 #endif /* CONFIG_NUMA */
851 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
852 * @z - The cursor used as a starting point for the search
853 * @highest_zoneidx - The zone index of the highest zone to return
854 * @nodes - An optional nodemask to filter the zonelist with
855 * @zone - The first suitable zone found is returned via this parameter
857 * This function returns the next zone at or below a given zone index that is
858 * within the allowed nodemask using a cursor as the starting point for the
859 * search. The zoneref returned is a cursor that represents the current zone
860 * being examined. It should be advanced by one before calling
861 * next_zones_zonelist again.
863 struct zoneref *next_zones_zonelist(struct zoneref *z,
864 enum zone_type highest_zoneidx,
865 nodemask_t *nodes,
866 struct zone **zone);
869 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
870 * @zonelist - The zonelist to search for a suitable zone
871 * @highest_zoneidx - The zone index of the highest zone to return
872 * @nodes - An optional nodemask to filter the zonelist with
873 * @zone - The first suitable zone found is returned via this parameter
875 * This function returns the first zone at or below a given zone index that is
876 * within the allowed nodemask. The zoneref returned is a cursor that can be
877 * used to iterate the zonelist with next_zones_zonelist by advancing it by
878 * one before calling.
880 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
881 enum zone_type highest_zoneidx,
882 nodemask_t *nodes,
883 struct zone **zone)
885 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
886 zone);
890 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
891 * @zone - The current zone in the iterator
892 * @z - The current pointer within zonelist->zones being iterated
893 * @zlist - The zonelist being iterated
894 * @highidx - The zone index of the highest zone to return
895 * @nodemask - Nodemask allowed by the allocator
897 * This iterator iterates though all zones at or below a given zone index and
898 * within a given nodemask
900 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
901 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
902 zone; \
903 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
906 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
907 * @zone - The current zone in the iterator
908 * @z - The current pointer within zonelist->zones being iterated
909 * @zlist - The zonelist being iterated
910 * @highidx - The zone index of the highest zone to return
912 * This iterator iterates though all zones at or below a given zone index.
914 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
915 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
917 #ifdef CONFIG_SPARSEMEM
918 #include <asm/sparsemem.h>
919 #endif
921 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
922 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
923 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
925 return 0;
927 #endif
929 #ifdef CONFIG_FLATMEM
930 #define pfn_to_nid(pfn) (0)
931 #endif
933 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
934 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
936 #ifdef CONFIG_SPARSEMEM
939 * SECTION_SHIFT #bits space required to store a section #
941 * PA_SECTION_SHIFT physical address to/from section number
942 * PFN_SECTION_SHIFT pfn to/from section number
944 #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
946 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
947 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
949 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
951 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
952 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
954 #define SECTION_BLOCKFLAGS_BITS \
955 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
957 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
958 #error Allocator MAX_ORDER exceeds SECTION_SIZE
959 #endif
961 struct page;
962 struct page_cgroup;
963 struct mem_section {
965 * This is, logically, a pointer to an array of struct
966 * pages. However, it is stored with some other magic.
967 * (see sparse.c::sparse_init_one_section())
969 * Additionally during early boot we encode node id of
970 * the location of the section here to guide allocation.
971 * (see sparse.c::memory_present())
973 * Making it a UL at least makes someone do a cast
974 * before using it wrong.
976 unsigned long section_mem_map;
978 /* See declaration of similar field in struct zone */
979 unsigned long *pageblock_flags;
980 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
982 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
983 * section. (see memcontrol.h/page_cgroup.h about this.)
985 struct page_cgroup *page_cgroup;
986 unsigned long pad;
987 #endif
990 #ifdef CONFIG_SPARSEMEM_EXTREME
991 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
992 #else
993 #define SECTIONS_PER_ROOT 1
994 #endif
996 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
997 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
998 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1000 #ifdef CONFIG_SPARSEMEM_EXTREME
1001 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1002 #else
1003 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1004 #endif
1006 static inline struct mem_section *__nr_to_section(unsigned long nr)
1008 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1009 return NULL;
1010 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1012 extern int __section_nr(struct mem_section* ms);
1013 extern unsigned long usemap_size(void);
1016 * We use the lower bits of the mem_map pointer to store
1017 * a little bit of information. There should be at least
1018 * 3 bits here due to 32-bit alignment.
1020 #define SECTION_MARKED_PRESENT (1UL<<0)
1021 #define SECTION_HAS_MEM_MAP (1UL<<1)
1022 #define SECTION_MAP_LAST_BIT (1UL<<2)
1023 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1024 #define SECTION_NID_SHIFT 2
1026 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1028 unsigned long map = section->section_mem_map;
1029 map &= SECTION_MAP_MASK;
1030 return (struct page *)map;
1033 static inline int present_section(struct mem_section *section)
1035 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1038 static inline int present_section_nr(unsigned long nr)
1040 return present_section(__nr_to_section(nr));
1043 static inline int valid_section(struct mem_section *section)
1045 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1048 static inline int valid_section_nr(unsigned long nr)
1050 return valid_section(__nr_to_section(nr));
1053 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1055 return __nr_to_section(pfn_to_section_nr(pfn));
1058 static inline int pfn_valid(unsigned long pfn)
1060 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1061 return 0;
1062 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1065 static inline int pfn_present(unsigned long pfn)
1067 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1068 return 0;
1069 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1073 * These are _only_ used during initialisation, therefore they
1074 * can use __initdata ... They could have names to indicate
1075 * this restriction.
1077 #ifdef CONFIG_NUMA
1078 #define pfn_to_nid(pfn) \
1079 ({ \
1080 unsigned long __pfn_to_nid_pfn = (pfn); \
1081 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1083 #else
1084 #define pfn_to_nid(pfn) (0)
1085 #endif
1087 #define early_pfn_valid(pfn) pfn_valid(pfn)
1088 void sparse_init(void);
1089 #else
1090 #define sparse_init() do {} while (0)
1091 #define sparse_index_init(_sec, _nid) do {} while (0)
1092 #endif /* CONFIG_SPARSEMEM */
1094 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1095 bool early_pfn_in_nid(unsigned long pfn, int nid);
1096 #else
1097 #define early_pfn_in_nid(pfn, nid) (1)
1098 #endif
1100 #ifndef early_pfn_valid
1101 #define early_pfn_valid(pfn) (1)
1102 #endif
1104 void memory_present(int nid, unsigned long start, unsigned long end);
1105 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1108 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1109 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1110 * pfn_valid_within() should be used in this case; we optimise this away
1111 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1113 #ifdef CONFIG_HOLES_IN_ZONE
1114 #define pfn_valid_within(pfn) pfn_valid(pfn)
1115 #else
1116 #define pfn_valid_within(pfn) (1)
1117 #endif
1119 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1121 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1122 * associated with it or not. In FLATMEM, it is expected that holes always
1123 * have valid memmap as long as there is valid PFNs either side of the hole.
1124 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1125 * entire section.
1127 * However, an ARM, and maybe other embedded architectures in the future
1128 * free memmap backing holes to save memory on the assumption the memmap is
1129 * never used. The page_zone linkages are then broken even though pfn_valid()
1130 * returns true. A walker of the full memmap must then do this additional
1131 * check to ensure the memmap they are looking at is sane by making sure
1132 * the zone and PFN linkages are still valid. This is expensive, but walkers
1133 * of the full memmap are extremely rare.
1135 int memmap_valid_within(unsigned long pfn,
1136 struct page *page, struct zone *zone);
1137 #else
1138 static inline int memmap_valid_within(unsigned long pfn,
1139 struct page *page, struct zone *zone)
1141 return 1;
1143 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1145 #endif /* !__GENERATING_BOUNDS.H */
1146 #endif /* !__ASSEMBLY__ */
1147 #endif /* _LINUX_MMZONE_H */