iov_iter.c: convert copy_from_iter() to iterate_and_advance
[linux-2.6/btrfs-unstable.git] / fs / f2fs / checkpoint.c
blobdd10a031c0523700cadee8346d254685f45fe9db
1 /*
2 * fs/f2fs/checkpoint.c
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include <trace/events/f2fs.h>
25 static struct kmem_cache *ino_entry_slab;
26 static struct kmem_cache *inode_entry_slab;
29 * We guarantee no failure on the returned page.
31 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
33 struct address_space *mapping = META_MAPPING(sbi);
34 struct page *page = NULL;
35 repeat:
36 page = grab_cache_page(mapping, index);
37 if (!page) {
38 cond_resched();
39 goto repeat;
41 f2fs_wait_on_page_writeback(page, META);
42 SetPageUptodate(page);
43 return page;
47 * We guarantee no failure on the returned page.
49 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
51 struct address_space *mapping = META_MAPPING(sbi);
52 struct page *page;
53 repeat:
54 page = grab_cache_page(mapping, index);
55 if (!page) {
56 cond_resched();
57 goto repeat;
59 if (PageUptodate(page))
60 goto out;
62 if (f2fs_submit_page_bio(sbi, page, index,
63 READ_SYNC | REQ_META | REQ_PRIO))
64 goto repeat;
66 lock_page(page);
67 if (unlikely(page->mapping != mapping)) {
68 f2fs_put_page(page, 1);
69 goto repeat;
71 out:
72 return page;
75 struct page *get_meta_page_ra(struct f2fs_sb_info *sbi, pgoff_t index)
77 bool readahead = false;
78 struct page *page;
80 page = find_get_page(META_MAPPING(sbi), index);
81 if (!page || (page && !PageUptodate(page)))
82 readahead = true;
83 f2fs_put_page(page, 0);
85 if (readahead)
86 ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR);
87 return get_meta_page(sbi, index);
90 static inline block_t get_max_meta_blks(struct f2fs_sb_info *sbi, int type)
92 switch (type) {
93 case META_NAT:
94 return NM_I(sbi)->max_nid / NAT_ENTRY_PER_BLOCK;
95 case META_SIT:
96 return SIT_BLK_CNT(sbi);
97 case META_SSA:
98 case META_CP:
99 return 0;
100 case META_POR:
101 return MAX_BLKADDR(sbi);
102 default:
103 BUG();
108 * Readahead CP/NAT/SIT/SSA pages
110 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, int type)
112 block_t prev_blk_addr = 0;
113 struct page *page;
114 block_t blkno = start;
115 block_t max_blks = get_max_meta_blks(sbi, type);
117 struct f2fs_io_info fio = {
118 .type = META,
119 .rw = READ_SYNC | REQ_META | REQ_PRIO
122 for (; nrpages-- > 0; blkno++) {
123 block_t blk_addr;
125 switch (type) {
126 case META_NAT:
127 /* get nat block addr */
128 if (unlikely(blkno >= max_blks))
129 blkno = 0;
130 blk_addr = current_nat_addr(sbi,
131 blkno * NAT_ENTRY_PER_BLOCK);
132 break;
133 case META_SIT:
134 /* get sit block addr */
135 if (unlikely(blkno >= max_blks))
136 goto out;
137 blk_addr = current_sit_addr(sbi,
138 blkno * SIT_ENTRY_PER_BLOCK);
139 if (blkno != start && prev_blk_addr + 1 != blk_addr)
140 goto out;
141 prev_blk_addr = blk_addr;
142 break;
143 case META_SSA:
144 case META_CP:
145 case META_POR:
146 if (unlikely(blkno >= max_blks))
147 goto out;
148 if (unlikely(blkno < SEG0_BLKADDR(sbi)))
149 goto out;
150 blk_addr = blkno;
151 break;
152 default:
153 BUG();
156 page = grab_cache_page(META_MAPPING(sbi), blk_addr);
157 if (!page)
158 continue;
159 if (PageUptodate(page)) {
160 f2fs_put_page(page, 1);
161 continue;
164 f2fs_submit_page_mbio(sbi, page, blk_addr, &fio);
165 f2fs_put_page(page, 0);
167 out:
168 f2fs_submit_merged_bio(sbi, META, READ);
169 return blkno - start;
172 static int f2fs_write_meta_page(struct page *page,
173 struct writeback_control *wbc)
175 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
177 trace_f2fs_writepage(page, META);
179 if (unlikely(sbi->por_doing))
180 goto redirty_out;
181 if (wbc->for_reclaim)
182 goto redirty_out;
183 if (unlikely(f2fs_cp_error(sbi)))
184 goto redirty_out;
186 f2fs_wait_on_page_writeback(page, META);
187 write_meta_page(sbi, page);
188 dec_page_count(sbi, F2FS_DIRTY_META);
189 unlock_page(page);
190 return 0;
192 redirty_out:
193 redirty_page_for_writepage(wbc, page);
194 return AOP_WRITEPAGE_ACTIVATE;
197 static int f2fs_write_meta_pages(struct address_space *mapping,
198 struct writeback_control *wbc)
200 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
201 long diff, written;
203 trace_f2fs_writepages(mapping->host, wbc, META);
205 /* collect a number of dirty meta pages and write together */
206 if (wbc->for_kupdate ||
207 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
208 goto skip_write;
210 /* if mounting is failed, skip writing node pages */
211 mutex_lock(&sbi->cp_mutex);
212 diff = nr_pages_to_write(sbi, META, wbc);
213 written = sync_meta_pages(sbi, META, wbc->nr_to_write);
214 mutex_unlock(&sbi->cp_mutex);
215 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
216 return 0;
218 skip_write:
219 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
220 return 0;
223 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
224 long nr_to_write)
226 struct address_space *mapping = META_MAPPING(sbi);
227 pgoff_t index = 0, end = LONG_MAX;
228 struct pagevec pvec;
229 long nwritten = 0;
230 struct writeback_control wbc = {
231 .for_reclaim = 0,
234 pagevec_init(&pvec, 0);
236 while (index <= end) {
237 int i, nr_pages;
238 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
239 PAGECACHE_TAG_DIRTY,
240 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
241 if (unlikely(nr_pages == 0))
242 break;
244 for (i = 0; i < nr_pages; i++) {
245 struct page *page = pvec.pages[i];
247 lock_page(page);
249 if (unlikely(page->mapping != mapping)) {
250 continue_unlock:
251 unlock_page(page);
252 continue;
254 if (!PageDirty(page)) {
255 /* someone wrote it for us */
256 goto continue_unlock;
259 if (!clear_page_dirty_for_io(page))
260 goto continue_unlock;
262 if (f2fs_write_meta_page(page, &wbc)) {
263 unlock_page(page);
264 break;
266 nwritten++;
267 if (unlikely(nwritten >= nr_to_write))
268 break;
270 pagevec_release(&pvec);
271 cond_resched();
274 if (nwritten)
275 f2fs_submit_merged_bio(sbi, type, WRITE);
277 return nwritten;
280 static int f2fs_set_meta_page_dirty(struct page *page)
282 trace_f2fs_set_page_dirty(page, META);
284 SetPageUptodate(page);
285 if (!PageDirty(page)) {
286 __set_page_dirty_nobuffers(page);
287 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
288 return 1;
290 return 0;
293 const struct address_space_operations f2fs_meta_aops = {
294 .writepage = f2fs_write_meta_page,
295 .writepages = f2fs_write_meta_pages,
296 .set_page_dirty = f2fs_set_meta_page_dirty,
299 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
301 struct ino_entry *e;
302 retry:
303 spin_lock(&sbi->ino_lock[type]);
305 e = radix_tree_lookup(&sbi->ino_root[type], ino);
306 if (!e) {
307 e = kmem_cache_alloc(ino_entry_slab, GFP_ATOMIC);
308 if (!e) {
309 spin_unlock(&sbi->ino_lock[type]);
310 goto retry;
312 if (radix_tree_insert(&sbi->ino_root[type], ino, e)) {
313 spin_unlock(&sbi->ino_lock[type]);
314 kmem_cache_free(ino_entry_slab, e);
315 goto retry;
317 memset(e, 0, sizeof(struct ino_entry));
318 e->ino = ino;
320 list_add_tail(&e->list, &sbi->ino_list[type]);
322 spin_unlock(&sbi->ino_lock[type]);
325 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
327 struct ino_entry *e;
329 spin_lock(&sbi->ino_lock[type]);
330 e = radix_tree_lookup(&sbi->ino_root[type], ino);
331 if (e) {
332 list_del(&e->list);
333 radix_tree_delete(&sbi->ino_root[type], ino);
334 if (type == ORPHAN_INO)
335 sbi->n_orphans--;
336 spin_unlock(&sbi->ino_lock[type]);
337 kmem_cache_free(ino_entry_slab, e);
338 return;
340 spin_unlock(&sbi->ino_lock[type]);
343 void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
345 /* add new dirty ino entry into list */
346 __add_ino_entry(sbi, ino, type);
349 void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
351 /* remove dirty ino entry from list */
352 __remove_ino_entry(sbi, ino, type);
355 /* mode should be APPEND_INO or UPDATE_INO */
356 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
358 struct ino_entry *e;
359 spin_lock(&sbi->ino_lock[mode]);
360 e = radix_tree_lookup(&sbi->ino_root[mode], ino);
361 spin_unlock(&sbi->ino_lock[mode]);
362 return e ? true : false;
365 void release_dirty_inode(struct f2fs_sb_info *sbi)
367 struct ino_entry *e, *tmp;
368 int i;
370 for (i = APPEND_INO; i <= UPDATE_INO; i++) {
371 spin_lock(&sbi->ino_lock[i]);
372 list_for_each_entry_safe(e, tmp, &sbi->ino_list[i], list) {
373 list_del(&e->list);
374 radix_tree_delete(&sbi->ino_root[i], e->ino);
375 kmem_cache_free(ino_entry_slab, e);
377 spin_unlock(&sbi->ino_lock[i]);
381 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
383 int err = 0;
385 spin_lock(&sbi->ino_lock[ORPHAN_INO]);
386 if (unlikely(sbi->n_orphans >= sbi->max_orphans))
387 err = -ENOSPC;
388 else
389 sbi->n_orphans++;
390 spin_unlock(&sbi->ino_lock[ORPHAN_INO]);
392 return err;
395 void release_orphan_inode(struct f2fs_sb_info *sbi)
397 spin_lock(&sbi->ino_lock[ORPHAN_INO]);
398 f2fs_bug_on(sbi, sbi->n_orphans == 0);
399 sbi->n_orphans--;
400 spin_unlock(&sbi->ino_lock[ORPHAN_INO]);
403 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
405 /* add new orphan ino entry into list */
406 __add_ino_entry(sbi, ino, ORPHAN_INO);
409 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
411 /* remove orphan entry from orphan list */
412 __remove_ino_entry(sbi, ino, ORPHAN_INO);
415 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
417 struct inode *inode = f2fs_iget(sbi->sb, ino);
418 f2fs_bug_on(sbi, IS_ERR(inode));
419 clear_nlink(inode);
421 /* truncate all the data during iput */
422 iput(inode);
425 void recover_orphan_inodes(struct f2fs_sb_info *sbi)
427 block_t start_blk, orphan_blkaddr, i, j;
429 if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
430 return;
432 sbi->por_doing = true;
434 start_blk = __start_cp_addr(sbi) + 1 +
435 le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
436 orphan_blkaddr = __start_sum_addr(sbi) - 1;
438 ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP);
440 for (i = 0; i < orphan_blkaddr; i++) {
441 struct page *page = get_meta_page(sbi, start_blk + i);
442 struct f2fs_orphan_block *orphan_blk;
444 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
445 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
446 nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
447 recover_orphan_inode(sbi, ino);
449 f2fs_put_page(page, 1);
451 /* clear Orphan Flag */
452 clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
453 sbi->por_doing = false;
454 return;
457 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
459 struct list_head *head;
460 struct f2fs_orphan_block *orphan_blk = NULL;
461 unsigned int nentries = 0;
462 unsigned short index;
463 unsigned short orphan_blocks =
464 (unsigned short)GET_ORPHAN_BLOCKS(sbi->n_orphans);
465 struct page *page = NULL;
466 struct ino_entry *orphan = NULL;
468 for (index = 0; index < orphan_blocks; index++)
469 grab_meta_page(sbi, start_blk + index);
471 index = 1;
472 spin_lock(&sbi->ino_lock[ORPHAN_INO]);
473 head = &sbi->ino_list[ORPHAN_INO];
475 /* loop for each orphan inode entry and write them in Jornal block */
476 list_for_each_entry(orphan, head, list) {
477 if (!page) {
478 page = find_get_page(META_MAPPING(sbi), start_blk++);
479 f2fs_bug_on(sbi, !page);
480 orphan_blk =
481 (struct f2fs_orphan_block *)page_address(page);
482 memset(orphan_blk, 0, sizeof(*orphan_blk));
483 f2fs_put_page(page, 0);
486 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
488 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
490 * an orphan block is full of 1020 entries,
491 * then we need to flush current orphan blocks
492 * and bring another one in memory
494 orphan_blk->blk_addr = cpu_to_le16(index);
495 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
496 orphan_blk->entry_count = cpu_to_le32(nentries);
497 set_page_dirty(page);
498 f2fs_put_page(page, 1);
499 index++;
500 nentries = 0;
501 page = NULL;
505 if (page) {
506 orphan_blk->blk_addr = cpu_to_le16(index);
507 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
508 orphan_blk->entry_count = cpu_to_le32(nentries);
509 set_page_dirty(page);
510 f2fs_put_page(page, 1);
513 spin_unlock(&sbi->ino_lock[ORPHAN_INO]);
516 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
517 block_t cp_addr, unsigned long long *version)
519 struct page *cp_page_1, *cp_page_2 = NULL;
520 unsigned long blk_size = sbi->blocksize;
521 struct f2fs_checkpoint *cp_block;
522 unsigned long long cur_version = 0, pre_version = 0;
523 size_t crc_offset;
524 __u32 crc = 0;
526 /* Read the 1st cp block in this CP pack */
527 cp_page_1 = get_meta_page(sbi, cp_addr);
529 /* get the version number */
530 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
531 crc_offset = le32_to_cpu(cp_block->checksum_offset);
532 if (crc_offset >= blk_size)
533 goto invalid_cp1;
535 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
536 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
537 goto invalid_cp1;
539 pre_version = cur_cp_version(cp_block);
541 /* Read the 2nd cp block in this CP pack */
542 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
543 cp_page_2 = get_meta_page(sbi, cp_addr);
545 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
546 crc_offset = le32_to_cpu(cp_block->checksum_offset);
547 if (crc_offset >= blk_size)
548 goto invalid_cp2;
550 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
551 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
552 goto invalid_cp2;
554 cur_version = cur_cp_version(cp_block);
556 if (cur_version == pre_version) {
557 *version = cur_version;
558 f2fs_put_page(cp_page_2, 1);
559 return cp_page_1;
561 invalid_cp2:
562 f2fs_put_page(cp_page_2, 1);
563 invalid_cp1:
564 f2fs_put_page(cp_page_1, 1);
565 return NULL;
568 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
570 struct f2fs_checkpoint *cp_block;
571 struct f2fs_super_block *fsb = sbi->raw_super;
572 struct page *cp1, *cp2, *cur_page;
573 unsigned long blk_size = sbi->blocksize;
574 unsigned long long cp1_version = 0, cp2_version = 0;
575 unsigned long long cp_start_blk_no;
576 unsigned int cp_blks = 1 + le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
577 block_t cp_blk_no;
578 int i;
580 sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
581 if (!sbi->ckpt)
582 return -ENOMEM;
584 * Finding out valid cp block involves read both
585 * sets( cp pack1 and cp pack 2)
587 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
588 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
590 /* The second checkpoint pack should start at the next segment */
591 cp_start_blk_no += ((unsigned long long)1) <<
592 le32_to_cpu(fsb->log_blocks_per_seg);
593 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
595 if (cp1 && cp2) {
596 if (ver_after(cp2_version, cp1_version))
597 cur_page = cp2;
598 else
599 cur_page = cp1;
600 } else if (cp1) {
601 cur_page = cp1;
602 } else if (cp2) {
603 cur_page = cp2;
604 } else {
605 goto fail_no_cp;
608 cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
609 memcpy(sbi->ckpt, cp_block, blk_size);
611 if (cp_blks <= 1)
612 goto done;
614 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
615 if (cur_page == cp2)
616 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
618 for (i = 1; i < cp_blks; i++) {
619 void *sit_bitmap_ptr;
620 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
622 cur_page = get_meta_page(sbi, cp_blk_no + i);
623 sit_bitmap_ptr = page_address(cur_page);
624 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
625 f2fs_put_page(cur_page, 1);
627 done:
628 f2fs_put_page(cp1, 1);
629 f2fs_put_page(cp2, 1);
630 return 0;
632 fail_no_cp:
633 kfree(sbi->ckpt);
634 return -EINVAL;
637 static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
639 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
641 if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR))
642 return -EEXIST;
644 set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
645 F2FS_I(inode)->dirty_dir = new;
646 list_add_tail(&new->list, &sbi->dir_inode_list);
647 stat_inc_dirty_dir(sbi);
648 return 0;
651 void update_dirty_page(struct inode *inode, struct page *page)
653 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
654 struct dir_inode_entry *new;
655 int ret = 0;
657 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
658 return;
660 if (!S_ISDIR(inode->i_mode)) {
661 inode_inc_dirty_pages(inode);
662 goto out;
665 new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
666 new->inode = inode;
667 INIT_LIST_HEAD(&new->list);
669 spin_lock(&sbi->dir_inode_lock);
670 ret = __add_dirty_inode(inode, new);
671 inode_inc_dirty_pages(inode);
672 spin_unlock(&sbi->dir_inode_lock);
674 if (ret)
675 kmem_cache_free(inode_entry_slab, new);
676 out:
677 SetPagePrivate(page);
680 void add_dirty_dir_inode(struct inode *inode)
682 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
683 struct dir_inode_entry *new =
684 f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
685 int ret = 0;
687 new->inode = inode;
688 INIT_LIST_HEAD(&new->list);
690 spin_lock(&sbi->dir_inode_lock);
691 ret = __add_dirty_inode(inode, new);
692 spin_unlock(&sbi->dir_inode_lock);
694 if (ret)
695 kmem_cache_free(inode_entry_slab, new);
698 void remove_dirty_dir_inode(struct inode *inode)
700 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
701 struct dir_inode_entry *entry;
703 if (!S_ISDIR(inode->i_mode))
704 return;
706 spin_lock(&sbi->dir_inode_lock);
707 if (get_dirty_pages(inode) ||
708 !is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) {
709 spin_unlock(&sbi->dir_inode_lock);
710 return;
713 entry = F2FS_I(inode)->dirty_dir;
714 list_del(&entry->list);
715 F2FS_I(inode)->dirty_dir = NULL;
716 clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
717 stat_dec_dirty_dir(sbi);
718 spin_unlock(&sbi->dir_inode_lock);
719 kmem_cache_free(inode_entry_slab, entry);
721 /* Only from the recovery routine */
722 if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
723 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
724 iput(inode);
728 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
730 struct list_head *head;
731 struct dir_inode_entry *entry;
732 struct inode *inode;
733 retry:
734 spin_lock(&sbi->dir_inode_lock);
736 head = &sbi->dir_inode_list;
737 if (list_empty(head)) {
738 spin_unlock(&sbi->dir_inode_lock);
739 return;
741 entry = list_entry(head->next, struct dir_inode_entry, list);
742 inode = igrab(entry->inode);
743 spin_unlock(&sbi->dir_inode_lock);
744 if (inode) {
745 filemap_fdatawrite(inode->i_mapping);
746 iput(inode);
747 } else {
749 * We should submit bio, since it exists several
750 * wribacking dentry pages in the freeing inode.
752 f2fs_submit_merged_bio(sbi, DATA, WRITE);
754 goto retry;
758 * Freeze all the FS-operations for checkpoint.
760 static int block_operations(struct f2fs_sb_info *sbi)
762 struct writeback_control wbc = {
763 .sync_mode = WB_SYNC_ALL,
764 .nr_to_write = LONG_MAX,
765 .for_reclaim = 0,
767 struct blk_plug plug;
768 int err = 0;
770 blk_start_plug(&plug);
772 retry_flush_dents:
773 f2fs_lock_all(sbi);
774 /* write all the dirty dentry pages */
775 if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
776 f2fs_unlock_all(sbi);
777 sync_dirty_dir_inodes(sbi);
778 if (unlikely(f2fs_cp_error(sbi))) {
779 err = -EIO;
780 goto out;
782 goto retry_flush_dents;
786 * POR: we should ensure that there are no dirty node pages
787 * until finishing nat/sit flush.
789 retry_flush_nodes:
790 down_write(&sbi->node_write);
792 if (get_pages(sbi, F2FS_DIRTY_NODES)) {
793 up_write(&sbi->node_write);
794 sync_node_pages(sbi, 0, &wbc);
795 if (unlikely(f2fs_cp_error(sbi))) {
796 f2fs_unlock_all(sbi);
797 err = -EIO;
798 goto out;
800 goto retry_flush_nodes;
802 out:
803 blk_finish_plug(&plug);
804 return err;
807 static void unblock_operations(struct f2fs_sb_info *sbi)
809 up_write(&sbi->node_write);
810 f2fs_unlock_all(sbi);
813 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
815 DEFINE_WAIT(wait);
817 for (;;) {
818 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
820 if (!get_pages(sbi, F2FS_WRITEBACK))
821 break;
823 io_schedule();
825 finish_wait(&sbi->cp_wait, &wait);
828 static void do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
830 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
831 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
832 struct f2fs_nm_info *nm_i = NM_I(sbi);
833 nid_t last_nid = nm_i->next_scan_nid;
834 block_t start_blk;
835 struct page *cp_page;
836 unsigned int data_sum_blocks, orphan_blocks;
837 __u32 crc32 = 0;
838 void *kaddr;
839 int i;
840 int cp_payload_blks = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
843 * This avoids to conduct wrong roll-forward operations and uses
844 * metapages, so should be called prior to sync_meta_pages below.
846 discard_next_dnode(sbi, NEXT_FREE_BLKADDR(sbi, curseg));
848 /* Flush all the NAT/SIT pages */
849 while (get_pages(sbi, F2FS_DIRTY_META)) {
850 sync_meta_pages(sbi, META, LONG_MAX);
851 if (unlikely(f2fs_cp_error(sbi)))
852 return;
855 next_free_nid(sbi, &last_nid);
858 * modify checkpoint
859 * version number is already updated
861 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
862 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
863 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
864 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
865 ckpt->cur_node_segno[i] =
866 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
867 ckpt->cur_node_blkoff[i] =
868 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
869 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
870 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
872 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
873 ckpt->cur_data_segno[i] =
874 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
875 ckpt->cur_data_blkoff[i] =
876 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
877 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
878 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
881 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
882 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
883 ckpt->next_free_nid = cpu_to_le32(last_nid);
885 /* 2 cp + n data seg summary + orphan inode blocks */
886 data_sum_blocks = npages_for_summary_flush(sbi);
887 if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
888 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
889 else
890 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
892 orphan_blocks = GET_ORPHAN_BLOCKS(sbi->n_orphans);
893 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
894 orphan_blocks);
896 if (cpc->reason == CP_UMOUNT) {
897 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
898 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
899 cp_payload_blks + data_sum_blocks +
900 orphan_blocks + NR_CURSEG_NODE_TYPE);
901 } else {
902 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
903 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
904 cp_payload_blks + data_sum_blocks +
905 orphan_blocks);
908 if (sbi->n_orphans)
909 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
910 else
911 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
913 if (sbi->need_fsck)
914 set_ckpt_flags(ckpt, CP_FSCK_FLAG);
916 /* update SIT/NAT bitmap */
917 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
918 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
920 crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
921 *((__le32 *)((unsigned char *)ckpt +
922 le32_to_cpu(ckpt->checksum_offset)))
923 = cpu_to_le32(crc32);
925 start_blk = __start_cp_addr(sbi);
927 /* write out checkpoint buffer at block 0 */
928 cp_page = grab_meta_page(sbi, start_blk++);
929 kaddr = page_address(cp_page);
930 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
931 set_page_dirty(cp_page);
932 f2fs_put_page(cp_page, 1);
934 for (i = 1; i < 1 + cp_payload_blks; i++) {
935 cp_page = grab_meta_page(sbi, start_blk++);
936 kaddr = page_address(cp_page);
937 memcpy(kaddr, (char *)ckpt + i * F2FS_BLKSIZE,
938 (1 << sbi->log_blocksize));
939 set_page_dirty(cp_page);
940 f2fs_put_page(cp_page, 1);
943 if (sbi->n_orphans) {
944 write_orphan_inodes(sbi, start_blk);
945 start_blk += orphan_blocks;
948 write_data_summaries(sbi, start_blk);
949 start_blk += data_sum_blocks;
950 if (cpc->reason == CP_UMOUNT) {
951 write_node_summaries(sbi, start_blk);
952 start_blk += NR_CURSEG_NODE_TYPE;
955 /* writeout checkpoint block */
956 cp_page = grab_meta_page(sbi, start_blk);
957 kaddr = page_address(cp_page);
958 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
959 set_page_dirty(cp_page);
960 f2fs_put_page(cp_page, 1);
962 /* wait for previous submitted node/meta pages writeback */
963 wait_on_all_pages_writeback(sbi);
965 if (unlikely(f2fs_cp_error(sbi)))
966 return;
968 filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
969 filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
971 /* update user_block_counts */
972 sbi->last_valid_block_count = sbi->total_valid_block_count;
973 sbi->alloc_valid_block_count = 0;
975 /* Here, we only have one bio having CP pack */
976 sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
978 release_dirty_inode(sbi);
980 if (unlikely(f2fs_cp_error(sbi)))
981 return;
983 clear_prefree_segments(sbi);
984 F2FS_RESET_SB_DIRT(sbi);
988 * We guarantee that this checkpoint procedure will not fail.
990 void write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
992 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
993 unsigned long long ckpt_ver;
995 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
997 mutex_lock(&sbi->cp_mutex);
999 if (!sbi->s_dirty && cpc->reason != CP_DISCARD)
1000 goto out;
1001 if (unlikely(f2fs_cp_error(sbi)))
1002 goto out;
1003 if (block_operations(sbi))
1004 goto out;
1006 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1008 f2fs_submit_merged_bio(sbi, DATA, WRITE);
1009 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1010 f2fs_submit_merged_bio(sbi, META, WRITE);
1013 * update checkpoint pack index
1014 * Increase the version number so that
1015 * SIT entries and seg summaries are written at correct place
1017 ckpt_ver = cur_cp_version(ckpt);
1018 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1020 /* write cached NAT/SIT entries to NAT/SIT area */
1021 flush_nat_entries(sbi);
1022 flush_sit_entries(sbi, cpc);
1024 /* unlock all the fs_lock[] in do_checkpoint() */
1025 do_checkpoint(sbi, cpc);
1027 unblock_operations(sbi);
1028 stat_inc_cp_count(sbi->stat_info);
1029 out:
1030 mutex_unlock(&sbi->cp_mutex);
1031 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1034 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1036 int i;
1038 for (i = 0; i < MAX_INO_ENTRY; i++) {
1039 INIT_RADIX_TREE(&sbi->ino_root[i], GFP_ATOMIC);
1040 spin_lock_init(&sbi->ino_lock[i]);
1041 INIT_LIST_HEAD(&sbi->ino_list[i]);
1045 * considering 512 blocks in a segment 8 blocks are needed for cp
1046 * and log segment summaries. Remaining blocks are used to keep
1047 * orphan entries with the limitation one reserved segment
1048 * for cp pack we can have max 1020*504 orphan entries
1050 sbi->n_orphans = 0;
1051 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1052 NR_CURSEG_TYPE) * F2FS_ORPHANS_PER_BLOCK;
1055 int __init create_checkpoint_caches(void)
1057 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1058 sizeof(struct ino_entry));
1059 if (!ino_entry_slab)
1060 return -ENOMEM;
1061 inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
1062 sizeof(struct dir_inode_entry));
1063 if (!inode_entry_slab) {
1064 kmem_cache_destroy(ino_entry_slab);
1065 return -ENOMEM;
1067 return 0;
1070 void destroy_checkpoint_caches(void)
1072 kmem_cache_destroy(ino_entry_slab);
1073 kmem_cache_destroy(inode_entry_slab);