ath9k_hw: modify the rf control register for ar9271 revision 1.0
[linux-2.6/btrfs-unstable.git] / drivers / net / wireless / ath / ath9k / eeprom_4k.c
blob68db16690abf962237d9e10044873a8da44db9bc
1 /*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include "hw.h"
19 static int ath9k_hw_4k_get_eeprom_ver(struct ath_hw *ah)
21 return ((ah->eeprom.map4k.baseEepHeader.version >> 12) & 0xF);
24 static int ath9k_hw_4k_get_eeprom_rev(struct ath_hw *ah)
26 return ((ah->eeprom.map4k.baseEepHeader.version) & 0xFFF);
29 static bool ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
31 #define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
32 struct ath_common *common = ath9k_hw_common(ah);
33 u16 *eep_data = (u16 *)&ah->eeprom.map4k;
34 int addr, eep_start_loc = 0;
36 eep_start_loc = 64;
38 if (!ath9k_hw_use_flash(ah)) {
39 ath_print(common, ATH_DBG_EEPROM,
40 "Reading from EEPROM, not flash\n");
43 for (addr = 0; addr < SIZE_EEPROM_4K; addr++) {
44 if (!ath9k_hw_nvram_read(common, addr + eep_start_loc, eep_data)) {
45 ath_print(common, ATH_DBG_EEPROM,
46 "Unable to read eeprom region \n");
47 return false;
49 eep_data++;
52 return true;
53 #undef SIZE_EEPROM_4K
56 static int ath9k_hw_4k_check_eeprom(struct ath_hw *ah)
58 #define EEPROM_4K_SIZE (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
59 struct ath_common *common = ath9k_hw_common(ah);
60 struct ar5416_eeprom_4k *eep =
61 (struct ar5416_eeprom_4k *) &ah->eeprom.map4k;
62 u16 *eepdata, temp, magic, magic2;
63 u32 sum = 0, el;
64 bool need_swap = false;
65 int i, addr;
68 if (!ath9k_hw_use_flash(ah)) {
69 if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET,
70 &magic)) {
71 ath_print(common, ATH_DBG_FATAL,
72 "Reading Magic # failed\n");
73 return false;
76 ath_print(common, ATH_DBG_EEPROM,
77 "Read Magic = 0x%04X\n", magic);
79 if (magic != AR5416_EEPROM_MAGIC) {
80 magic2 = swab16(magic);
82 if (magic2 == AR5416_EEPROM_MAGIC) {
83 need_swap = true;
84 eepdata = (u16 *) (&ah->eeprom);
86 for (addr = 0; addr < EEPROM_4K_SIZE; addr++) {
87 temp = swab16(*eepdata);
88 *eepdata = temp;
89 eepdata++;
91 } else {
92 ath_print(common, ATH_DBG_FATAL,
93 "Invalid EEPROM Magic. "
94 "endianness mismatch.\n");
95 return -EINVAL;
100 ath_print(common, ATH_DBG_EEPROM, "need_swap = %s.\n",
101 need_swap ? "True" : "False");
103 if (need_swap)
104 el = swab16(ah->eeprom.map4k.baseEepHeader.length);
105 else
106 el = ah->eeprom.map4k.baseEepHeader.length;
108 if (el > sizeof(struct ar5416_eeprom_4k))
109 el = sizeof(struct ar5416_eeprom_4k) / sizeof(u16);
110 else
111 el = el / sizeof(u16);
113 eepdata = (u16 *)(&ah->eeprom);
115 for (i = 0; i < el; i++)
116 sum ^= *eepdata++;
118 if (need_swap) {
119 u32 integer;
120 u16 word;
122 ath_print(common, ATH_DBG_EEPROM,
123 "EEPROM Endianness is not native.. Changing\n");
125 word = swab16(eep->baseEepHeader.length);
126 eep->baseEepHeader.length = word;
128 word = swab16(eep->baseEepHeader.checksum);
129 eep->baseEepHeader.checksum = word;
131 word = swab16(eep->baseEepHeader.version);
132 eep->baseEepHeader.version = word;
134 word = swab16(eep->baseEepHeader.regDmn[0]);
135 eep->baseEepHeader.regDmn[0] = word;
137 word = swab16(eep->baseEepHeader.regDmn[1]);
138 eep->baseEepHeader.regDmn[1] = word;
140 word = swab16(eep->baseEepHeader.rfSilent);
141 eep->baseEepHeader.rfSilent = word;
143 word = swab16(eep->baseEepHeader.blueToothOptions);
144 eep->baseEepHeader.blueToothOptions = word;
146 word = swab16(eep->baseEepHeader.deviceCap);
147 eep->baseEepHeader.deviceCap = word;
149 integer = swab32(eep->modalHeader.antCtrlCommon);
150 eep->modalHeader.antCtrlCommon = integer;
152 for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
153 integer = swab32(eep->modalHeader.antCtrlChain[i]);
154 eep->modalHeader.antCtrlChain[i] = integer;
157 for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
158 word = swab16(eep->modalHeader.spurChans[i].spurChan);
159 eep->modalHeader.spurChans[i].spurChan = word;
163 if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
164 ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
165 ath_print(common, ATH_DBG_FATAL,
166 "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
167 sum, ah->eep_ops->get_eeprom_ver(ah));
168 return -EINVAL;
171 return 0;
172 #undef EEPROM_4K_SIZE
175 static u32 ath9k_hw_4k_get_eeprom(struct ath_hw *ah,
176 enum eeprom_param param)
178 struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
179 struct modal_eep_4k_header *pModal = &eep->modalHeader;
180 struct base_eep_header_4k *pBase = &eep->baseEepHeader;
182 switch (param) {
183 case EEP_NFTHRESH_2:
184 return pModal->noiseFloorThreshCh[0];
185 case AR_EEPROM_MAC(0):
186 return pBase->macAddr[0] << 8 | pBase->macAddr[1];
187 case AR_EEPROM_MAC(1):
188 return pBase->macAddr[2] << 8 | pBase->macAddr[3];
189 case AR_EEPROM_MAC(2):
190 return pBase->macAddr[4] << 8 | pBase->macAddr[5];
191 case EEP_REG_0:
192 return pBase->regDmn[0];
193 case EEP_REG_1:
194 return pBase->regDmn[1];
195 case EEP_OP_CAP:
196 return pBase->deviceCap;
197 case EEP_OP_MODE:
198 return pBase->opCapFlags;
199 case EEP_RF_SILENT:
200 return pBase->rfSilent;
201 case EEP_OB_2:
202 return pModal->ob_0;
203 case EEP_DB_2:
204 return pModal->db1_1;
205 case EEP_MINOR_REV:
206 return pBase->version & AR5416_EEP_VER_MINOR_MASK;
207 case EEP_TX_MASK:
208 return pBase->txMask;
209 case EEP_RX_MASK:
210 return pBase->rxMask;
211 case EEP_FRAC_N_5G:
212 return 0;
213 case EEP_PWR_TABLE_OFFSET:
214 return AR5416_PWR_TABLE_OFFSET_DB;
215 default:
216 return 0;
220 static void ath9k_hw_get_4k_gain_boundaries_pdadcs(struct ath_hw *ah,
221 struct ath9k_channel *chan,
222 struct cal_data_per_freq_4k *pRawDataSet,
223 u8 *bChans, u16 availPiers,
224 u16 tPdGainOverlap, int16_t *pMinCalPower,
225 u16 *pPdGainBoundaries, u8 *pPDADCValues,
226 u16 numXpdGains)
228 #define TMP_VAL_VPD_TABLE \
229 ((vpdTableI[i][sizeCurrVpdTable - 1] + (ss - maxIndex + 1) * vpdStep));
230 int i, j, k;
231 int16_t ss;
232 u16 idxL = 0, idxR = 0, numPiers;
233 static u8 vpdTableL[AR5416_EEP4K_NUM_PD_GAINS]
234 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
235 static u8 vpdTableR[AR5416_EEP4K_NUM_PD_GAINS]
236 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
237 static u8 vpdTableI[AR5416_EEP4K_NUM_PD_GAINS]
238 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
240 u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
241 u8 minPwrT4[AR5416_EEP4K_NUM_PD_GAINS];
242 u8 maxPwrT4[AR5416_EEP4K_NUM_PD_GAINS];
243 int16_t vpdStep;
244 int16_t tmpVal;
245 u16 sizeCurrVpdTable, maxIndex, tgtIndex;
246 bool match;
247 int16_t minDelta = 0;
248 struct chan_centers centers;
249 #define PD_GAIN_BOUNDARY_DEFAULT 58;
251 ath9k_hw_get_channel_centers(ah, chan, &centers);
253 for (numPiers = 0; numPiers < availPiers; numPiers++) {
254 if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
255 break;
258 match = ath9k_hw_get_lower_upper_index(
259 (u8)FREQ2FBIN(centers.synth_center,
260 IS_CHAN_2GHZ(chan)), bChans, numPiers,
261 &idxL, &idxR);
263 if (match) {
264 for (i = 0; i < numXpdGains; i++) {
265 minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
266 maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
267 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
268 pRawDataSet[idxL].pwrPdg[i],
269 pRawDataSet[idxL].vpdPdg[i],
270 AR5416_EEP4K_PD_GAIN_ICEPTS,
271 vpdTableI[i]);
273 } else {
274 for (i = 0; i < numXpdGains; i++) {
275 pVpdL = pRawDataSet[idxL].vpdPdg[i];
276 pPwrL = pRawDataSet[idxL].pwrPdg[i];
277 pVpdR = pRawDataSet[idxR].vpdPdg[i];
278 pPwrR = pRawDataSet[idxR].pwrPdg[i];
280 minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
282 maxPwrT4[i] =
283 min(pPwrL[AR5416_EEP4K_PD_GAIN_ICEPTS - 1],
284 pPwrR[AR5416_EEP4K_PD_GAIN_ICEPTS - 1]);
287 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
288 pPwrL, pVpdL,
289 AR5416_EEP4K_PD_GAIN_ICEPTS,
290 vpdTableL[i]);
291 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
292 pPwrR, pVpdR,
293 AR5416_EEP4K_PD_GAIN_ICEPTS,
294 vpdTableR[i]);
296 for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
297 vpdTableI[i][j] =
298 (u8)(ath9k_hw_interpolate((u16)
299 FREQ2FBIN(centers.
300 synth_center,
301 IS_CHAN_2GHZ
302 (chan)),
303 bChans[idxL], bChans[idxR],
304 vpdTableL[i][j], vpdTableR[i][j]));
309 *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
311 k = 0;
313 for (i = 0; i < numXpdGains; i++) {
314 if (i == (numXpdGains - 1))
315 pPdGainBoundaries[i] =
316 (u16)(maxPwrT4[i] / 2);
317 else
318 pPdGainBoundaries[i] =
319 (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
321 pPdGainBoundaries[i] =
322 min((u16)AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
324 if ((i == 0) && !AR_SREV_5416_20_OR_LATER(ah)) {
325 minDelta = pPdGainBoundaries[0] - 23;
326 pPdGainBoundaries[0] = 23;
327 } else {
328 minDelta = 0;
331 if (i == 0) {
332 if (AR_SREV_9280_10_OR_LATER(ah))
333 ss = (int16_t)(0 - (minPwrT4[i] / 2));
334 else
335 ss = 0;
336 } else {
337 ss = (int16_t)((pPdGainBoundaries[i - 1] -
338 (minPwrT4[i] / 2)) -
339 tPdGainOverlap + 1 + minDelta);
341 vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
342 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
344 while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
345 tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
346 pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
347 ss++;
350 sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
351 tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
352 (minPwrT4[i] / 2));
353 maxIndex = (tgtIndex < sizeCurrVpdTable) ?
354 tgtIndex : sizeCurrVpdTable;
356 while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1)))
357 pPDADCValues[k++] = vpdTableI[i][ss++];
359 vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
360 vpdTableI[i][sizeCurrVpdTable - 2]);
361 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
363 if (tgtIndex >= maxIndex) {
364 while ((ss <= tgtIndex) &&
365 (k < (AR5416_NUM_PDADC_VALUES - 1))) {
366 tmpVal = (int16_t) TMP_VAL_VPD_TABLE;
367 pPDADCValues[k++] = (u8)((tmpVal > 255) ?
368 255 : tmpVal);
369 ss++;
374 while (i < AR5416_EEP4K_PD_GAINS_IN_MASK) {
375 pPdGainBoundaries[i] = PD_GAIN_BOUNDARY_DEFAULT;
376 i++;
379 while (k < AR5416_NUM_PDADC_VALUES) {
380 pPDADCValues[k] = pPDADCValues[k - 1];
381 k++;
384 return;
385 #undef TMP_VAL_VPD_TABLE
388 static void ath9k_hw_set_4k_power_cal_table(struct ath_hw *ah,
389 struct ath9k_channel *chan,
390 int16_t *pTxPowerIndexOffset)
392 struct ath_common *common = ath9k_hw_common(ah);
393 struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
394 struct cal_data_per_freq_4k *pRawDataset;
395 u8 *pCalBChans = NULL;
396 u16 pdGainOverlap_t2;
397 static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
398 u16 gainBoundaries[AR5416_EEP4K_PD_GAINS_IN_MASK];
399 u16 numPiers, i, j;
400 int16_t tMinCalPower;
401 u16 numXpdGain, xpdMask;
402 u16 xpdGainValues[AR5416_EEP4K_NUM_PD_GAINS] = { 0, 0 };
403 u32 reg32, regOffset, regChainOffset;
405 xpdMask = pEepData->modalHeader.xpdGain;
407 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
408 AR5416_EEP_MINOR_VER_2) {
409 pdGainOverlap_t2 =
410 pEepData->modalHeader.pdGainOverlap;
411 } else {
412 pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
413 AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
416 pCalBChans = pEepData->calFreqPier2G;
417 numPiers = AR5416_EEP4K_NUM_2G_CAL_PIERS;
419 numXpdGain = 0;
421 for (i = 1; i <= AR5416_EEP4K_PD_GAINS_IN_MASK; i++) {
422 if ((xpdMask >> (AR5416_EEP4K_PD_GAINS_IN_MASK - i)) & 1) {
423 if (numXpdGain >= AR5416_EEP4K_NUM_PD_GAINS)
424 break;
425 xpdGainValues[numXpdGain] =
426 (u16)(AR5416_EEP4K_PD_GAINS_IN_MASK - i);
427 numXpdGain++;
431 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
432 (numXpdGain - 1) & 0x3);
433 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
434 xpdGainValues[0]);
435 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
436 xpdGainValues[1]);
437 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, 0);
439 for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
440 if (AR_SREV_5416_20_OR_LATER(ah) &&
441 (ah->rxchainmask == 5 || ah->txchainmask == 5) &&
442 (i != 0)) {
443 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
444 } else
445 regChainOffset = i * 0x1000;
447 if (pEepData->baseEepHeader.txMask & (1 << i)) {
448 pRawDataset = pEepData->calPierData2G[i];
450 ath9k_hw_get_4k_gain_boundaries_pdadcs(ah, chan,
451 pRawDataset, pCalBChans,
452 numPiers, pdGainOverlap_t2,
453 &tMinCalPower, gainBoundaries,
454 pdadcValues, numXpdGain);
456 if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah)) {
457 REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
458 SM(pdGainOverlap_t2,
459 AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
460 | SM(gainBoundaries[0],
461 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
462 | SM(gainBoundaries[1],
463 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
464 | SM(gainBoundaries[2],
465 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
466 | SM(gainBoundaries[3],
467 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
470 regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
471 for (j = 0; j < 32; j++) {
472 reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
473 ((pdadcValues[4 * j + 1] & 0xFF) << 8) |
474 ((pdadcValues[4 * j + 2] & 0xFF) << 16)|
475 ((pdadcValues[4 * j + 3] & 0xFF) << 24);
476 REG_WRITE(ah, regOffset, reg32);
478 ath_print(common, ATH_DBG_EEPROM,
479 "PDADC (%d,%4x): %4.4x %8.8x\n",
480 i, regChainOffset, regOffset,
481 reg32);
482 ath_print(common, ATH_DBG_EEPROM,
483 "PDADC: Chain %d | "
484 "PDADC %3d Value %3d | "
485 "PDADC %3d Value %3d | "
486 "PDADC %3d Value %3d | "
487 "PDADC %3d Value %3d |\n",
488 i, 4 * j, pdadcValues[4 * j],
489 4 * j + 1, pdadcValues[4 * j + 1],
490 4 * j + 2, pdadcValues[4 * j + 2],
491 4 * j + 3,
492 pdadcValues[4 * j + 3]);
494 regOffset += 4;
499 *pTxPowerIndexOffset = 0;
502 static void ath9k_hw_set_4k_power_per_rate_table(struct ath_hw *ah,
503 struct ath9k_channel *chan,
504 int16_t *ratesArray,
505 u16 cfgCtl,
506 u16 AntennaReduction,
507 u16 twiceMaxRegulatoryPower,
508 u16 powerLimit)
510 #define CMP_TEST_GRP \
511 (((cfgCtl & ~CTL_MODE_M)| (pCtlMode[ctlMode] & CTL_MODE_M)) == \
512 pEepData->ctlIndex[i]) \
513 || (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
514 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
516 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
517 int i;
518 int16_t twiceLargestAntenna;
519 u16 twiceMinEdgePower;
520 u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
521 u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
522 u16 numCtlModes, *pCtlMode, ctlMode, freq;
523 struct chan_centers centers;
524 struct cal_ctl_data_4k *rep;
525 struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
526 static const u16 tpScaleReductionTable[5] =
527 { 0, 3, 6, 9, AR5416_MAX_RATE_POWER };
528 struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
529 0, { 0, 0, 0, 0}
531 struct cal_target_power_leg targetPowerOfdmExt = {
532 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
533 0, { 0, 0, 0, 0 }
535 struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
536 0, {0, 0, 0, 0}
538 u16 ctlModesFor11g[] =
539 { CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT,
540 CTL_2GHT40
543 ath9k_hw_get_channel_centers(ah, chan, &centers);
545 twiceLargestAntenna = pEepData->modalHeader.antennaGainCh[0];
546 twiceLargestAntenna = (int16_t)min(AntennaReduction -
547 twiceLargestAntenna, 0);
549 maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
550 if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX) {
551 maxRegAllowedPower -=
552 (tpScaleReductionTable[(regulatory->tp_scale)] * 2);
555 scaledPower = min(powerLimit, maxRegAllowedPower);
556 scaledPower = max((u16)0, scaledPower);
558 numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
559 pCtlMode = ctlModesFor11g;
561 ath9k_hw_get_legacy_target_powers(ah, chan,
562 pEepData->calTargetPowerCck,
563 AR5416_NUM_2G_CCK_TARGET_POWERS,
564 &targetPowerCck, 4, false);
565 ath9k_hw_get_legacy_target_powers(ah, chan,
566 pEepData->calTargetPower2G,
567 AR5416_NUM_2G_20_TARGET_POWERS,
568 &targetPowerOfdm, 4, false);
569 ath9k_hw_get_target_powers(ah, chan,
570 pEepData->calTargetPower2GHT20,
571 AR5416_NUM_2G_20_TARGET_POWERS,
572 &targetPowerHt20, 8, false);
574 if (IS_CHAN_HT40(chan)) {
575 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
576 ath9k_hw_get_target_powers(ah, chan,
577 pEepData->calTargetPower2GHT40,
578 AR5416_NUM_2G_40_TARGET_POWERS,
579 &targetPowerHt40, 8, true);
580 ath9k_hw_get_legacy_target_powers(ah, chan,
581 pEepData->calTargetPowerCck,
582 AR5416_NUM_2G_CCK_TARGET_POWERS,
583 &targetPowerCckExt, 4, true);
584 ath9k_hw_get_legacy_target_powers(ah, chan,
585 pEepData->calTargetPower2G,
586 AR5416_NUM_2G_20_TARGET_POWERS,
587 &targetPowerOfdmExt, 4, true);
590 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
591 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
592 (pCtlMode[ctlMode] == CTL_2GHT40);
594 if (isHt40CtlMode)
595 freq = centers.synth_center;
596 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
597 freq = centers.ext_center;
598 else
599 freq = centers.ctl_center;
601 if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
602 ah->eep_ops->get_eeprom_rev(ah) <= 2)
603 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
605 for (i = 0; (i < AR5416_EEP4K_NUM_CTLS) &&
606 pEepData->ctlIndex[i]; i++) {
608 if (CMP_TEST_GRP) {
609 rep = &(pEepData->ctlData[i]);
611 twiceMinEdgePower = ath9k_hw_get_max_edge_power(
612 freq,
613 rep->ctlEdges[
614 ar5416_get_ntxchains(ah->txchainmask) - 1],
615 IS_CHAN_2GHZ(chan),
616 AR5416_EEP4K_NUM_BAND_EDGES);
618 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
619 twiceMaxEdgePower =
620 min(twiceMaxEdgePower,
621 twiceMinEdgePower);
622 } else {
623 twiceMaxEdgePower = twiceMinEdgePower;
624 break;
629 minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
631 switch (pCtlMode[ctlMode]) {
632 case CTL_11B:
633 for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
634 targetPowerCck.tPow2x[i] =
635 min((u16)targetPowerCck.tPow2x[i],
636 minCtlPower);
638 break;
639 case CTL_11G:
640 for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
641 targetPowerOfdm.tPow2x[i] =
642 min((u16)targetPowerOfdm.tPow2x[i],
643 minCtlPower);
645 break;
646 case CTL_2GHT20:
647 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
648 targetPowerHt20.tPow2x[i] =
649 min((u16)targetPowerHt20.tPow2x[i],
650 minCtlPower);
652 break;
653 case CTL_11B_EXT:
654 targetPowerCckExt.tPow2x[0] =
655 min((u16)targetPowerCckExt.tPow2x[0],
656 minCtlPower);
657 break;
658 case CTL_11G_EXT:
659 targetPowerOfdmExt.tPow2x[0] =
660 min((u16)targetPowerOfdmExt.tPow2x[0],
661 minCtlPower);
662 break;
663 case CTL_2GHT40:
664 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
665 targetPowerHt40.tPow2x[i] =
666 min((u16)targetPowerHt40.tPow2x[i],
667 minCtlPower);
669 break;
670 default:
671 break;
675 ratesArray[rate6mb] =
676 ratesArray[rate9mb] =
677 ratesArray[rate12mb] =
678 ratesArray[rate18mb] =
679 ratesArray[rate24mb] =
680 targetPowerOfdm.tPow2x[0];
682 ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
683 ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
684 ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
685 ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
687 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
688 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
690 ratesArray[rate1l] = targetPowerCck.tPow2x[0];
691 ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
692 ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
693 ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
695 if (IS_CHAN_HT40(chan)) {
696 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
697 ratesArray[rateHt40_0 + i] =
698 targetPowerHt40.tPow2x[i];
700 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
701 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
702 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
703 ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
706 #undef CMP_TEST_GRP
709 static void ath9k_hw_4k_set_txpower(struct ath_hw *ah,
710 struct ath9k_channel *chan,
711 u16 cfgCtl,
712 u8 twiceAntennaReduction,
713 u8 twiceMaxRegulatoryPower,
714 u8 powerLimit)
716 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
717 struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
718 struct modal_eep_4k_header *pModal = &pEepData->modalHeader;
719 int16_t ratesArray[Ar5416RateSize];
720 int16_t txPowerIndexOffset = 0;
721 u8 ht40PowerIncForPdadc = 2;
722 int i;
724 memset(ratesArray, 0, sizeof(ratesArray));
726 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
727 AR5416_EEP_MINOR_VER_2) {
728 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
731 ath9k_hw_set_4k_power_per_rate_table(ah, chan,
732 &ratesArray[0], cfgCtl,
733 twiceAntennaReduction,
734 twiceMaxRegulatoryPower,
735 powerLimit);
737 ath9k_hw_set_4k_power_cal_table(ah, chan, &txPowerIndexOffset);
739 for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
740 ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
741 if (ratesArray[i] > AR5416_MAX_RATE_POWER)
742 ratesArray[i] = AR5416_MAX_RATE_POWER;
746 /* Update regulatory */
748 i = rate6mb;
749 if (IS_CHAN_HT40(chan))
750 i = rateHt40_0;
751 else if (IS_CHAN_HT20(chan))
752 i = rateHt20_0;
754 regulatory->max_power_level = ratesArray[i];
756 if (AR_SREV_9280_10_OR_LATER(ah)) {
757 for (i = 0; i < Ar5416RateSize; i++)
758 ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
761 /* OFDM power per rate */
762 REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
763 ATH9K_POW_SM(ratesArray[rate18mb], 24)
764 | ATH9K_POW_SM(ratesArray[rate12mb], 16)
765 | ATH9K_POW_SM(ratesArray[rate9mb], 8)
766 | ATH9K_POW_SM(ratesArray[rate6mb], 0));
767 REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
768 ATH9K_POW_SM(ratesArray[rate54mb], 24)
769 | ATH9K_POW_SM(ratesArray[rate48mb], 16)
770 | ATH9K_POW_SM(ratesArray[rate36mb], 8)
771 | ATH9K_POW_SM(ratesArray[rate24mb], 0));
773 /* CCK power per rate */
774 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
775 ATH9K_POW_SM(ratesArray[rate2s], 24)
776 | ATH9K_POW_SM(ratesArray[rate2l], 16)
777 | ATH9K_POW_SM(ratesArray[rateXr], 8)
778 | ATH9K_POW_SM(ratesArray[rate1l], 0));
779 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
780 ATH9K_POW_SM(ratesArray[rate11s], 24)
781 | ATH9K_POW_SM(ratesArray[rate11l], 16)
782 | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
783 | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
785 /* HT20 power per rate */
786 REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
787 ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
788 | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
789 | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
790 | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
791 REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
792 ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
793 | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
794 | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
795 | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
797 /* HT40 power per rate */
798 if (IS_CHAN_HT40(chan)) {
799 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
800 ATH9K_POW_SM(ratesArray[rateHt40_3] +
801 ht40PowerIncForPdadc, 24)
802 | ATH9K_POW_SM(ratesArray[rateHt40_2] +
803 ht40PowerIncForPdadc, 16)
804 | ATH9K_POW_SM(ratesArray[rateHt40_1] +
805 ht40PowerIncForPdadc, 8)
806 | ATH9K_POW_SM(ratesArray[rateHt40_0] +
807 ht40PowerIncForPdadc, 0));
808 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
809 ATH9K_POW_SM(ratesArray[rateHt40_7] +
810 ht40PowerIncForPdadc, 24)
811 | ATH9K_POW_SM(ratesArray[rateHt40_6] +
812 ht40PowerIncForPdadc, 16)
813 | ATH9K_POW_SM(ratesArray[rateHt40_5] +
814 ht40PowerIncForPdadc, 8)
815 | ATH9K_POW_SM(ratesArray[rateHt40_4] +
816 ht40PowerIncForPdadc, 0));
817 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
818 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
819 | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
820 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
821 | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
825 static void ath9k_hw_4k_set_addac(struct ath_hw *ah,
826 struct ath9k_channel *chan)
828 struct modal_eep_4k_header *pModal;
829 struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
830 u8 biaslevel;
832 if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
833 return;
835 if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
836 return;
838 pModal = &eep->modalHeader;
840 if (pModal->xpaBiasLvl != 0xff) {
841 biaslevel = pModal->xpaBiasLvl;
842 INI_RA(&ah->iniAddac, 7, 1) =
843 (INI_RA(&ah->iniAddac, 7, 1) & (~0x18)) | biaslevel << 3;
847 static void ath9k_hw_4k_set_gain(struct ath_hw *ah,
848 struct modal_eep_4k_header *pModal,
849 struct ar5416_eeprom_4k *eep,
850 u8 txRxAttenLocal)
852 REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0,
853 pModal->antCtrlChain[0]);
855 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0),
856 (REG_READ(ah, AR_PHY_TIMING_CTRL4(0)) &
857 ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
858 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
859 SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
860 SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
862 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
863 AR5416_EEP_MINOR_VER_3) {
864 txRxAttenLocal = pModal->txRxAttenCh[0];
866 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
867 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
868 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
869 AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
870 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
871 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
872 pModal->xatten2Margin[0]);
873 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
874 AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
876 /* Set the block 1 value to block 0 value */
877 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
878 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
879 pModal->bswMargin[0]);
880 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
881 AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
882 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
883 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
884 pModal->xatten2Margin[0]);
885 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
886 AR_PHY_GAIN_2GHZ_XATTEN2_DB,
887 pModal->xatten2Db[0]);
890 REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
891 AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
892 REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
893 AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
895 REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
896 AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
897 REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
898 AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
900 if (AR_SREV_9285_11(ah))
901 REG_WRITE(ah, AR9285_AN_TOP4, (AR9285_AN_TOP4_DEFAULT | 0x14));
905 * Read EEPROM header info and program the device for correct operation
906 * given the channel value.
908 static void ath9k_hw_4k_set_board_values(struct ath_hw *ah,
909 struct ath9k_channel *chan)
911 struct modal_eep_4k_header *pModal;
912 struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
913 u8 txRxAttenLocal;
914 u8 ob[5], db1[5], db2[5];
915 u8 ant_div_control1, ant_div_control2;
916 u32 regVal;
918 pModal = &eep->modalHeader;
919 txRxAttenLocal = 23;
921 REG_WRITE(ah, AR_PHY_SWITCH_COM,
922 ah->eep_ops->get_eeprom_antenna_cfg(ah, chan));
924 /* Single chain for 4K EEPROM*/
925 ath9k_hw_4k_set_gain(ah, pModal, eep, txRxAttenLocal);
927 /* Initialize Ant Diversity settings from EEPROM */
928 if (pModal->version >= 3) {
929 ant_div_control1 = pModal->antdiv_ctl1;
930 ant_div_control2 = pModal->antdiv_ctl2;
932 regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
933 regVal &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL));
935 regVal |= SM(ant_div_control1,
936 AR_PHY_9285_ANT_DIV_CTL);
937 regVal |= SM(ant_div_control2,
938 AR_PHY_9285_ANT_DIV_ALT_LNACONF);
939 regVal |= SM((ant_div_control2 >> 2),
940 AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
941 regVal |= SM((ant_div_control1 >> 1),
942 AR_PHY_9285_ANT_DIV_ALT_GAINTB);
943 regVal |= SM((ant_div_control1 >> 2),
944 AR_PHY_9285_ANT_DIV_MAIN_GAINTB);
947 REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal);
948 regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
949 regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
950 regVal &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
951 regVal |= SM((ant_div_control1 >> 3),
952 AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
954 REG_WRITE(ah, AR_PHY_CCK_DETECT, regVal);
955 regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
958 if (pModal->version >= 2) {
959 ob[0] = pModal->ob_0;
960 ob[1] = pModal->ob_1;
961 ob[2] = pModal->ob_2;
962 ob[3] = pModal->ob_3;
963 ob[4] = pModal->ob_4;
965 db1[0] = pModal->db1_0;
966 db1[1] = pModal->db1_1;
967 db1[2] = pModal->db1_2;
968 db1[3] = pModal->db1_3;
969 db1[4] = pModal->db1_4;
971 db2[0] = pModal->db2_0;
972 db2[1] = pModal->db2_1;
973 db2[2] = pModal->db2_2;
974 db2[3] = pModal->db2_3;
975 db2[4] = pModal->db2_4;
976 } else if (pModal->version == 1) {
977 ob[0] = pModal->ob_0;
978 ob[1] = ob[2] = ob[3] = ob[4] = pModal->ob_1;
979 db1[0] = pModal->db1_0;
980 db1[1] = db1[2] = db1[3] = db1[4] = pModal->db1_1;
981 db2[0] = pModal->db2_0;
982 db2[1] = db2[2] = db2[3] = db2[4] = pModal->db2_1;
983 } else {
984 int i;
986 for (i = 0; i < 5; i++) {
987 ob[i] = pModal->ob_0;
988 db1[i] = pModal->db1_0;
989 db2[i] = pModal->db1_0;
993 if (AR_SREV_9271(ah)) {
994 ath9k_hw_analog_shift_rmw(ah,
995 AR9285_AN_RF2G3,
996 AR9271_AN_RF2G3_OB_cck,
997 AR9271_AN_RF2G3_OB_cck_S,
998 ob[0]);
999 ath9k_hw_analog_shift_rmw(ah,
1000 AR9285_AN_RF2G3,
1001 AR9271_AN_RF2G3_OB_psk,
1002 AR9271_AN_RF2G3_OB_psk_S,
1003 ob[1]);
1004 ath9k_hw_analog_shift_rmw(ah,
1005 AR9285_AN_RF2G3,
1006 AR9271_AN_RF2G3_OB_qam,
1007 AR9271_AN_RF2G3_OB_qam_S,
1008 ob[2]);
1009 ath9k_hw_analog_shift_rmw(ah,
1010 AR9285_AN_RF2G3,
1011 AR9271_AN_RF2G3_DB_1,
1012 AR9271_AN_RF2G3_DB_1_S,
1013 db1[0]);
1014 ath9k_hw_analog_shift_rmw(ah,
1015 AR9285_AN_RF2G4,
1016 AR9271_AN_RF2G4_DB_2,
1017 AR9271_AN_RF2G4_DB_2_S,
1018 db2[0]);
1019 } else {
1020 ath9k_hw_analog_shift_rmw(ah,
1021 AR9285_AN_RF2G3,
1022 AR9285_AN_RF2G3_OB_0,
1023 AR9285_AN_RF2G3_OB_0_S,
1024 ob[0]);
1025 ath9k_hw_analog_shift_rmw(ah,
1026 AR9285_AN_RF2G3,
1027 AR9285_AN_RF2G3_OB_1,
1028 AR9285_AN_RF2G3_OB_1_S,
1029 ob[1]);
1030 ath9k_hw_analog_shift_rmw(ah,
1031 AR9285_AN_RF2G3,
1032 AR9285_AN_RF2G3_OB_2,
1033 AR9285_AN_RF2G3_OB_2_S,
1034 ob[2]);
1035 ath9k_hw_analog_shift_rmw(ah,
1036 AR9285_AN_RF2G3,
1037 AR9285_AN_RF2G3_OB_3,
1038 AR9285_AN_RF2G3_OB_3_S,
1039 ob[3]);
1040 ath9k_hw_analog_shift_rmw(ah,
1041 AR9285_AN_RF2G3,
1042 AR9285_AN_RF2G3_OB_4,
1043 AR9285_AN_RF2G3_OB_4_S,
1044 ob[4]);
1046 ath9k_hw_analog_shift_rmw(ah,
1047 AR9285_AN_RF2G3,
1048 AR9285_AN_RF2G3_DB1_0,
1049 AR9285_AN_RF2G3_DB1_0_S,
1050 db1[0]);
1051 ath9k_hw_analog_shift_rmw(ah,
1052 AR9285_AN_RF2G3,
1053 AR9285_AN_RF2G3_DB1_1,
1054 AR9285_AN_RF2G3_DB1_1_S,
1055 db1[1]);
1056 ath9k_hw_analog_shift_rmw(ah,
1057 AR9285_AN_RF2G3,
1058 AR9285_AN_RF2G3_DB1_2,
1059 AR9285_AN_RF2G3_DB1_2_S,
1060 db1[2]);
1061 ath9k_hw_analog_shift_rmw(ah,
1062 AR9285_AN_RF2G4,
1063 AR9285_AN_RF2G4_DB1_3,
1064 AR9285_AN_RF2G4_DB1_3_S,
1065 db1[3]);
1066 ath9k_hw_analog_shift_rmw(ah,
1067 AR9285_AN_RF2G4,
1068 AR9285_AN_RF2G4_DB1_4,
1069 AR9285_AN_RF2G4_DB1_4_S, db1[4]);
1071 ath9k_hw_analog_shift_rmw(ah,
1072 AR9285_AN_RF2G4,
1073 AR9285_AN_RF2G4_DB2_0,
1074 AR9285_AN_RF2G4_DB2_0_S,
1075 db2[0]);
1076 ath9k_hw_analog_shift_rmw(ah,
1077 AR9285_AN_RF2G4,
1078 AR9285_AN_RF2G4_DB2_1,
1079 AR9285_AN_RF2G4_DB2_1_S,
1080 db2[1]);
1081 ath9k_hw_analog_shift_rmw(ah,
1082 AR9285_AN_RF2G4,
1083 AR9285_AN_RF2G4_DB2_2,
1084 AR9285_AN_RF2G4_DB2_2_S,
1085 db2[2]);
1086 ath9k_hw_analog_shift_rmw(ah,
1087 AR9285_AN_RF2G4,
1088 AR9285_AN_RF2G4_DB2_3,
1089 AR9285_AN_RF2G4_DB2_3_S,
1090 db2[3]);
1091 ath9k_hw_analog_shift_rmw(ah,
1092 AR9285_AN_RF2G4,
1093 AR9285_AN_RF2G4_DB2_4,
1094 AR9285_AN_RF2G4_DB2_4_S,
1095 db2[4]);
1099 if (AR_SREV_9285_11(ah))
1100 REG_WRITE(ah, AR9285_AN_TOP4, AR9285_AN_TOP4_DEFAULT);
1102 REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
1103 pModal->switchSettling);
1104 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
1105 pModal->adcDesiredSize);
1107 REG_WRITE(ah, AR_PHY_RF_CTL4,
1108 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
1109 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
1110 SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON) |
1111 SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
1113 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
1114 pModal->txEndToRxOn);
1116 if (AR_SREV_9271_10(ah))
1117 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
1118 pModal->txEndToRxOn);
1119 REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
1120 pModal->thresh62);
1121 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
1122 pModal->thresh62);
1124 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1125 AR5416_EEP_MINOR_VER_2) {
1126 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START,
1127 pModal->txFrameToDataStart);
1128 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
1129 pModal->txFrameToPaOn);
1132 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1133 AR5416_EEP_MINOR_VER_3) {
1134 if (IS_CHAN_HT40(chan))
1135 REG_RMW_FIELD(ah, AR_PHY_SETTLING,
1136 AR_PHY_SETTLING_SWITCH,
1137 pModal->swSettleHt40);
1141 static u16 ath9k_hw_4k_get_eeprom_antenna_cfg(struct ath_hw *ah,
1142 struct ath9k_channel *chan)
1144 struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
1145 struct modal_eep_4k_header *pModal = &eep->modalHeader;
1147 return pModal->antCtrlCommon & 0xFFFF;
1150 static u8 ath9k_hw_4k_get_num_ant_config(struct ath_hw *ah,
1151 enum ieee80211_band freq_band)
1153 return 1;
1156 static u16 ath9k_hw_4k_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
1158 #define EEP_MAP4K_SPURCHAN \
1159 (ah->eeprom.map4k.modalHeader.spurChans[i].spurChan)
1160 struct ath_common *common = ath9k_hw_common(ah);
1162 u16 spur_val = AR_NO_SPUR;
1164 ath_print(common, ATH_DBG_ANI,
1165 "Getting spur idx %d is2Ghz. %d val %x\n",
1166 i, is2GHz, ah->config.spurchans[i][is2GHz]);
1168 switch (ah->config.spurmode) {
1169 case SPUR_DISABLE:
1170 break;
1171 case SPUR_ENABLE_IOCTL:
1172 spur_val = ah->config.spurchans[i][is2GHz];
1173 ath_print(common, ATH_DBG_ANI,
1174 "Getting spur val from new loc. %d\n", spur_val);
1175 break;
1176 case SPUR_ENABLE_EEPROM:
1177 spur_val = EEP_MAP4K_SPURCHAN;
1178 break;
1181 return spur_val;
1183 #undef EEP_MAP4K_SPURCHAN
1186 const struct eeprom_ops eep_4k_ops = {
1187 .check_eeprom = ath9k_hw_4k_check_eeprom,
1188 .get_eeprom = ath9k_hw_4k_get_eeprom,
1189 .fill_eeprom = ath9k_hw_4k_fill_eeprom,
1190 .get_eeprom_ver = ath9k_hw_4k_get_eeprom_ver,
1191 .get_eeprom_rev = ath9k_hw_4k_get_eeprom_rev,
1192 .get_num_ant_config = ath9k_hw_4k_get_num_ant_config,
1193 .get_eeprom_antenna_cfg = ath9k_hw_4k_get_eeprom_antenna_cfg,
1194 .set_board_values = ath9k_hw_4k_set_board_values,
1195 .set_addac = ath9k_hw_4k_set_addac,
1196 .set_txpower = ath9k_hw_4k_set_txpower,
1197 .get_spur_channel = ath9k_hw_4k_get_spur_channel