net/mlx4_core: Reset flow activation upon SRIOV fatal command cases
[linux-2.6/btrfs-unstable.git] / net / socket.c
blob9fcf15b61009b5d9c1da3c25c54a29d4d81c2b1c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
58 * Based upon Swansea University Computer Society NET3.039
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
116 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
117 unsigned long nr_segs, loff_t pos);
118 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
119 unsigned long nr_segs, loff_t pos);
120 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
122 static int sock_close(struct inode *inode, struct file *file);
123 static unsigned int sock_poll(struct file *file,
124 struct poll_table_struct *wait);
125 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
126 #ifdef CONFIG_COMPAT
127 static long compat_sock_ioctl(struct file *file,
128 unsigned int cmd, unsigned long arg);
129 #endif
130 static int sock_fasync(int fd, struct file *filp, int on);
131 static ssize_t sock_sendpage(struct file *file, struct page *page,
132 int offset, size_t size, loff_t *ppos, int more);
133 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
134 struct pipe_inode_info *pipe, size_t len,
135 unsigned int flags);
138 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
139 * in the operation structures but are done directly via the socketcall() multiplexor.
142 static const struct file_operations socket_file_ops = {
143 .owner = THIS_MODULE,
144 .llseek = no_llseek,
145 .aio_read = sock_aio_read,
146 .aio_write = sock_aio_write,
147 .poll = sock_poll,
148 .unlocked_ioctl = sock_ioctl,
149 #ifdef CONFIG_COMPAT
150 .compat_ioctl = compat_sock_ioctl,
151 #endif
152 .mmap = sock_mmap,
153 .release = sock_close,
154 .fasync = sock_fasync,
155 .sendpage = sock_sendpage,
156 .splice_write = generic_splice_sendpage,
157 .splice_read = sock_splice_read,
161 * The protocol list. Each protocol is registered in here.
164 static DEFINE_SPINLOCK(net_family_lock);
165 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
168 * Statistics counters of the socket lists
171 static DEFINE_PER_CPU(int, sockets_in_use);
174 * Support routines.
175 * Move socket addresses back and forth across the kernel/user
176 * divide and look after the messy bits.
180 * move_addr_to_kernel - copy a socket address into kernel space
181 * @uaddr: Address in user space
182 * @kaddr: Address in kernel space
183 * @ulen: Length in user space
185 * The address is copied into kernel space. If the provided address is
186 * too long an error code of -EINVAL is returned. If the copy gives
187 * invalid addresses -EFAULT is returned. On a success 0 is returned.
190 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
192 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
193 return -EINVAL;
194 if (ulen == 0)
195 return 0;
196 if (copy_from_user(kaddr, uaddr, ulen))
197 return -EFAULT;
198 return audit_sockaddr(ulen, kaddr);
202 * move_addr_to_user - copy an address to user space
203 * @kaddr: kernel space address
204 * @klen: length of address in kernel
205 * @uaddr: user space address
206 * @ulen: pointer to user length field
208 * The value pointed to by ulen on entry is the buffer length available.
209 * This is overwritten with the buffer space used. -EINVAL is returned
210 * if an overlong buffer is specified or a negative buffer size. -EFAULT
211 * is returned if either the buffer or the length field are not
212 * accessible.
213 * After copying the data up to the limit the user specifies, the true
214 * length of the data is written over the length limit the user
215 * specified. Zero is returned for a success.
218 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
219 void __user *uaddr, int __user *ulen)
221 int err;
222 int len;
224 BUG_ON(klen > sizeof(struct sockaddr_storage));
225 err = get_user(len, ulen);
226 if (err)
227 return err;
228 if (len > klen)
229 len = klen;
230 if (len < 0)
231 return -EINVAL;
232 if (len) {
233 if (audit_sockaddr(klen, kaddr))
234 return -ENOMEM;
235 if (copy_to_user(uaddr, kaddr, len))
236 return -EFAULT;
239 * "fromlen shall refer to the value before truncation.."
240 * 1003.1g
242 return __put_user(klen, ulen);
245 static struct kmem_cache *sock_inode_cachep __read_mostly;
247 static struct inode *sock_alloc_inode(struct super_block *sb)
249 struct socket_alloc *ei;
250 struct socket_wq *wq;
252 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
253 if (!ei)
254 return NULL;
255 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
256 if (!wq) {
257 kmem_cache_free(sock_inode_cachep, ei);
258 return NULL;
260 init_waitqueue_head(&wq->wait);
261 wq->fasync_list = NULL;
262 RCU_INIT_POINTER(ei->socket.wq, wq);
264 ei->socket.state = SS_UNCONNECTED;
265 ei->socket.flags = 0;
266 ei->socket.ops = NULL;
267 ei->socket.sk = NULL;
268 ei->socket.file = NULL;
270 return &ei->vfs_inode;
273 static void sock_destroy_inode(struct inode *inode)
275 struct socket_alloc *ei;
276 struct socket_wq *wq;
278 ei = container_of(inode, struct socket_alloc, vfs_inode);
279 wq = rcu_dereference_protected(ei->socket.wq, 1);
280 kfree_rcu(wq, rcu);
281 kmem_cache_free(sock_inode_cachep, ei);
284 static void init_once(void *foo)
286 struct socket_alloc *ei = (struct socket_alloc *)foo;
288 inode_init_once(&ei->vfs_inode);
291 static int init_inodecache(void)
293 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
294 sizeof(struct socket_alloc),
296 (SLAB_HWCACHE_ALIGN |
297 SLAB_RECLAIM_ACCOUNT |
298 SLAB_MEM_SPREAD),
299 init_once);
300 if (sock_inode_cachep == NULL)
301 return -ENOMEM;
302 return 0;
305 static const struct super_operations sockfs_ops = {
306 .alloc_inode = sock_alloc_inode,
307 .destroy_inode = sock_destroy_inode,
308 .statfs = simple_statfs,
312 * sockfs_dname() is called from d_path().
314 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
316 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
317 dentry->d_inode->i_ino);
320 static const struct dentry_operations sockfs_dentry_operations = {
321 .d_dname = sockfs_dname,
324 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
325 int flags, const char *dev_name, void *data)
327 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
328 &sockfs_dentry_operations, SOCKFS_MAGIC);
331 static struct vfsmount *sock_mnt __read_mostly;
333 static struct file_system_type sock_fs_type = {
334 .name = "sockfs",
335 .mount = sockfs_mount,
336 .kill_sb = kill_anon_super,
340 * Obtains the first available file descriptor and sets it up for use.
342 * These functions create file structures and maps them to fd space
343 * of the current process. On success it returns file descriptor
344 * and file struct implicitly stored in sock->file.
345 * Note that another thread may close file descriptor before we return
346 * from this function. We use the fact that now we do not refer
347 * to socket after mapping. If one day we will need it, this
348 * function will increment ref. count on file by 1.
350 * In any case returned fd MAY BE not valid!
351 * This race condition is unavoidable
352 * with shared fd spaces, we cannot solve it inside kernel,
353 * but we take care of internal coherence yet.
356 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
358 struct qstr name = { .name = "" };
359 struct path path;
360 struct file *file;
362 if (dname) {
363 name.name = dname;
364 name.len = strlen(name.name);
365 } else if (sock->sk) {
366 name.name = sock->sk->sk_prot_creator->name;
367 name.len = strlen(name.name);
369 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
370 if (unlikely(!path.dentry))
371 return ERR_PTR(-ENOMEM);
372 path.mnt = mntget(sock_mnt);
374 d_instantiate(path.dentry, SOCK_INODE(sock));
376 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
377 &socket_file_ops);
378 if (unlikely(IS_ERR(file))) {
379 /* drop dentry, keep inode */
380 ihold(path.dentry->d_inode);
381 path_put(&path);
382 return file;
385 sock->file = file;
386 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
387 file->private_data = sock;
388 return file;
390 EXPORT_SYMBOL(sock_alloc_file);
392 static int sock_map_fd(struct socket *sock, int flags)
394 struct file *newfile;
395 int fd = get_unused_fd_flags(flags);
396 if (unlikely(fd < 0))
397 return fd;
399 newfile = sock_alloc_file(sock, flags, NULL);
400 if (likely(!IS_ERR(newfile))) {
401 fd_install(fd, newfile);
402 return fd;
405 put_unused_fd(fd);
406 return PTR_ERR(newfile);
409 struct socket *sock_from_file(struct file *file, int *err)
411 if (file->f_op == &socket_file_ops)
412 return file->private_data; /* set in sock_map_fd */
414 *err = -ENOTSOCK;
415 return NULL;
417 EXPORT_SYMBOL(sock_from_file);
420 * sockfd_lookup - Go from a file number to its socket slot
421 * @fd: file handle
422 * @err: pointer to an error code return
424 * The file handle passed in is locked and the socket it is bound
425 * too is returned. If an error occurs the err pointer is overwritten
426 * with a negative errno code and NULL is returned. The function checks
427 * for both invalid handles and passing a handle which is not a socket.
429 * On a success the socket object pointer is returned.
432 struct socket *sockfd_lookup(int fd, int *err)
434 struct file *file;
435 struct socket *sock;
437 file = fget(fd);
438 if (!file) {
439 *err = -EBADF;
440 return NULL;
443 sock = sock_from_file(file, err);
444 if (!sock)
445 fput(file);
446 return sock;
448 EXPORT_SYMBOL(sockfd_lookup);
450 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
452 struct fd f = fdget(fd);
453 struct socket *sock;
455 *err = -EBADF;
456 if (f.file) {
457 sock = sock_from_file(f.file, err);
458 if (likely(sock)) {
459 *fput_needed = f.flags;
460 return sock;
462 fdput(f);
464 return NULL;
467 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
468 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
469 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
470 static ssize_t sockfs_getxattr(struct dentry *dentry,
471 const char *name, void *value, size_t size)
473 const char *proto_name;
474 size_t proto_size;
475 int error;
477 error = -ENODATA;
478 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
479 proto_name = dentry->d_name.name;
480 proto_size = strlen(proto_name);
482 if (value) {
483 error = -ERANGE;
484 if (proto_size + 1 > size)
485 goto out;
487 strncpy(value, proto_name, proto_size + 1);
489 error = proto_size + 1;
492 out:
493 return error;
496 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
497 size_t size)
499 ssize_t len;
500 ssize_t used = 0;
502 len = security_inode_listsecurity(dentry->d_inode, buffer, size);
503 if (len < 0)
504 return len;
505 used += len;
506 if (buffer) {
507 if (size < used)
508 return -ERANGE;
509 buffer += len;
512 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
513 used += len;
514 if (buffer) {
515 if (size < used)
516 return -ERANGE;
517 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
518 buffer += len;
521 return used;
524 static const struct inode_operations sockfs_inode_ops = {
525 .getxattr = sockfs_getxattr,
526 .listxattr = sockfs_listxattr,
530 * sock_alloc - allocate a socket
532 * Allocate a new inode and socket object. The two are bound together
533 * and initialised. The socket is then returned. If we are out of inodes
534 * NULL is returned.
537 static struct socket *sock_alloc(void)
539 struct inode *inode;
540 struct socket *sock;
542 inode = new_inode_pseudo(sock_mnt->mnt_sb);
543 if (!inode)
544 return NULL;
546 sock = SOCKET_I(inode);
548 kmemcheck_annotate_bitfield(sock, type);
549 inode->i_ino = get_next_ino();
550 inode->i_mode = S_IFSOCK | S_IRWXUGO;
551 inode->i_uid = current_fsuid();
552 inode->i_gid = current_fsgid();
553 inode->i_op = &sockfs_inode_ops;
555 this_cpu_add(sockets_in_use, 1);
556 return sock;
560 * sock_release - close a socket
561 * @sock: socket to close
563 * The socket is released from the protocol stack if it has a release
564 * callback, and the inode is then released if the socket is bound to
565 * an inode not a file.
568 void sock_release(struct socket *sock)
570 if (sock->ops) {
571 struct module *owner = sock->ops->owner;
573 sock->ops->release(sock);
574 sock->ops = NULL;
575 module_put(owner);
578 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
579 pr_err("%s: fasync list not empty!\n", __func__);
581 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
582 return;
584 this_cpu_sub(sockets_in_use, 1);
585 if (!sock->file) {
586 iput(SOCK_INODE(sock));
587 return;
589 sock->file = NULL;
591 EXPORT_SYMBOL(sock_release);
593 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
595 u8 flags = *tx_flags;
597 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
598 flags |= SKBTX_HW_TSTAMP;
600 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
601 flags |= SKBTX_SW_TSTAMP;
603 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED)
604 flags |= SKBTX_SCHED_TSTAMP;
606 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)
607 flags |= SKBTX_ACK_TSTAMP;
609 *tx_flags = flags;
611 EXPORT_SYMBOL(__sock_tx_timestamp);
613 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
614 struct msghdr *msg, size_t size)
616 struct sock_iocb *si = kiocb_to_siocb(iocb);
618 si->sock = sock;
619 si->scm = NULL;
620 si->msg = msg;
621 si->size = size;
623 return sock->ops->sendmsg(iocb, sock, msg, size);
626 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
627 struct msghdr *msg, size_t size)
629 int err = security_socket_sendmsg(sock, msg, size);
631 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
634 static int do_sock_sendmsg(struct socket *sock, struct msghdr *msg,
635 size_t size, bool nosec)
637 struct kiocb iocb;
638 struct sock_iocb siocb;
639 int ret;
641 init_sync_kiocb(&iocb, NULL);
642 iocb.private = &siocb;
643 ret = nosec ? __sock_sendmsg_nosec(&iocb, sock, msg, size) :
644 __sock_sendmsg(&iocb, sock, msg, size);
645 if (-EIOCBQUEUED == ret)
646 ret = wait_on_sync_kiocb(&iocb);
647 return ret;
650 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
652 return do_sock_sendmsg(sock, msg, size, false);
654 EXPORT_SYMBOL(sock_sendmsg);
656 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
658 return do_sock_sendmsg(sock, msg, size, true);
661 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
662 struct kvec *vec, size_t num, size_t size)
664 mm_segment_t oldfs = get_fs();
665 int result;
667 set_fs(KERNEL_DS);
669 * the following is safe, since for compiler definitions of kvec and
670 * iovec are identical, yielding the same in-core layout and alignment
672 iov_iter_init(&msg->msg_iter, WRITE, (struct iovec *)vec, num, size);
673 result = sock_sendmsg(sock, msg, size);
674 set_fs(oldfs);
675 return result;
677 EXPORT_SYMBOL(kernel_sendmsg);
680 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
682 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
683 struct sk_buff *skb)
685 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
686 struct scm_timestamping tss;
687 int empty = 1;
688 struct skb_shared_hwtstamps *shhwtstamps =
689 skb_hwtstamps(skb);
691 /* Race occurred between timestamp enabling and packet
692 receiving. Fill in the current time for now. */
693 if (need_software_tstamp && skb->tstamp.tv64 == 0)
694 __net_timestamp(skb);
696 if (need_software_tstamp) {
697 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
698 struct timeval tv;
699 skb_get_timestamp(skb, &tv);
700 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
701 sizeof(tv), &tv);
702 } else {
703 struct timespec ts;
704 skb_get_timestampns(skb, &ts);
705 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
706 sizeof(ts), &ts);
710 memset(&tss, 0, sizeof(tss));
711 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
712 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
713 empty = 0;
714 if (shhwtstamps &&
715 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
716 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
717 empty = 0;
718 if (!empty)
719 put_cmsg(msg, SOL_SOCKET,
720 SCM_TIMESTAMPING, sizeof(tss), &tss);
722 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
724 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
725 struct sk_buff *skb)
727 int ack;
729 if (!sock_flag(sk, SOCK_WIFI_STATUS))
730 return;
731 if (!skb->wifi_acked_valid)
732 return;
734 ack = skb->wifi_acked;
736 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
738 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
740 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
741 struct sk_buff *skb)
743 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
744 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
745 sizeof(__u32), &skb->dropcount);
748 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
749 struct sk_buff *skb)
751 sock_recv_timestamp(msg, sk, skb);
752 sock_recv_drops(msg, sk, skb);
754 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
756 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
757 struct msghdr *msg, size_t size, int flags)
759 struct sock_iocb *si = kiocb_to_siocb(iocb);
761 si->sock = sock;
762 si->scm = NULL;
763 si->msg = msg;
764 si->size = size;
765 si->flags = flags;
767 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
770 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
771 struct msghdr *msg, size_t size, int flags)
773 int err = security_socket_recvmsg(sock, msg, size, flags);
775 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
778 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
779 size_t size, int flags)
781 struct kiocb iocb;
782 struct sock_iocb siocb;
783 int ret;
785 init_sync_kiocb(&iocb, NULL);
786 iocb.private = &siocb;
787 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
788 if (-EIOCBQUEUED == ret)
789 ret = wait_on_sync_kiocb(&iocb);
790 return ret;
792 EXPORT_SYMBOL(sock_recvmsg);
794 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
795 size_t size, int flags)
797 struct kiocb iocb;
798 struct sock_iocb siocb;
799 int ret;
801 init_sync_kiocb(&iocb, NULL);
802 iocb.private = &siocb;
803 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
804 if (-EIOCBQUEUED == ret)
805 ret = wait_on_sync_kiocb(&iocb);
806 return ret;
810 * kernel_recvmsg - Receive a message from a socket (kernel space)
811 * @sock: The socket to receive the message from
812 * @msg: Received message
813 * @vec: Input s/g array for message data
814 * @num: Size of input s/g array
815 * @size: Number of bytes to read
816 * @flags: Message flags (MSG_DONTWAIT, etc...)
818 * On return the msg structure contains the scatter/gather array passed in the
819 * vec argument. The array is modified so that it consists of the unfilled
820 * portion of the original array.
822 * The returned value is the total number of bytes received, or an error.
824 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
825 struct kvec *vec, size_t num, size_t size, int flags)
827 mm_segment_t oldfs = get_fs();
828 int result;
830 set_fs(KERNEL_DS);
832 * the following is safe, since for compiler definitions of kvec and
833 * iovec are identical, yielding the same in-core layout and alignment
835 iov_iter_init(&msg->msg_iter, READ, (struct iovec *)vec, num, size);
836 result = sock_recvmsg(sock, msg, size, flags);
837 set_fs(oldfs);
838 return result;
840 EXPORT_SYMBOL(kernel_recvmsg);
842 static ssize_t sock_sendpage(struct file *file, struct page *page,
843 int offset, size_t size, loff_t *ppos, int more)
845 struct socket *sock;
846 int flags;
848 sock = file->private_data;
850 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
851 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
852 flags |= more;
854 return kernel_sendpage(sock, page, offset, size, flags);
857 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
858 struct pipe_inode_info *pipe, size_t len,
859 unsigned int flags)
861 struct socket *sock = file->private_data;
863 if (unlikely(!sock->ops->splice_read))
864 return -EINVAL;
866 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
869 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
870 struct sock_iocb *siocb)
872 if (!is_sync_kiocb(iocb))
873 BUG();
875 siocb->kiocb = iocb;
876 iocb->private = siocb;
877 return siocb;
880 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
881 struct file *file, const struct iovec *iov,
882 unsigned long nr_segs)
884 struct socket *sock = file->private_data;
886 msg->msg_name = NULL;
887 msg->msg_namelen = 0;
888 msg->msg_control = NULL;
889 msg->msg_controllen = 0;
890 iov_iter_init(&msg->msg_iter, READ, iov, nr_segs, iocb->ki_nbytes);
891 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
893 return __sock_recvmsg(iocb, sock, msg, iocb->ki_nbytes, msg->msg_flags);
896 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
897 unsigned long nr_segs, loff_t pos)
899 struct sock_iocb siocb, *x;
901 if (pos != 0)
902 return -ESPIPE;
904 if (iocb->ki_nbytes == 0) /* Match SYS5 behaviour */
905 return 0;
908 x = alloc_sock_iocb(iocb, &siocb);
909 if (!x)
910 return -ENOMEM;
911 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
914 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
915 struct file *file, const struct iovec *iov,
916 unsigned long nr_segs)
918 struct socket *sock = file->private_data;
920 msg->msg_name = NULL;
921 msg->msg_namelen = 0;
922 msg->msg_control = NULL;
923 msg->msg_controllen = 0;
924 iov_iter_init(&msg->msg_iter, WRITE, iov, nr_segs, iocb->ki_nbytes);
925 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
926 if (sock->type == SOCK_SEQPACKET)
927 msg->msg_flags |= MSG_EOR;
929 return __sock_sendmsg(iocb, sock, msg, iocb->ki_nbytes);
932 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
933 unsigned long nr_segs, loff_t pos)
935 struct sock_iocb siocb, *x;
937 if (pos != 0)
938 return -ESPIPE;
940 x = alloc_sock_iocb(iocb, &siocb);
941 if (!x)
942 return -ENOMEM;
944 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
948 * Atomic setting of ioctl hooks to avoid race
949 * with module unload.
952 static DEFINE_MUTEX(br_ioctl_mutex);
953 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
955 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
957 mutex_lock(&br_ioctl_mutex);
958 br_ioctl_hook = hook;
959 mutex_unlock(&br_ioctl_mutex);
961 EXPORT_SYMBOL(brioctl_set);
963 static DEFINE_MUTEX(vlan_ioctl_mutex);
964 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
966 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
968 mutex_lock(&vlan_ioctl_mutex);
969 vlan_ioctl_hook = hook;
970 mutex_unlock(&vlan_ioctl_mutex);
972 EXPORT_SYMBOL(vlan_ioctl_set);
974 static DEFINE_MUTEX(dlci_ioctl_mutex);
975 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
977 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
979 mutex_lock(&dlci_ioctl_mutex);
980 dlci_ioctl_hook = hook;
981 mutex_unlock(&dlci_ioctl_mutex);
983 EXPORT_SYMBOL(dlci_ioctl_set);
985 static long sock_do_ioctl(struct net *net, struct socket *sock,
986 unsigned int cmd, unsigned long arg)
988 int err;
989 void __user *argp = (void __user *)arg;
991 err = sock->ops->ioctl(sock, cmd, arg);
994 * If this ioctl is unknown try to hand it down
995 * to the NIC driver.
997 if (err == -ENOIOCTLCMD)
998 err = dev_ioctl(net, cmd, argp);
1000 return err;
1004 * With an ioctl, arg may well be a user mode pointer, but we don't know
1005 * what to do with it - that's up to the protocol still.
1008 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1010 struct socket *sock;
1011 struct sock *sk;
1012 void __user *argp = (void __user *)arg;
1013 int pid, err;
1014 struct net *net;
1016 sock = file->private_data;
1017 sk = sock->sk;
1018 net = sock_net(sk);
1019 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1020 err = dev_ioctl(net, cmd, argp);
1021 } else
1022 #ifdef CONFIG_WEXT_CORE
1023 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1024 err = dev_ioctl(net, cmd, argp);
1025 } else
1026 #endif
1027 switch (cmd) {
1028 case FIOSETOWN:
1029 case SIOCSPGRP:
1030 err = -EFAULT;
1031 if (get_user(pid, (int __user *)argp))
1032 break;
1033 f_setown(sock->file, pid, 1);
1034 err = 0;
1035 break;
1036 case FIOGETOWN:
1037 case SIOCGPGRP:
1038 err = put_user(f_getown(sock->file),
1039 (int __user *)argp);
1040 break;
1041 case SIOCGIFBR:
1042 case SIOCSIFBR:
1043 case SIOCBRADDBR:
1044 case SIOCBRDELBR:
1045 err = -ENOPKG;
1046 if (!br_ioctl_hook)
1047 request_module("bridge");
1049 mutex_lock(&br_ioctl_mutex);
1050 if (br_ioctl_hook)
1051 err = br_ioctl_hook(net, cmd, argp);
1052 mutex_unlock(&br_ioctl_mutex);
1053 break;
1054 case SIOCGIFVLAN:
1055 case SIOCSIFVLAN:
1056 err = -ENOPKG;
1057 if (!vlan_ioctl_hook)
1058 request_module("8021q");
1060 mutex_lock(&vlan_ioctl_mutex);
1061 if (vlan_ioctl_hook)
1062 err = vlan_ioctl_hook(net, argp);
1063 mutex_unlock(&vlan_ioctl_mutex);
1064 break;
1065 case SIOCADDDLCI:
1066 case SIOCDELDLCI:
1067 err = -ENOPKG;
1068 if (!dlci_ioctl_hook)
1069 request_module("dlci");
1071 mutex_lock(&dlci_ioctl_mutex);
1072 if (dlci_ioctl_hook)
1073 err = dlci_ioctl_hook(cmd, argp);
1074 mutex_unlock(&dlci_ioctl_mutex);
1075 break;
1076 default:
1077 err = sock_do_ioctl(net, sock, cmd, arg);
1078 break;
1080 return err;
1083 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1085 int err;
1086 struct socket *sock = NULL;
1088 err = security_socket_create(family, type, protocol, 1);
1089 if (err)
1090 goto out;
1092 sock = sock_alloc();
1093 if (!sock) {
1094 err = -ENOMEM;
1095 goto out;
1098 sock->type = type;
1099 err = security_socket_post_create(sock, family, type, protocol, 1);
1100 if (err)
1101 goto out_release;
1103 out:
1104 *res = sock;
1105 return err;
1106 out_release:
1107 sock_release(sock);
1108 sock = NULL;
1109 goto out;
1111 EXPORT_SYMBOL(sock_create_lite);
1113 /* No kernel lock held - perfect */
1114 static unsigned int sock_poll(struct file *file, poll_table *wait)
1116 unsigned int busy_flag = 0;
1117 struct socket *sock;
1120 * We can't return errors to poll, so it's either yes or no.
1122 sock = file->private_data;
1124 if (sk_can_busy_loop(sock->sk)) {
1125 /* this socket can poll_ll so tell the system call */
1126 busy_flag = POLL_BUSY_LOOP;
1128 /* once, only if requested by syscall */
1129 if (wait && (wait->_key & POLL_BUSY_LOOP))
1130 sk_busy_loop(sock->sk, 1);
1133 return busy_flag | sock->ops->poll(file, sock, wait);
1136 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1138 struct socket *sock = file->private_data;
1140 return sock->ops->mmap(file, sock, vma);
1143 static int sock_close(struct inode *inode, struct file *filp)
1145 sock_release(SOCKET_I(inode));
1146 return 0;
1150 * Update the socket async list
1152 * Fasync_list locking strategy.
1154 * 1. fasync_list is modified only under process context socket lock
1155 * i.e. under semaphore.
1156 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1157 * or under socket lock
1160 static int sock_fasync(int fd, struct file *filp, int on)
1162 struct socket *sock = filp->private_data;
1163 struct sock *sk = sock->sk;
1164 struct socket_wq *wq;
1166 if (sk == NULL)
1167 return -EINVAL;
1169 lock_sock(sk);
1170 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1171 fasync_helper(fd, filp, on, &wq->fasync_list);
1173 if (!wq->fasync_list)
1174 sock_reset_flag(sk, SOCK_FASYNC);
1175 else
1176 sock_set_flag(sk, SOCK_FASYNC);
1178 release_sock(sk);
1179 return 0;
1182 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1184 int sock_wake_async(struct socket *sock, int how, int band)
1186 struct socket_wq *wq;
1188 if (!sock)
1189 return -1;
1190 rcu_read_lock();
1191 wq = rcu_dereference(sock->wq);
1192 if (!wq || !wq->fasync_list) {
1193 rcu_read_unlock();
1194 return -1;
1196 switch (how) {
1197 case SOCK_WAKE_WAITD:
1198 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1199 break;
1200 goto call_kill;
1201 case SOCK_WAKE_SPACE:
1202 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1203 break;
1204 /* fall through */
1205 case SOCK_WAKE_IO:
1206 call_kill:
1207 kill_fasync(&wq->fasync_list, SIGIO, band);
1208 break;
1209 case SOCK_WAKE_URG:
1210 kill_fasync(&wq->fasync_list, SIGURG, band);
1212 rcu_read_unlock();
1213 return 0;
1215 EXPORT_SYMBOL(sock_wake_async);
1217 int __sock_create(struct net *net, int family, int type, int protocol,
1218 struct socket **res, int kern)
1220 int err;
1221 struct socket *sock;
1222 const struct net_proto_family *pf;
1225 * Check protocol is in range
1227 if (family < 0 || family >= NPROTO)
1228 return -EAFNOSUPPORT;
1229 if (type < 0 || type >= SOCK_MAX)
1230 return -EINVAL;
1232 /* Compatibility.
1234 This uglymoron is moved from INET layer to here to avoid
1235 deadlock in module load.
1237 if (family == PF_INET && type == SOCK_PACKET) {
1238 static int warned;
1239 if (!warned) {
1240 warned = 1;
1241 pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1242 current->comm);
1244 family = PF_PACKET;
1247 err = security_socket_create(family, type, protocol, kern);
1248 if (err)
1249 return err;
1252 * Allocate the socket and allow the family to set things up. if
1253 * the protocol is 0, the family is instructed to select an appropriate
1254 * default.
1256 sock = sock_alloc();
1257 if (!sock) {
1258 net_warn_ratelimited("socket: no more sockets\n");
1259 return -ENFILE; /* Not exactly a match, but its the
1260 closest posix thing */
1263 sock->type = type;
1265 #ifdef CONFIG_MODULES
1266 /* Attempt to load a protocol module if the find failed.
1268 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1269 * requested real, full-featured networking support upon configuration.
1270 * Otherwise module support will break!
1272 if (rcu_access_pointer(net_families[family]) == NULL)
1273 request_module("net-pf-%d", family);
1274 #endif
1276 rcu_read_lock();
1277 pf = rcu_dereference(net_families[family]);
1278 err = -EAFNOSUPPORT;
1279 if (!pf)
1280 goto out_release;
1283 * We will call the ->create function, that possibly is in a loadable
1284 * module, so we have to bump that loadable module refcnt first.
1286 if (!try_module_get(pf->owner))
1287 goto out_release;
1289 /* Now protected by module ref count */
1290 rcu_read_unlock();
1292 err = pf->create(net, sock, protocol, kern);
1293 if (err < 0)
1294 goto out_module_put;
1297 * Now to bump the refcnt of the [loadable] module that owns this
1298 * socket at sock_release time we decrement its refcnt.
1300 if (!try_module_get(sock->ops->owner))
1301 goto out_module_busy;
1304 * Now that we're done with the ->create function, the [loadable]
1305 * module can have its refcnt decremented
1307 module_put(pf->owner);
1308 err = security_socket_post_create(sock, family, type, protocol, kern);
1309 if (err)
1310 goto out_sock_release;
1311 *res = sock;
1313 return 0;
1315 out_module_busy:
1316 err = -EAFNOSUPPORT;
1317 out_module_put:
1318 sock->ops = NULL;
1319 module_put(pf->owner);
1320 out_sock_release:
1321 sock_release(sock);
1322 return err;
1324 out_release:
1325 rcu_read_unlock();
1326 goto out_sock_release;
1328 EXPORT_SYMBOL(__sock_create);
1330 int sock_create(int family, int type, int protocol, struct socket **res)
1332 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1334 EXPORT_SYMBOL(sock_create);
1336 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1338 return __sock_create(&init_net, family, type, protocol, res, 1);
1340 EXPORT_SYMBOL(sock_create_kern);
1342 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1344 int retval;
1345 struct socket *sock;
1346 int flags;
1348 /* Check the SOCK_* constants for consistency. */
1349 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1350 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1351 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1352 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1354 flags = type & ~SOCK_TYPE_MASK;
1355 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1356 return -EINVAL;
1357 type &= SOCK_TYPE_MASK;
1359 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1360 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1362 retval = sock_create(family, type, protocol, &sock);
1363 if (retval < 0)
1364 goto out;
1366 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1367 if (retval < 0)
1368 goto out_release;
1370 out:
1371 /* It may be already another descriptor 8) Not kernel problem. */
1372 return retval;
1374 out_release:
1375 sock_release(sock);
1376 return retval;
1380 * Create a pair of connected sockets.
1383 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1384 int __user *, usockvec)
1386 struct socket *sock1, *sock2;
1387 int fd1, fd2, err;
1388 struct file *newfile1, *newfile2;
1389 int flags;
1391 flags = type & ~SOCK_TYPE_MASK;
1392 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1393 return -EINVAL;
1394 type &= SOCK_TYPE_MASK;
1396 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1397 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1400 * Obtain the first socket and check if the underlying protocol
1401 * supports the socketpair call.
1404 err = sock_create(family, type, protocol, &sock1);
1405 if (err < 0)
1406 goto out;
1408 err = sock_create(family, type, protocol, &sock2);
1409 if (err < 0)
1410 goto out_release_1;
1412 err = sock1->ops->socketpair(sock1, sock2);
1413 if (err < 0)
1414 goto out_release_both;
1416 fd1 = get_unused_fd_flags(flags);
1417 if (unlikely(fd1 < 0)) {
1418 err = fd1;
1419 goto out_release_both;
1422 fd2 = get_unused_fd_flags(flags);
1423 if (unlikely(fd2 < 0)) {
1424 err = fd2;
1425 goto out_put_unused_1;
1428 newfile1 = sock_alloc_file(sock1, flags, NULL);
1429 if (unlikely(IS_ERR(newfile1))) {
1430 err = PTR_ERR(newfile1);
1431 goto out_put_unused_both;
1434 newfile2 = sock_alloc_file(sock2, flags, NULL);
1435 if (IS_ERR(newfile2)) {
1436 err = PTR_ERR(newfile2);
1437 goto out_fput_1;
1440 err = put_user(fd1, &usockvec[0]);
1441 if (err)
1442 goto out_fput_both;
1444 err = put_user(fd2, &usockvec[1]);
1445 if (err)
1446 goto out_fput_both;
1448 audit_fd_pair(fd1, fd2);
1450 fd_install(fd1, newfile1);
1451 fd_install(fd2, newfile2);
1452 /* fd1 and fd2 may be already another descriptors.
1453 * Not kernel problem.
1456 return 0;
1458 out_fput_both:
1459 fput(newfile2);
1460 fput(newfile1);
1461 put_unused_fd(fd2);
1462 put_unused_fd(fd1);
1463 goto out;
1465 out_fput_1:
1466 fput(newfile1);
1467 put_unused_fd(fd2);
1468 put_unused_fd(fd1);
1469 sock_release(sock2);
1470 goto out;
1472 out_put_unused_both:
1473 put_unused_fd(fd2);
1474 out_put_unused_1:
1475 put_unused_fd(fd1);
1476 out_release_both:
1477 sock_release(sock2);
1478 out_release_1:
1479 sock_release(sock1);
1480 out:
1481 return err;
1485 * Bind a name to a socket. Nothing much to do here since it's
1486 * the protocol's responsibility to handle the local address.
1488 * We move the socket address to kernel space before we call
1489 * the protocol layer (having also checked the address is ok).
1492 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1494 struct socket *sock;
1495 struct sockaddr_storage address;
1496 int err, fput_needed;
1498 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1499 if (sock) {
1500 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1501 if (err >= 0) {
1502 err = security_socket_bind(sock,
1503 (struct sockaddr *)&address,
1504 addrlen);
1505 if (!err)
1506 err = sock->ops->bind(sock,
1507 (struct sockaddr *)
1508 &address, addrlen);
1510 fput_light(sock->file, fput_needed);
1512 return err;
1516 * Perform a listen. Basically, we allow the protocol to do anything
1517 * necessary for a listen, and if that works, we mark the socket as
1518 * ready for listening.
1521 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1523 struct socket *sock;
1524 int err, fput_needed;
1525 int somaxconn;
1527 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1528 if (sock) {
1529 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1530 if ((unsigned int)backlog > somaxconn)
1531 backlog = somaxconn;
1533 err = security_socket_listen(sock, backlog);
1534 if (!err)
1535 err = sock->ops->listen(sock, backlog);
1537 fput_light(sock->file, fput_needed);
1539 return err;
1543 * For accept, we attempt to create a new socket, set up the link
1544 * with the client, wake up the client, then return the new
1545 * connected fd. We collect the address of the connector in kernel
1546 * space and move it to user at the very end. This is unclean because
1547 * we open the socket then return an error.
1549 * 1003.1g adds the ability to recvmsg() to query connection pending
1550 * status to recvmsg. We need to add that support in a way thats
1551 * clean when we restucture accept also.
1554 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1555 int __user *, upeer_addrlen, int, flags)
1557 struct socket *sock, *newsock;
1558 struct file *newfile;
1559 int err, len, newfd, fput_needed;
1560 struct sockaddr_storage address;
1562 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1563 return -EINVAL;
1565 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1566 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1568 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1569 if (!sock)
1570 goto out;
1572 err = -ENFILE;
1573 newsock = sock_alloc();
1574 if (!newsock)
1575 goto out_put;
1577 newsock->type = sock->type;
1578 newsock->ops = sock->ops;
1581 * We don't need try_module_get here, as the listening socket (sock)
1582 * has the protocol module (sock->ops->owner) held.
1584 __module_get(newsock->ops->owner);
1586 newfd = get_unused_fd_flags(flags);
1587 if (unlikely(newfd < 0)) {
1588 err = newfd;
1589 sock_release(newsock);
1590 goto out_put;
1592 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1593 if (unlikely(IS_ERR(newfile))) {
1594 err = PTR_ERR(newfile);
1595 put_unused_fd(newfd);
1596 sock_release(newsock);
1597 goto out_put;
1600 err = security_socket_accept(sock, newsock);
1601 if (err)
1602 goto out_fd;
1604 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1605 if (err < 0)
1606 goto out_fd;
1608 if (upeer_sockaddr) {
1609 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1610 &len, 2) < 0) {
1611 err = -ECONNABORTED;
1612 goto out_fd;
1614 err = move_addr_to_user(&address,
1615 len, upeer_sockaddr, upeer_addrlen);
1616 if (err < 0)
1617 goto out_fd;
1620 /* File flags are not inherited via accept() unlike another OSes. */
1622 fd_install(newfd, newfile);
1623 err = newfd;
1625 out_put:
1626 fput_light(sock->file, fput_needed);
1627 out:
1628 return err;
1629 out_fd:
1630 fput(newfile);
1631 put_unused_fd(newfd);
1632 goto out_put;
1635 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1636 int __user *, upeer_addrlen)
1638 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1642 * Attempt to connect to a socket with the server address. The address
1643 * is in user space so we verify it is OK and move it to kernel space.
1645 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1646 * break bindings
1648 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1649 * other SEQPACKET protocols that take time to connect() as it doesn't
1650 * include the -EINPROGRESS status for such sockets.
1653 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1654 int, addrlen)
1656 struct socket *sock;
1657 struct sockaddr_storage address;
1658 int err, fput_needed;
1660 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1661 if (!sock)
1662 goto out;
1663 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1664 if (err < 0)
1665 goto out_put;
1667 err =
1668 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1669 if (err)
1670 goto out_put;
1672 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1673 sock->file->f_flags);
1674 out_put:
1675 fput_light(sock->file, fput_needed);
1676 out:
1677 return err;
1681 * Get the local address ('name') of a socket object. Move the obtained
1682 * name to user space.
1685 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1686 int __user *, usockaddr_len)
1688 struct socket *sock;
1689 struct sockaddr_storage address;
1690 int len, err, fput_needed;
1692 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1693 if (!sock)
1694 goto out;
1696 err = security_socket_getsockname(sock);
1697 if (err)
1698 goto out_put;
1700 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1701 if (err)
1702 goto out_put;
1703 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1705 out_put:
1706 fput_light(sock->file, fput_needed);
1707 out:
1708 return err;
1712 * Get the remote address ('name') of a socket object. Move the obtained
1713 * name to user space.
1716 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1717 int __user *, usockaddr_len)
1719 struct socket *sock;
1720 struct sockaddr_storage address;
1721 int len, err, fput_needed;
1723 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1724 if (sock != NULL) {
1725 err = security_socket_getpeername(sock);
1726 if (err) {
1727 fput_light(sock->file, fput_needed);
1728 return err;
1731 err =
1732 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1734 if (!err)
1735 err = move_addr_to_user(&address, len, usockaddr,
1736 usockaddr_len);
1737 fput_light(sock->file, fput_needed);
1739 return err;
1743 * Send a datagram to a given address. We move the address into kernel
1744 * space and check the user space data area is readable before invoking
1745 * the protocol.
1748 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1749 unsigned int, flags, struct sockaddr __user *, addr,
1750 int, addr_len)
1752 struct socket *sock;
1753 struct sockaddr_storage address;
1754 int err;
1755 struct msghdr msg;
1756 struct iovec iov;
1757 int fput_needed;
1759 if (len > INT_MAX)
1760 len = INT_MAX;
1761 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1762 if (!sock)
1763 goto out;
1765 iov.iov_base = buff;
1766 iov.iov_len = len;
1767 msg.msg_name = NULL;
1768 iov_iter_init(&msg.msg_iter, WRITE, &iov, 1, len);
1769 msg.msg_control = NULL;
1770 msg.msg_controllen = 0;
1771 msg.msg_namelen = 0;
1772 if (addr) {
1773 err = move_addr_to_kernel(addr, addr_len, &address);
1774 if (err < 0)
1775 goto out_put;
1776 msg.msg_name = (struct sockaddr *)&address;
1777 msg.msg_namelen = addr_len;
1779 if (sock->file->f_flags & O_NONBLOCK)
1780 flags |= MSG_DONTWAIT;
1781 msg.msg_flags = flags;
1782 err = sock_sendmsg(sock, &msg, len);
1784 out_put:
1785 fput_light(sock->file, fput_needed);
1786 out:
1787 return err;
1791 * Send a datagram down a socket.
1794 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1795 unsigned int, flags)
1797 return sys_sendto(fd, buff, len, flags, NULL, 0);
1801 * Receive a frame from the socket and optionally record the address of the
1802 * sender. We verify the buffers are writable and if needed move the
1803 * sender address from kernel to user space.
1806 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1807 unsigned int, flags, struct sockaddr __user *, addr,
1808 int __user *, addr_len)
1810 struct socket *sock;
1811 struct iovec iov;
1812 struct msghdr msg;
1813 struct sockaddr_storage address;
1814 int err, err2;
1815 int fput_needed;
1817 if (size > INT_MAX)
1818 size = INT_MAX;
1819 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1820 if (!sock)
1821 goto out;
1823 msg.msg_control = NULL;
1824 msg.msg_controllen = 0;
1825 iov.iov_len = size;
1826 iov.iov_base = ubuf;
1827 iov_iter_init(&msg.msg_iter, READ, &iov, 1, size);
1828 /* Save some cycles and don't copy the address if not needed */
1829 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1830 /* We assume all kernel code knows the size of sockaddr_storage */
1831 msg.msg_namelen = 0;
1832 if (sock->file->f_flags & O_NONBLOCK)
1833 flags |= MSG_DONTWAIT;
1834 err = sock_recvmsg(sock, &msg, size, flags);
1836 if (err >= 0 && addr != NULL) {
1837 err2 = move_addr_to_user(&address,
1838 msg.msg_namelen, addr, addr_len);
1839 if (err2 < 0)
1840 err = err2;
1843 fput_light(sock->file, fput_needed);
1844 out:
1845 return err;
1849 * Receive a datagram from a socket.
1852 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1853 unsigned int, flags)
1855 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1859 * Set a socket option. Because we don't know the option lengths we have
1860 * to pass the user mode parameter for the protocols to sort out.
1863 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1864 char __user *, optval, int, optlen)
1866 int err, fput_needed;
1867 struct socket *sock;
1869 if (optlen < 0)
1870 return -EINVAL;
1872 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1873 if (sock != NULL) {
1874 err = security_socket_setsockopt(sock, level, optname);
1875 if (err)
1876 goto out_put;
1878 if (level == SOL_SOCKET)
1879 err =
1880 sock_setsockopt(sock, level, optname, optval,
1881 optlen);
1882 else
1883 err =
1884 sock->ops->setsockopt(sock, level, optname, optval,
1885 optlen);
1886 out_put:
1887 fput_light(sock->file, fput_needed);
1889 return err;
1893 * Get a socket option. Because we don't know the option lengths we have
1894 * to pass a user mode parameter for the protocols to sort out.
1897 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1898 char __user *, optval, int __user *, optlen)
1900 int err, fput_needed;
1901 struct socket *sock;
1903 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1904 if (sock != NULL) {
1905 err = security_socket_getsockopt(sock, level, optname);
1906 if (err)
1907 goto out_put;
1909 if (level == SOL_SOCKET)
1910 err =
1911 sock_getsockopt(sock, level, optname, optval,
1912 optlen);
1913 else
1914 err =
1915 sock->ops->getsockopt(sock, level, optname, optval,
1916 optlen);
1917 out_put:
1918 fput_light(sock->file, fput_needed);
1920 return err;
1924 * Shutdown a socket.
1927 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1929 int err, fput_needed;
1930 struct socket *sock;
1932 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1933 if (sock != NULL) {
1934 err = security_socket_shutdown(sock, how);
1935 if (!err)
1936 err = sock->ops->shutdown(sock, how);
1937 fput_light(sock->file, fput_needed);
1939 return err;
1942 /* A couple of helpful macros for getting the address of the 32/64 bit
1943 * fields which are the same type (int / unsigned) on our platforms.
1945 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1946 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1947 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1949 struct used_address {
1950 struct sockaddr_storage name;
1951 unsigned int name_len;
1954 static ssize_t copy_msghdr_from_user(struct msghdr *kmsg,
1955 struct user_msghdr __user *umsg,
1956 struct sockaddr __user **save_addr,
1957 struct iovec **iov)
1959 struct sockaddr __user *uaddr;
1960 struct iovec __user *uiov;
1961 size_t nr_segs;
1962 ssize_t err;
1964 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1965 __get_user(uaddr, &umsg->msg_name) ||
1966 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1967 __get_user(uiov, &umsg->msg_iov) ||
1968 __get_user(nr_segs, &umsg->msg_iovlen) ||
1969 __get_user(kmsg->msg_control, &umsg->msg_control) ||
1970 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1971 __get_user(kmsg->msg_flags, &umsg->msg_flags))
1972 return -EFAULT;
1974 if (!uaddr)
1975 kmsg->msg_namelen = 0;
1977 if (kmsg->msg_namelen < 0)
1978 return -EINVAL;
1980 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1981 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1983 if (save_addr)
1984 *save_addr = uaddr;
1986 if (uaddr && kmsg->msg_namelen) {
1987 if (!save_addr) {
1988 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1989 kmsg->msg_name);
1990 if (err < 0)
1991 return err;
1993 } else {
1994 kmsg->msg_name = NULL;
1995 kmsg->msg_namelen = 0;
1998 if (nr_segs > UIO_MAXIOV)
1999 return -EMSGSIZE;
2001 err = rw_copy_check_uvector(save_addr ? READ : WRITE,
2002 uiov, nr_segs,
2003 UIO_FASTIOV, *iov, iov);
2004 if (err >= 0)
2005 iov_iter_init(&kmsg->msg_iter, save_addr ? READ : WRITE,
2006 *iov, nr_segs, err);
2007 return err;
2010 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2011 struct msghdr *msg_sys, unsigned int flags,
2012 struct used_address *used_address)
2014 struct compat_msghdr __user *msg_compat =
2015 (struct compat_msghdr __user *)msg;
2016 struct sockaddr_storage address;
2017 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2018 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2019 __attribute__ ((aligned(sizeof(__kernel_size_t))));
2020 /* 20 is size of ipv6_pktinfo */
2021 unsigned char *ctl_buf = ctl;
2022 int ctl_len, total_len;
2023 ssize_t err;
2025 msg_sys->msg_name = &address;
2027 if (MSG_CMSG_COMPAT & flags)
2028 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2029 else
2030 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2031 if (err < 0)
2032 goto out_freeiov;
2033 total_len = err;
2035 err = -ENOBUFS;
2037 if (msg_sys->msg_controllen > INT_MAX)
2038 goto out_freeiov;
2039 ctl_len = msg_sys->msg_controllen;
2040 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2041 err =
2042 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2043 sizeof(ctl));
2044 if (err)
2045 goto out_freeiov;
2046 ctl_buf = msg_sys->msg_control;
2047 ctl_len = msg_sys->msg_controllen;
2048 } else if (ctl_len) {
2049 if (ctl_len > sizeof(ctl)) {
2050 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2051 if (ctl_buf == NULL)
2052 goto out_freeiov;
2054 err = -EFAULT;
2056 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2057 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2058 * checking falls down on this.
2060 if (copy_from_user(ctl_buf,
2061 (void __user __force *)msg_sys->msg_control,
2062 ctl_len))
2063 goto out_freectl;
2064 msg_sys->msg_control = ctl_buf;
2066 msg_sys->msg_flags = flags;
2068 if (sock->file->f_flags & O_NONBLOCK)
2069 msg_sys->msg_flags |= MSG_DONTWAIT;
2071 * If this is sendmmsg() and current destination address is same as
2072 * previously succeeded address, omit asking LSM's decision.
2073 * used_address->name_len is initialized to UINT_MAX so that the first
2074 * destination address never matches.
2076 if (used_address && msg_sys->msg_name &&
2077 used_address->name_len == msg_sys->msg_namelen &&
2078 !memcmp(&used_address->name, msg_sys->msg_name,
2079 used_address->name_len)) {
2080 err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2081 goto out_freectl;
2083 err = sock_sendmsg(sock, msg_sys, total_len);
2085 * If this is sendmmsg() and sending to current destination address was
2086 * successful, remember it.
2088 if (used_address && err >= 0) {
2089 used_address->name_len = msg_sys->msg_namelen;
2090 if (msg_sys->msg_name)
2091 memcpy(&used_address->name, msg_sys->msg_name,
2092 used_address->name_len);
2095 out_freectl:
2096 if (ctl_buf != ctl)
2097 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2098 out_freeiov:
2099 if (iov != iovstack)
2100 kfree(iov);
2101 return err;
2105 * BSD sendmsg interface
2108 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2110 int fput_needed, err;
2111 struct msghdr msg_sys;
2112 struct socket *sock;
2114 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2115 if (!sock)
2116 goto out;
2118 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2120 fput_light(sock->file, fput_needed);
2121 out:
2122 return err;
2125 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2127 if (flags & MSG_CMSG_COMPAT)
2128 return -EINVAL;
2129 return __sys_sendmsg(fd, msg, flags);
2133 * Linux sendmmsg interface
2136 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2137 unsigned int flags)
2139 int fput_needed, err, datagrams;
2140 struct socket *sock;
2141 struct mmsghdr __user *entry;
2142 struct compat_mmsghdr __user *compat_entry;
2143 struct msghdr msg_sys;
2144 struct used_address used_address;
2146 if (vlen > UIO_MAXIOV)
2147 vlen = UIO_MAXIOV;
2149 datagrams = 0;
2151 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2152 if (!sock)
2153 return err;
2155 used_address.name_len = UINT_MAX;
2156 entry = mmsg;
2157 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2158 err = 0;
2160 while (datagrams < vlen) {
2161 if (MSG_CMSG_COMPAT & flags) {
2162 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2163 &msg_sys, flags, &used_address);
2164 if (err < 0)
2165 break;
2166 err = __put_user(err, &compat_entry->msg_len);
2167 ++compat_entry;
2168 } else {
2169 err = ___sys_sendmsg(sock,
2170 (struct user_msghdr __user *)entry,
2171 &msg_sys, flags, &used_address);
2172 if (err < 0)
2173 break;
2174 err = put_user(err, &entry->msg_len);
2175 ++entry;
2178 if (err)
2179 break;
2180 ++datagrams;
2183 fput_light(sock->file, fput_needed);
2185 /* We only return an error if no datagrams were able to be sent */
2186 if (datagrams != 0)
2187 return datagrams;
2189 return err;
2192 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2193 unsigned int, vlen, unsigned int, flags)
2195 if (flags & MSG_CMSG_COMPAT)
2196 return -EINVAL;
2197 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2200 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2201 struct msghdr *msg_sys, unsigned int flags, int nosec)
2203 struct compat_msghdr __user *msg_compat =
2204 (struct compat_msghdr __user *)msg;
2205 struct iovec iovstack[UIO_FASTIOV];
2206 struct iovec *iov = iovstack;
2207 unsigned long cmsg_ptr;
2208 int total_len, len;
2209 ssize_t err;
2211 /* kernel mode address */
2212 struct sockaddr_storage addr;
2214 /* user mode address pointers */
2215 struct sockaddr __user *uaddr;
2216 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2218 msg_sys->msg_name = &addr;
2220 if (MSG_CMSG_COMPAT & flags)
2221 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2222 else
2223 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2224 if (err < 0)
2225 goto out_freeiov;
2226 total_len = err;
2228 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2229 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2231 /* We assume all kernel code knows the size of sockaddr_storage */
2232 msg_sys->msg_namelen = 0;
2234 if (sock->file->f_flags & O_NONBLOCK)
2235 flags |= MSG_DONTWAIT;
2236 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2237 total_len, flags);
2238 if (err < 0)
2239 goto out_freeiov;
2240 len = err;
2242 if (uaddr != NULL) {
2243 err = move_addr_to_user(&addr,
2244 msg_sys->msg_namelen, uaddr,
2245 uaddr_len);
2246 if (err < 0)
2247 goto out_freeiov;
2249 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2250 COMPAT_FLAGS(msg));
2251 if (err)
2252 goto out_freeiov;
2253 if (MSG_CMSG_COMPAT & flags)
2254 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2255 &msg_compat->msg_controllen);
2256 else
2257 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2258 &msg->msg_controllen);
2259 if (err)
2260 goto out_freeiov;
2261 err = len;
2263 out_freeiov:
2264 if (iov != iovstack)
2265 kfree(iov);
2266 return err;
2270 * BSD recvmsg interface
2273 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2275 int fput_needed, err;
2276 struct msghdr msg_sys;
2277 struct socket *sock;
2279 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2280 if (!sock)
2281 goto out;
2283 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2285 fput_light(sock->file, fput_needed);
2286 out:
2287 return err;
2290 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2291 unsigned int, flags)
2293 if (flags & MSG_CMSG_COMPAT)
2294 return -EINVAL;
2295 return __sys_recvmsg(fd, msg, flags);
2299 * Linux recvmmsg interface
2302 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2303 unsigned int flags, struct timespec *timeout)
2305 int fput_needed, err, datagrams;
2306 struct socket *sock;
2307 struct mmsghdr __user *entry;
2308 struct compat_mmsghdr __user *compat_entry;
2309 struct msghdr msg_sys;
2310 struct timespec end_time;
2312 if (timeout &&
2313 poll_select_set_timeout(&end_time, timeout->tv_sec,
2314 timeout->tv_nsec))
2315 return -EINVAL;
2317 datagrams = 0;
2319 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2320 if (!sock)
2321 return err;
2323 err = sock_error(sock->sk);
2324 if (err)
2325 goto out_put;
2327 entry = mmsg;
2328 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2330 while (datagrams < vlen) {
2332 * No need to ask LSM for more than the first datagram.
2334 if (MSG_CMSG_COMPAT & flags) {
2335 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2336 &msg_sys, flags & ~MSG_WAITFORONE,
2337 datagrams);
2338 if (err < 0)
2339 break;
2340 err = __put_user(err, &compat_entry->msg_len);
2341 ++compat_entry;
2342 } else {
2343 err = ___sys_recvmsg(sock,
2344 (struct user_msghdr __user *)entry,
2345 &msg_sys, flags & ~MSG_WAITFORONE,
2346 datagrams);
2347 if (err < 0)
2348 break;
2349 err = put_user(err, &entry->msg_len);
2350 ++entry;
2353 if (err)
2354 break;
2355 ++datagrams;
2357 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2358 if (flags & MSG_WAITFORONE)
2359 flags |= MSG_DONTWAIT;
2361 if (timeout) {
2362 ktime_get_ts(timeout);
2363 *timeout = timespec_sub(end_time, *timeout);
2364 if (timeout->tv_sec < 0) {
2365 timeout->tv_sec = timeout->tv_nsec = 0;
2366 break;
2369 /* Timeout, return less than vlen datagrams */
2370 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2371 break;
2374 /* Out of band data, return right away */
2375 if (msg_sys.msg_flags & MSG_OOB)
2376 break;
2379 out_put:
2380 fput_light(sock->file, fput_needed);
2382 if (err == 0)
2383 return datagrams;
2385 if (datagrams != 0) {
2387 * We may return less entries than requested (vlen) if the
2388 * sock is non block and there aren't enough datagrams...
2390 if (err != -EAGAIN) {
2392 * ... or if recvmsg returns an error after we
2393 * received some datagrams, where we record the
2394 * error to return on the next call or if the
2395 * app asks about it using getsockopt(SO_ERROR).
2397 sock->sk->sk_err = -err;
2400 return datagrams;
2403 return err;
2406 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2407 unsigned int, vlen, unsigned int, flags,
2408 struct timespec __user *, timeout)
2410 int datagrams;
2411 struct timespec timeout_sys;
2413 if (flags & MSG_CMSG_COMPAT)
2414 return -EINVAL;
2416 if (!timeout)
2417 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2419 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2420 return -EFAULT;
2422 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2424 if (datagrams > 0 &&
2425 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2426 datagrams = -EFAULT;
2428 return datagrams;
2431 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2432 /* Argument list sizes for sys_socketcall */
2433 #define AL(x) ((x) * sizeof(unsigned long))
2434 static const unsigned char nargs[21] = {
2435 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2436 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2437 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2438 AL(4), AL(5), AL(4)
2441 #undef AL
2444 * System call vectors.
2446 * Argument checking cleaned up. Saved 20% in size.
2447 * This function doesn't need to set the kernel lock because
2448 * it is set by the callees.
2451 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2453 unsigned long a[AUDITSC_ARGS];
2454 unsigned long a0, a1;
2455 int err;
2456 unsigned int len;
2458 if (call < 1 || call > SYS_SENDMMSG)
2459 return -EINVAL;
2461 len = nargs[call];
2462 if (len > sizeof(a))
2463 return -EINVAL;
2465 /* copy_from_user should be SMP safe. */
2466 if (copy_from_user(a, args, len))
2467 return -EFAULT;
2469 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2470 if (err)
2471 return err;
2473 a0 = a[0];
2474 a1 = a[1];
2476 switch (call) {
2477 case SYS_SOCKET:
2478 err = sys_socket(a0, a1, a[2]);
2479 break;
2480 case SYS_BIND:
2481 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2482 break;
2483 case SYS_CONNECT:
2484 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2485 break;
2486 case SYS_LISTEN:
2487 err = sys_listen(a0, a1);
2488 break;
2489 case SYS_ACCEPT:
2490 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2491 (int __user *)a[2], 0);
2492 break;
2493 case SYS_GETSOCKNAME:
2494 err =
2495 sys_getsockname(a0, (struct sockaddr __user *)a1,
2496 (int __user *)a[2]);
2497 break;
2498 case SYS_GETPEERNAME:
2499 err =
2500 sys_getpeername(a0, (struct sockaddr __user *)a1,
2501 (int __user *)a[2]);
2502 break;
2503 case SYS_SOCKETPAIR:
2504 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2505 break;
2506 case SYS_SEND:
2507 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2508 break;
2509 case SYS_SENDTO:
2510 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2511 (struct sockaddr __user *)a[4], a[5]);
2512 break;
2513 case SYS_RECV:
2514 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2515 break;
2516 case SYS_RECVFROM:
2517 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2518 (struct sockaddr __user *)a[4],
2519 (int __user *)a[5]);
2520 break;
2521 case SYS_SHUTDOWN:
2522 err = sys_shutdown(a0, a1);
2523 break;
2524 case SYS_SETSOCKOPT:
2525 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2526 break;
2527 case SYS_GETSOCKOPT:
2528 err =
2529 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2530 (int __user *)a[4]);
2531 break;
2532 case SYS_SENDMSG:
2533 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2534 break;
2535 case SYS_SENDMMSG:
2536 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2537 break;
2538 case SYS_RECVMSG:
2539 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2540 break;
2541 case SYS_RECVMMSG:
2542 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2543 (struct timespec __user *)a[4]);
2544 break;
2545 case SYS_ACCEPT4:
2546 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2547 (int __user *)a[2], a[3]);
2548 break;
2549 default:
2550 err = -EINVAL;
2551 break;
2553 return err;
2556 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2559 * sock_register - add a socket protocol handler
2560 * @ops: description of protocol
2562 * This function is called by a protocol handler that wants to
2563 * advertise its address family, and have it linked into the
2564 * socket interface. The value ops->family corresponds to the
2565 * socket system call protocol family.
2567 int sock_register(const struct net_proto_family *ops)
2569 int err;
2571 if (ops->family >= NPROTO) {
2572 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2573 return -ENOBUFS;
2576 spin_lock(&net_family_lock);
2577 if (rcu_dereference_protected(net_families[ops->family],
2578 lockdep_is_held(&net_family_lock)))
2579 err = -EEXIST;
2580 else {
2581 rcu_assign_pointer(net_families[ops->family], ops);
2582 err = 0;
2584 spin_unlock(&net_family_lock);
2586 pr_info("NET: Registered protocol family %d\n", ops->family);
2587 return err;
2589 EXPORT_SYMBOL(sock_register);
2592 * sock_unregister - remove a protocol handler
2593 * @family: protocol family to remove
2595 * This function is called by a protocol handler that wants to
2596 * remove its address family, and have it unlinked from the
2597 * new socket creation.
2599 * If protocol handler is a module, then it can use module reference
2600 * counts to protect against new references. If protocol handler is not
2601 * a module then it needs to provide its own protection in
2602 * the ops->create routine.
2604 void sock_unregister(int family)
2606 BUG_ON(family < 0 || family >= NPROTO);
2608 spin_lock(&net_family_lock);
2609 RCU_INIT_POINTER(net_families[family], NULL);
2610 spin_unlock(&net_family_lock);
2612 synchronize_rcu();
2614 pr_info("NET: Unregistered protocol family %d\n", family);
2616 EXPORT_SYMBOL(sock_unregister);
2618 static int __init sock_init(void)
2620 int err;
2622 * Initialize the network sysctl infrastructure.
2624 err = net_sysctl_init();
2625 if (err)
2626 goto out;
2629 * Initialize skbuff SLAB cache
2631 skb_init();
2634 * Initialize the protocols module.
2637 init_inodecache();
2639 err = register_filesystem(&sock_fs_type);
2640 if (err)
2641 goto out_fs;
2642 sock_mnt = kern_mount(&sock_fs_type);
2643 if (IS_ERR(sock_mnt)) {
2644 err = PTR_ERR(sock_mnt);
2645 goto out_mount;
2648 /* The real protocol initialization is performed in later initcalls.
2651 #ifdef CONFIG_NETFILTER
2652 err = netfilter_init();
2653 if (err)
2654 goto out;
2655 #endif
2657 ptp_classifier_init();
2659 out:
2660 return err;
2662 out_mount:
2663 unregister_filesystem(&sock_fs_type);
2664 out_fs:
2665 goto out;
2668 core_initcall(sock_init); /* early initcall */
2670 #ifdef CONFIG_PROC_FS
2671 void socket_seq_show(struct seq_file *seq)
2673 int cpu;
2674 int counter = 0;
2676 for_each_possible_cpu(cpu)
2677 counter += per_cpu(sockets_in_use, cpu);
2679 /* It can be negative, by the way. 8) */
2680 if (counter < 0)
2681 counter = 0;
2683 seq_printf(seq, "sockets: used %d\n", counter);
2685 #endif /* CONFIG_PROC_FS */
2687 #ifdef CONFIG_COMPAT
2688 static int do_siocgstamp(struct net *net, struct socket *sock,
2689 unsigned int cmd, void __user *up)
2691 mm_segment_t old_fs = get_fs();
2692 struct timeval ktv;
2693 int err;
2695 set_fs(KERNEL_DS);
2696 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2697 set_fs(old_fs);
2698 if (!err)
2699 err = compat_put_timeval(&ktv, up);
2701 return err;
2704 static int do_siocgstampns(struct net *net, struct socket *sock,
2705 unsigned int cmd, void __user *up)
2707 mm_segment_t old_fs = get_fs();
2708 struct timespec kts;
2709 int err;
2711 set_fs(KERNEL_DS);
2712 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2713 set_fs(old_fs);
2714 if (!err)
2715 err = compat_put_timespec(&kts, up);
2717 return err;
2720 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2722 struct ifreq __user *uifr;
2723 int err;
2725 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2726 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2727 return -EFAULT;
2729 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2730 if (err)
2731 return err;
2733 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2734 return -EFAULT;
2736 return 0;
2739 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2741 struct compat_ifconf ifc32;
2742 struct ifconf ifc;
2743 struct ifconf __user *uifc;
2744 struct compat_ifreq __user *ifr32;
2745 struct ifreq __user *ifr;
2746 unsigned int i, j;
2747 int err;
2749 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2750 return -EFAULT;
2752 memset(&ifc, 0, sizeof(ifc));
2753 if (ifc32.ifcbuf == 0) {
2754 ifc32.ifc_len = 0;
2755 ifc.ifc_len = 0;
2756 ifc.ifc_req = NULL;
2757 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2758 } else {
2759 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2760 sizeof(struct ifreq);
2761 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2762 ifc.ifc_len = len;
2763 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2764 ifr32 = compat_ptr(ifc32.ifcbuf);
2765 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2766 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2767 return -EFAULT;
2768 ifr++;
2769 ifr32++;
2772 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2773 return -EFAULT;
2775 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2776 if (err)
2777 return err;
2779 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2780 return -EFAULT;
2782 ifr = ifc.ifc_req;
2783 ifr32 = compat_ptr(ifc32.ifcbuf);
2784 for (i = 0, j = 0;
2785 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2786 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2787 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2788 return -EFAULT;
2789 ifr32++;
2790 ifr++;
2793 if (ifc32.ifcbuf == 0) {
2794 /* Translate from 64-bit structure multiple to
2795 * a 32-bit one.
2797 i = ifc.ifc_len;
2798 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2799 ifc32.ifc_len = i;
2800 } else {
2801 ifc32.ifc_len = i;
2803 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2804 return -EFAULT;
2806 return 0;
2809 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2811 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2812 bool convert_in = false, convert_out = false;
2813 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2814 struct ethtool_rxnfc __user *rxnfc;
2815 struct ifreq __user *ifr;
2816 u32 rule_cnt = 0, actual_rule_cnt;
2817 u32 ethcmd;
2818 u32 data;
2819 int ret;
2821 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2822 return -EFAULT;
2824 compat_rxnfc = compat_ptr(data);
2826 if (get_user(ethcmd, &compat_rxnfc->cmd))
2827 return -EFAULT;
2829 /* Most ethtool structures are defined without padding.
2830 * Unfortunately struct ethtool_rxnfc is an exception.
2832 switch (ethcmd) {
2833 default:
2834 break;
2835 case ETHTOOL_GRXCLSRLALL:
2836 /* Buffer size is variable */
2837 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2838 return -EFAULT;
2839 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2840 return -ENOMEM;
2841 buf_size += rule_cnt * sizeof(u32);
2842 /* fall through */
2843 case ETHTOOL_GRXRINGS:
2844 case ETHTOOL_GRXCLSRLCNT:
2845 case ETHTOOL_GRXCLSRULE:
2846 case ETHTOOL_SRXCLSRLINS:
2847 convert_out = true;
2848 /* fall through */
2849 case ETHTOOL_SRXCLSRLDEL:
2850 buf_size += sizeof(struct ethtool_rxnfc);
2851 convert_in = true;
2852 break;
2855 ifr = compat_alloc_user_space(buf_size);
2856 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2858 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2859 return -EFAULT;
2861 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2862 &ifr->ifr_ifru.ifru_data))
2863 return -EFAULT;
2865 if (convert_in) {
2866 /* We expect there to be holes between fs.m_ext and
2867 * fs.ring_cookie and at the end of fs, but nowhere else.
2869 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2870 sizeof(compat_rxnfc->fs.m_ext) !=
2871 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2872 sizeof(rxnfc->fs.m_ext));
2873 BUILD_BUG_ON(
2874 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2875 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2876 offsetof(struct ethtool_rxnfc, fs.location) -
2877 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2879 if (copy_in_user(rxnfc, compat_rxnfc,
2880 (void __user *)(&rxnfc->fs.m_ext + 1) -
2881 (void __user *)rxnfc) ||
2882 copy_in_user(&rxnfc->fs.ring_cookie,
2883 &compat_rxnfc->fs.ring_cookie,
2884 (void __user *)(&rxnfc->fs.location + 1) -
2885 (void __user *)&rxnfc->fs.ring_cookie) ||
2886 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2887 sizeof(rxnfc->rule_cnt)))
2888 return -EFAULT;
2891 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2892 if (ret)
2893 return ret;
2895 if (convert_out) {
2896 if (copy_in_user(compat_rxnfc, rxnfc,
2897 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2898 (const void __user *)rxnfc) ||
2899 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2900 &rxnfc->fs.ring_cookie,
2901 (const void __user *)(&rxnfc->fs.location + 1) -
2902 (const void __user *)&rxnfc->fs.ring_cookie) ||
2903 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2904 sizeof(rxnfc->rule_cnt)))
2905 return -EFAULT;
2907 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2908 /* As an optimisation, we only copy the actual
2909 * number of rules that the underlying
2910 * function returned. Since Mallory might
2911 * change the rule count in user memory, we
2912 * check that it is less than the rule count
2913 * originally given (as the user buffer size),
2914 * which has been range-checked.
2916 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2917 return -EFAULT;
2918 if (actual_rule_cnt < rule_cnt)
2919 rule_cnt = actual_rule_cnt;
2920 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2921 &rxnfc->rule_locs[0],
2922 rule_cnt * sizeof(u32)))
2923 return -EFAULT;
2927 return 0;
2930 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2932 void __user *uptr;
2933 compat_uptr_t uptr32;
2934 struct ifreq __user *uifr;
2936 uifr = compat_alloc_user_space(sizeof(*uifr));
2937 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2938 return -EFAULT;
2940 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2941 return -EFAULT;
2943 uptr = compat_ptr(uptr32);
2945 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2946 return -EFAULT;
2948 return dev_ioctl(net, SIOCWANDEV, uifr);
2951 static int bond_ioctl(struct net *net, unsigned int cmd,
2952 struct compat_ifreq __user *ifr32)
2954 struct ifreq kifr;
2955 mm_segment_t old_fs;
2956 int err;
2958 switch (cmd) {
2959 case SIOCBONDENSLAVE:
2960 case SIOCBONDRELEASE:
2961 case SIOCBONDSETHWADDR:
2962 case SIOCBONDCHANGEACTIVE:
2963 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2964 return -EFAULT;
2966 old_fs = get_fs();
2967 set_fs(KERNEL_DS);
2968 err = dev_ioctl(net, cmd,
2969 (struct ifreq __user __force *) &kifr);
2970 set_fs(old_fs);
2972 return err;
2973 default:
2974 return -ENOIOCTLCMD;
2978 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2979 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2980 struct compat_ifreq __user *u_ifreq32)
2982 struct ifreq __user *u_ifreq64;
2983 char tmp_buf[IFNAMSIZ];
2984 void __user *data64;
2985 u32 data32;
2987 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2988 IFNAMSIZ))
2989 return -EFAULT;
2990 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2991 return -EFAULT;
2992 data64 = compat_ptr(data32);
2994 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2996 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2997 IFNAMSIZ))
2998 return -EFAULT;
2999 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3000 return -EFAULT;
3002 return dev_ioctl(net, cmd, u_ifreq64);
3005 static int dev_ifsioc(struct net *net, struct socket *sock,
3006 unsigned int cmd, struct compat_ifreq __user *uifr32)
3008 struct ifreq __user *uifr;
3009 int err;
3011 uifr = compat_alloc_user_space(sizeof(*uifr));
3012 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3013 return -EFAULT;
3015 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3017 if (!err) {
3018 switch (cmd) {
3019 case SIOCGIFFLAGS:
3020 case SIOCGIFMETRIC:
3021 case SIOCGIFMTU:
3022 case SIOCGIFMEM:
3023 case SIOCGIFHWADDR:
3024 case SIOCGIFINDEX:
3025 case SIOCGIFADDR:
3026 case SIOCGIFBRDADDR:
3027 case SIOCGIFDSTADDR:
3028 case SIOCGIFNETMASK:
3029 case SIOCGIFPFLAGS:
3030 case SIOCGIFTXQLEN:
3031 case SIOCGMIIPHY:
3032 case SIOCGMIIREG:
3033 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3034 err = -EFAULT;
3035 break;
3038 return err;
3041 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3042 struct compat_ifreq __user *uifr32)
3044 struct ifreq ifr;
3045 struct compat_ifmap __user *uifmap32;
3046 mm_segment_t old_fs;
3047 int err;
3049 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3050 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3051 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3052 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3053 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3054 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3055 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3056 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3057 if (err)
3058 return -EFAULT;
3060 old_fs = get_fs();
3061 set_fs(KERNEL_DS);
3062 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
3063 set_fs(old_fs);
3065 if (cmd == SIOCGIFMAP && !err) {
3066 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3067 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3068 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3069 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3070 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3071 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3072 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3073 if (err)
3074 err = -EFAULT;
3076 return err;
3079 struct rtentry32 {
3080 u32 rt_pad1;
3081 struct sockaddr rt_dst; /* target address */
3082 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3083 struct sockaddr rt_genmask; /* target network mask (IP) */
3084 unsigned short rt_flags;
3085 short rt_pad2;
3086 u32 rt_pad3;
3087 unsigned char rt_tos;
3088 unsigned char rt_class;
3089 short rt_pad4;
3090 short rt_metric; /* +1 for binary compatibility! */
3091 /* char * */ u32 rt_dev; /* forcing the device at add */
3092 u32 rt_mtu; /* per route MTU/Window */
3093 u32 rt_window; /* Window clamping */
3094 unsigned short rt_irtt; /* Initial RTT */
3097 struct in6_rtmsg32 {
3098 struct in6_addr rtmsg_dst;
3099 struct in6_addr rtmsg_src;
3100 struct in6_addr rtmsg_gateway;
3101 u32 rtmsg_type;
3102 u16 rtmsg_dst_len;
3103 u16 rtmsg_src_len;
3104 u32 rtmsg_metric;
3105 u32 rtmsg_info;
3106 u32 rtmsg_flags;
3107 s32 rtmsg_ifindex;
3110 static int routing_ioctl(struct net *net, struct socket *sock,
3111 unsigned int cmd, void __user *argp)
3113 int ret;
3114 void *r = NULL;
3115 struct in6_rtmsg r6;
3116 struct rtentry r4;
3117 char devname[16];
3118 u32 rtdev;
3119 mm_segment_t old_fs = get_fs();
3121 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3122 struct in6_rtmsg32 __user *ur6 = argp;
3123 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3124 3 * sizeof(struct in6_addr));
3125 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3126 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3127 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3128 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3129 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3130 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3131 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3133 r = (void *) &r6;
3134 } else { /* ipv4 */
3135 struct rtentry32 __user *ur4 = argp;
3136 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3137 3 * sizeof(struct sockaddr));
3138 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3139 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3140 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3141 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3142 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3143 ret |= get_user(rtdev, &(ur4->rt_dev));
3144 if (rtdev) {
3145 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3146 r4.rt_dev = (char __user __force *)devname;
3147 devname[15] = 0;
3148 } else
3149 r4.rt_dev = NULL;
3151 r = (void *) &r4;
3154 if (ret) {
3155 ret = -EFAULT;
3156 goto out;
3159 set_fs(KERNEL_DS);
3160 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3161 set_fs(old_fs);
3163 out:
3164 return ret;
3167 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3168 * for some operations; this forces use of the newer bridge-utils that
3169 * use compatible ioctls
3171 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3173 compat_ulong_t tmp;
3175 if (get_user(tmp, argp))
3176 return -EFAULT;
3177 if (tmp == BRCTL_GET_VERSION)
3178 return BRCTL_VERSION + 1;
3179 return -EINVAL;
3182 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3183 unsigned int cmd, unsigned long arg)
3185 void __user *argp = compat_ptr(arg);
3186 struct sock *sk = sock->sk;
3187 struct net *net = sock_net(sk);
3189 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3190 return compat_ifr_data_ioctl(net, cmd, argp);
3192 switch (cmd) {
3193 case SIOCSIFBR:
3194 case SIOCGIFBR:
3195 return old_bridge_ioctl(argp);
3196 case SIOCGIFNAME:
3197 return dev_ifname32(net, argp);
3198 case SIOCGIFCONF:
3199 return dev_ifconf(net, argp);
3200 case SIOCETHTOOL:
3201 return ethtool_ioctl(net, argp);
3202 case SIOCWANDEV:
3203 return compat_siocwandev(net, argp);
3204 case SIOCGIFMAP:
3205 case SIOCSIFMAP:
3206 return compat_sioc_ifmap(net, cmd, argp);
3207 case SIOCBONDENSLAVE:
3208 case SIOCBONDRELEASE:
3209 case SIOCBONDSETHWADDR:
3210 case SIOCBONDCHANGEACTIVE:
3211 return bond_ioctl(net, cmd, argp);
3212 case SIOCADDRT:
3213 case SIOCDELRT:
3214 return routing_ioctl(net, sock, cmd, argp);
3215 case SIOCGSTAMP:
3216 return do_siocgstamp(net, sock, cmd, argp);
3217 case SIOCGSTAMPNS:
3218 return do_siocgstampns(net, sock, cmd, argp);
3219 case SIOCBONDSLAVEINFOQUERY:
3220 case SIOCBONDINFOQUERY:
3221 case SIOCSHWTSTAMP:
3222 case SIOCGHWTSTAMP:
3223 return compat_ifr_data_ioctl(net, cmd, argp);
3225 case FIOSETOWN:
3226 case SIOCSPGRP:
3227 case FIOGETOWN:
3228 case SIOCGPGRP:
3229 case SIOCBRADDBR:
3230 case SIOCBRDELBR:
3231 case SIOCGIFVLAN:
3232 case SIOCSIFVLAN:
3233 case SIOCADDDLCI:
3234 case SIOCDELDLCI:
3235 return sock_ioctl(file, cmd, arg);
3237 case SIOCGIFFLAGS:
3238 case SIOCSIFFLAGS:
3239 case SIOCGIFMETRIC:
3240 case SIOCSIFMETRIC:
3241 case SIOCGIFMTU:
3242 case SIOCSIFMTU:
3243 case SIOCGIFMEM:
3244 case SIOCSIFMEM:
3245 case SIOCGIFHWADDR:
3246 case SIOCSIFHWADDR:
3247 case SIOCADDMULTI:
3248 case SIOCDELMULTI:
3249 case SIOCGIFINDEX:
3250 case SIOCGIFADDR:
3251 case SIOCSIFADDR:
3252 case SIOCSIFHWBROADCAST:
3253 case SIOCDIFADDR:
3254 case SIOCGIFBRDADDR:
3255 case SIOCSIFBRDADDR:
3256 case SIOCGIFDSTADDR:
3257 case SIOCSIFDSTADDR:
3258 case SIOCGIFNETMASK:
3259 case SIOCSIFNETMASK:
3260 case SIOCSIFPFLAGS:
3261 case SIOCGIFPFLAGS:
3262 case SIOCGIFTXQLEN:
3263 case SIOCSIFTXQLEN:
3264 case SIOCBRADDIF:
3265 case SIOCBRDELIF:
3266 case SIOCSIFNAME:
3267 case SIOCGMIIPHY:
3268 case SIOCGMIIREG:
3269 case SIOCSMIIREG:
3270 return dev_ifsioc(net, sock, cmd, argp);
3272 case SIOCSARP:
3273 case SIOCGARP:
3274 case SIOCDARP:
3275 case SIOCATMARK:
3276 return sock_do_ioctl(net, sock, cmd, arg);
3279 return -ENOIOCTLCMD;
3282 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3283 unsigned long arg)
3285 struct socket *sock = file->private_data;
3286 int ret = -ENOIOCTLCMD;
3287 struct sock *sk;
3288 struct net *net;
3290 sk = sock->sk;
3291 net = sock_net(sk);
3293 if (sock->ops->compat_ioctl)
3294 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3296 if (ret == -ENOIOCTLCMD &&
3297 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3298 ret = compat_wext_handle_ioctl(net, cmd, arg);
3300 if (ret == -ENOIOCTLCMD)
3301 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3303 return ret;
3305 #endif
3307 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3309 return sock->ops->bind(sock, addr, addrlen);
3311 EXPORT_SYMBOL(kernel_bind);
3313 int kernel_listen(struct socket *sock, int backlog)
3315 return sock->ops->listen(sock, backlog);
3317 EXPORT_SYMBOL(kernel_listen);
3319 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3321 struct sock *sk = sock->sk;
3322 int err;
3324 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3325 newsock);
3326 if (err < 0)
3327 goto done;
3329 err = sock->ops->accept(sock, *newsock, flags);
3330 if (err < 0) {
3331 sock_release(*newsock);
3332 *newsock = NULL;
3333 goto done;
3336 (*newsock)->ops = sock->ops;
3337 __module_get((*newsock)->ops->owner);
3339 done:
3340 return err;
3342 EXPORT_SYMBOL(kernel_accept);
3344 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3345 int flags)
3347 return sock->ops->connect(sock, addr, addrlen, flags);
3349 EXPORT_SYMBOL(kernel_connect);
3351 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3352 int *addrlen)
3354 return sock->ops->getname(sock, addr, addrlen, 0);
3356 EXPORT_SYMBOL(kernel_getsockname);
3358 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3359 int *addrlen)
3361 return sock->ops->getname(sock, addr, addrlen, 1);
3363 EXPORT_SYMBOL(kernel_getpeername);
3365 int kernel_getsockopt(struct socket *sock, int level, int optname,
3366 char *optval, int *optlen)
3368 mm_segment_t oldfs = get_fs();
3369 char __user *uoptval;
3370 int __user *uoptlen;
3371 int err;
3373 uoptval = (char __user __force *) optval;
3374 uoptlen = (int __user __force *) optlen;
3376 set_fs(KERNEL_DS);
3377 if (level == SOL_SOCKET)
3378 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3379 else
3380 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3381 uoptlen);
3382 set_fs(oldfs);
3383 return err;
3385 EXPORT_SYMBOL(kernel_getsockopt);
3387 int kernel_setsockopt(struct socket *sock, int level, int optname,
3388 char *optval, unsigned int optlen)
3390 mm_segment_t oldfs = get_fs();
3391 char __user *uoptval;
3392 int err;
3394 uoptval = (char __user __force *) optval;
3396 set_fs(KERNEL_DS);
3397 if (level == SOL_SOCKET)
3398 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3399 else
3400 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3401 optlen);
3402 set_fs(oldfs);
3403 return err;
3405 EXPORT_SYMBOL(kernel_setsockopt);
3407 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3408 size_t size, int flags)
3410 if (sock->ops->sendpage)
3411 return sock->ops->sendpage(sock, page, offset, size, flags);
3413 return sock_no_sendpage(sock, page, offset, size, flags);
3415 EXPORT_SYMBOL(kernel_sendpage);
3417 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3419 mm_segment_t oldfs = get_fs();
3420 int err;
3422 set_fs(KERNEL_DS);
3423 err = sock->ops->ioctl(sock, cmd, arg);
3424 set_fs(oldfs);
3426 return err;
3428 EXPORT_SYMBOL(kernel_sock_ioctl);
3430 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3432 return sock->ops->shutdown(sock, how);
3434 EXPORT_SYMBOL(kernel_sock_shutdown);