cpufreq: intel_pstate: Expose global sysfs attributes upfront
[linux-2.6/btrfs-unstable.git] / net / ipv4 / fib_trie.c
blob2919d1a10cfdd83f4c68ee12ee6ba29ce8dcb989
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
15 * This work is based on the LPC-trie which is originally described in:
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
26 * Code from fib_hash has been reused which includes the following header:
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
33 * IPv4 FIB: lookup engine and maintenance routines.
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
43 * Substantial contributions to this work comes from:
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
51 #define VERSION "0.409"
53 #include <linux/uaccess.h>
54 #include <linux/bitops.h>
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/mm.h>
58 #include <linux/string.h>
59 #include <linux/socket.h>
60 #include <linux/sockios.h>
61 #include <linux/errno.h>
62 #include <linux/in.h>
63 #include <linux/inet.h>
64 #include <linux/inetdevice.h>
65 #include <linux/netdevice.h>
66 #include <linux/if_arp.h>
67 #include <linux/proc_fs.h>
68 #include <linux/rcupdate.h>
69 #include <linux/skbuff.h>
70 #include <linux/netlink.h>
71 #include <linux/init.h>
72 #include <linux/list.h>
73 #include <linux/slab.h>
74 #include <linux/export.h>
75 #include <linux/vmalloc.h>
76 #include <linux/notifier.h>
77 #include <net/net_namespace.h>
78 #include <net/ip.h>
79 #include <net/protocol.h>
80 #include <net/route.h>
81 #include <net/tcp.h>
82 #include <net/sock.h>
83 #include <net/ip_fib.h>
84 #include <trace/events/fib.h>
85 #include "fib_lookup.h"
87 static unsigned int fib_seq_sum(void)
89 unsigned int fib_seq = 0;
90 struct net *net;
92 rtnl_lock();
93 for_each_net(net)
94 fib_seq += net->ipv4.fib_seq;
95 rtnl_unlock();
97 return fib_seq;
100 static ATOMIC_NOTIFIER_HEAD(fib_chain);
102 static int call_fib_notifier(struct notifier_block *nb, struct net *net,
103 enum fib_event_type event_type,
104 struct fib_notifier_info *info)
106 info->net = net;
107 return nb->notifier_call(nb, event_type, info);
110 static void fib_rules_notify(struct net *net, struct notifier_block *nb,
111 enum fib_event_type event_type)
113 #ifdef CONFIG_IP_MULTIPLE_TABLES
114 struct fib_notifier_info info;
116 if (net->ipv4.fib_has_custom_rules)
117 call_fib_notifier(nb, net, event_type, &info);
118 #endif
121 static void fib_notify(struct net *net, struct notifier_block *nb,
122 enum fib_event_type event_type);
124 static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net,
125 enum fib_event_type event_type, u32 dst,
126 int dst_len, struct fib_info *fi,
127 u8 tos, u8 type, u32 tb_id, u32 nlflags)
129 struct fib_entry_notifier_info info = {
130 .dst = dst,
131 .dst_len = dst_len,
132 .fi = fi,
133 .tos = tos,
134 .type = type,
135 .tb_id = tb_id,
136 .nlflags = nlflags,
138 return call_fib_notifier(nb, net, event_type, &info.info);
141 static bool fib_dump_is_consistent(struct notifier_block *nb,
142 void (*cb)(struct notifier_block *nb),
143 unsigned int fib_seq)
145 atomic_notifier_chain_register(&fib_chain, nb);
146 if (fib_seq == fib_seq_sum())
147 return true;
148 atomic_notifier_chain_unregister(&fib_chain, nb);
149 if (cb)
150 cb(nb);
151 return false;
154 #define FIB_DUMP_MAX_RETRIES 5
155 int register_fib_notifier(struct notifier_block *nb,
156 void (*cb)(struct notifier_block *nb))
158 int retries = 0;
160 do {
161 unsigned int fib_seq = fib_seq_sum();
162 struct net *net;
164 /* Mutex semantics guarantee that every change done to
165 * FIB tries before we read the change sequence counter
166 * is now visible to us.
168 rcu_read_lock();
169 for_each_net_rcu(net) {
170 fib_rules_notify(net, nb, FIB_EVENT_RULE_ADD);
171 fib_notify(net, nb, FIB_EVENT_ENTRY_ADD);
173 rcu_read_unlock();
175 if (fib_dump_is_consistent(nb, cb, fib_seq))
176 return 0;
177 } while (++retries < FIB_DUMP_MAX_RETRIES);
179 return -EBUSY;
181 EXPORT_SYMBOL(register_fib_notifier);
183 int unregister_fib_notifier(struct notifier_block *nb)
185 return atomic_notifier_chain_unregister(&fib_chain, nb);
187 EXPORT_SYMBOL(unregister_fib_notifier);
189 int call_fib_notifiers(struct net *net, enum fib_event_type event_type,
190 struct fib_notifier_info *info)
192 net->ipv4.fib_seq++;
193 info->net = net;
194 return atomic_notifier_call_chain(&fib_chain, event_type, info);
197 static int call_fib_entry_notifiers(struct net *net,
198 enum fib_event_type event_type, u32 dst,
199 int dst_len, struct fib_info *fi,
200 u8 tos, u8 type, u32 tb_id, u32 nlflags)
202 struct fib_entry_notifier_info info = {
203 .dst = dst,
204 .dst_len = dst_len,
205 .fi = fi,
206 .tos = tos,
207 .type = type,
208 .tb_id = tb_id,
209 .nlflags = nlflags,
211 return call_fib_notifiers(net, event_type, &info.info);
214 #define MAX_STAT_DEPTH 32
216 #define KEYLENGTH (8*sizeof(t_key))
217 #define KEY_MAX ((t_key)~0)
219 typedef unsigned int t_key;
221 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
222 #define IS_TNODE(n) ((n)->bits)
223 #define IS_LEAF(n) (!(n)->bits)
225 struct key_vector {
226 t_key key;
227 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
228 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
229 unsigned char slen;
230 union {
231 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
232 struct hlist_head leaf;
233 /* This array is valid if (pos | bits) > 0 (TNODE) */
234 struct key_vector __rcu *tnode[0];
238 struct tnode {
239 struct rcu_head rcu;
240 t_key empty_children; /* KEYLENGTH bits needed */
241 t_key full_children; /* KEYLENGTH bits needed */
242 struct key_vector __rcu *parent;
243 struct key_vector kv[1];
244 #define tn_bits kv[0].bits
247 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
248 #define LEAF_SIZE TNODE_SIZE(1)
250 #ifdef CONFIG_IP_FIB_TRIE_STATS
251 struct trie_use_stats {
252 unsigned int gets;
253 unsigned int backtrack;
254 unsigned int semantic_match_passed;
255 unsigned int semantic_match_miss;
256 unsigned int null_node_hit;
257 unsigned int resize_node_skipped;
259 #endif
261 struct trie_stat {
262 unsigned int totdepth;
263 unsigned int maxdepth;
264 unsigned int tnodes;
265 unsigned int leaves;
266 unsigned int nullpointers;
267 unsigned int prefixes;
268 unsigned int nodesizes[MAX_STAT_DEPTH];
271 struct trie {
272 struct key_vector kv[1];
273 #ifdef CONFIG_IP_FIB_TRIE_STATS
274 struct trie_use_stats __percpu *stats;
275 #endif
278 static struct key_vector *resize(struct trie *t, struct key_vector *tn);
279 static size_t tnode_free_size;
282 * synchronize_rcu after call_rcu for that many pages; it should be especially
283 * useful before resizing the root node with PREEMPT_NONE configs; the value was
284 * obtained experimentally, aiming to avoid visible slowdown.
286 static const int sync_pages = 128;
288 static struct kmem_cache *fn_alias_kmem __read_mostly;
289 static struct kmem_cache *trie_leaf_kmem __read_mostly;
291 static inline struct tnode *tn_info(struct key_vector *kv)
293 return container_of(kv, struct tnode, kv[0]);
296 /* caller must hold RTNL */
297 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
298 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
300 /* caller must hold RCU read lock or RTNL */
301 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
302 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
304 /* wrapper for rcu_assign_pointer */
305 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
307 if (n)
308 rcu_assign_pointer(tn_info(n)->parent, tp);
311 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
313 /* This provides us with the number of children in this node, in the case of a
314 * leaf this will return 0 meaning none of the children are accessible.
316 static inline unsigned long child_length(const struct key_vector *tn)
318 return (1ul << tn->bits) & ~(1ul);
321 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
323 static inline unsigned long get_index(t_key key, struct key_vector *kv)
325 unsigned long index = key ^ kv->key;
327 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
328 return 0;
330 return index >> kv->pos;
333 /* To understand this stuff, an understanding of keys and all their bits is
334 * necessary. Every node in the trie has a key associated with it, but not
335 * all of the bits in that key are significant.
337 * Consider a node 'n' and its parent 'tp'.
339 * If n is a leaf, every bit in its key is significant. Its presence is
340 * necessitated by path compression, since during a tree traversal (when
341 * searching for a leaf - unless we are doing an insertion) we will completely
342 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
343 * a potentially successful search, that we have indeed been walking the
344 * correct key path.
346 * Note that we can never "miss" the correct key in the tree if present by
347 * following the wrong path. Path compression ensures that segments of the key
348 * that are the same for all keys with a given prefix are skipped, but the
349 * skipped part *is* identical for each node in the subtrie below the skipped
350 * bit! trie_insert() in this implementation takes care of that.
352 * if n is an internal node - a 'tnode' here, the various parts of its key
353 * have many different meanings.
355 * Example:
356 * _________________________________________________________________
357 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
358 * -----------------------------------------------------------------
359 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
361 * _________________________________________________________________
362 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
363 * -----------------------------------------------------------------
364 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
366 * tp->pos = 22
367 * tp->bits = 3
368 * n->pos = 13
369 * n->bits = 4
371 * First, let's just ignore the bits that come before the parent tp, that is
372 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
373 * point we do not use them for anything.
375 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
376 * index into the parent's child array. That is, they will be used to find
377 * 'n' among tp's children.
379 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
380 * for the node n.
382 * All the bits we have seen so far are significant to the node n. The rest
383 * of the bits are really not needed or indeed known in n->key.
385 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
386 * n's child array, and will of course be different for each child.
388 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
389 * at this point.
392 static const int halve_threshold = 25;
393 static const int inflate_threshold = 50;
394 static const int halve_threshold_root = 15;
395 static const int inflate_threshold_root = 30;
397 static void __alias_free_mem(struct rcu_head *head)
399 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
400 kmem_cache_free(fn_alias_kmem, fa);
403 static inline void alias_free_mem_rcu(struct fib_alias *fa)
405 call_rcu(&fa->rcu, __alias_free_mem);
408 #define TNODE_KMALLOC_MAX \
409 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
410 #define TNODE_VMALLOC_MAX \
411 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
413 static void __node_free_rcu(struct rcu_head *head)
415 struct tnode *n = container_of(head, struct tnode, rcu);
417 if (!n->tn_bits)
418 kmem_cache_free(trie_leaf_kmem, n);
419 else
420 kvfree(n);
423 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
425 static struct tnode *tnode_alloc(int bits)
427 size_t size;
429 /* verify bits is within bounds */
430 if (bits > TNODE_VMALLOC_MAX)
431 return NULL;
433 /* determine size and verify it is non-zero and didn't overflow */
434 size = TNODE_SIZE(1ul << bits);
436 if (size <= PAGE_SIZE)
437 return kzalloc(size, GFP_KERNEL);
438 else
439 return vzalloc(size);
442 static inline void empty_child_inc(struct key_vector *n)
444 ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
447 static inline void empty_child_dec(struct key_vector *n)
449 tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
452 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
454 struct key_vector *l;
455 struct tnode *kv;
457 kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
458 if (!kv)
459 return NULL;
461 /* initialize key vector */
462 l = kv->kv;
463 l->key = key;
464 l->pos = 0;
465 l->bits = 0;
466 l->slen = fa->fa_slen;
468 /* link leaf to fib alias */
469 INIT_HLIST_HEAD(&l->leaf);
470 hlist_add_head(&fa->fa_list, &l->leaf);
472 return l;
475 static struct key_vector *tnode_new(t_key key, int pos, int bits)
477 unsigned int shift = pos + bits;
478 struct key_vector *tn;
479 struct tnode *tnode;
481 /* verify bits and pos their msb bits clear and values are valid */
482 BUG_ON(!bits || (shift > KEYLENGTH));
484 tnode = tnode_alloc(bits);
485 if (!tnode)
486 return NULL;
488 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
489 sizeof(struct key_vector *) << bits);
491 if (bits == KEYLENGTH)
492 tnode->full_children = 1;
493 else
494 tnode->empty_children = 1ul << bits;
496 tn = tnode->kv;
497 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
498 tn->pos = pos;
499 tn->bits = bits;
500 tn->slen = pos;
502 return tn;
505 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
506 * and no bits are skipped. See discussion in dyntree paper p. 6
508 static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
510 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
513 /* Add a child at position i overwriting the old value.
514 * Update the value of full_children and empty_children.
516 static void put_child(struct key_vector *tn, unsigned long i,
517 struct key_vector *n)
519 struct key_vector *chi = get_child(tn, i);
520 int isfull, wasfull;
522 BUG_ON(i >= child_length(tn));
524 /* update emptyChildren, overflow into fullChildren */
525 if (!n && chi)
526 empty_child_inc(tn);
527 if (n && !chi)
528 empty_child_dec(tn);
530 /* update fullChildren */
531 wasfull = tnode_full(tn, chi);
532 isfull = tnode_full(tn, n);
534 if (wasfull && !isfull)
535 tn_info(tn)->full_children--;
536 else if (!wasfull && isfull)
537 tn_info(tn)->full_children++;
539 if (n && (tn->slen < n->slen))
540 tn->slen = n->slen;
542 rcu_assign_pointer(tn->tnode[i], n);
545 static void update_children(struct key_vector *tn)
547 unsigned long i;
549 /* update all of the child parent pointers */
550 for (i = child_length(tn); i;) {
551 struct key_vector *inode = get_child(tn, --i);
553 if (!inode)
554 continue;
556 /* Either update the children of a tnode that
557 * already belongs to us or update the child
558 * to point to ourselves.
560 if (node_parent(inode) == tn)
561 update_children(inode);
562 else
563 node_set_parent(inode, tn);
567 static inline void put_child_root(struct key_vector *tp, t_key key,
568 struct key_vector *n)
570 if (IS_TRIE(tp))
571 rcu_assign_pointer(tp->tnode[0], n);
572 else
573 put_child(tp, get_index(key, tp), n);
576 static inline void tnode_free_init(struct key_vector *tn)
578 tn_info(tn)->rcu.next = NULL;
581 static inline void tnode_free_append(struct key_vector *tn,
582 struct key_vector *n)
584 tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
585 tn_info(tn)->rcu.next = &tn_info(n)->rcu;
588 static void tnode_free(struct key_vector *tn)
590 struct callback_head *head = &tn_info(tn)->rcu;
592 while (head) {
593 head = head->next;
594 tnode_free_size += TNODE_SIZE(1ul << tn->bits);
595 node_free(tn);
597 tn = container_of(head, struct tnode, rcu)->kv;
600 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
601 tnode_free_size = 0;
602 synchronize_rcu();
606 static struct key_vector *replace(struct trie *t,
607 struct key_vector *oldtnode,
608 struct key_vector *tn)
610 struct key_vector *tp = node_parent(oldtnode);
611 unsigned long i;
613 /* setup the parent pointer out of and back into this node */
614 NODE_INIT_PARENT(tn, tp);
615 put_child_root(tp, tn->key, tn);
617 /* update all of the child parent pointers */
618 update_children(tn);
620 /* all pointers should be clean so we are done */
621 tnode_free(oldtnode);
623 /* resize children now that oldtnode is freed */
624 for (i = child_length(tn); i;) {
625 struct key_vector *inode = get_child(tn, --i);
627 /* resize child node */
628 if (tnode_full(tn, inode))
629 tn = resize(t, inode);
632 return tp;
635 static struct key_vector *inflate(struct trie *t,
636 struct key_vector *oldtnode)
638 struct key_vector *tn;
639 unsigned long i;
640 t_key m;
642 pr_debug("In inflate\n");
644 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
645 if (!tn)
646 goto notnode;
648 /* prepare oldtnode to be freed */
649 tnode_free_init(oldtnode);
651 /* Assemble all of the pointers in our cluster, in this case that
652 * represents all of the pointers out of our allocated nodes that
653 * point to existing tnodes and the links between our allocated
654 * nodes.
656 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
657 struct key_vector *inode = get_child(oldtnode, --i);
658 struct key_vector *node0, *node1;
659 unsigned long j, k;
661 /* An empty child */
662 if (!inode)
663 continue;
665 /* A leaf or an internal node with skipped bits */
666 if (!tnode_full(oldtnode, inode)) {
667 put_child(tn, get_index(inode->key, tn), inode);
668 continue;
671 /* drop the node in the old tnode free list */
672 tnode_free_append(oldtnode, inode);
674 /* An internal node with two children */
675 if (inode->bits == 1) {
676 put_child(tn, 2 * i + 1, get_child(inode, 1));
677 put_child(tn, 2 * i, get_child(inode, 0));
678 continue;
681 /* We will replace this node 'inode' with two new
682 * ones, 'node0' and 'node1', each with half of the
683 * original children. The two new nodes will have
684 * a position one bit further down the key and this
685 * means that the "significant" part of their keys
686 * (see the discussion near the top of this file)
687 * will differ by one bit, which will be "0" in
688 * node0's key and "1" in node1's key. Since we are
689 * moving the key position by one step, the bit that
690 * we are moving away from - the bit at position
691 * (tn->pos) - is the one that will differ between
692 * node0 and node1. So... we synthesize that bit in the
693 * two new keys.
695 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
696 if (!node1)
697 goto nomem;
698 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
700 tnode_free_append(tn, node1);
701 if (!node0)
702 goto nomem;
703 tnode_free_append(tn, node0);
705 /* populate child pointers in new nodes */
706 for (k = child_length(inode), j = k / 2; j;) {
707 put_child(node1, --j, get_child(inode, --k));
708 put_child(node0, j, get_child(inode, j));
709 put_child(node1, --j, get_child(inode, --k));
710 put_child(node0, j, get_child(inode, j));
713 /* link new nodes to parent */
714 NODE_INIT_PARENT(node1, tn);
715 NODE_INIT_PARENT(node0, tn);
717 /* link parent to nodes */
718 put_child(tn, 2 * i + 1, node1);
719 put_child(tn, 2 * i, node0);
722 /* setup the parent pointers into and out of this node */
723 return replace(t, oldtnode, tn);
724 nomem:
725 /* all pointers should be clean so we are done */
726 tnode_free(tn);
727 notnode:
728 return NULL;
731 static struct key_vector *halve(struct trie *t,
732 struct key_vector *oldtnode)
734 struct key_vector *tn;
735 unsigned long i;
737 pr_debug("In halve\n");
739 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
740 if (!tn)
741 goto notnode;
743 /* prepare oldtnode to be freed */
744 tnode_free_init(oldtnode);
746 /* Assemble all of the pointers in our cluster, in this case that
747 * represents all of the pointers out of our allocated nodes that
748 * point to existing tnodes and the links between our allocated
749 * nodes.
751 for (i = child_length(oldtnode); i;) {
752 struct key_vector *node1 = get_child(oldtnode, --i);
753 struct key_vector *node0 = get_child(oldtnode, --i);
754 struct key_vector *inode;
756 /* At least one of the children is empty */
757 if (!node1 || !node0) {
758 put_child(tn, i / 2, node1 ? : node0);
759 continue;
762 /* Two nonempty children */
763 inode = tnode_new(node0->key, oldtnode->pos, 1);
764 if (!inode)
765 goto nomem;
766 tnode_free_append(tn, inode);
768 /* initialize pointers out of node */
769 put_child(inode, 1, node1);
770 put_child(inode, 0, node0);
771 NODE_INIT_PARENT(inode, tn);
773 /* link parent to node */
774 put_child(tn, i / 2, inode);
777 /* setup the parent pointers into and out of this node */
778 return replace(t, oldtnode, tn);
779 nomem:
780 /* all pointers should be clean so we are done */
781 tnode_free(tn);
782 notnode:
783 return NULL;
786 static struct key_vector *collapse(struct trie *t,
787 struct key_vector *oldtnode)
789 struct key_vector *n, *tp;
790 unsigned long i;
792 /* scan the tnode looking for that one child that might still exist */
793 for (n = NULL, i = child_length(oldtnode); !n && i;)
794 n = get_child(oldtnode, --i);
796 /* compress one level */
797 tp = node_parent(oldtnode);
798 put_child_root(tp, oldtnode->key, n);
799 node_set_parent(n, tp);
801 /* drop dead node */
802 node_free(oldtnode);
804 return tp;
807 static unsigned char update_suffix(struct key_vector *tn)
809 unsigned char slen = tn->pos;
810 unsigned long stride, i;
811 unsigned char slen_max;
813 /* only vector 0 can have a suffix length greater than or equal to
814 * tn->pos + tn->bits, the second highest node will have a suffix
815 * length at most of tn->pos + tn->bits - 1
817 slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
819 /* search though the list of children looking for nodes that might
820 * have a suffix greater than the one we currently have. This is
821 * why we start with a stride of 2 since a stride of 1 would
822 * represent the nodes with suffix length equal to tn->pos
824 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
825 struct key_vector *n = get_child(tn, i);
827 if (!n || (n->slen <= slen))
828 continue;
830 /* update stride and slen based on new value */
831 stride <<= (n->slen - slen);
832 slen = n->slen;
833 i &= ~(stride - 1);
835 /* stop searching if we have hit the maximum possible value */
836 if (slen >= slen_max)
837 break;
840 tn->slen = slen;
842 return slen;
845 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
846 * the Helsinki University of Technology and Matti Tikkanen of Nokia
847 * Telecommunications, page 6:
848 * "A node is doubled if the ratio of non-empty children to all
849 * children in the *doubled* node is at least 'high'."
851 * 'high' in this instance is the variable 'inflate_threshold'. It
852 * is expressed as a percentage, so we multiply it with
853 * child_length() and instead of multiplying by 2 (since the
854 * child array will be doubled by inflate()) and multiplying
855 * the left-hand side by 100 (to handle the percentage thing) we
856 * multiply the left-hand side by 50.
858 * The left-hand side may look a bit weird: child_length(tn)
859 * - tn->empty_children is of course the number of non-null children
860 * in the current node. tn->full_children is the number of "full"
861 * children, that is non-null tnodes with a skip value of 0.
862 * All of those will be doubled in the resulting inflated tnode, so
863 * we just count them one extra time here.
865 * A clearer way to write this would be:
867 * to_be_doubled = tn->full_children;
868 * not_to_be_doubled = child_length(tn) - tn->empty_children -
869 * tn->full_children;
871 * new_child_length = child_length(tn) * 2;
873 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
874 * new_child_length;
875 * if (new_fill_factor >= inflate_threshold)
877 * ...and so on, tho it would mess up the while () loop.
879 * anyway,
880 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
881 * inflate_threshold
883 * avoid a division:
884 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
885 * inflate_threshold * new_child_length
887 * expand not_to_be_doubled and to_be_doubled, and shorten:
888 * 100 * (child_length(tn) - tn->empty_children +
889 * tn->full_children) >= inflate_threshold * new_child_length
891 * expand new_child_length:
892 * 100 * (child_length(tn) - tn->empty_children +
893 * tn->full_children) >=
894 * inflate_threshold * child_length(tn) * 2
896 * shorten again:
897 * 50 * (tn->full_children + child_length(tn) -
898 * tn->empty_children) >= inflate_threshold *
899 * child_length(tn)
902 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
904 unsigned long used = child_length(tn);
905 unsigned long threshold = used;
907 /* Keep root node larger */
908 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
909 used -= tn_info(tn)->empty_children;
910 used += tn_info(tn)->full_children;
912 /* if bits == KEYLENGTH then pos = 0, and will fail below */
914 return (used > 1) && tn->pos && ((50 * used) >= threshold);
917 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
919 unsigned long used = child_length(tn);
920 unsigned long threshold = used;
922 /* Keep root node larger */
923 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
924 used -= tn_info(tn)->empty_children;
926 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
928 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
931 static inline bool should_collapse(struct key_vector *tn)
933 unsigned long used = child_length(tn);
935 used -= tn_info(tn)->empty_children;
937 /* account for bits == KEYLENGTH case */
938 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
939 used -= KEY_MAX;
941 /* One child or none, time to drop us from the trie */
942 return used < 2;
945 #define MAX_WORK 10
946 static struct key_vector *resize(struct trie *t, struct key_vector *tn)
948 #ifdef CONFIG_IP_FIB_TRIE_STATS
949 struct trie_use_stats __percpu *stats = t->stats;
950 #endif
951 struct key_vector *tp = node_parent(tn);
952 unsigned long cindex = get_index(tn->key, tp);
953 int max_work = MAX_WORK;
955 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
956 tn, inflate_threshold, halve_threshold);
958 /* track the tnode via the pointer from the parent instead of
959 * doing it ourselves. This way we can let RCU fully do its
960 * thing without us interfering
962 BUG_ON(tn != get_child(tp, cindex));
964 /* Double as long as the resulting node has a number of
965 * nonempty nodes that are above the threshold.
967 while (should_inflate(tp, tn) && max_work) {
968 tp = inflate(t, tn);
969 if (!tp) {
970 #ifdef CONFIG_IP_FIB_TRIE_STATS
971 this_cpu_inc(stats->resize_node_skipped);
972 #endif
973 break;
976 max_work--;
977 tn = get_child(tp, cindex);
980 /* update parent in case inflate failed */
981 tp = node_parent(tn);
983 /* Return if at least one inflate is run */
984 if (max_work != MAX_WORK)
985 return tp;
987 /* Halve as long as the number of empty children in this
988 * node is above threshold.
990 while (should_halve(tp, tn) && max_work) {
991 tp = halve(t, tn);
992 if (!tp) {
993 #ifdef CONFIG_IP_FIB_TRIE_STATS
994 this_cpu_inc(stats->resize_node_skipped);
995 #endif
996 break;
999 max_work--;
1000 tn = get_child(tp, cindex);
1003 /* Only one child remains */
1004 if (should_collapse(tn))
1005 return collapse(t, tn);
1007 /* update parent in case halve failed */
1008 return node_parent(tn);
1011 static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
1013 unsigned char node_slen = tn->slen;
1015 while ((node_slen > tn->pos) && (node_slen > slen)) {
1016 slen = update_suffix(tn);
1017 if (node_slen == slen)
1018 break;
1020 tn = node_parent(tn);
1021 node_slen = tn->slen;
1025 static void node_push_suffix(struct key_vector *tn, unsigned char slen)
1027 while (tn->slen < slen) {
1028 tn->slen = slen;
1029 tn = node_parent(tn);
1033 /* rcu_read_lock needs to be hold by caller from readside */
1034 static struct key_vector *fib_find_node(struct trie *t,
1035 struct key_vector **tp, u32 key)
1037 struct key_vector *pn, *n = t->kv;
1038 unsigned long index = 0;
1040 do {
1041 pn = n;
1042 n = get_child_rcu(n, index);
1044 if (!n)
1045 break;
1047 index = get_cindex(key, n);
1049 /* This bit of code is a bit tricky but it combines multiple
1050 * checks into a single check. The prefix consists of the
1051 * prefix plus zeros for the bits in the cindex. The index
1052 * is the difference between the key and this value. From
1053 * this we can actually derive several pieces of data.
1054 * if (index >= (1ul << bits))
1055 * we have a mismatch in skip bits and failed
1056 * else
1057 * we know the value is cindex
1059 * This check is safe even if bits == KEYLENGTH due to the
1060 * fact that we can only allocate a node with 32 bits if a
1061 * long is greater than 32 bits.
1063 if (index >= (1ul << n->bits)) {
1064 n = NULL;
1065 break;
1068 /* keep searching until we find a perfect match leaf or NULL */
1069 } while (IS_TNODE(n));
1071 *tp = pn;
1073 return n;
1076 /* Return the first fib alias matching TOS with
1077 * priority less than or equal to PRIO.
1079 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
1080 u8 tos, u32 prio, u32 tb_id)
1082 struct fib_alias *fa;
1084 if (!fah)
1085 return NULL;
1087 hlist_for_each_entry(fa, fah, fa_list) {
1088 if (fa->fa_slen < slen)
1089 continue;
1090 if (fa->fa_slen != slen)
1091 break;
1092 if (fa->tb_id > tb_id)
1093 continue;
1094 if (fa->tb_id != tb_id)
1095 break;
1096 if (fa->fa_tos > tos)
1097 continue;
1098 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
1099 return fa;
1102 return NULL;
1105 static void trie_rebalance(struct trie *t, struct key_vector *tn)
1107 while (!IS_TRIE(tn))
1108 tn = resize(t, tn);
1111 static int fib_insert_node(struct trie *t, struct key_vector *tp,
1112 struct fib_alias *new, t_key key)
1114 struct key_vector *n, *l;
1116 l = leaf_new(key, new);
1117 if (!l)
1118 goto noleaf;
1120 /* retrieve child from parent node */
1121 n = get_child(tp, get_index(key, tp));
1123 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1125 * Add a new tnode here
1126 * first tnode need some special handling
1127 * leaves us in position for handling as case 3
1129 if (n) {
1130 struct key_vector *tn;
1132 tn = tnode_new(key, __fls(key ^ n->key), 1);
1133 if (!tn)
1134 goto notnode;
1136 /* initialize routes out of node */
1137 NODE_INIT_PARENT(tn, tp);
1138 put_child(tn, get_index(key, tn) ^ 1, n);
1140 /* start adding routes into the node */
1141 put_child_root(tp, key, tn);
1142 node_set_parent(n, tn);
1144 /* parent now has a NULL spot where the leaf can go */
1145 tp = tn;
1148 /* Case 3: n is NULL, and will just insert a new leaf */
1149 node_push_suffix(tp, new->fa_slen);
1150 NODE_INIT_PARENT(l, tp);
1151 put_child_root(tp, key, l);
1152 trie_rebalance(t, tp);
1154 return 0;
1155 notnode:
1156 node_free(l);
1157 noleaf:
1158 return -ENOMEM;
1161 static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1162 struct key_vector *l, struct fib_alias *new,
1163 struct fib_alias *fa, t_key key)
1165 if (!l)
1166 return fib_insert_node(t, tp, new, key);
1168 if (fa) {
1169 hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1170 } else {
1171 struct fib_alias *last;
1173 hlist_for_each_entry(last, &l->leaf, fa_list) {
1174 if (new->fa_slen < last->fa_slen)
1175 break;
1176 if ((new->fa_slen == last->fa_slen) &&
1177 (new->tb_id > last->tb_id))
1178 break;
1179 fa = last;
1182 if (fa)
1183 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1184 else
1185 hlist_add_head_rcu(&new->fa_list, &l->leaf);
1188 /* if we added to the tail node then we need to update slen */
1189 if (l->slen < new->fa_slen) {
1190 l->slen = new->fa_slen;
1191 node_push_suffix(tp, new->fa_slen);
1194 return 0;
1197 /* Caller must hold RTNL. */
1198 int fib_table_insert(struct net *net, struct fib_table *tb,
1199 struct fib_config *cfg)
1201 struct trie *t = (struct trie *)tb->tb_data;
1202 struct fib_alias *fa, *new_fa;
1203 struct key_vector *l, *tp;
1204 u16 nlflags = NLM_F_EXCL;
1205 struct fib_info *fi;
1206 u8 plen = cfg->fc_dst_len;
1207 u8 slen = KEYLENGTH - plen;
1208 u8 tos = cfg->fc_tos;
1209 u32 key;
1210 int err;
1212 if (plen > KEYLENGTH)
1213 return -EINVAL;
1215 key = ntohl(cfg->fc_dst);
1217 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1219 if ((plen < KEYLENGTH) && (key << plen))
1220 return -EINVAL;
1222 fi = fib_create_info(cfg);
1223 if (IS_ERR(fi)) {
1224 err = PTR_ERR(fi);
1225 goto err;
1228 l = fib_find_node(t, &tp, key);
1229 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1230 tb->tb_id) : NULL;
1232 /* Now fa, if non-NULL, points to the first fib alias
1233 * with the same keys [prefix,tos,priority], if such key already
1234 * exists or to the node before which we will insert new one.
1236 * If fa is NULL, we will need to allocate a new one and
1237 * insert to the tail of the section matching the suffix length
1238 * of the new alias.
1241 if (fa && fa->fa_tos == tos &&
1242 fa->fa_info->fib_priority == fi->fib_priority) {
1243 struct fib_alias *fa_first, *fa_match;
1245 err = -EEXIST;
1246 if (cfg->fc_nlflags & NLM_F_EXCL)
1247 goto out;
1249 nlflags &= ~NLM_F_EXCL;
1251 /* We have 2 goals:
1252 * 1. Find exact match for type, scope, fib_info to avoid
1253 * duplicate routes
1254 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1256 fa_match = NULL;
1257 fa_first = fa;
1258 hlist_for_each_entry_from(fa, fa_list) {
1259 if ((fa->fa_slen != slen) ||
1260 (fa->tb_id != tb->tb_id) ||
1261 (fa->fa_tos != tos))
1262 break;
1263 if (fa->fa_info->fib_priority != fi->fib_priority)
1264 break;
1265 if (fa->fa_type == cfg->fc_type &&
1266 fa->fa_info == fi) {
1267 fa_match = fa;
1268 break;
1272 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1273 struct fib_info *fi_drop;
1274 u8 state;
1276 nlflags |= NLM_F_REPLACE;
1277 fa = fa_first;
1278 if (fa_match) {
1279 if (fa == fa_match)
1280 err = 0;
1281 goto out;
1283 err = -ENOBUFS;
1284 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1285 if (!new_fa)
1286 goto out;
1288 fi_drop = fa->fa_info;
1289 new_fa->fa_tos = fa->fa_tos;
1290 new_fa->fa_info = fi;
1291 new_fa->fa_type = cfg->fc_type;
1292 state = fa->fa_state;
1293 new_fa->fa_state = state & ~FA_S_ACCESSED;
1294 new_fa->fa_slen = fa->fa_slen;
1295 new_fa->tb_id = tb->tb_id;
1296 new_fa->fa_default = -1;
1298 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1300 alias_free_mem_rcu(fa);
1302 fib_release_info(fi_drop);
1303 if (state & FA_S_ACCESSED)
1304 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1306 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_ADD,
1307 key, plen, fi,
1308 new_fa->fa_tos, cfg->fc_type,
1309 tb->tb_id, cfg->fc_nlflags);
1310 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1311 tb->tb_id, &cfg->fc_nlinfo, nlflags);
1313 goto succeeded;
1315 /* Error if we find a perfect match which
1316 * uses the same scope, type, and nexthop
1317 * information.
1319 if (fa_match)
1320 goto out;
1322 if (cfg->fc_nlflags & NLM_F_APPEND)
1323 nlflags |= NLM_F_APPEND;
1324 else
1325 fa = fa_first;
1327 err = -ENOENT;
1328 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1329 goto out;
1331 nlflags |= NLM_F_CREATE;
1332 err = -ENOBUFS;
1333 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1334 if (!new_fa)
1335 goto out;
1337 new_fa->fa_info = fi;
1338 new_fa->fa_tos = tos;
1339 new_fa->fa_type = cfg->fc_type;
1340 new_fa->fa_state = 0;
1341 new_fa->fa_slen = slen;
1342 new_fa->tb_id = tb->tb_id;
1343 new_fa->fa_default = -1;
1345 /* Insert new entry to the list. */
1346 err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1347 if (err)
1348 goto out_free_new_fa;
1350 if (!plen)
1351 tb->tb_num_default++;
1353 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1354 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, key, plen, fi, tos,
1355 cfg->fc_type, tb->tb_id, cfg->fc_nlflags);
1356 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1357 &cfg->fc_nlinfo, nlflags);
1358 succeeded:
1359 return 0;
1361 out_free_new_fa:
1362 kmem_cache_free(fn_alias_kmem, new_fa);
1363 out:
1364 fib_release_info(fi);
1365 err:
1366 return err;
1369 static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1371 t_key prefix = n->key;
1373 return (key ^ prefix) & (prefix | -prefix);
1376 /* should be called with rcu_read_lock */
1377 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1378 struct fib_result *res, int fib_flags)
1380 struct trie *t = (struct trie *) tb->tb_data;
1381 #ifdef CONFIG_IP_FIB_TRIE_STATS
1382 struct trie_use_stats __percpu *stats = t->stats;
1383 #endif
1384 const t_key key = ntohl(flp->daddr);
1385 struct key_vector *n, *pn;
1386 struct fib_alias *fa;
1387 unsigned long index;
1388 t_key cindex;
1390 trace_fib_table_lookup(tb->tb_id, flp);
1392 pn = t->kv;
1393 cindex = 0;
1395 n = get_child_rcu(pn, cindex);
1396 if (!n)
1397 return -EAGAIN;
1399 #ifdef CONFIG_IP_FIB_TRIE_STATS
1400 this_cpu_inc(stats->gets);
1401 #endif
1403 /* Step 1: Travel to the longest prefix match in the trie */
1404 for (;;) {
1405 index = get_cindex(key, n);
1407 /* This bit of code is a bit tricky but it combines multiple
1408 * checks into a single check. The prefix consists of the
1409 * prefix plus zeros for the "bits" in the prefix. The index
1410 * is the difference between the key and this value. From
1411 * this we can actually derive several pieces of data.
1412 * if (index >= (1ul << bits))
1413 * we have a mismatch in skip bits and failed
1414 * else
1415 * we know the value is cindex
1417 * This check is safe even if bits == KEYLENGTH due to the
1418 * fact that we can only allocate a node with 32 bits if a
1419 * long is greater than 32 bits.
1421 if (index >= (1ul << n->bits))
1422 break;
1424 /* we have found a leaf. Prefixes have already been compared */
1425 if (IS_LEAF(n))
1426 goto found;
1428 /* only record pn and cindex if we are going to be chopping
1429 * bits later. Otherwise we are just wasting cycles.
1431 if (n->slen > n->pos) {
1432 pn = n;
1433 cindex = index;
1436 n = get_child_rcu(n, index);
1437 if (unlikely(!n))
1438 goto backtrace;
1441 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1442 for (;;) {
1443 /* record the pointer where our next node pointer is stored */
1444 struct key_vector __rcu **cptr = n->tnode;
1446 /* This test verifies that none of the bits that differ
1447 * between the key and the prefix exist in the region of
1448 * the lsb and higher in the prefix.
1450 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1451 goto backtrace;
1453 /* exit out and process leaf */
1454 if (unlikely(IS_LEAF(n)))
1455 break;
1457 /* Don't bother recording parent info. Since we are in
1458 * prefix match mode we will have to come back to wherever
1459 * we started this traversal anyway
1462 while ((n = rcu_dereference(*cptr)) == NULL) {
1463 backtrace:
1464 #ifdef CONFIG_IP_FIB_TRIE_STATS
1465 if (!n)
1466 this_cpu_inc(stats->null_node_hit);
1467 #endif
1468 /* If we are at cindex 0 there are no more bits for
1469 * us to strip at this level so we must ascend back
1470 * up one level to see if there are any more bits to
1471 * be stripped there.
1473 while (!cindex) {
1474 t_key pkey = pn->key;
1476 /* If we don't have a parent then there is
1477 * nothing for us to do as we do not have any
1478 * further nodes to parse.
1480 if (IS_TRIE(pn))
1481 return -EAGAIN;
1482 #ifdef CONFIG_IP_FIB_TRIE_STATS
1483 this_cpu_inc(stats->backtrack);
1484 #endif
1485 /* Get Child's index */
1486 pn = node_parent_rcu(pn);
1487 cindex = get_index(pkey, pn);
1490 /* strip the least significant bit from the cindex */
1491 cindex &= cindex - 1;
1493 /* grab pointer for next child node */
1494 cptr = &pn->tnode[cindex];
1498 found:
1499 /* this line carries forward the xor from earlier in the function */
1500 index = key ^ n->key;
1502 /* Step 3: Process the leaf, if that fails fall back to backtracing */
1503 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1504 struct fib_info *fi = fa->fa_info;
1505 int nhsel, err;
1507 if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1508 if (index >= (1ul << fa->fa_slen))
1509 continue;
1511 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1512 continue;
1513 if (fi->fib_dead)
1514 continue;
1515 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1516 continue;
1517 fib_alias_accessed(fa);
1518 err = fib_props[fa->fa_type].error;
1519 if (unlikely(err < 0)) {
1520 #ifdef CONFIG_IP_FIB_TRIE_STATS
1521 this_cpu_inc(stats->semantic_match_passed);
1522 #endif
1523 return err;
1525 if (fi->fib_flags & RTNH_F_DEAD)
1526 continue;
1527 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1528 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1529 struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
1531 if (nh->nh_flags & RTNH_F_DEAD)
1532 continue;
1533 if (in_dev &&
1534 IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
1535 nh->nh_flags & RTNH_F_LINKDOWN &&
1536 !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1537 continue;
1538 if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1539 if (flp->flowi4_oif &&
1540 flp->flowi4_oif != nh->nh_oif)
1541 continue;
1544 if (!(fib_flags & FIB_LOOKUP_NOREF))
1545 atomic_inc(&fi->fib_clntref);
1547 res->prefixlen = KEYLENGTH - fa->fa_slen;
1548 res->nh_sel = nhsel;
1549 res->type = fa->fa_type;
1550 res->scope = fi->fib_scope;
1551 res->fi = fi;
1552 res->table = tb;
1553 res->fa_head = &n->leaf;
1554 #ifdef CONFIG_IP_FIB_TRIE_STATS
1555 this_cpu_inc(stats->semantic_match_passed);
1556 #endif
1557 trace_fib_table_lookup_nh(nh);
1559 return err;
1562 #ifdef CONFIG_IP_FIB_TRIE_STATS
1563 this_cpu_inc(stats->semantic_match_miss);
1564 #endif
1565 goto backtrace;
1567 EXPORT_SYMBOL_GPL(fib_table_lookup);
1569 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1570 struct key_vector *l, struct fib_alias *old)
1572 /* record the location of the previous list_info entry */
1573 struct hlist_node **pprev = old->fa_list.pprev;
1574 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1576 /* remove the fib_alias from the list */
1577 hlist_del_rcu(&old->fa_list);
1579 /* if we emptied the list this leaf will be freed and we can sort
1580 * out parent suffix lengths as a part of trie_rebalance
1582 if (hlist_empty(&l->leaf)) {
1583 if (tp->slen == l->slen)
1584 node_pull_suffix(tp, tp->pos);
1585 put_child_root(tp, l->key, NULL);
1586 node_free(l);
1587 trie_rebalance(t, tp);
1588 return;
1591 /* only access fa if it is pointing at the last valid hlist_node */
1592 if (*pprev)
1593 return;
1595 /* update the trie with the latest suffix length */
1596 l->slen = fa->fa_slen;
1597 node_pull_suffix(tp, fa->fa_slen);
1600 /* Caller must hold RTNL. */
1601 int fib_table_delete(struct net *net, struct fib_table *tb,
1602 struct fib_config *cfg)
1604 struct trie *t = (struct trie *) tb->tb_data;
1605 struct fib_alias *fa, *fa_to_delete;
1606 struct key_vector *l, *tp;
1607 u8 plen = cfg->fc_dst_len;
1608 u8 slen = KEYLENGTH - plen;
1609 u8 tos = cfg->fc_tos;
1610 u32 key;
1612 if (plen > KEYLENGTH)
1613 return -EINVAL;
1615 key = ntohl(cfg->fc_dst);
1617 if ((plen < KEYLENGTH) && (key << plen))
1618 return -EINVAL;
1620 l = fib_find_node(t, &tp, key);
1621 if (!l)
1622 return -ESRCH;
1624 fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1625 if (!fa)
1626 return -ESRCH;
1628 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1630 fa_to_delete = NULL;
1631 hlist_for_each_entry_from(fa, fa_list) {
1632 struct fib_info *fi = fa->fa_info;
1634 if ((fa->fa_slen != slen) ||
1635 (fa->tb_id != tb->tb_id) ||
1636 (fa->fa_tos != tos))
1637 break;
1639 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1640 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1641 fa->fa_info->fib_scope == cfg->fc_scope) &&
1642 (!cfg->fc_prefsrc ||
1643 fi->fib_prefsrc == cfg->fc_prefsrc) &&
1644 (!cfg->fc_protocol ||
1645 fi->fib_protocol == cfg->fc_protocol) &&
1646 fib_nh_match(cfg, fi) == 0) {
1647 fa_to_delete = fa;
1648 break;
1652 if (!fa_to_delete)
1653 return -ESRCH;
1655 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
1656 fa_to_delete->fa_info, tos, cfg->fc_type,
1657 tb->tb_id, 0);
1658 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1659 &cfg->fc_nlinfo, 0);
1661 if (!plen)
1662 tb->tb_num_default--;
1664 fib_remove_alias(t, tp, l, fa_to_delete);
1666 if (fa_to_delete->fa_state & FA_S_ACCESSED)
1667 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1669 fib_release_info(fa_to_delete->fa_info);
1670 alias_free_mem_rcu(fa_to_delete);
1671 return 0;
1674 /* Scan for the next leaf starting at the provided key value */
1675 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1677 struct key_vector *pn, *n = *tn;
1678 unsigned long cindex;
1680 /* this loop is meant to try and find the key in the trie */
1681 do {
1682 /* record parent and next child index */
1683 pn = n;
1684 cindex = (key > pn->key) ? get_index(key, pn) : 0;
1686 if (cindex >> pn->bits)
1687 break;
1689 /* descend into the next child */
1690 n = get_child_rcu(pn, cindex++);
1691 if (!n)
1692 break;
1694 /* guarantee forward progress on the keys */
1695 if (IS_LEAF(n) && (n->key >= key))
1696 goto found;
1697 } while (IS_TNODE(n));
1699 /* this loop will search for the next leaf with a greater key */
1700 while (!IS_TRIE(pn)) {
1701 /* if we exhausted the parent node we will need to climb */
1702 if (cindex >= (1ul << pn->bits)) {
1703 t_key pkey = pn->key;
1705 pn = node_parent_rcu(pn);
1706 cindex = get_index(pkey, pn) + 1;
1707 continue;
1710 /* grab the next available node */
1711 n = get_child_rcu(pn, cindex++);
1712 if (!n)
1713 continue;
1715 /* no need to compare keys since we bumped the index */
1716 if (IS_LEAF(n))
1717 goto found;
1719 /* Rescan start scanning in new node */
1720 pn = n;
1721 cindex = 0;
1724 *tn = pn;
1725 return NULL; /* Root of trie */
1726 found:
1727 /* if we are at the limit for keys just return NULL for the tnode */
1728 *tn = pn;
1729 return n;
1732 static void fib_trie_free(struct fib_table *tb)
1734 struct trie *t = (struct trie *)tb->tb_data;
1735 struct key_vector *pn = t->kv;
1736 unsigned long cindex = 1;
1737 struct hlist_node *tmp;
1738 struct fib_alias *fa;
1740 /* walk trie in reverse order and free everything */
1741 for (;;) {
1742 struct key_vector *n;
1744 if (!(cindex--)) {
1745 t_key pkey = pn->key;
1747 if (IS_TRIE(pn))
1748 break;
1750 n = pn;
1751 pn = node_parent(pn);
1753 /* drop emptied tnode */
1754 put_child_root(pn, n->key, NULL);
1755 node_free(n);
1757 cindex = get_index(pkey, pn);
1759 continue;
1762 /* grab the next available node */
1763 n = get_child(pn, cindex);
1764 if (!n)
1765 continue;
1767 if (IS_TNODE(n)) {
1768 /* record pn and cindex for leaf walking */
1769 pn = n;
1770 cindex = 1ul << n->bits;
1772 continue;
1775 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1776 hlist_del_rcu(&fa->fa_list);
1777 alias_free_mem_rcu(fa);
1780 put_child_root(pn, n->key, NULL);
1781 node_free(n);
1784 #ifdef CONFIG_IP_FIB_TRIE_STATS
1785 free_percpu(t->stats);
1786 #endif
1787 kfree(tb);
1790 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1792 struct trie *ot = (struct trie *)oldtb->tb_data;
1793 struct key_vector *l, *tp = ot->kv;
1794 struct fib_table *local_tb;
1795 struct fib_alias *fa;
1796 struct trie *lt;
1797 t_key key = 0;
1799 if (oldtb->tb_data == oldtb->__data)
1800 return oldtb;
1802 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1803 if (!local_tb)
1804 return NULL;
1806 lt = (struct trie *)local_tb->tb_data;
1808 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1809 struct key_vector *local_l = NULL, *local_tp;
1811 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1812 struct fib_alias *new_fa;
1814 if (local_tb->tb_id != fa->tb_id)
1815 continue;
1817 /* clone fa for new local table */
1818 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1819 if (!new_fa)
1820 goto out;
1822 memcpy(new_fa, fa, sizeof(*fa));
1824 /* insert clone into table */
1825 if (!local_l)
1826 local_l = fib_find_node(lt, &local_tp, l->key);
1828 if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1829 NULL, l->key)) {
1830 kmem_cache_free(fn_alias_kmem, new_fa);
1831 goto out;
1835 /* stop loop if key wrapped back to 0 */
1836 key = l->key + 1;
1837 if (key < l->key)
1838 break;
1841 return local_tb;
1842 out:
1843 fib_trie_free(local_tb);
1845 return NULL;
1848 /* Caller must hold RTNL */
1849 void fib_table_flush_external(struct fib_table *tb)
1851 struct trie *t = (struct trie *)tb->tb_data;
1852 struct key_vector *pn = t->kv;
1853 unsigned long cindex = 1;
1854 struct hlist_node *tmp;
1855 struct fib_alias *fa;
1857 /* walk trie in reverse order */
1858 for (;;) {
1859 unsigned char slen = 0;
1860 struct key_vector *n;
1862 if (!(cindex--)) {
1863 t_key pkey = pn->key;
1865 /* cannot resize the trie vector */
1866 if (IS_TRIE(pn))
1867 break;
1869 /* update the suffix to address pulled leaves */
1870 if (pn->slen > pn->pos)
1871 update_suffix(pn);
1873 /* resize completed node */
1874 pn = resize(t, pn);
1875 cindex = get_index(pkey, pn);
1877 continue;
1880 /* grab the next available node */
1881 n = get_child(pn, cindex);
1882 if (!n)
1883 continue;
1885 if (IS_TNODE(n)) {
1886 /* record pn and cindex for leaf walking */
1887 pn = n;
1888 cindex = 1ul << n->bits;
1890 continue;
1893 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1894 /* if alias was cloned to local then we just
1895 * need to remove the local copy from main
1897 if (tb->tb_id != fa->tb_id) {
1898 hlist_del_rcu(&fa->fa_list);
1899 alias_free_mem_rcu(fa);
1900 continue;
1903 /* record local slen */
1904 slen = fa->fa_slen;
1907 /* update leaf slen */
1908 n->slen = slen;
1910 if (hlist_empty(&n->leaf)) {
1911 put_child_root(pn, n->key, NULL);
1912 node_free(n);
1917 /* Caller must hold RTNL. */
1918 int fib_table_flush(struct net *net, struct fib_table *tb)
1920 struct trie *t = (struct trie *)tb->tb_data;
1921 struct key_vector *pn = t->kv;
1922 unsigned long cindex = 1;
1923 struct hlist_node *tmp;
1924 struct fib_alias *fa;
1925 int found = 0;
1927 /* walk trie in reverse order */
1928 for (;;) {
1929 unsigned char slen = 0;
1930 struct key_vector *n;
1932 if (!(cindex--)) {
1933 t_key pkey = pn->key;
1935 /* cannot resize the trie vector */
1936 if (IS_TRIE(pn))
1937 break;
1939 /* update the suffix to address pulled leaves */
1940 if (pn->slen > pn->pos)
1941 update_suffix(pn);
1943 /* resize completed node */
1944 pn = resize(t, pn);
1945 cindex = get_index(pkey, pn);
1947 continue;
1950 /* grab the next available node */
1951 n = get_child(pn, cindex);
1952 if (!n)
1953 continue;
1955 if (IS_TNODE(n)) {
1956 /* record pn and cindex for leaf walking */
1957 pn = n;
1958 cindex = 1ul << n->bits;
1960 continue;
1963 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1964 struct fib_info *fi = fa->fa_info;
1966 if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
1967 slen = fa->fa_slen;
1968 continue;
1971 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1972 n->key,
1973 KEYLENGTH - fa->fa_slen,
1974 fi, fa->fa_tos, fa->fa_type,
1975 tb->tb_id, 0);
1976 hlist_del_rcu(&fa->fa_list);
1977 fib_release_info(fa->fa_info);
1978 alias_free_mem_rcu(fa);
1979 found++;
1982 /* update leaf slen */
1983 n->slen = slen;
1985 if (hlist_empty(&n->leaf)) {
1986 put_child_root(pn, n->key, NULL);
1987 node_free(n);
1991 pr_debug("trie_flush found=%d\n", found);
1992 return found;
1995 static void fib_leaf_notify(struct net *net, struct key_vector *l,
1996 struct fib_table *tb, struct notifier_block *nb,
1997 enum fib_event_type event_type)
1999 struct fib_alias *fa;
2001 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2002 struct fib_info *fi = fa->fa_info;
2004 if (!fi)
2005 continue;
2007 /* local and main table can share the same trie,
2008 * so don't notify twice for the same entry.
2010 if (tb->tb_id != fa->tb_id)
2011 continue;
2013 call_fib_entry_notifier(nb, net, event_type, l->key,
2014 KEYLENGTH - fa->fa_slen, fi, fa->fa_tos,
2015 fa->fa_type, fa->tb_id, 0);
2019 static void fib_table_notify(struct net *net, struct fib_table *tb,
2020 struct notifier_block *nb,
2021 enum fib_event_type event_type)
2023 struct trie *t = (struct trie *)tb->tb_data;
2024 struct key_vector *l, *tp = t->kv;
2025 t_key key = 0;
2027 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2028 fib_leaf_notify(net, l, tb, nb, event_type);
2030 key = l->key + 1;
2031 /* stop in case of wrap around */
2032 if (key < l->key)
2033 break;
2037 static void fib_notify(struct net *net, struct notifier_block *nb,
2038 enum fib_event_type event_type)
2040 unsigned int h;
2042 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2043 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2044 struct fib_table *tb;
2046 hlist_for_each_entry_rcu(tb, head, tb_hlist)
2047 fib_table_notify(net, tb, nb, event_type);
2051 static void __trie_free_rcu(struct rcu_head *head)
2053 struct fib_table *tb = container_of(head, struct fib_table, rcu);
2054 #ifdef CONFIG_IP_FIB_TRIE_STATS
2055 struct trie *t = (struct trie *)tb->tb_data;
2057 if (tb->tb_data == tb->__data)
2058 free_percpu(t->stats);
2059 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2060 kfree(tb);
2063 void fib_free_table(struct fib_table *tb)
2065 call_rcu(&tb->rcu, __trie_free_rcu);
2068 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
2069 struct sk_buff *skb, struct netlink_callback *cb)
2071 __be32 xkey = htonl(l->key);
2072 struct fib_alias *fa;
2073 int i, s_i;
2075 s_i = cb->args[4];
2076 i = 0;
2078 /* rcu_read_lock is hold by caller */
2079 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2080 if (i < s_i) {
2081 i++;
2082 continue;
2085 if (tb->tb_id != fa->tb_id) {
2086 i++;
2087 continue;
2090 if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
2091 cb->nlh->nlmsg_seq,
2092 RTM_NEWROUTE,
2093 tb->tb_id,
2094 fa->fa_type,
2095 xkey,
2096 KEYLENGTH - fa->fa_slen,
2097 fa->fa_tos,
2098 fa->fa_info, NLM_F_MULTI) < 0) {
2099 cb->args[4] = i;
2100 return -1;
2102 i++;
2105 cb->args[4] = i;
2106 return skb->len;
2109 /* rcu_read_lock needs to be hold by caller from readside */
2110 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2111 struct netlink_callback *cb)
2113 struct trie *t = (struct trie *)tb->tb_data;
2114 struct key_vector *l, *tp = t->kv;
2115 /* Dump starting at last key.
2116 * Note: 0.0.0.0/0 (ie default) is first key.
2118 int count = cb->args[2];
2119 t_key key = cb->args[3];
2121 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2122 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
2123 cb->args[3] = key;
2124 cb->args[2] = count;
2125 return -1;
2128 ++count;
2129 key = l->key + 1;
2131 memset(&cb->args[4], 0,
2132 sizeof(cb->args) - 4*sizeof(cb->args[0]));
2134 /* stop loop if key wrapped back to 0 */
2135 if (key < l->key)
2136 break;
2139 cb->args[3] = key;
2140 cb->args[2] = count;
2142 return skb->len;
2145 void __init fib_trie_init(void)
2147 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2148 sizeof(struct fib_alias),
2149 0, SLAB_PANIC, NULL);
2151 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2152 LEAF_SIZE,
2153 0, SLAB_PANIC, NULL);
2156 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2158 struct fib_table *tb;
2159 struct trie *t;
2160 size_t sz = sizeof(*tb);
2162 if (!alias)
2163 sz += sizeof(struct trie);
2165 tb = kzalloc(sz, GFP_KERNEL);
2166 if (!tb)
2167 return NULL;
2169 tb->tb_id = id;
2170 tb->tb_num_default = 0;
2171 tb->tb_data = (alias ? alias->__data : tb->__data);
2173 if (alias)
2174 return tb;
2176 t = (struct trie *) tb->tb_data;
2177 t->kv[0].pos = KEYLENGTH;
2178 t->kv[0].slen = KEYLENGTH;
2179 #ifdef CONFIG_IP_FIB_TRIE_STATS
2180 t->stats = alloc_percpu(struct trie_use_stats);
2181 if (!t->stats) {
2182 kfree(tb);
2183 tb = NULL;
2185 #endif
2187 return tb;
2190 #ifdef CONFIG_PROC_FS
2191 /* Depth first Trie walk iterator */
2192 struct fib_trie_iter {
2193 struct seq_net_private p;
2194 struct fib_table *tb;
2195 struct key_vector *tnode;
2196 unsigned int index;
2197 unsigned int depth;
2200 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2202 unsigned long cindex = iter->index;
2203 struct key_vector *pn = iter->tnode;
2204 t_key pkey;
2206 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2207 iter->tnode, iter->index, iter->depth);
2209 while (!IS_TRIE(pn)) {
2210 while (cindex < child_length(pn)) {
2211 struct key_vector *n = get_child_rcu(pn, cindex++);
2213 if (!n)
2214 continue;
2216 if (IS_LEAF(n)) {
2217 iter->tnode = pn;
2218 iter->index = cindex;
2219 } else {
2220 /* push down one level */
2221 iter->tnode = n;
2222 iter->index = 0;
2223 ++iter->depth;
2226 return n;
2229 /* Current node exhausted, pop back up */
2230 pkey = pn->key;
2231 pn = node_parent_rcu(pn);
2232 cindex = get_index(pkey, pn) + 1;
2233 --iter->depth;
2236 /* record root node so further searches know we are done */
2237 iter->tnode = pn;
2238 iter->index = 0;
2240 return NULL;
2243 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2244 struct trie *t)
2246 struct key_vector *n, *pn;
2248 if (!t)
2249 return NULL;
2251 pn = t->kv;
2252 n = rcu_dereference(pn->tnode[0]);
2253 if (!n)
2254 return NULL;
2256 if (IS_TNODE(n)) {
2257 iter->tnode = n;
2258 iter->index = 0;
2259 iter->depth = 1;
2260 } else {
2261 iter->tnode = pn;
2262 iter->index = 0;
2263 iter->depth = 0;
2266 return n;
2269 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2271 struct key_vector *n;
2272 struct fib_trie_iter iter;
2274 memset(s, 0, sizeof(*s));
2276 rcu_read_lock();
2277 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2278 if (IS_LEAF(n)) {
2279 struct fib_alias *fa;
2281 s->leaves++;
2282 s->totdepth += iter.depth;
2283 if (iter.depth > s->maxdepth)
2284 s->maxdepth = iter.depth;
2286 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2287 ++s->prefixes;
2288 } else {
2289 s->tnodes++;
2290 if (n->bits < MAX_STAT_DEPTH)
2291 s->nodesizes[n->bits]++;
2292 s->nullpointers += tn_info(n)->empty_children;
2295 rcu_read_unlock();
2299 * This outputs /proc/net/fib_triestats
2301 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2303 unsigned int i, max, pointers, bytes, avdepth;
2305 if (stat->leaves)
2306 avdepth = stat->totdepth*100 / stat->leaves;
2307 else
2308 avdepth = 0;
2310 seq_printf(seq, "\tAver depth: %u.%02d\n",
2311 avdepth / 100, avdepth % 100);
2312 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2314 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2315 bytes = LEAF_SIZE * stat->leaves;
2317 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2318 bytes += sizeof(struct fib_alias) * stat->prefixes;
2320 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2321 bytes += TNODE_SIZE(0) * stat->tnodes;
2323 max = MAX_STAT_DEPTH;
2324 while (max > 0 && stat->nodesizes[max-1] == 0)
2325 max--;
2327 pointers = 0;
2328 for (i = 1; i < max; i++)
2329 if (stat->nodesizes[i] != 0) {
2330 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2331 pointers += (1<<i) * stat->nodesizes[i];
2333 seq_putc(seq, '\n');
2334 seq_printf(seq, "\tPointers: %u\n", pointers);
2336 bytes += sizeof(struct key_vector *) * pointers;
2337 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2338 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2341 #ifdef CONFIG_IP_FIB_TRIE_STATS
2342 static void trie_show_usage(struct seq_file *seq,
2343 const struct trie_use_stats __percpu *stats)
2345 struct trie_use_stats s = { 0 };
2346 int cpu;
2348 /* loop through all of the CPUs and gather up the stats */
2349 for_each_possible_cpu(cpu) {
2350 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2352 s.gets += pcpu->gets;
2353 s.backtrack += pcpu->backtrack;
2354 s.semantic_match_passed += pcpu->semantic_match_passed;
2355 s.semantic_match_miss += pcpu->semantic_match_miss;
2356 s.null_node_hit += pcpu->null_node_hit;
2357 s.resize_node_skipped += pcpu->resize_node_skipped;
2360 seq_printf(seq, "\nCounters:\n---------\n");
2361 seq_printf(seq, "gets = %u\n", s.gets);
2362 seq_printf(seq, "backtracks = %u\n", s.backtrack);
2363 seq_printf(seq, "semantic match passed = %u\n",
2364 s.semantic_match_passed);
2365 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2366 seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2367 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2369 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2371 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2373 if (tb->tb_id == RT_TABLE_LOCAL)
2374 seq_puts(seq, "Local:\n");
2375 else if (tb->tb_id == RT_TABLE_MAIN)
2376 seq_puts(seq, "Main:\n");
2377 else
2378 seq_printf(seq, "Id %d:\n", tb->tb_id);
2382 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2384 struct net *net = (struct net *)seq->private;
2385 unsigned int h;
2387 seq_printf(seq,
2388 "Basic info: size of leaf:"
2389 " %Zd bytes, size of tnode: %Zd bytes.\n",
2390 LEAF_SIZE, TNODE_SIZE(0));
2392 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2393 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2394 struct fib_table *tb;
2396 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2397 struct trie *t = (struct trie *) tb->tb_data;
2398 struct trie_stat stat;
2400 if (!t)
2401 continue;
2403 fib_table_print(seq, tb);
2405 trie_collect_stats(t, &stat);
2406 trie_show_stats(seq, &stat);
2407 #ifdef CONFIG_IP_FIB_TRIE_STATS
2408 trie_show_usage(seq, t->stats);
2409 #endif
2413 return 0;
2416 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2418 return single_open_net(inode, file, fib_triestat_seq_show);
2421 static const struct file_operations fib_triestat_fops = {
2422 .owner = THIS_MODULE,
2423 .open = fib_triestat_seq_open,
2424 .read = seq_read,
2425 .llseek = seq_lseek,
2426 .release = single_release_net,
2429 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2431 struct fib_trie_iter *iter = seq->private;
2432 struct net *net = seq_file_net(seq);
2433 loff_t idx = 0;
2434 unsigned int h;
2436 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2437 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2438 struct fib_table *tb;
2440 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2441 struct key_vector *n;
2443 for (n = fib_trie_get_first(iter,
2444 (struct trie *) tb->tb_data);
2445 n; n = fib_trie_get_next(iter))
2446 if (pos == idx++) {
2447 iter->tb = tb;
2448 return n;
2453 return NULL;
2456 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2457 __acquires(RCU)
2459 rcu_read_lock();
2460 return fib_trie_get_idx(seq, *pos);
2463 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2465 struct fib_trie_iter *iter = seq->private;
2466 struct net *net = seq_file_net(seq);
2467 struct fib_table *tb = iter->tb;
2468 struct hlist_node *tb_node;
2469 unsigned int h;
2470 struct key_vector *n;
2472 ++*pos;
2473 /* next node in same table */
2474 n = fib_trie_get_next(iter);
2475 if (n)
2476 return n;
2478 /* walk rest of this hash chain */
2479 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2480 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2481 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2482 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2483 if (n)
2484 goto found;
2487 /* new hash chain */
2488 while (++h < FIB_TABLE_HASHSZ) {
2489 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2490 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2491 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2492 if (n)
2493 goto found;
2496 return NULL;
2498 found:
2499 iter->tb = tb;
2500 return n;
2503 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2504 __releases(RCU)
2506 rcu_read_unlock();
2509 static void seq_indent(struct seq_file *seq, int n)
2511 while (n-- > 0)
2512 seq_puts(seq, " ");
2515 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2517 switch (s) {
2518 case RT_SCOPE_UNIVERSE: return "universe";
2519 case RT_SCOPE_SITE: return "site";
2520 case RT_SCOPE_LINK: return "link";
2521 case RT_SCOPE_HOST: return "host";
2522 case RT_SCOPE_NOWHERE: return "nowhere";
2523 default:
2524 snprintf(buf, len, "scope=%d", s);
2525 return buf;
2529 static const char *const rtn_type_names[__RTN_MAX] = {
2530 [RTN_UNSPEC] = "UNSPEC",
2531 [RTN_UNICAST] = "UNICAST",
2532 [RTN_LOCAL] = "LOCAL",
2533 [RTN_BROADCAST] = "BROADCAST",
2534 [RTN_ANYCAST] = "ANYCAST",
2535 [RTN_MULTICAST] = "MULTICAST",
2536 [RTN_BLACKHOLE] = "BLACKHOLE",
2537 [RTN_UNREACHABLE] = "UNREACHABLE",
2538 [RTN_PROHIBIT] = "PROHIBIT",
2539 [RTN_THROW] = "THROW",
2540 [RTN_NAT] = "NAT",
2541 [RTN_XRESOLVE] = "XRESOLVE",
2544 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2546 if (t < __RTN_MAX && rtn_type_names[t])
2547 return rtn_type_names[t];
2548 snprintf(buf, len, "type %u", t);
2549 return buf;
2552 /* Pretty print the trie */
2553 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2555 const struct fib_trie_iter *iter = seq->private;
2556 struct key_vector *n = v;
2558 if (IS_TRIE(node_parent_rcu(n)))
2559 fib_table_print(seq, iter->tb);
2561 if (IS_TNODE(n)) {
2562 __be32 prf = htonl(n->key);
2564 seq_indent(seq, iter->depth-1);
2565 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
2566 &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2567 tn_info(n)->full_children,
2568 tn_info(n)->empty_children);
2569 } else {
2570 __be32 val = htonl(n->key);
2571 struct fib_alias *fa;
2573 seq_indent(seq, iter->depth);
2574 seq_printf(seq, " |-- %pI4\n", &val);
2576 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2577 char buf1[32], buf2[32];
2579 seq_indent(seq, iter->depth + 1);
2580 seq_printf(seq, " /%zu %s %s",
2581 KEYLENGTH - fa->fa_slen,
2582 rtn_scope(buf1, sizeof(buf1),
2583 fa->fa_info->fib_scope),
2584 rtn_type(buf2, sizeof(buf2),
2585 fa->fa_type));
2586 if (fa->fa_tos)
2587 seq_printf(seq, " tos=%d", fa->fa_tos);
2588 seq_putc(seq, '\n');
2592 return 0;
2595 static const struct seq_operations fib_trie_seq_ops = {
2596 .start = fib_trie_seq_start,
2597 .next = fib_trie_seq_next,
2598 .stop = fib_trie_seq_stop,
2599 .show = fib_trie_seq_show,
2602 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2604 return seq_open_net(inode, file, &fib_trie_seq_ops,
2605 sizeof(struct fib_trie_iter));
2608 static const struct file_operations fib_trie_fops = {
2609 .owner = THIS_MODULE,
2610 .open = fib_trie_seq_open,
2611 .read = seq_read,
2612 .llseek = seq_lseek,
2613 .release = seq_release_net,
2616 struct fib_route_iter {
2617 struct seq_net_private p;
2618 struct fib_table *main_tb;
2619 struct key_vector *tnode;
2620 loff_t pos;
2621 t_key key;
2624 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2625 loff_t pos)
2627 struct key_vector *l, **tp = &iter->tnode;
2628 t_key key;
2630 /* use cached location of previously found key */
2631 if (iter->pos > 0 && pos >= iter->pos) {
2632 key = iter->key;
2633 } else {
2634 iter->pos = 1;
2635 key = 0;
2638 pos -= iter->pos;
2640 while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2641 key = l->key + 1;
2642 iter->pos++;
2643 l = NULL;
2645 /* handle unlikely case of a key wrap */
2646 if (!key)
2647 break;
2650 if (l)
2651 iter->key = l->key; /* remember it */
2652 else
2653 iter->pos = 0; /* forget it */
2655 return l;
2658 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2659 __acquires(RCU)
2661 struct fib_route_iter *iter = seq->private;
2662 struct fib_table *tb;
2663 struct trie *t;
2665 rcu_read_lock();
2667 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2668 if (!tb)
2669 return NULL;
2671 iter->main_tb = tb;
2672 t = (struct trie *)tb->tb_data;
2673 iter->tnode = t->kv;
2675 if (*pos != 0)
2676 return fib_route_get_idx(iter, *pos);
2678 iter->pos = 0;
2679 iter->key = KEY_MAX;
2681 return SEQ_START_TOKEN;
2684 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2686 struct fib_route_iter *iter = seq->private;
2687 struct key_vector *l = NULL;
2688 t_key key = iter->key + 1;
2690 ++*pos;
2692 /* only allow key of 0 for start of sequence */
2693 if ((v == SEQ_START_TOKEN) || key)
2694 l = leaf_walk_rcu(&iter->tnode, key);
2696 if (l) {
2697 iter->key = l->key;
2698 iter->pos++;
2699 } else {
2700 iter->pos = 0;
2703 return l;
2706 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2707 __releases(RCU)
2709 rcu_read_unlock();
2712 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2714 unsigned int flags = 0;
2716 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2717 flags = RTF_REJECT;
2718 if (fi && fi->fib_nh->nh_gw)
2719 flags |= RTF_GATEWAY;
2720 if (mask == htonl(0xFFFFFFFF))
2721 flags |= RTF_HOST;
2722 flags |= RTF_UP;
2723 return flags;
2727 * This outputs /proc/net/route.
2728 * The format of the file is not supposed to be changed
2729 * and needs to be same as fib_hash output to avoid breaking
2730 * legacy utilities
2732 static int fib_route_seq_show(struct seq_file *seq, void *v)
2734 struct fib_route_iter *iter = seq->private;
2735 struct fib_table *tb = iter->main_tb;
2736 struct fib_alias *fa;
2737 struct key_vector *l = v;
2738 __be32 prefix;
2740 if (v == SEQ_START_TOKEN) {
2741 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2742 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2743 "\tWindow\tIRTT");
2744 return 0;
2747 prefix = htonl(l->key);
2749 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2750 const struct fib_info *fi = fa->fa_info;
2751 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2752 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2754 if ((fa->fa_type == RTN_BROADCAST) ||
2755 (fa->fa_type == RTN_MULTICAST))
2756 continue;
2758 if (fa->tb_id != tb->tb_id)
2759 continue;
2761 seq_setwidth(seq, 127);
2763 if (fi)
2764 seq_printf(seq,
2765 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2766 "%d\t%08X\t%d\t%u\t%u",
2767 fi->fib_dev ? fi->fib_dev->name : "*",
2768 prefix,
2769 fi->fib_nh->nh_gw, flags, 0, 0,
2770 fi->fib_priority,
2771 mask,
2772 (fi->fib_advmss ?
2773 fi->fib_advmss + 40 : 0),
2774 fi->fib_window,
2775 fi->fib_rtt >> 3);
2776 else
2777 seq_printf(seq,
2778 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2779 "%d\t%08X\t%d\t%u\t%u",
2780 prefix, 0, flags, 0, 0, 0,
2781 mask, 0, 0, 0);
2783 seq_pad(seq, '\n');
2786 return 0;
2789 static const struct seq_operations fib_route_seq_ops = {
2790 .start = fib_route_seq_start,
2791 .next = fib_route_seq_next,
2792 .stop = fib_route_seq_stop,
2793 .show = fib_route_seq_show,
2796 static int fib_route_seq_open(struct inode *inode, struct file *file)
2798 return seq_open_net(inode, file, &fib_route_seq_ops,
2799 sizeof(struct fib_route_iter));
2802 static const struct file_operations fib_route_fops = {
2803 .owner = THIS_MODULE,
2804 .open = fib_route_seq_open,
2805 .read = seq_read,
2806 .llseek = seq_lseek,
2807 .release = seq_release_net,
2810 int __net_init fib_proc_init(struct net *net)
2812 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2813 goto out1;
2815 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2816 &fib_triestat_fops))
2817 goto out2;
2819 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2820 goto out3;
2822 return 0;
2824 out3:
2825 remove_proc_entry("fib_triestat", net->proc_net);
2826 out2:
2827 remove_proc_entry("fib_trie", net->proc_net);
2828 out1:
2829 return -ENOMEM;
2832 void __net_exit fib_proc_exit(struct net *net)
2834 remove_proc_entry("fib_trie", net->proc_net);
2835 remove_proc_entry("fib_triestat", net->proc_net);
2836 remove_proc_entry("route", net->proc_net);
2839 #endif /* CONFIG_PROC_FS */