net: Check skb->rxhash in gro_receive
[linux-2.6/btrfs-unstable.git] / net / core / dev.c
blobb2c1869b04e3e37359050eddf718f379871f0eac
1 /*
2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132 #include <linux/hashtable.h>
133 #include <linux/vmalloc.h>
134 #include <linux/if_macvlan.h>
136 #include "net-sysfs.h"
138 /* Instead of increasing this, you should create a hash table. */
139 #define MAX_GRO_SKBS 8
141 /* This should be increased if a protocol with a bigger head is added. */
142 #define GRO_MAX_HEAD (MAX_HEADER + 128)
144 static DEFINE_SPINLOCK(ptype_lock);
145 static DEFINE_SPINLOCK(offload_lock);
146 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
147 struct list_head ptype_all __read_mostly; /* Taps */
148 static struct list_head offload_base __read_mostly;
150 static int netif_rx_internal(struct sk_buff *skb);
153 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
154 * semaphore.
156 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
158 * Writers must hold the rtnl semaphore while they loop through the
159 * dev_base_head list, and hold dev_base_lock for writing when they do the
160 * actual updates. This allows pure readers to access the list even
161 * while a writer is preparing to update it.
163 * To put it another way, dev_base_lock is held for writing only to
164 * protect against pure readers; the rtnl semaphore provides the
165 * protection against other writers.
167 * See, for example usages, register_netdevice() and
168 * unregister_netdevice(), which must be called with the rtnl
169 * semaphore held.
171 DEFINE_RWLOCK(dev_base_lock);
172 EXPORT_SYMBOL(dev_base_lock);
174 /* protects napi_hash addition/deletion and napi_gen_id */
175 static DEFINE_SPINLOCK(napi_hash_lock);
177 static unsigned int napi_gen_id;
178 static DEFINE_HASHTABLE(napi_hash, 8);
180 static seqcount_t devnet_rename_seq;
182 static inline void dev_base_seq_inc(struct net *net)
184 while (++net->dev_base_seq == 0);
187 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
189 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
191 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
194 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
196 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
199 static inline void rps_lock(struct softnet_data *sd)
201 #ifdef CONFIG_RPS
202 spin_lock(&sd->input_pkt_queue.lock);
203 #endif
206 static inline void rps_unlock(struct softnet_data *sd)
208 #ifdef CONFIG_RPS
209 spin_unlock(&sd->input_pkt_queue.lock);
210 #endif
213 /* Device list insertion */
214 static void list_netdevice(struct net_device *dev)
216 struct net *net = dev_net(dev);
218 ASSERT_RTNL();
220 write_lock_bh(&dev_base_lock);
221 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
222 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
223 hlist_add_head_rcu(&dev->index_hlist,
224 dev_index_hash(net, dev->ifindex));
225 write_unlock_bh(&dev_base_lock);
227 dev_base_seq_inc(net);
230 /* Device list removal
231 * caller must respect a RCU grace period before freeing/reusing dev
233 static void unlist_netdevice(struct net_device *dev)
235 ASSERT_RTNL();
237 /* Unlink dev from the device chain */
238 write_lock_bh(&dev_base_lock);
239 list_del_rcu(&dev->dev_list);
240 hlist_del_rcu(&dev->name_hlist);
241 hlist_del_rcu(&dev->index_hlist);
242 write_unlock_bh(&dev_base_lock);
244 dev_base_seq_inc(dev_net(dev));
248 * Our notifier list
251 static RAW_NOTIFIER_HEAD(netdev_chain);
254 * Device drivers call our routines to queue packets here. We empty the
255 * queue in the local softnet handler.
258 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
259 EXPORT_PER_CPU_SYMBOL(softnet_data);
261 #ifdef CONFIG_LOCKDEP
263 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
264 * according to dev->type
266 static const unsigned short netdev_lock_type[] =
267 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
268 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
269 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
270 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
271 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
272 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
273 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
274 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
275 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
276 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
277 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
278 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
279 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
280 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
281 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
283 static const char *const netdev_lock_name[] =
284 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
285 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
286 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
287 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
288 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
289 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
290 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
291 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
292 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
293 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
294 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
295 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
296 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
297 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
298 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
300 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
301 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
303 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
305 int i;
307 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
308 if (netdev_lock_type[i] == dev_type)
309 return i;
310 /* the last key is used by default */
311 return ARRAY_SIZE(netdev_lock_type) - 1;
314 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
315 unsigned short dev_type)
317 int i;
319 i = netdev_lock_pos(dev_type);
320 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
321 netdev_lock_name[i]);
324 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
326 int i;
328 i = netdev_lock_pos(dev->type);
329 lockdep_set_class_and_name(&dev->addr_list_lock,
330 &netdev_addr_lock_key[i],
331 netdev_lock_name[i]);
333 #else
334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335 unsigned short dev_type)
338 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
341 #endif
343 /*******************************************************************************
345 Protocol management and registration routines
347 *******************************************************************************/
350 * Add a protocol ID to the list. Now that the input handler is
351 * smarter we can dispense with all the messy stuff that used to be
352 * here.
354 * BEWARE!!! Protocol handlers, mangling input packets,
355 * MUST BE last in hash buckets and checking protocol handlers
356 * MUST start from promiscuous ptype_all chain in net_bh.
357 * It is true now, do not change it.
358 * Explanation follows: if protocol handler, mangling packet, will
359 * be the first on list, it is not able to sense, that packet
360 * is cloned and should be copied-on-write, so that it will
361 * change it and subsequent readers will get broken packet.
362 * --ANK (980803)
365 static inline struct list_head *ptype_head(const struct packet_type *pt)
367 if (pt->type == htons(ETH_P_ALL))
368 return &ptype_all;
369 else
370 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
374 * dev_add_pack - add packet handler
375 * @pt: packet type declaration
377 * Add a protocol handler to the networking stack. The passed &packet_type
378 * is linked into kernel lists and may not be freed until it has been
379 * removed from the kernel lists.
381 * This call does not sleep therefore it can not
382 * guarantee all CPU's that are in middle of receiving packets
383 * will see the new packet type (until the next received packet).
386 void dev_add_pack(struct packet_type *pt)
388 struct list_head *head = ptype_head(pt);
390 spin_lock(&ptype_lock);
391 list_add_rcu(&pt->list, head);
392 spin_unlock(&ptype_lock);
394 EXPORT_SYMBOL(dev_add_pack);
397 * __dev_remove_pack - remove packet handler
398 * @pt: packet type declaration
400 * Remove a protocol handler that was previously added to the kernel
401 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
402 * from the kernel lists and can be freed or reused once this function
403 * returns.
405 * The packet type might still be in use by receivers
406 * and must not be freed until after all the CPU's have gone
407 * through a quiescent state.
409 void __dev_remove_pack(struct packet_type *pt)
411 struct list_head *head = ptype_head(pt);
412 struct packet_type *pt1;
414 spin_lock(&ptype_lock);
416 list_for_each_entry(pt1, head, list) {
417 if (pt == pt1) {
418 list_del_rcu(&pt->list);
419 goto out;
423 pr_warn("dev_remove_pack: %p not found\n", pt);
424 out:
425 spin_unlock(&ptype_lock);
427 EXPORT_SYMBOL(__dev_remove_pack);
430 * dev_remove_pack - remove packet handler
431 * @pt: packet type declaration
433 * Remove a protocol handler that was previously added to the kernel
434 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
435 * from the kernel lists and can be freed or reused once this function
436 * returns.
438 * This call sleeps to guarantee that no CPU is looking at the packet
439 * type after return.
441 void dev_remove_pack(struct packet_type *pt)
443 __dev_remove_pack(pt);
445 synchronize_net();
447 EXPORT_SYMBOL(dev_remove_pack);
451 * dev_add_offload - register offload handlers
452 * @po: protocol offload declaration
454 * Add protocol offload handlers to the networking stack. The passed
455 * &proto_offload is linked into kernel lists and may not be freed until
456 * it has been removed from the kernel lists.
458 * This call does not sleep therefore it can not
459 * guarantee all CPU's that are in middle of receiving packets
460 * will see the new offload handlers (until the next received packet).
462 void dev_add_offload(struct packet_offload *po)
464 struct list_head *head = &offload_base;
466 spin_lock(&offload_lock);
467 list_add_rcu(&po->list, head);
468 spin_unlock(&offload_lock);
470 EXPORT_SYMBOL(dev_add_offload);
473 * __dev_remove_offload - remove offload handler
474 * @po: packet offload declaration
476 * Remove a protocol offload handler that was previously added to the
477 * kernel offload handlers by dev_add_offload(). The passed &offload_type
478 * is removed from the kernel lists and can be freed or reused once this
479 * function returns.
481 * The packet type might still be in use by receivers
482 * and must not be freed until after all the CPU's have gone
483 * through a quiescent state.
485 static void __dev_remove_offload(struct packet_offload *po)
487 struct list_head *head = &offload_base;
488 struct packet_offload *po1;
490 spin_lock(&offload_lock);
492 list_for_each_entry(po1, head, list) {
493 if (po == po1) {
494 list_del_rcu(&po->list);
495 goto out;
499 pr_warn("dev_remove_offload: %p not found\n", po);
500 out:
501 spin_unlock(&offload_lock);
505 * dev_remove_offload - remove packet offload handler
506 * @po: packet offload declaration
508 * Remove a packet offload handler that was previously added to the kernel
509 * offload handlers by dev_add_offload(). The passed &offload_type is
510 * removed from the kernel lists and can be freed or reused once this
511 * function returns.
513 * This call sleeps to guarantee that no CPU is looking at the packet
514 * type after return.
516 void dev_remove_offload(struct packet_offload *po)
518 __dev_remove_offload(po);
520 synchronize_net();
522 EXPORT_SYMBOL(dev_remove_offload);
524 /******************************************************************************
526 Device Boot-time Settings Routines
528 *******************************************************************************/
530 /* Boot time configuration table */
531 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
534 * netdev_boot_setup_add - add new setup entry
535 * @name: name of the device
536 * @map: configured settings for the device
538 * Adds new setup entry to the dev_boot_setup list. The function
539 * returns 0 on error and 1 on success. This is a generic routine to
540 * all netdevices.
542 static int netdev_boot_setup_add(char *name, struct ifmap *map)
544 struct netdev_boot_setup *s;
545 int i;
547 s = dev_boot_setup;
548 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
549 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
550 memset(s[i].name, 0, sizeof(s[i].name));
551 strlcpy(s[i].name, name, IFNAMSIZ);
552 memcpy(&s[i].map, map, sizeof(s[i].map));
553 break;
557 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
561 * netdev_boot_setup_check - check boot time settings
562 * @dev: the netdevice
564 * Check boot time settings for the device.
565 * The found settings are set for the device to be used
566 * later in the device probing.
567 * Returns 0 if no settings found, 1 if they are.
569 int netdev_boot_setup_check(struct net_device *dev)
571 struct netdev_boot_setup *s = dev_boot_setup;
572 int i;
574 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
576 !strcmp(dev->name, s[i].name)) {
577 dev->irq = s[i].map.irq;
578 dev->base_addr = s[i].map.base_addr;
579 dev->mem_start = s[i].map.mem_start;
580 dev->mem_end = s[i].map.mem_end;
581 return 1;
584 return 0;
586 EXPORT_SYMBOL(netdev_boot_setup_check);
590 * netdev_boot_base - get address from boot time settings
591 * @prefix: prefix for network device
592 * @unit: id for network device
594 * Check boot time settings for the base address of device.
595 * The found settings are set for the device to be used
596 * later in the device probing.
597 * Returns 0 if no settings found.
599 unsigned long netdev_boot_base(const char *prefix, int unit)
601 const struct netdev_boot_setup *s = dev_boot_setup;
602 char name[IFNAMSIZ];
603 int i;
605 sprintf(name, "%s%d", prefix, unit);
608 * If device already registered then return base of 1
609 * to indicate not to probe for this interface
611 if (__dev_get_by_name(&init_net, name))
612 return 1;
614 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
615 if (!strcmp(name, s[i].name))
616 return s[i].map.base_addr;
617 return 0;
621 * Saves at boot time configured settings for any netdevice.
623 int __init netdev_boot_setup(char *str)
625 int ints[5];
626 struct ifmap map;
628 str = get_options(str, ARRAY_SIZE(ints), ints);
629 if (!str || !*str)
630 return 0;
632 /* Save settings */
633 memset(&map, 0, sizeof(map));
634 if (ints[0] > 0)
635 map.irq = ints[1];
636 if (ints[0] > 1)
637 map.base_addr = ints[2];
638 if (ints[0] > 2)
639 map.mem_start = ints[3];
640 if (ints[0] > 3)
641 map.mem_end = ints[4];
643 /* Add new entry to the list */
644 return netdev_boot_setup_add(str, &map);
647 __setup("netdev=", netdev_boot_setup);
649 /*******************************************************************************
651 Device Interface Subroutines
653 *******************************************************************************/
656 * __dev_get_by_name - find a device by its name
657 * @net: the applicable net namespace
658 * @name: name to find
660 * Find an interface by name. Must be called under RTNL semaphore
661 * or @dev_base_lock. If the name is found a pointer to the device
662 * is returned. If the name is not found then %NULL is returned. The
663 * reference counters are not incremented so the caller must be
664 * careful with locks.
667 struct net_device *__dev_get_by_name(struct net *net, const char *name)
669 struct net_device *dev;
670 struct hlist_head *head = dev_name_hash(net, name);
672 hlist_for_each_entry(dev, head, name_hlist)
673 if (!strncmp(dev->name, name, IFNAMSIZ))
674 return dev;
676 return NULL;
678 EXPORT_SYMBOL(__dev_get_by_name);
681 * dev_get_by_name_rcu - find a device by its name
682 * @net: the applicable net namespace
683 * @name: name to find
685 * Find an interface by name.
686 * If the name is found a pointer to the device is returned.
687 * If the name is not found then %NULL is returned.
688 * The reference counters are not incremented so the caller must be
689 * careful with locks. The caller must hold RCU lock.
692 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
694 struct net_device *dev;
695 struct hlist_head *head = dev_name_hash(net, name);
697 hlist_for_each_entry_rcu(dev, head, name_hlist)
698 if (!strncmp(dev->name, name, IFNAMSIZ))
699 return dev;
701 return NULL;
703 EXPORT_SYMBOL(dev_get_by_name_rcu);
706 * dev_get_by_name - find a device by its name
707 * @net: the applicable net namespace
708 * @name: name to find
710 * Find an interface by name. This can be called from any
711 * context and does its own locking. The returned handle has
712 * the usage count incremented and the caller must use dev_put() to
713 * release it when it is no longer needed. %NULL is returned if no
714 * matching device is found.
717 struct net_device *dev_get_by_name(struct net *net, const char *name)
719 struct net_device *dev;
721 rcu_read_lock();
722 dev = dev_get_by_name_rcu(net, name);
723 if (dev)
724 dev_hold(dev);
725 rcu_read_unlock();
726 return dev;
728 EXPORT_SYMBOL(dev_get_by_name);
731 * __dev_get_by_index - find a device by its ifindex
732 * @net: the applicable net namespace
733 * @ifindex: index of device
735 * Search for an interface by index. Returns %NULL if the device
736 * is not found or a pointer to the device. The device has not
737 * had its reference counter increased so the caller must be careful
738 * about locking. The caller must hold either the RTNL semaphore
739 * or @dev_base_lock.
742 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
744 struct net_device *dev;
745 struct hlist_head *head = dev_index_hash(net, ifindex);
747 hlist_for_each_entry(dev, head, index_hlist)
748 if (dev->ifindex == ifindex)
749 return dev;
751 return NULL;
753 EXPORT_SYMBOL(__dev_get_by_index);
756 * dev_get_by_index_rcu - find a device by its ifindex
757 * @net: the applicable net namespace
758 * @ifindex: index of device
760 * Search for an interface by index. Returns %NULL if the device
761 * is not found or a pointer to the device. The device has not
762 * had its reference counter increased so the caller must be careful
763 * about locking. The caller must hold RCU lock.
766 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
768 struct net_device *dev;
769 struct hlist_head *head = dev_index_hash(net, ifindex);
771 hlist_for_each_entry_rcu(dev, head, index_hlist)
772 if (dev->ifindex == ifindex)
773 return dev;
775 return NULL;
777 EXPORT_SYMBOL(dev_get_by_index_rcu);
781 * dev_get_by_index - find a device by its ifindex
782 * @net: the applicable net namespace
783 * @ifindex: index of device
785 * Search for an interface by index. Returns NULL if the device
786 * is not found or a pointer to the device. The device returned has
787 * had a reference added and the pointer is safe until the user calls
788 * dev_put to indicate they have finished with it.
791 struct net_device *dev_get_by_index(struct net *net, int ifindex)
793 struct net_device *dev;
795 rcu_read_lock();
796 dev = dev_get_by_index_rcu(net, ifindex);
797 if (dev)
798 dev_hold(dev);
799 rcu_read_unlock();
800 return dev;
802 EXPORT_SYMBOL(dev_get_by_index);
805 * netdev_get_name - get a netdevice name, knowing its ifindex.
806 * @net: network namespace
807 * @name: a pointer to the buffer where the name will be stored.
808 * @ifindex: the ifindex of the interface to get the name from.
810 * The use of raw_seqcount_begin() and cond_resched() before
811 * retrying is required as we want to give the writers a chance
812 * to complete when CONFIG_PREEMPT is not set.
814 int netdev_get_name(struct net *net, char *name, int ifindex)
816 struct net_device *dev;
817 unsigned int seq;
819 retry:
820 seq = raw_seqcount_begin(&devnet_rename_seq);
821 rcu_read_lock();
822 dev = dev_get_by_index_rcu(net, ifindex);
823 if (!dev) {
824 rcu_read_unlock();
825 return -ENODEV;
828 strcpy(name, dev->name);
829 rcu_read_unlock();
830 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
831 cond_resched();
832 goto retry;
835 return 0;
839 * dev_getbyhwaddr_rcu - find a device by its hardware address
840 * @net: the applicable net namespace
841 * @type: media type of device
842 * @ha: hardware address
844 * Search for an interface by MAC address. Returns NULL if the device
845 * is not found or a pointer to the device.
846 * The caller must hold RCU or RTNL.
847 * The returned device has not had its ref count increased
848 * and the caller must therefore be careful about locking
852 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
853 const char *ha)
855 struct net_device *dev;
857 for_each_netdev_rcu(net, dev)
858 if (dev->type == type &&
859 !memcmp(dev->dev_addr, ha, dev->addr_len))
860 return dev;
862 return NULL;
864 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
866 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
868 struct net_device *dev;
870 ASSERT_RTNL();
871 for_each_netdev(net, dev)
872 if (dev->type == type)
873 return dev;
875 return NULL;
877 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
879 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
881 struct net_device *dev, *ret = NULL;
883 rcu_read_lock();
884 for_each_netdev_rcu(net, dev)
885 if (dev->type == type) {
886 dev_hold(dev);
887 ret = dev;
888 break;
890 rcu_read_unlock();
891 return ret;
893 EXPORT_SYMBOL(dev_getfirstbyhwtype);
896 * dev_get_by_flags_rcu - find any device with given flags
897 * @net: the applicable net namespace
898 * @if_flags: IFF_* values
899 * @mask: bitmask of bits in if_flags to check
901 * Search for any interface with the given flags. Returns NULL if a device
902 * is not found or a pointer to the device. Must be called inside
903 * rcu_read_lock(), and result refcount is unchanged.
906 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
907 unsigned short mask)
909 struct net_device *dev, *ret;
911 ret = NULL;
912 for_each_netdev_rcu(net, dev) {
913 if (((dev->flags ^ if_flags) & mask) == 0) {
914 ret = dev;
915 break;
918 return ret;
920 EXPORT_SYMBOL(dev_get_by_flags_rcu);
923 * dev_valid_name - check if name is okay for network device
924 * @name: name string
926 * Network device names need to be valid file names to
927 * to allow sysfs to work. We also disallow any kind of
928 * whitespace.
930 bool dev_valid_name(const char *name)
932 if (*name == '\0')
933 return false;
934 if (strlen(name) >= IFNAMSIZ)
935 return false;
936 if (!strcmp(name, ".") || !strcmp(name, ".."))
937 return false;
939 while (*name) {
940 if (*name == '/' || isspace(*name))
941 return false;
942 name++;
944 return true;
946 EXPORT_SYMBOL(dev_valid_name);
949 * __dev_alloc_name - allocate a name for a device
950 * @net: network namespace to allocate the device name in
951 * @name: name format string
952 * @buf: scratch buffer and result name string
954 * Passed a format string - eg "lt%d" it will try and find a suitable
955 * id. It scans list of devices to build up a free map, then chooses
956 * the first empty slot. The caller must hold the dev_base or rtnl lock
957 * while allocating the name and adding the device in order to avoid
958 * duplicates.
959 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
960 * Returns the number of the unit assigned or a negative errno code.
963 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
965 int i = 0;
966 const char *p;
967 const int max_netdevices = 8*PAGE_SIZE;
968 unsigned long *inuse;
969 struct net_device *d;
971 p = strnchr(name, IFNAMSIZ-1, '%');
972 if (p) {
974 * Verify the string as this thing may have come from
975 * the user. There must be either one "%d" and no other "%"
976 * characters.
978 if (p[1] != 'd' || strchr(p + 2, '%'))
979 return -EINVAL;
981 /* Use one page as a bit array of possible slots */
982 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
983 if (!inuse)
984 return -ENOMEM;
986 for_each_netdev(net, d) {
987 if (!sscanf(d->name, name, &i))
988 continue;
989 if (i < 0 || i >= max_netdevices)
990 continue;
992 /* avoid cases where sscanf is not exact inverse of printf */
993 snprintf(buf, IFNAMSIZ, name, i);
994 if (!strncmp(buf, d->name, IFNAMSIZ))
995 set_bit(i, inuse);
998 i = find_first_zero_bit(inuse, max_netdevices);
999 free_page((unsigned long) inuse);
1002 if (buf != name)
1003 snprintf(buf, IFNAMSIZ, name, i);
1004 if (!__dev_get_by_name(net, buf))
1005 return i;
1007 /* It is possible to run out of possible slots
1008 * when the name is long and there isn't enough space left
1009 * for the digits, or if all bits are used.
1011 return -ENFILE;
1015 * dev_alloc_name - allocate a name for a device
1016 * @dev: device
1017 * @name: name format string
1019 * Passed a format string - eg "lt%d" it will try and find a suitable
1020 * id. It scans list of devices to build up a free map, then chooses
1021 * the first empty slot. The caller must hold the dev_base or rtnl lock
1022 * while allocating the name and adding the device in order to avoid
1023 * duplicates.
1024 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025 * Returns the number of the unit assigned or a negative errno code.
1028 int dev_alloc_name(struct net_device *dev, const char *name)
1030 char buf[IFNAMSIZ];
1031 struct net *net;
1032 int ret;
1034 BUG_ON(!dev_net(dev));
1035 net = dev_net(dev);
1036 ret = __dev_alloc_name(net, name, buf);
1037 if (ret >= 0)
1038 strlcpy(dev->name, buf, IFNAMSIZ);
1039 return ret;
1041 EXPORT_SYMBOL(dev_alloc_name);
1043 static int dev_alloc_name_ns(struct net *net,
1044 struct net_device *dev,
1045 const char *name)
1047 char buf[IFNAMSIZ];
1048 int ret;
1050 ret = __dev_alloc_name(net, name, buf);
1051 if (ret >= 0)
1052 strlcpy(dev->name, buf, IFNAMSIZ);
1053 return ret;
1056 static int dev_get_valid_name(struct net *net,
1057 struct net_device *dev,
1058 const char *name)
1060 BUG_ON(!net);
1062 if (!dev_valid_name(name))
1063 return -EINVAL;
1065 if (strchr(name, '%'))
1066 return dev_alloc_name_ns(net, dev, name);
1067 else if (__dev_get_by_name(net, name))
1068 return -EEXIST;
1069 else if (dev->name != name)
1070 strlcpy(dev->name, name, IFNAMSIZ);
1072 return 0;
1076 * dev_change_name - change name of a device
1077 * @dev: device
1078 * @newname: name (or format string) must be at least IFNAMSIZ
1080 * Change name of a device, can pass format strings "eth%d".
1081 * for wildcarding.
1083 int dev_change_name(struct net_device *dev, const char *newname)
1085 char oldname[IFNAMSIZ];
1086 int err = 0;
1087 int ret;
1088 struct net *net;
1090 ASSERT_RTNL();
1091 BUG_ON(!dev_net(dev));
1093 net = dev_net(dev);
1094 if (dev->flags & IFF_UP)
1095 return -EBUSY;
1097 write_seqcount_begin(&devnet_rename_seq);
1099 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1100 write_seqcount_end(&devnet_rename_seq);
1101 return 0;
1104 memcpy(oldname, dev->name, IFNAMSIZ);
1106 err = dev_get_valid_name(net, dev, newname);
1107 if (err < 0) {
1108 write_seqcount_end(&devnet_rename_seq);
1109 return err;
1112 rollback:
1113 ret = device_rename(&dev->dev, dev->name);
1114 if (ret) {
1115 memcpy(dev->name, oldname, IFNAMSIZ);
1116 write_seqcount_end(&devnet_rename_seq);
1117 return ret;
1120 write_seqcount_end(&devnet_rename_seq);
1122 netdev_adjacent_rename_links(dev, oldname);
1124 write_lock_bh(&dev_base_lock);
1125 hlist_del_rcu(&dev->name_hlist);
1126 write_unlock_bh(&dev_base_lock);
1128 synchronize_rcu();
1130 write_lock_bh(&dev_base_lock);
1131 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1132 write_unlock_bh(&dev_base_lock);
1134 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1135 ret = notifier_to_errno(ret);
1137 if (ret) {
1138 /* err >= 0 after dev_alloc_name() or stores the first errno */
1139 if (err >= 0) {
1140 err = ret;
1141 write_seqcount_begin(&devnet_rename_seq);
1142 memcpy(dev->name, oldname, IFNAMSIZ);
1143 memcpy(oldname, newname, IFNAMSIZ);
1144 goto rollback;
1145 } else {
1146 pr_err("%s: name change rollback failed: %d\n",
1147 dev->name, ret);
1151 return err;
1155 * dev_set_alias - change ifalias of a device
1156 * @dev: device
1157 * @alias: name up to IFALIASZ
1158 * @len: limit of bytes to copy from info
1160 * Set ifalias for a device,
1162 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1164 char *new_ifalias;
1166 ASSERT_RTNL();
1168 if (len >= IFALIASZ)
1169 return -EINVAL;
1171 if (!len) {
1172 kfree(dev->ifalias);
1173 dev->ifalias = NULL;
1174 return 0;
1177 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1178 if (!new_ifalias)
1179 return -ENOMEM;
1180 dev->ifalias = new_ifalias;
1182 strlcpy(dev->ifalias, alias, len+1);
1183 return len;
1188 * netdev_features_change - device changes features
1189 * @dev: device to cause notification
1191 * Called to indicate a device has changed features.
1193 void netdev_features_change(struct net_device *dev)
1195 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1197 EXPORT_SYMBOL(netdev_features_change);
1200 * netdev_state_change - device changes state
1201 * @dev: device to cause notification
1203 * Called to indicate a device has changed state. This function calls
1204 * the notifier chains for netdev_chain and sends a NEWLINK message
1205 * to the routing socket.
1207 void netdev_state_change(struct net_device *dev)
1209 if (dev->flags & IFF_UP) {
1210 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1211 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1214 EXPORT_SYMBOL(netdev_state_change);
1217 * netdev_notify_peers - notify network peers about existence of @dev
1218 * @dev: network device
1220 * Generate traffic such that interested network peers are aware of
1221 * @dev, such as by generating a gratuitous ARP. This may be used when
1222 * a device wants to inform the rest of the network about some sort of
1223 * reconfiguration such as a failover event or virtual machine
1224 * migration.
1226 void netdev_notify_peers(struct net_device *dev)
1228 rtnl_lock();
1229 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1230 rtnl_unlock();
1232 EXPORT_SYMBOL(netdev_notify_peers);
1234 static int __dev_open(struct net_device *dev)
1236 const struct net_device_ops *ops = dev->netdev_ops;
1237 int ret;
1239 ASSERT_RTNL();
1241 if (!netif_device_present(dev))
1242 return -ENODEV;
1244 /* Block netpoll from trying to do any rx path servicing.
1245 * If we don't do this there is a chance ndo_poll_controller
1246 * or ndo_poll may be running while we open the device
1248 netpoll_rx_disable(dev);
1250 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1251 ret = notifier_to_errno(ret);
1252 if (ret)
1253 return ret;
1255 set_bit(__LINK_STATE_START, &dev->state);
1257 if (ops->ndo_validate_addr)
1258 ret = ops->ndo_validate_addr(dev);
1260 if (!ret && ops->ndo_open)
1261 ret = ops->ndo_open(dev);
1263 netpoll_rx_enable(dev);
1265 if (ret)
1266 clear_bit(__LINK_STATE_START, &dev->state);
1267 else {
1268 dev->flags |= IFF_UP;
1269 net_dmaengine_get();
1270 dev_set_rx_mode(dev);
1271 dev_activate(dev);
1272 add_device_randomness(dev->dev_addr, dev->addr_len);
1275 return ret;
1279 * dev_open - prepare an interface for use.
1280 * @dev: device to open
1282 * Takes a device from down to up state. The device's private open
1283 * function is invoked and then the multicast lists are loaded. Finally
1284 * the device is moved into the up state and a %NETDEV_UP message is
1285 * sent to the netdev notifier chain.
1287 * Calling this function on an active interface is a nop. On a failure
1288 * a negative errno code is returned.
1290 int dev_open(struct net_device *dev)
1292 int ret;
1294 if (dev->flags & IFF_UP)
1295 return 0;
1297 ret = __dev_open(dev);
1298 if (ret < 0)
1299 return ret;
1301 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1302 call_netdevice_notifiers(NETDEV_UP, dev);
1304 return ret;
1306 EXPORT_SYMBOL(dev_open);
1308 static int __dev_close_many(struct list_head *head)
1310 struct net_device *dev;
1312 ASSERT_RTNL();
1313 might_sleep();
1315 list_for_each_entry(dev, head, close_list) {
1316 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1318 clear_bit(__LINK_STATE_START, &dev->state);
1320 /* Synchronize to scheduled poll. We cannot touch poll list, it
1321 * can be even on different cpu. So just clear netif_running().
1323 * dev->stop() will invoke napi_disable() on all of it's
1324 * napi_struct instances on this device.
1326 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1329 dev_deactivate_many(head);
1331 list_for_each_entry(dev, head, close_list) {
1332 const struct net_device_ops *ops = dev->netdev_ops;
1335 * Call the device specific close. This cannot fail.
1336 * Only if device is UP
1338 * We allow it to be called even after a DETACH hot-plug
1339 * event.
1341 if (ops->ndo_stop)
1342 ops->ndo_stop(dev);
1344 dev->flags &= ~IFF_UP;
1345 net_dmaengine_put();
1348 return 0;
1351 static int __dev_close(struct net_device *dev)
1353 int retval;
1354 LIST_HEAD(single);
1356 /* Temporarily disable netpoll until the interface is down */
1357 netpoll_rx_disable(dev);
1359 list_add(&dev->close_list, &single);
1360 retval = __dev_close_many(&single);
1361 list_del(&single);
1363 netpoll_rx_enable(dev);
1364 return retval;
1367 static int dev_close_many(struct list_head *head)
1369 struct net_device *dev, *tmp;
1371 /* Remove the devices that don't need to be closed */
1372 list_for_each_entry_safe(dev, tmp, head, close_list)
1373 if (!(dev->flags & IFF_UP))
1374 list_del_init(&dev->close_list);
1376 __dev_close_many(head);
1378 list_for_each_entry_safe(dev, tmp, head, close_list) {
1379 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1380 call_netdevice_notifiers(NETDEV_DOWN, dev);
1381 list_del_init(&dev->close_list);
1384 return 0;
1388 * dev_close - shutdown an interface.
1389 * @dev: device to shutdown
1391 * This function moves an active device into down state. A
1392 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1393 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1394 * chain.
1396 int dev_close(struct net_device *dev)
1398 if (dev->flags & IFF_UP) {
1399 LIST_HEAD(single);
1401 /* Block netpoll rx while the interface is going down */
1402 netpoll_rx_disable(dev);
1404 list_add(&dev->close_list, &single);
1405 dev_close_many(&single);
1406 list_del(&single);
1408 netpoll_rx_enable(dev);
1410 return 0;
1412 EXPORT_SYMBOL(dev_close);
1416 * dev_disable_lro - disable Large Receive Offload on a device
1417 * @dev: device
1419 * Disable Large Receive Offload (LRO) on a net device. Must be
1420 * called under RTNL. This is needed if received packets may be
1421 * forwarded to another interface.
1423 void dev_disable_lro(struct net_device *dev)
1426 * If we're trying to disable lro on a vlan device
1427 * use the underlying physical device instead
1429 if (is_vlan_dev(dev))
1430 dev = vlan_dev_real_dev(dev);
1432 /* the same for macvlan devices */
1433 if (netif_is_macvlan(dev))
1434 dev = macvlan_dev_real_dev(dev);
1436 dev->wanted_features &= ~NETIF_F_LRO;
1437 netdev_update_features(dev);
1439 if (unlikely(dev->features & NETIF_F_LRO))
1440 netdev_WARN(dev, "failed to disable LRO!\n");
1442 EXPORT_SYMBOL(dev_disable_lro);
1444 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1445 struct net_device *dev)
1447 struct netdev_notifier_info info;
1449 netdev_notifier_info_init(&info, dev);
1450 return nb->notifier_call(nb, val, &info);
1453 static int dev_boot_phase = 1;
1456 * register_netdevice_notifier - register a network notifier block
1457 * @nb: notifier
1459 * Register a notifier to be called when network device events occur.
1460 * The notifier passed is linked into the kernel structures and must
1461 * not be reused until it has been unregistered. A negative errno code
1462 * is returned on a failure.
1464 * When registered all registration and up events are replayed
1465 * to the new notifier to allow device to have a race free
1466 * view of the network device list.
1469 int register_netdevice_notifier(struct notifier_block *nb)
1471 struct net_device *dev;
1472 struct net_device *last;
1473 struct net *net;
1474 int err;
1476 rtnl_lock();
1477 err = raw_notifier_chain_register(&netdev_chain, nb);
1478 if (err)
1479 goto unlock;
1480 if (dev_boot_phase)
1481 goto unlock;
1482 for_each_net(net) {
1483 for_each_netdev(net, dev) {
1484 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1485 err = notifier_to_errno(err);
1486 if (err)
1487 goto rollback;
1489 if (!(dev->flags & IFF_UP))
1490 continue;
1492 call_netdevice_notifier(nb, NETDEV_UP, dev);
1496 unlock:
1497 rtnl_unlock();
1498 return err;
1500 rollback:
1501 last = dev;
1502 for_each_net(net) {
1503 for_each_netdev(net, dev) {
1504 if (dev == last)
1505 goto outroll;
1507 if (dev->flags & IFF_UP) {
1508 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1509 dev);
1510 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1512 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1516 outroll:
1517 raw_notifier_chain_unregister(&netdev_chain, nb);
1518 goto unlock;
1520 EXPORT_SYMBOL(register_netdevice_notifier);
1523 * unregister_netdevice_notifier - unregister a network notifier block
1524 * @nb: notifier
1526 * Unregister a notifier previously registered by
1527 * register_netdevice_notifier(). The notifier is unlinked into the
1528 * kernel structures and may then be reused. A negative errno code
1529 * is returned on a failure.
1531 * After unregistering unregister and down device events are synthesized
1532 * for all devices on the device list to the removed notifier to remove
1533 * the need for special case cleanup code.
1536 int unregister_netdevice_notifier(struct notifier_block *nb)
1538 struct net_device *dev;
1539 struct net *net;
1540 int err;
1542 rtnl_lock();
1543 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1544 if (err)
1545 goto unlock;
1547 for_each_net(net) {
1548 for_each_netdev(net, dev) {
1549 if (dev->flags & IFF_UP) {
1550 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1551 dev);
1552 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1554 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1557 unlock:
1558 rtnl_unlock();
1559 return err;
1561 EXPORT_SYMBOL(unregister_netdevice_notifier);
1564 * call_netdevice_notifiers_info - call all network notifier blocks
1565 * @val: value passed unmodified to notifier function
1566 * @dev: net_device pointer passed unmodified to notifier function
1567 * @info: notifier information data
1569 * Call all network notifier blocks. Parameters and return value
1570 * are as for raw_notifier_call_chain().
1573 static int call_netdevice_notifiers_info(unsigned long val,
1574 struct net_device *dev,
1575 struct netdev_notifier_info *info)
1577 ASSERT_RTNL();
1578 netdev_notifier_info_init(info, dev);
1579 return raw_notifier_call_chain(&netdev_chain, val, info);
1583 * call_netdevice_notifiers - call all network notifier blocks
1584 * @val: value passed unmodified to notifier function
1585 * @dev: net_device pointer passed unmodified to notifier function
1587 * Call all network notifier blocks. Parameters and return value
1588 * are as for raw_notifier_call_chain().
1591 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1593 struct netdev_notifier_info info;
1595 return call_netdevice_notifiers_info(val, dev, &info);
1597 EXPORT_SYMBOL(call_netdevice_notifiers);
1599 static struct static_key netstamp_needed __read_mostly;
1600 #ifdef HAVE_JUMP_LABEL
1601 /* We are not allowed to call static_key_slow_dec() from irq context
1602 * If net_disable_timestamp() is called from irq context, defer the
1603 * static_key_slow_dec() calls.
1605 static atomic_t netstamp_needed_deferred;
1606 #endif
1608 void net_enable_timestamp(void)
1610 #ifdef HAVE_JUMP_LABEL
1611 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1613 if (deferred) {
1614 while (--deferred)
1615 static_key_slow_dec(&netstamp_needed);
1616 return;
1618 #endif
1619 static_key_slow_inc(&netstamp_needed);
1621 EXPORT_SYMBOL(net_enable_timestamp);
1623 void net_disable_timestamp(void)
1625 #ifdef HAVE_JUMP_LABEL
1626 if (in_interrupt()) {
1627 atomic_inc(&netstamp_needed_deferred);
1628 return;
1630 #endif
1631 static_key_slow_dec(&netstamp_needed);
1633 EXPORT_SYMBOL(net_disable_timestamp);
1635 static inline void net_timestamp_set(struct sk_buff *skb)
1637 skb->tstamp.tv64 = 0;
1638 if (static_key_false(&netstamp_needed))
1639 __net_timestamp(skb);
1642 #define net_timestamp_check(COND, SKB) \
1643 if (static_key_false(&netstamp_needed)) { \
1644 if ((COND) && !(SKB)->tstamp.tv64) \
1645 __net_timestamp(SKB); \
1648 static inline bool is_skb_forwardable(struct net_device *dev,
1649 struct sk_buff *skb)
1651 unsigned int len;
1653 if (!(dev->flags & IFF_UP))
1654 return false;
1656 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1657 if (skb->len <= len)
1658 return true;
1660 /* if TSO is enabled, we don't care about the length as the packet
1661 * could be forwarded without being segmented before
1663 if (skb_is_gso(skb))
1664 return true;
1666 return false;
1670 * dev_forward_skb - loopback an skb to another netif
1672 * @dev: destination network device
1673 * @skb: buffer to forward
1675 * return values:
1676 * NET_RX_SUCCESS (no congestion)
1677 * NET_RX_DROP (packet was dropped, but freed)
1679 * dev_forward_skb can be used for injecting an skb from the
1680 * start_xmit function of one device into the receive queue
1681 * of another device.
1683 * The receiving device may be in another namespace, so
1684 * we have to clear all information in the skb that could
1685 * impact namespace isolation.
1687 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1689 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1690 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1691 atomic_long_inc(&dev->rx_dropped);
1692 kfree_skb(skb);
1693 return NET_RX_DROP;
1697 if (unlikely(!is_skb_forwardable(dev, skb))) {
1698 atomic_long_inc(&dev->rx_dropped);
1699 kfree_skb(skb);
1700 return NET_RX_DROP;
1703 skb_scrub_packet(skb, true);
1704 skb->protocol = eth_type_trans(skb, dev);
1706 return netif_rx_internal(skb);
1708 EXPORT_SYMBOL_GPL(dev_forward_skb);
1710 static inline int deliver_skb(struct sk_buff *skb,
1711 struct packet_type *pt_prev,
1712 struct net_device *orig_dev)
1714 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1715 return -ENOMEM;
1716 atomic_inc(&skb->users);
1717 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1720 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1722 if (!ptype->af_packet_priv || !skb->sk)
1723 return false;
1725 if (ptype->id_match)
1726 return ptype->id_match(ptype, skb->sk);
1727 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1728 return true;
1730 return false;
1734 * Support routine. Sends outgoing frames to any network
1735 * taps currently in use.
1738 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1740 struct packet_type *ptype;
1741 struct sk_buff *skb2 = NULL;
1742 struct packet_type *pt_prev = NULL;
1744 rcu_read_lock();
1745 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1746 /* Never send packets back to the socket
1747 * they originated from - MvS (miquels@drinkel.ow.org)
1749 if ((ptype->dev == dev || !ptype->dev) &&
1750 (!skb_loop_sk(ptype, skb))) {
1751 if (pt_prev) {
1752 deliver_skb(skb2, pt_prev, skb->dev);
1753 pt_prev = ptype;
1754 continue;
1757 skb2 = skb_clone(skb, GFP_ATOMIC);
1758 if (!skb2)
1759 break;
1761 net_timestamp_set(skb2);
1763 /* skb->nh should be correctly
1764 set by sender, so that the second statement is
1765 just protection against buggy protocols.
1767 skb_reset_mac_header(skb2);
1769 if (skb_network_header(skb2) < skb2->data ||
1770 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1771 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1772 ntohs(skb2->protocol),
1773 dev->name);
1774 skb_reset_network_header(skb2);
1777 skb2->transport_header = skb2->network_header;
1778 skb2->pkt_type = PACKET_OUTGOING;
1779 pt_prev = ptype;
1782 if (pt_prev)
1783 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1784 rcu_read_unlock();
1788 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1789 * @dev: Network device
1790 * @txq: number of queues available
1792 * If real_num_tx_queues is changed the tc mappings may no longer be
1793 * valid. To resolve this verify the tc mapping remains valid and if
1794 * not NULL the mapping. With no priorities mapping to this
1795 * offset/count pair it will no longer be used. In the worst case TC0
1796 * is invalid nothing can be done so disable priority mappings. If is
1797 * expected that drivers will fix this mapping if they can before
1798 * calling netif_set_real_num_tx_queues.
1800 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1802 int i;
1803 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1805 /* If TC0 is invalidated disable TC mapping */
1806 if (tc->offset + tc->count > txq) {
1807 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1808 dev->num_tc = 0;
1809 return;
1812 /* Invalidated prio to tc mappings set to TC0 */
1813 for (i = 1; i < TC_BITMASK + 1; i++) {
1814 int q = netdev_get_prio_tc_map(dev, i);
1816 tc = &dev->tc_to_txq[q];
1817 if (tc->offset + tc->count > txq) {
1818 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1819 i, q);
1820 netdev_set_prio_tc_map(dev, i, 0);
1825 #ifdef CONFIG_XPS
1826 static DEFINE_MUTEX(xps_map_mutex);
1827 #define xmap_dereference(P) \
1828 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1830 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1831 int cpu, u16 index)
1833 struct xps_map *map = NULL;
1834 int pos;
1836 if (dev_maps)
1837 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1839 for (pos = 0; map && pos < map->len; pos++) {
1840 if (map->queues[pos] == index) {
1841 if (map->len > 1) {
1842 map->queues[pos] = map->queues[--map->len];
1843 } else {
1844 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1845 kfree_rcu(map, rcu);
1846 map = NULL;
1848 break;
1852 return map;
1855 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1857 struct xps_dev_maps *dev_maps;
1858 int cpu, i;
1859 bool active = false;
1861 mutex_lock(&xps_map_mutex);
1862 dev_maps = xmap_dereference(dev->xps_maps);
1864 if (!dev_maps)
1865 goto out_no_maps;
1867 for_each_possible_cpu(cpu) {
1868 for (i = index; i < dev->num_tx_queues; i++) {
1869 if (!remove_xps_queue(dev_maps, cpu, i))
1870 break;
1872 if (i == dev->num_tx_queues)
1873 active = true;
1876 if (!active) {
1877 RCU_INIT_POINTER(dev->xps_maps, NULL);
1878 kfree_rcu(dev_maps, rcu);
1881 for (i = index; i < dev->num_tx_queues; i++)
1882 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1883 NUMA_NO_NODE);
1885 out_no_maps:
1886 mutex_unlock(&xps_map_mutex);
1889 static struct xps_map *expand_xps_map(struct xps_map *map,
1890 int cpu, u16 index)
1892 struct xps_map *new_map;
1893 int alloc_len = XPS_MIN_MAP_ALLOC;
1894 int i, pos;
1896 for (pos = 0; map && pos < map->len; pos++) {
1897 if (map->queues[pos] != index)
1898 continue;
1899 return map;
1902 /* Need to add queue to this CPU's existing map */
1903 if (map) {
1904 if (pos < map->alloc_len)
1905 return map;
1907 alloc_len = map->alloc_len * 2;
1910 /* Need to allocate new map to store queue on this CPU's map */
1911 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1912 cpu_to_node(cpu));
1913 if (!new_map)
1914 return NULL;
1916 for (i = 0; i < pos; i++)
1917 new_map->queues[i] = map->queues[i];
1918 new_map->alloc_len = alloc_len;
1919 new_map->len = pos;
1921 return new_map;
1924 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1925 u16 index)
1927 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1928 struct xps_map *map, *new_map;
1929 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1930 int cpu, numa_node_id = -2;
1931 bool active = false;
1933 mutex_lock(&xps_map_mutex);
1935 dev_maps = xmap_dereference(dev->xps_maps);
1937 /* allocate memory for queue storage */
1938 for_each_online_cpu(cpu) {
1939 if (!cpumask_test_cpu(cpu, mask))
1940 continue;
1942 if (!new_dev_maps)
1943 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1944 if (!new_dev_maps) {
1945 mutex_unlock(&xps_map_mutex);
1946 return -ENOMEM;
1949 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1950 NULL;
1952 map = expand_xps_map(map, cpu, index);
1953 if (!map)
1954 goto error;
1956 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1959 if (!new_dev_maps)
1960 goto out_no_new_maps;
1962 for_each_possible_cpu(cpu) {
1963 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1964 /* add queue to CPU maps */
1965 int pos = 0;
1967 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1968 while ((pos < map->len) && (map->queues[pos] != index))
1969 pos++;
1971 if (pos == map->len)
1972 map->queues[map->len++] = index;
1973 #ifdef CONFIG_NUMA
1974 if (numa_node_id == -2)
1975 numa_node_id = cpu_to_node(cpu);
1976 else if (numa_node_id != cpu_to_node(cpu))
1977 numa_node_id = -1;
1978 #endif
1979 } else if (dev_maps) {
1980 /* fill in the new device map from the old device map */
1981 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1982 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1987 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1989 /* Cleanup old maps */
1990 if (dev_maps) {
1991 for_each_possible_cpu(cpu) {
1992 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1993 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1994 if (map && map != new_map)
1995 kfree_rcu(map, rcu);
1998 kfree_rcu(dev_maps, rcu);
2001 dev_maps = new_dev_maps;
2002 active = true;
2004 out_no_new_maps:
2005 /* update Tx queue numa node */
2006 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2007 (numa_node_id >= 0) ? numa_node_id :
2008 NUMA_NO_NODE);
2010 if (!dev_maps)
2011 goto out_no_maps;
2013 /* removes queue from unused CPUs */
2014 for_each_possible_cpu(cpu) {
2015 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2016 continue;
2018 if (remove_xps_queue(dev_maps, cpu, index))
2019 active = true;
2022 /* free map if not active */
2023 if (!active) {
2024 RCU_INIT_POINTER(dev->xps_maps, NULL);
2025 kfree_rcu(dev_maps, rcu);
2028 out_no_maps:
2029 mutex_unlock(&xps_map_mutex);
2031 return 0;
2032 error:
2033 /* remove any maps that we added */
2034 for_each_possible_cpu(cpu) {
2035 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2036 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2037 NULL;
2038 if (new_map && new_map != map)
2039 kfree(new_map);
2042 mutex_unlock(&xps_map_mutex);
2044 kfree(new_dev_maps);
2045 return -ENOMEM;
2047 EXPORT_SYMBOL(netif_set_xps_queue);
2049 #endif
2051 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2052 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2054 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2056 int rc;
2058 if (txq < 1 || txq > dev->num_tx_queues)
2059 return -EINVAL;
2061 if (dev->reg_state == NETREG_REGISTERED ||
2062 dev->reg_state == NETREG_UNREGISTERING) {
2063 ASSERT_RTNL();
2065 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2066 txq);
2067 if (rc)
2068 return rc;
2070 if (dev->num_tc)
2071 netif_setup_tc(dev, txq);
2073 if (txq < dev->real_num_tx_queues) {
2074 qdisc_reset_all_tx_gt(dev, txq);
2075 #ifdef CONFIG_XPS
2076 netif_reset_xps_queues_gt(dev, txq);
2077 #endif
2081 dev->real_num_tx_queues = txq;
2082 return 0;
2084 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2086 #ifdef CONFIG_RPS
2088 * netif_set_real_num_rx_queues - set actual number of RX queues used
2089 * @dev: Network device
2090 * @rxq: Actual number of RX queues
2092 * This must be called either with the rtnl_lock held or before
2093 * registration of the net device. Returns 0 on success, or a
2094 * negative error code. If called before registration, it always
2095 * succeeds.
2097 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2099 int rc;
2101 if (rxq < 1 || rxq > dev->num_rx_queues)
2102 return -EINVAL;
2104 if (dev->reg_state == NETREG_REGISTERED) {
2105 ASSERT_RTNL();
2107 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2108 rxq);
2109 if (rc)
2110 return rc;
2113 dev->real_num_rx_queues = rxq;
2114 return 0;
2116 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2117 #endif
2120 * netif_get_num_default_rss_queues - default number of RSS queues
2122 * This routine should set an upper limit on the number of RSS queues
2123 * used by default by multiqueue devices.
2125 int netif_get_num_default_rss_queues(void)
2127 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2129 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2131 static inline void __netif_reschedule(struct Qdisc *q)
2133 struct softnet_data *sd;
2134 unsigned long flags;
2136 local_irq_save(flags);
2137 sd = &__get_cpu_var(softnet_data);
2138 q->next_sched = NULL;
2139 *sd->output_queue_tailp = q;
2140 sd->output_queue_tailp = &q->next_sched;
2141 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2142 local_irq_restore(flags);
2145 void __netif_schedule(struct Qdisc *q)
2147 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2148 __netif_reschedule(q);
2150 EXPORT_SYMBOL(__netif_schedule);
2152 struct dev_kfree_skb_cb {
2153 enum skb_free_reason reason;
2156 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2158 return (struct dev_kfree_skb_cb *)skb->cb;
2161 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2163 unsigned long flags;
2165 if (likely(atomic_read(&skb->users) == 1)) {
2166 smp_rmb();
2167 atomic_set(&skb->users, 0);
2168 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2169 return;
2171 get_kfree_skb_cb(skb)->reason = reason;
2172 local_irq_save(flags);
2173 skb->next = __this_cpu_read(softnet_data.completion_queue);
2174 __this_cpu_write(softnet_data.completion_queue, skb);
2175 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2176 local_irq_restore(flags);
2178 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2180 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2182 if (in_irq() || irqs_disabled())
2183 __dev_kfree_skb_irq(skb, reason);
2184 else
2185 dev_kfree_skb(skb);
2187 EXPORT_SYMBOL(__dev_kfree_skb_any);
2191 * netif_device_detach - mark device as removed
2192 * @dev: network device
2194 * Mark device as removed from system and therefore no longer available.
2196 void netif_device_detach(struct net_device *dev)
2198 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2199 netif_running(dev)) {
2200 netif_tx_stop_all_queues(dev);
2203 EXPORT_SYMBOL(netif_device_detach);
2206 * netif_device_attach - mark device as attached
2207 * @dev: network device
2209 * Mark device as attached from system and restart if needed.
2211 void netif_device_attach(struct net_device *dev)
2213 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2214 netif_running(dev)) {
2215 netif_tx_wake_all_queues(dev);
2216 __netdev_watchdog_up(dev);
2219 EXPORT_SYMBOL(netif_device_attach);
2221 static void skb_warn_bad_offload(const struct sk_buff *skb)
2223 static const netdev_features_t null_features = 0;
2224 struct net_device *dev = skb->dev;
2225 const char *driver = "";
2227 if (!net_ratelimit())
2228 return;
2230 if (dev && dev->dev.parent)
2231 driver = dev_driver_string(dev->dev.parent);
2233 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2234 "gso_type=%d ip_summed=%d\n",
2235 driver, dev ? &dev->features : &null_features,
2236 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2237 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2238 skb_shinfo(skb)->gso_type, skb->ip_summed);
2242 * Invalidate hardware checksum when packet is to be mangled, and
2243 * complete checksum manually on outgoing path.
2245 int skb_checksum_help(struct sk_buff *skb)
2247 __wsum csum;
2248 int ret = 0, offset;
2250 if (skb->ip_summed == CHECKSUM_COMPLETE)
2251 goto out_set_summed;
2253 if (unlikely(skb_shinfo(skb)->gso_size)) {
2254 skb_warn_bad_offload(skb);
2255 return -EINVAL;
2258 /* Before computing a checksum, we should make sure no frag could
2259 * be modified by an external entity : checksum could be wrong.
2261 if (skb_has_shared_frag(skb)) {
2262 ret = __skb_linearize(skb);
2263 if (ret)
2264 goto out;
2267 offset = skb_checksum_start_offset(skb);
2268 BUG_ON(offset >= skb_headlen(skb));
2269 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2271 offset += skb->csum_offset;
2272 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2274 if (skb_cloned(skb) &&
2275 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2276 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2277 if (ret)
2278 goto out;
2281 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2282 out_set_summed:
2283 skb->ip_summed = CHECKSUM_NONE;
2284 out:
2285 return ret;
2287 EXPORT_SYMBOL(skb_checksum_help);
2289 __be16 skb_network_protocol(struct sk_buff *skb)
2291 __be16 type = skb->protocol;
2292 int vlan_depth = ETH_HLEN;
2294 /* Tunnel gso handlers can set protocol to ethernet. */
2295 if (type == htons(ETH_P_TEB)) {
2296 struct ethhdr *eth;
2298 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2299 return 0;
2301 eth = (struct ethhdr *)skb_mac_header(skb);
2302 type = eth->h_proto;
2305 while (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2306 struct vlan_hdr *vh;
2308 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2309 return 0;
2311 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2312 type = vh->h_vlan_encapsulated_proto;
2313 vlan_depth += VLAN_HLEN;
2316 return type;
2320 * skb_mac_gso_segment - mac layer segmentation handler.
2321 * @skb: buffer to segment
2322 * @features: features for the output path (see dev->features)
2324 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2325 netdev_features_t features)
2327 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2328 struct packet_offload *ptype;
2329 __be16 type = skb_network_protocol(skb);
2331 if (unlikely(!type))
2332 return ERR_PTR(-EINVAL);
2334 __skb_pull(skb, skb->mac_len);
2336 rcu_read_lock();
2337 list_for_each_entry_rcu(ptype, &offload_base, list) {
2338 if (ptype->type == type && ptype->callbacks.gso_segment) {
2339 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2340 int err;
2342 err = ptype->callbacks.gso_send_check(skb);
2343 segs = ERR_PTR(err);
2344 if (err || skb_gso_ok(skb, features))
2345 break;
2346 __skb_push(skb, (skb->data -
2347 skb_network_header(skb)));
2349 segs = ptype->callbacks.gso_segment(skb, features);
2350 break;
2353 rcu_read_unlock();
2355 __skb_push(skb, skb->data - skb_mac_header(skb));
2357 return segs;
2359 EXPORT_SYMBOL(skb_mac_gso_segment);
2362 /* openvswitch calls this on rx path, so we need a different check.
2364 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2366 if (tx_path)
2367 return skb->ip_summed != CHECKSUM_PARTIAL;
2368 else
2369 return skb->ip_summed == CHECKSUM_NONE;
2373 * __skb_gso_segment - Perform segmentation on skb.
2374 * @skb: buffer to segment
2375 * @features: features for the output path (see dev->features)
2376 * @tx_path: whether it is called in TX path
2378 * This function segments the given skb and returns a list of segments.
2380 * It may return NULL if the skb requires no segmentation. This is
2381 * only possible when GSO is used for verifying header integrity.
2383 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2384 netdev_features_t features, bool tx_path)
2386 if (unlikely(skb_needs_check(skb, tx_path))) {
2387 int err;
2389 skb_warn_bad_offload(skb);
2391 if (skb_header_cloned(skb) &&
2392 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2393 return ERR_PTR(err);
2396 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2397 SKB_GSO_CB(skb)->encap_level = 0;
2399 skb_reset_mac_header(skb);
2400 skb_reset_mac_len(skb);
2402 return skb_mac_gso_segment(skb, features);
2404 EXPORT_SYMBOL(__skb_gso_segment);
2406 /* Take action when hardware reception checksum errors are detected. */
2407 #ifdef CONFIG_BUG
2408 void netdev_rx_csum_fault(struct net_device *dev)
2410 if (net_ratelimit()) {
2411 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2412 dump_stack();
2415 EXPORT_SYMBOL(netdev_rx_csum_fault);
2416 #endif
2418 /* Actually, we should eliminate this check as soon as we know, that:
2419 * 1. IOMMU is present and allows to map all the memory.
2420 * 2. No high memory really exists on this machine.
2423 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2425 #ifdef CONFIG_HIGHMEM
2426 int i;
2427 if (!(dev->features & NETIF_F_HIGHDMA)) {
2428 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2429 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2430 if (PageHighMem(skb_frag_page(frag)))
2431 return 1;
2435 if (PCI_DMA_BUS_IS_PHYS) {
2436 struct device *pdev = dev->dev.parent;
2438 if (!pdev)
2439 return 0;
2440 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2441 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2442 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2443 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2444 return 1;
2447 #endif
2448 return 0;
2451 struct dev_gso_cb {
2452 void (*destructor)(struct sk_buff *skb);
2455 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2457 static void dev_gso_skb_destructor(struct sk_buff *skb)
2459 struct dev_gso_cb *cb;
2461 kfree_skb_list(skb->next);
2462 skb->next = NULL;
2464 cb = DEV_GSO_CB(skb);
2465 if (cb->destructor)
2466 cb->destructor(skb);
2470 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2471 * @skb: buffer to segment
2472 * @features: device features as applicable to this skb
2474 * This function segments the given skb and stores the list of segments
2475 * in skb->next.
2477 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2479 struct sk_buff *segs;
2481 segs = skb_gso_segment(skb, features);
2483 /* Verifying header integrity only. */
2484 if (!segs)
2485 return 0;
2487 if (IS_ERR(segs))
2488 return PTR_ERR(segs);
2490 skb->next = segs;
2491 DEV_GSO_CB(skb)->destructor = skb->destructor;
2492 skb->destructor = dev_gso_skb_destructor;
2494 return 0;
2497 static netdev_features_t harmonize_features(struct sk_buff *skb,
2498 netdev_features_t features)
2500 if (skb->ip_summed != CHECKSUM_NONE &&
2501 !can_checksum_protocol(features, skb_network_protocol(skb))) {
2502 features &= ~NETIF_F_ALL_CSUM;
2503 } else if (illegal_highdma(skb->dev, skb)) {
2504 features &= ~NETIF_F_SG;
2507 return features;
2510 netdev_features_t netif_skb_features(struct sk_buff *skb)
2512 __be16 protocol = skb->protocol;
2513 netdev_features_t features = skb->dev->features;
2515 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2516 features &= ~NETIF_F_GSO_MASK;
2518 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2519 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2520 protocol = veh->h_vlan_encapsulated_proto;
2521 } else if (!vlan_tx_tag_present(skb)) {
2522 return harmonize_features(skb, features);
2525 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX |
2526 NETIF_F_HW_VLAN_STAG_TX);
2528 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2529 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2530 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX |
2531 NETIF_F_HW_VLAN_STAG_TX;
2533 return harmonize_features(skb, features);
2535 EXPORT_SYMBOL(netif_skb_features);
2537 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2538 struct netdev_queue *txq)
2540 const struct net_device_ops *ops = dev->netdev_ops;
2541 int rc = NETDEV_TX_OK;
2542 unsigned int skb_len;
2544 if (likely(!skb->next)) {
2545 netdev_features_t features;
2548 * If device doesn't need skb->dst, release it right now while
2549 * its hot in this cpu cache
2551 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2552 skb_dst_drop(skb);
2554 features = netif_skb_features(skb);
2556 if (vlan_tx_tag_present(skb) &&
2557 !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2558 skb = __vlan_put_tag(skb, skb->vlan_proto,
2559 vlan_tx_tag_get(skb));
2560 if (unlikely(!skb))
2561 goto out;
2563 skb->vlan_tci = 0;
2566 /* If encapsulation offload request, verify we are testing
2567 * hardware encapsulation features instead of standard
2568 * features for the netdev
2570 if (skb->encapsulation)
2571 features &= dev->hw_enc_features;
2573 if (netif_needs_gso(skb, features)) {
2574 if (unlikely(dev_gso_segment(skb, features)))
2575 goto out_kfree_skb;
2576 if (skb->next)
2577 goto gso;
2578 } else {
2579 if (skb_needs_linearize(skb, features) &&
2580 __skb_linearize(skb))
2581 goto out_kfree_skb;
2583 /* If packet is not checksummed and device does not
2584 * support checksumming for this protocol, complete
2585 * checksumming here.
2587 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2588 if (skb->encapsulation)
2589 skb_set_inner_transport_header(skb,
2590 skb_checksum_start_offset(skb));
2591 else
2592 skb_set_transport_header(skb,
2593 skb_checksum_start_offset(skb));
2594 if (!(features & NETIF_F_ALL_CSUM) &&
2595 skb_checksum_help(skb))
2596 goto out_kfree_skb;
2600 if (!list_empty(&ptype_all))
2601 dev_queue_xmit_nit(skb, dev);
2603 skb_len = skb->len;
2604 trace_net_dev_start_xmit(skb, dev);
2605 rc = ops->ndo_start_xmit(skb, dev);
2606 trace_net_dev_xmit(skb, rc, dev, skb_len);
2607 if (rc == NETDEV_TX_OK)
2608 txq_trans_update(txq);
2609 return rc;
2612 gso:
2613 do {
2614 struct sk_buff *nskb = skb->next;
2616 skb->next = nskb->next;
2617 nskb->next = NULL;
2619 if (!list_empty(&ptype_all))
2620 dev_queue_xmit_nit(nskb, dev);
2622 skb_len = nskb->len;
2623 trace_net_dev_start_xmit(nskb, dev);
2624 rc = ops->ndo_start_xmit(nskb, dev);
2625 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2626 if (unlikely(rc != NETDEV_TX_OK)) {
2627 if (rc & ~NETDEV_TX_MASK)
2628 goto out_kfree_gso_skb;
2629 nskb->next = skb->next;
2630 skb->next = nskb;
2631 return rc;
2633 txq_trans_update(txq);
2634 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2635 return NETDEV_TX_BUSY;
2636 } while (skb->next);
2638 out_kfree_gso_skb:
2639 if (likely(skb->next == NULL)) {
2640 skb->destructor = DEV_GSO_CB(skb)->destructor;
2641 consume_skb(skb);
2642 return rc;
2644 out_kfree_skb:
2645 kfree_skb(skb);
2646 out:
2647 return rc;
2649 EXPORT_SYMBOL_GPL(dev_hard_start_xmit);
2651 static void qdisc_pkt_len_init(struct sk_buff *skb)
2653 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2655 qdisc_skb_cb(skb)->pkt_len = skb->len;
2657 /* To get more precise estimation of bytes sent on wire,
2658 * we add to pkt_len the headers size of all segments
2660 if (shinfo->gso_size) {
2661 unsigned int hdr_len;
2662 u16 gso_segs = shinfo->gso_segs;
2664 /* mac layer + network layer */
2665 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2667 /* + transport layer */
2668 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2669 hdr_len += tcp_hdrlen(skb);
2670 else
2671 hdr_len += sizeof(struct udphdr);
2673 if (shinfo->gso_type & SKB_GSO_DODGY)
2674 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2675 shinfo->gso_size);
2677 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2681 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2682 struct net_device *dev,
2683 struct netdev_queue *txq)
2685 spinlock_t *root_lock = qdisc_lock(q);
2686 bool contended;
2687 int rc;
2689 qdisc_pkt_len_init(skb);
2690 qdisc_calculate_pkt_len(skb, q);
2692 * Heuristic to force contended enqueues to serialize on a
2693 * separate lock before trying to get qdisc main lock.
2694 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2695 * and dequeue packets faster.
2697 contended = qdisc_is_running(q);
2698 if (unlikely(contended))
2699 spin_lock(&q->busylock);
2701 spin_lock(root_lock);
2702 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2703 kfree_skb(skb);
2704 rc = NET_XMIT_DROP;
2705 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2706 qdisc_run_begin(q)) {
2708 * This is a work-conserving queue; there are no old skbs
2709 * waiting to be sent out; and the qdisc is not running -
2710 * xmit the skb directly.
2712 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2713 skb_dst_force(skb);
2715 qdisc_bstats_update(q, skb);
2717 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2718 if (unlikely(contended)) {
2719 spin_unlock(&q->busylock);
2720 contended = false;
2722 __qdisc_run(q);
2723 } else
2724 qdisc_run_end(q);
2726 rc = NET_XMIT_SUCCESS;
2727 } else {
2728 skb_dst_force(skb);
2729 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2730 if (qdisc_run_begin(q)) {
2731 if (unlikely(contended)) {
2732 spin_unlock(&q->busylock);
2733 contended = false;
2735 __qdisc_run(q);
2738 spin_unlock(root_lock);
2739 if (unlikely(contended))
2740 spin_unlock(&q->busylock);
2741 return rc;
2744 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2745 static void skb_update_prio(struct sk_buff *skb)
2747 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2749 if (!skb->priority && skb->sk && map) {
2750 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2752 if (prioidx < map->priomap_len)
2753 skb->priority = map->priomap[prioidx];
2756 #else
2757 #define skb_update_prio(skb)
2758 #endif
2760 static DEFINE_PER_CPU(int, xmit_recursion);
2761 #define RECURSION_LIMIT 10
2764 * dev_loopback_xmit - loop back @skb
2765 * @skb: buffer to transmit
2767 int dev_loopback_xmit(struct sk_buff *skb)
2769 skb_reset_mac_header(skb);
2770 __skb_pull(skb, skb_network_offset(skb));
2771 skb->pkt_type = PACKET_LOOPBACK;
2772 skb->ip_summed = CHECKSUM_UNNECESSARY;
2773 WARN_ON(!skb_dst(skb));
2774 skb_dst_force(skb);
2775 netif_rx_ni(skb);
2776 return 0;
2778 EXPORT_SYMBOL(dev_loopback_xmit);
2781 * dev_queue_xmit - transmit a buffer
2782 * @skb: buffer to transmit
2784 * Queue a buffer for transmission to a network device. The caller must
2785 * have set the device and priority and built the buffer before calling
2786 * this function. The function can be called from an interrupt.
2788 * A negative errno code is returned on a failure. A success does not
2789 * guarantee the frame will be transmitted as it may be dropped due
2790 * to congestion or traffic shaping.
2792 * -----------------------------------------------------------------------------------
2793 * I notice this method can also return errors from the queue disciplines,
2794 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2795 * be positive.
2797 * Regardless of the return value, the skb is consumed, so it is currently
2798 * difficult to retry a send to this method. (You can bump the ref count
2799 * before sending to hold a reference for retry if you are careful.)
2801 * When calling this method, interrupts MUST be enabled. This is because
2802 * the BH enable code must have IRQs enabled so that it will not deadlock.
2803 * --BLG
2805 int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2807 struct net_device *dev = skb->dev;
2808 struct netdev_queue *txq;
2809 struct Qdisc *q;
2810 int rc = -ENOMEM;
2812 skb_reset_mac_header(skb);
2814 /* Disable soft irqs for various locks below. Also
2815 * stops preemption for RCU.
2817 rcu_read_lock_bh();
2819 skb_update_prio(skb);
2821 txq = netdev_pick_tx(dev, skb, accel_priv);
2822 q = rcu_dereference_bh(txq->qdisc);
2824 #ifdef CONFIG_NET_CLS_ACT
2825 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2826 #endif
2827 trace_net_dev_queue(skb);
2828 if (q->enqueue) {
2829 rc = __dev_xmit_skb(skb, q, dev, txq);
2830 goto out;
2833 /* The device has no queue. Common case for software devices:
2834 loopback, all the sorts of tunnels...
2836 Really, it is unlikely that netif_tx_lock protection is necessary
2837 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2838 counters.)
2839 However, it is possible, that they rely on protection
2840 made by us here.
2842 Check this and shot the lock. It is not prone from deadlocks.
2843 Either shot noqueue qdisc, it is even simpler 8)
2845 if (dev->flags & IFF_UP) {
2846 int cpu = smp_processor_id(); /* ok because BHs are off */
2848 if (txq->xmit_lock_owner != cpu) {
2850 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2851 goto recursion_alert;
2853 HARD_TX_LOCK(dev, txq, cpu);
2855 if (!netif_xmit_stopped(txq)) {
2856 __this_cpu_inc(xmit_recursion);
2857 rc = dev_hard_start_xmit(skb, dev, txq);
2858 __this_cpu_dec(xmit_recursion);
2859 if (dev_xmit_complete(rc)) {
2860 HARD_TX_UNLOCK(dev, txq);
2861 goto out;
2864 HARD_TX_UNLOCK(dev, txq);
2865 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2866 dev->name);
2867 } else {
2868 /* Recursion is detected! It is possible,
2869 * unfortunately
2871 recursion_alert:
2872 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2873 dev->name);
2877 rc = -ENETDOWN;
2878 rcu_read_unlock_bh();
2880 kfree_skb(skb);
2881 return rc;
2882 out:
2883 rcu_read_unlock_bh();
2884 return rc;
2887 int dev_queue_xmit(struct sk_buff *skb)
2889 return __dev_queue_xmit(skb, NULL);
2891 EXPORT_SYMBOL(dev_queue_xmit);
2893 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
2895 return __dev_queue_xmit(skb, accel_priv);
2897 EXPORT_SYMBOL(dev_queue_xmit_accel);
2900 /*=======================================================================
2901 Receiver routines
2902 =======================================================================*/
2904 int netdev_max_backlog __read_mostly = 1000;
2905 EXPORT_SYMBOL(netdev_max_backlog);
2907 int netdev_tstamp_prequeue __read_mostly = 1;
2908 int netdev_budget __read_mostly = 300;
2909 int weight_p __read_mostly = 64; /* old backlog weight */
2911 /* Called with irq disabled */
2912 static inline void ____napi_schedule(struct softnet_data *sd,
2913 struct napi_struct *napi)
2915 list_add_tail(&napi->poll_list, &sd->poll_list);
2916 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2919 #ifdef CONFIG_RPS
2921 /* One global table that all flow-based protocols share. */
2922 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2923 EXPORT_SYMBOL(rps_sock_flow_table);
2925 struct static_key rps_needed __read_mostly;
2927 static struct rps_dev_flow *
2928 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2929 struct rps_dev_flow *rflow, u16 next_cpu)
2931 if (next_cpu != RPS_NO_CPU) {
2932 #ifdef CONFIG_RFS_ACCEL
2933 struct netdev_rx_queue *rxqueue;
2934 struct rps_dev_flow_table *flow_table;
2935 struct rps_dev_flow *old_rflow;
2936 u32 flow_id;
2937 u16 rxq_index;
2938 int rc;
2940 /* Should we steer this flow to a different hardware queue? */
2941 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2942 !(dev->features & NETIF_F_NTUPLE))
2943 goto out;
2944 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2945 if (rxq_index == skb_get_rx_queue(skb))
2946 goto out;
2948 rxqueue = dev->_rx + rxq_index;
2949 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2950 if (!flow_table)
2951 goto out;
2952 flow_id = skb->rxhash & flow_table->mask;
2953 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2954 rxq_index, flow_id);
2955 if (rc < 0)
2956 goto out;
2957 old_rflow = rflow;
2958 rflow = &flow_table->flows[flow_id];
2959 rflow->filter = rc;
2960 if (old_rflow->filter == rflow->filter)
2961 old_rflow->filter = RPS_NO_FILTER;
2962 out:
2963 #endif
2964 rflow->last_qtail =
2965 per_cpu(softnet_data, next_cpu).input_queue_head;
2968 rflow->cpu = next_cpu;
2969 return rflow;
2973 * get_rps_cpu is called from netif_receive_skb and returns the target
2974 * CPU from the RPS map of the receiving queue for a given skb.
2975 * rcu_read_lock must be held on entry.
2977 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2978 struct rps_dev_flow **rflowp)
2980 struct netdev_rx_queue *rxqueue;
2981 struct rps_map *map;
2982 struct rps_dev_flow_table *flow_table;
2983 struct rps_sock_flow_table *sock_flow_table;
2984 int cpu = -1;
2985 u16 tcpu;
2987 if (skb_rx_queue_recorded(skb)) {
2988 u16 index = skb_get_rx_queue(skb);
2989 if (unlikely(index >= dev->real_num_rx_queues)) {
2990 WARN_ONCE(dev->real_num_rx_queues > 1,
2991 "%s received packet on queue %u, but number "
2992 "of RX queues is %u\n",
2993 dev->name, index, dev->real_num_rx_queues);
2994 goto done;
2996 rxqueue = dev->_rx + index;
2997 } else
2998 rxqueue = dev->_rx;
3000 map = rcu_dereference(rxqueue->rps_map);
3001 if (map) {
3002 if (map->len == 1 &&
3003 !rcu_access_pointer(rxqueue->rps_flow_table)) {
3004 tcpu = map->cpus[0];
3005 if (cpu_online(tcpu))
3006 cpu = tcpu;
3007 goto done;
3009 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3010 goto done;
3013 skb_reset_network_header(skb);
3014 if (!skb_get_hash(skb))
3015 goto done;
3017 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3018 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3019 if (flow_table && sock_flow_table) {
3020 u16 next_cpu;
3021 struct rps_dev_flow *rflow;
3023 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
3024 tcpu = rflow->cpu;
3026 next_cpu = sock_flow_table->ents[skb->rxhash &
3027 sock_flow_table->mask];
3030 * If the desired CPU (where last recvmsg was done) is
3031 * different from current CPU (one in the rx-queue flow
3032 * table entry), switch if one of the following holds:
3033 * - Current CPU is unset (equal to RPS_NO_CPU).
3034 * - Current CPU is offline.
3035 * - The current CPU's queue tail has advanced beyond the
3036 * last packet that was enqueued using this table entry.
3037 * This guarantees that all previous packets for the flow
3038 * have been dequeued, thus preserving in order delivery.
3040 if (unlikely(tcpu != next_cpu) &&
3041 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3042 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3043 rflow->last_qtail)) >= 0)) {
3044 tcpu = next_cpu;
3045 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3048 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3049 *rflowp = rflow;
3050 cpu = tcpu;
3051 goto done;
3055 if (map) {
3056 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
3058 if (cpu_online(tcpu)) {
3059 cpu = tcpu;
3060 goto done;
3064 done:
3065 return cpu;
3068 #ifdef CONFIG_RFS_ACCEL
3071 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3072 * @dev: Device on which the filter was set
3073 * @rxq_index: RX queue index
3074 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3075 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3077 * Drivers that implement ndo_rx_flow_steer() should periodically call
3078 * this function for each installed filter and remove the filters for
3079 * which it returns %true.
3081 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3082 u32 flow_id, u16 filter_id)
3084 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3085 struct rps_dev_flow_table *flow_table;
3086 struct rps_dev_flow *rflow;
3087 bool expire = true;
3088 int cpu;
3090 rcu_read_lock();
3091 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3092 if (flow_table && flow_id <= flow_table->mask) {
3093 rflow = &flow_table->flows[flow_id];
3094 cpu = ACCESS_ONCE(rflow->cpu);
3095 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3096 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3097 rflow->last_qtail) <
3098 (int)(10 * flow_table->mask)))
3099 expire = false;
3101 rcu_read_unlock();
3102 return expire;
3104 EXPORT_SYMBOL(rps_may_expire_flow);
3106 #endif /* CONFIG_RFS_ACCEL */
3108 /* Called from hardirq (IPI) context */
3109 static void rps_trigger_softirq(void *data)
3111 struct softnet_data *sd = data;
3113 ____napi_schedule(sd, &sd->backlog);
3114 sd->received_rps++;
3117 #endif /* CONFIG_RPS */
3120 * Check if this softnet_data structure is another cpu one
3121 * If yes, queue it to our IPI list and return 1
3122 * If no, return 0
3124 static int rps_ipi_queued(struct softnet_data *sd)
3126 #ifdef CONFIG_RPS
3127 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3129 if (sd != mysd) {
3130 sd->rps_ipi_next = mysd->rps_ipi_list;
3131 mysd->rps_ipi_list = sd;
3133 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3134 return 1;
3136 #endif /* CONFIG_RPS */
3137 return 0;
3140 #ifdef CONFIG_NET_FLOW_LIMIT
3141 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3142 #endif
3144 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3146 #ifdef CONFIG_NET_FLOW_LIMIT
3147 struct sd_flow_limit *fl;
3148 struct softnet_data *sd;
3149 unsigned int old_flow, new_flow;
3151 if (qlen < (netdev_max_backlog >> 1))
3152 return false;
3154 sd = &__get_cpu_var(softnet_data);
3156 rcu_read_lock();
3157 fl = rcu_dereference(sd->flow_limit);
3158 if (fl) {
3159 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3160 old_flow = fl->history[fl->history_head];
3161 fl->history[fl->history_head] = new_flow;
3163 fl->history_head++;
3164 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3166 if (likely(fl->buckets[old_flow]))
3167 fl->buckets[old_flow]--;
3169 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3170 fl->count++;
3171 rcu_read_unlock();
3172 return true;
3175 rcu_read_unlock();
3176 #endif
3177 return false;
3181 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3182 * queue (may be a remote CPU queue).
3184 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3185 unsigned int *qtail)
3187 struct softnet_data *sd;
3188 unsigned long flags;
3189 unsigned int qlen;
3191 sd = &per_cpu(softnet_data, cpu);
3193 local_irq_save(flags);
3195 rps_lock(sd);
3196 qlen = skb_queue_len(&sd->input_pkt_queue);
3197 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3198 if (skb_queue_len(&sd->input_pkt_queue)) {
3199 enqueue:
3200 __skb_queue_tail(&sd->input_pkt_queue, skb);
3201 input_queue_tail_incr_save(sd, qtail);
3202 rps_unlock(sd);
3203 local_irq_restore(flags);
3204 return NET_RX_SUCCESS;
3207 /* Schedule NAPI for backlog device
3208 * We can use non atomic operation since we own the queue lock
3210 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3211 if (!rps_ipi_queued(sd))
3212 ____napi_schedule(sd, &sd->backlog);
3214 goto enqueue;
3217 sd->dropped++;
3218 rps_unlock(sd);
3220 local_irq_restore(flags);
3222 atomic_long_inc(&skb->dev->rx_dropped);
3223 kfree_skb(skb);
3224 return NET_RX_DROP;
3227 static int netif_rx_internal(struct sk_buff *skb)
3229 int ret;
3231 /* if netpoll wants it, pretend we never saw it */
3232 if (netpoll_rx(skb))
3233 return NET_RX_DROP;
3235 net_timestamp_check(netdev_tstamp_prequeue, skb);
3237 trace_netif_rx(skb);
3238 #ifdef CONFIG_RPS
3239 if (static_key_false(&rps_needed)) {
3240 struct rps_dev_flow voidflow, *rflow = &voidflow;
3241 int cpu;
3243 preempt_disable();
3244 rcu_read_lock();
3246 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3247 if (cpu < 0)
3248 cpu = smp_processor_id();
3250 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3252 rcu_read_unlock();
3253 preempt_enable();
3254 } else
3255 #endif
3257 unsigned int qtail;
3258 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3259 put_cpu();
3261 return ret;
3265 * netif_rx - post buffer to the network code
3266 * @skb: buffer to post
3268 * This function receives a packet from a device driver and queues it for
3269 * the upper (protocol) levels to process. It always succeeds. The buffer
3270 * may be dropped during processing for congestion control or by the
3271 * protocol layers.
3273 * return values:
3274 * NET_RX_SUCCESS (no congestion)
3275 * NET_RX_DROP (packet was dropped)
3279 int netif_rx(struct sk_buff *skb)
3281 trace_netif_rx_entry(skb);
3283 return netif_rx_internal(skb);
3285 EXPORT_SYMBOL(netif_rx);
3287 int netif_rx_ni(struct sk_buff *skb)
3289 int err;
3291 trace_netif_rx_ni_entry(skb);
3293 preempt_disable();
3294 err = netif_rx_internal(skb);
3295 if (local_softirq_pending())
3296 do_softirq();
3297 preempt_enable();
3299 return err;
3301 EXPORT_SYMBOL(netif_rx_ni);
3303 static void net_tx_action(struct softirq_action *h)
3305 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3307 if (sd->completion_queue) {
3308 struct sk_buff *clist;
3310 local_irq_disable();
3311 clist = sd->completion_queue;
3312 sd->completion_queue = NULL;
3313 local_irq_enable();
3315 while (clist) {
3316 struct sk_buff *skb = clist;
3317 clist = clist->next;
3319 WARN_ON(atomic_read(&skb->users));
3320 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3321 trace_consume_skb(skb);
3322 else
3323 trace_kfree_skb(skb, net_tx_action);
3324 __kfree_skb(skb);
3328 if (sd->output_queue) {
3329 struct Qdisc *head;
3331 local_irq_disable();
3332 head = sd->output_queue;
3333 sd->output_queue = NULL;
3334 sd->output_queue_tailp = &sd->output_queue;
3335 local_irq_enable();
3337 while (head) {
3338 struct Qdisc *q = head;
3339 spinlock_t *root_lock;
3341 head = head->next_sched;
3343 root_lock = qdisc_lock(q);
3344 if (spin_trylock(root_lock)) {
3345 smp_mb__before_clear_bit();
3346 clear_bit(__QDISC_STATE_SCHED,
3347 &q->state);
3348 qdisc_run(q);
3349 spin_unlock(root_lock);
3350 } else {
3351 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3352 &q->state)) {
3353 __netif_reschedule(q);
3354 } else {
3355 smp_mb__before_clear_bit();
3356 clear_bit(__QDISC_STATE_SCHED,
3357 &q->state);
3364 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3365 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3366 /* This hook is defined here for ATM LANE */
3367 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3368 unsigned char *addr) __read_mostly;
3369 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3370 #endif
3372 #ifdef CONFIG_NET_CLS_ACT
3373 /* TODO: Maybe we should just force sch_ingress to be compiled in
3374 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3375 * a compare and 2 stores extra right now if we dont have it on
3376 * but have CONFIG_NET_CLS_ACT
3377 * NOTE: This doesn't stop any functionality; if you dont have
3378 * the ingress scheduler, you just can't add policies on ingress.
3381 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3383 struct net_device *dev = skb->dev;
3384 u32 ttl = G_TC_RTTL(skb->tc_verd);
3385 int result = TC_ACT_OK;
3386 struct Qdisc *q;
3388 if (unlikely(MAX_RED_LOOP < ttl++)) {
3389 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3390 skb->skb_iif, dev->ifindex);
3391 return TC_ACT_SHOT;
3394 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3395 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3397 q = rxq->qdisc;
3398 if (q != &noop_qdisc) {
3399 spin_lock(qdisc_lock(q));
3400 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3401 result = qdisc_enqueue_root(skb, q);
3402 spin_unlock(qdisc_lock(q));
3405 return result;
3408 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3409 struct packet_type **pt_prev,
3410 int *ret, struct net_device *orig_dev)
3412 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3414 if (!rxq || rxq->qdisc == &noop_qdisc)
3415 goto out;
3417 if (*pt_prev) {
3418 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3419 *pt_prev = NULL;
3422 switch (ing_filter(skb, rxq)) {
3423 case TC_ACT_SHOT:
3424 case TC_ACT_STOLEN:
3425 kfree_skb(skb);
3426 return NULL;
3429 out:
3430 skb->tc_verd = 0;
3431 return skb;
3433 #endif
3436 * netdev_rx_handler_register - register receive handler
3437 * @dev: device to register a handler for
3438 * @rx_handler: receive handler to register
3439 * @rx_handler_data: data pointer that is used by rx handler
3441 * Register a receive hander for a device. This handler will then be
3442 * called from __netif_receive_skb. A negative errno code is returned
3443 * on a failure.
3445 * The caller must hold the rtnl_mutex.
3447 * For a general description of rx_handler, see enum rx_handler_result.
3449 int netdev_rx_handler_register(struct net_device *dev,
3450 rx_handler_func_t *rx_handler,
3451 void *rx_handler_data)
3453 ASSERT_RTNL();
3455 if (dev->rx_handler)
3456 return -EBUSY;
3458 /* Note: rx_handler_data must be set before rx_handler */
3459 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3460 rcu_assign_pointer(dev->rx_handler, rx_handler);
3462 return 0;
3464 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3467 * netdev_rx_handler_unregister - unregister receive handler
3468 * @dev: device to unregister a handler from
3470 * Unregister a receive handler from a device.
3472 * The caller must hold the rtnl_mutex.
3474 void netdev_rx_handler_unregister(struct net_device *dev)
3477 ASSERT_RTNL();
3478 RCU_INIT_POINTER(dev->rx_handler, NULL);
3479 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3480 * section has a guarantee to see a non NULL rx_handler_data
3481 * as well.
3483 synchronize_net();
3484 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3486 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3489 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3490 * the special handling of PFMEMALLOC skbs.
3492 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3494 switch (skb->protocol) {
3495 case __constant_htons(ETH_P_ARP):
3496 case __constant_htons(ETH_P_IP):
3497 case __constant_htons(ETH_P_IPV6):
3498 case __constant_htons(ETH_P_8021Q):
3499 case __constant_htons(ETH_P_8021AD):
3500 return true;
3501 default:
3502 return false;
3506 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3508 struct packet_type *ptype, *pt_prev;
3509 rx_handler_func_t *rx_handler;
3510 struct net_device *orig_dev;
3511 struct net_device *null_or_dev;
3512 bool deliver_exact = false;
3513 int ret = NET_RX_DROP;
3514 __be16 type;
3516 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3518 trace_netif_receive_skb(skb);
3520 /* if we've gotten here through NAPI, check netpoll */
3521 if (netpoll_receive_skb(skb))
3522 goto out;
3524 orig_dev = skb->dev;
3526 skb_reset_network_header(skb);
3527 if (!skb_transport_header_was_set(skb))
3528 skb_reset_transport_header(skb);
3529 skb_reset_mac_len(skb);
3531 pt_prev = NULL;
3533 rcu_read_lock();
3535 another_round:
3536 skb->skb_iif = skb->dev->ifindex;
3538 __this_cpu_inc(softnet_data.processed);
3540 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3541 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3542 skb = vlan_untag(skb);
3543 if (unlikely(!skb))
3544 goto unlock;
3547 #ifdef CONFIG_NET_CLS_ACT
3548 if (skb->tc_verd & TC_NCLS) {
3549 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3550 goto ncls;
3552 #endif
3554 if (pfmemalloc)
3555 goto skip_taps;
3557 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3558 if (!ptype->dev || ptype->dev == skb->dev) {
3559 if (pt_prev)
3560 ret = deliver_skb(skb, pt_prev, orig_dev);
3561 pt_prev = ptype;
3565 skip_taps:
3566 #ifdef CONFIG_NET_CLS_ACT
3567 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3568 if (!skb)
3569 goto unlock;
3570 ncls:
3571 #endif
3573 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3574 goto drop;
3576 if (vlan_tx_tag_present(skb)) {
3577 if (pt_prev) {
3578 ret = deliver_skb(skb, pt_prev, orig_dev);
3579 pt_prev = NULL;
3581 if (vlan_do_receive(&skb))
3582 goto another_round;
3583 else if (unlikely(!skb))
3584 goto unlock;
3587 rx_handler = rcu_dereference(skb->dev->rx_handler);
3588 if (rx_handler) {
3589 if (pt_prev) {
3590 ret = deliver_skb(skb, pt_prev, orig_dev);
3591 pt_prev = NULL;
3593 switch (rx_handler(&skb)) {
3594 case RX_HANDLER_CONSUMED:
3595 ret = NET_RX_SUCCESS;
3596 goto unlock;
3597 case RX_HANDLER_ANOTHER:
3598 goto another_round;
3599 case RX_HANDLER_EXACT:
3600 deliver_exact = true;
3601 case RX_HANDLER_PASS:
3602 break;
3603 default:
3604 BUG();
3608 if (unlikely(vlan_tx_tag_present(skb))) {
3609 if (vlan_tx_tag_get_id(skb))
3610 skb->pkt_type = PACKET_OTHERHOST;
3611 /* Note: we might in the future use prio bits
3612 * and set skb->priority like in vlan_do_receive()
3613 * For the time being, just ignore Priority Code Point
3615 skb->vlan_tci = 0;
3618 /* deliver only exact match when indicated */
3619 null_or_dev = deliver_exact ? skb->dev : NULL;
3621 type = skb->protocol;
3622 list_for_each_entry_rcu(ptype,
3623 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3624 if (ptype->type == type &&
3625 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3626 ptype->dev == orig_dev)) {
3627 if (pt_prev)
3628 ret = deliver_skb(skb, pt_prev, orig_dev);
3629 pt_prev = ptype;
3633 if (pt_prev) {
3634 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3635 goto drop;
3636 else
3637 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3638 } else {
3639 drop:
3640 atomic_long_inc(&skb->dev->rx_dropped);
3641 kfree_skb(skb);
3642 /* Jamal, now you will not able to escape explaining
3643 * me how you were going to use this. :-)
3645 ret = NET_RX_DROP;
3648 unlock:
3649 rcu_read_unlock();
3650 out:
3651 return ret;
3654 static int __netif_receive_skb(struct sk_buff *skb)
3656 int ret;
3658 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3659 unsigned long pflags = current->flags;
3662 * PFMEMALLOC skbs are special, they should
3663 * - be delivered to SOCK_MEMALLOC sockets only
3664 * - stay away from userspace
3665 * - have bounded memory usage
3667 * Use PF_MEMALLOC as this saves us from propagating the allocation
3668 * context down to all allocation sites.
3670 current->flags |= PF_MEMALLOC;
3671 ret = __netif_receive_skb_core(skb, true);
3672 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3673 } else
3674 ret = __netif_receive_skb_core(skb, false);
3676 return ret;
3679 static int netif_receive_skb_internal(struct sk_buff *skb)
3681 net_timestamp_check(netdev_tstamp_prequeue, skb);
3683 if (skb_defer_rx_timestamp(skb))
3684 return NET_RX_SUCCESS;
3686 #ifdef CONFIG_RPS
3687 if (static_key_false(&rps_needed)) {
3688 struct rps_dev_flow voidflow, *rflow = &voidflow;
3689 int cpu, ret;
3691 rcu_read_lock();
3693 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3695 if (cpu >= 0) {
3696 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3697 rcu_read_unlock();
3698 return ret;
3700 rcu_read_unlock();
3702 #endif
3703 return __netif_receive_skb(skb);
3707 * netif_receive_skb - process receive buffer from network
3708 * @skb: buffer to process
3710 * netif_receive_skb() is the main receive data processing function.
3711 * It always succeeds. The buffer may be dropped during processing
3712 * for congestion control or by the protocol layers.
3714 * This function may only be called from softirq context and interrupts
3715 * should be enabled.
3717 * Return values (usually ignored):
3718 * NET_RX_SUCCESS: no congestion
3719 * NET_RX_DROP: packet was dropped
3721 int netif_receive_skb(struct sk_buff *skb)
3723 trace_netif_receive_skb_entry(skb);
3725 return netif_receive_skb_internal(skb);
3727 EXPORT_SYMBOL(netif_receive_skb);
3729 /* Network device is going away, flush any packets still pending
3730 * Called with irqs disabled.
3732 static void flush_backlog(void *arg)
3734 struct net_device *dev = arg;
3735 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3736 struct sk_buff *skb, *tmp;
3738 rps_lock(sd);
3739 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3740 if (skb->dev == dev) {
3741 __skb_unlink(skb, &sd->input_pkt_queue);
3742 kfree_skb(skb);
3743 input_queue_head_incr(sd);
3746 rps_unlock(sd);
3748 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3749 if (skb->dev == dev) {
3750 __skb_unlink(skb, &sd->process_queue);
3751 kfree_skb(skb);
3752 input_queue_head_incr(sd);
3757 static int napi_gro_complete(struct sk_buff *skb)
3759 struct packet_offload *ptype;
3760 __be16 type = skb->protocol;
3761 struct list_head *head = &offload_base;
3762 int err = -ENOENT;
3764 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3766 if (NAPI_GRO_CB(skb)->count == 1) {
3767 skb_shinfo(skb)->gso_size = 0;
3768 goto out;
3771 rcu_read_lock();
3772 list_for_each_entry_rcu(ptype, head, list) {
3773 if (ptype->type != type || !ptype->callbacks.gro_complete)
3774 continue;
3776 err = ptype->callbacks.gro_complete(skb, 0);
3777 break;
3779 rcu_read_unlock();
3781 if (err) {
3782 WARN_ON(&ptype->list == head);
3783 kfree_skb(skb);
3784 return NET_RX_SUCCESS;
3787 out:
3788 return netif_receive_skb_internal(skb);
3791 /* napi->gro_list contains packets ordered by age.
3792 * youngest packets at the head of it.
3793 * Complete skbs in reverse order to reduce latencies.
3795 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3797 struct sk_buff *skb, *prev = NULL;
3799 /* scan list and build reverse chain */
3800 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3801 skb->prev = prev;
3802 prev = skb;
3805 for (skb = prev; skb; skb = prev) {
3806 skb->next = NULL;
3808 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3809 return;
3811 prev = skb->prev;
3812 napi_gro_complete(skb);
3813 napi->gro_count--;
3816 napi->gro_list = NULL;
3818 EXPORT_SYMBOL(napi_gro_flush);
3820 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3822 struct sk_buff *p;
3823 unsigned int maclen = skb->dev->hard_header_len;
3824 u32 hash = skb_get_hash_raw(skb);
3826 for (p = napi->gro_list; p; p = p->next) {
3827 unsigned long diffs;
3829 NAPI_GRO_CB(p)->flush = 0;
3831 if (hash != skb_get_hash_raw(p)) {
3832 NAPI_GRO_CB(p)->same_flow = 0;
3833 continue;
3836 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3837 diffs |= p->vlan_tci ^ skb->vlan_tci;
3838 if (maclen == ETH_HLEN)
3839 diffs |= compare_ether_header(skb_mac_header(p),
3840 skb_gro_mac_header(skb));
3841 else if (!diffs)
3842 diffs = memcmp(skb_mac_header(p),
3843 skb_gro_mac_header(skb),
3844 maclen);
3845 NAPI_GRO_CB(p)->same_flow = !diffs;
3849 static void skb_gro_reset_offset(struct sk_buff *skb)
3851 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3852 const skb_frag_t *frag0 = &pinfo->frags[0];
3854 NAPI_GRO_CB(skb)->data_offset = 0;
3855 NAPI_GRO_CB(skb)->frag0 = NULL;
3856 NAPI_GRO_CB(skb)->frag0_len = 0;
3858 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3859 pinfo->nr_frags &&
3860 !PageHighMem(skb_frag_page(frag0))) {
3861 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3862 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3866 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3868 struct sk_buff **pp = NULL;
3869 struct packet_offload *ptype;
3870 __be16 type = skb->protocol;
3871 struct list_head *head = &offload_base;
3872 int same_flow;
3873 enum gro_result ret;
3875 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3876 goto normal;
3878 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3879 goto normal;
3881 skb_gro_reset_offset(skb);
3882 gro_list_prepare(napi, skb);
3883 NAPI_GRO_CB(skb)->csum = skb->csum; /* Needed for CHECKSUM_COMPLETE */
3885 rcu_read_lock();
3886 list_for_each_entry_rcu(ptype, head, list) {
3887 if (ptype->type != type || !ptype->callbacks.gro_receive)
3888 continue;
3890 skb_set_network_header(skb, skb_gro_offset(skb));
3891 skb_reset_mac_len(skb);
3892 NAPI_GRO_CB(skb)->same_flow = 0;
3893 NAPI_GRO_CB(skb)->flush = 0;
3894 NAPI_GRO_CB(skb)->free = 0;
3896 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3897 break;
3899 rcu_read_unlock();
3901 if (&ptype->list == head)
3902 goto normal;
3904 same_flow = NAPI_GRO_CB(skb)->same_flow;
3905 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3907 if (pp) {
3908 struct sk_buff *nskb = *pp;
3910 *pp = nskb->next;
3911 nskb->next = NULL;
3912 napi_gro_complete(nskb);
3913 napi->gro_count--;
3916 if (same_flow)
3917 goto ok;
3919 if (NAPI_GRO_CB(skb)->flush)
3920 goto normal;
3922 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
3923 struct sk_buff *nskb = napi->gro_list;
3925 /* locate the end of the list to select the 'oldest' flow */
3926 while (nskb->next) {
3927 pp = &nskb->next;
3928 nskb = *pp;
3930 *pp = NULL;
3931 nskb->next = NULL;
3932 napi_gro_complete(nskb);
3933 } else {
3934 napi->gro_count++;
3936 NAPI_GRO_CB(skb)->count = 1;
3937 NAPI_GRO_CB(skb)->age = jiffies;
3938 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3939 skb->next = napi->gro_list;
3940 napi->gro_list = skb;
3941 ret = GRO_HELD;
3943 pull:
3944 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3945 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3947 BUG_ON(skb->end - skb->tail < grow);
3949 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3951 skb->tail += grow;
3952 skb->data_len -= grow;
3954 skb_shinfo(skb)->frags[0].page_offset += grow;
3955 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3957 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3958 skb_frag_unref(skb, 0);
3959 memmove(skb_shinfo(skb)->frags,
3960 skb_shinfo(skb)->frags + 1,
3961 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3966 return ret;
3968 normal:
3969 ret = GRO_NORMAL;
3970 goto pull;
3973 struct packet_offload *gro_find_receive_by_type(__be16 type)
3975 struct list_head *offload_head = &offload_base;
3976 struct packet_offload *ptype;
3978 list_for_each_entry_rcu(ptype, offload_head, list) {
3979 if (ptype->type != type || !ptype->callbacks.gro_receive)
3980 continue;
3981 return ptype;
3983 return NULL;
3986 struct packet_offload *gro_find_complete_by_type(__be16 type)
3988 struct list_head *offload_head = &offload_base;
3989 struct packet_offload *ptype;
3991 list_for_each_entry_rcu(ptype, offload_head, list) {
3992 if (ptype->type != type || !ptype->callbacks.gro_complete)
3993 continue;
3994 return ptype;
3996 return NULL;
3999 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4001 switch (ret) {
4002 case GRO_NORMAL:
4003 if (netif_receive_skb_internal(skb))
4004 ret = GRO_DROP;
4005 break;
4007 case GRO_DROP:
4008 kfree_skb(skb);
4009 break;
4011 case GRO_MERGED_FREE:
4012 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4013 kmem_cache_free(skbuff_head_cache, skb);
4014 else
4015 __kfree_skb(skb);
4016 break;
4018 case GRO_HELD:
4019 case GRO_MERGED:
4020 break;
4023 return ret;
4026 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4028 trace_napi_gro_receive_entry(skb);
4030 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4032 EXPORT_SYMBOL(napi_gro_receive);
4034 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4036 __skb_pull(skb, skb_headlen(skb));
4037 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4038 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4039 skb->vlan_tci = 0;
4040 skb->dev = napi->dev;
4041 skb->skb_iif = 0;
4043 napi->skb = skb;
4046 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4048 struct sk_buff *skb = napi->skb;
4050 if (!skb) {
4051 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
4052 napi->skb = skb;
4054 return skb;
4056 EXPORT_SYMBOL(napi_get_frags);
4058 static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
4059 gro_result_t ret)
4061 switch (ret) {
4062 case GRO_NORMAL:
4063 if (netif_receive_skb_internal(skb))
4064 ret = GRO_DROP;
4065 break;
4067 case GRO_DROP:
4068 case GRO_MERGED_FREE:
4069 napi_reuse_skb(napi, skb);
4070 break;
4072 case GRO_HELD:
4073 case GRO_MERGED:
4074 break;
4077 return ret;
4080 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4082 struct sk_buff *skb = napi->skb;
4084 napi->skb = NULL;
4086 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) {
4087 napi_reuse_skb(napi, skb);
4088 return NULL;
4090 skb->protocol = eth_type_trans(skb, skb->dev);
4092 return skb;
4095 gro_result_t napi_gro_frags(struct napi_struct *napi)
4097 struct sk_buff *skb = napi_frags_skb(napi);
4099 if (!skb)
4100 return GRO_DROP;
4102 trace_napi_gro_frags_entry(skb);
4104 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4106 EXPORT_SYMBOL(napi_gro_frags);
4109 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4110 * Note: called with local irq disabled, but exits with local irq enabled.
4112 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4114 #ifdef CONFIG_RPS
4115 struct softnet_data *remsd = sd->rps_ipi_list;
4117 if (remsd) {
4118 sd->rps_ipi_list = NULL;
4120 local_irq_enable();
4122 /* Send pending IPI's to kick RPS processing on remote cpus. */
4123 while (remsd) {
4124 struct softnet_data *next = remsd->rps_ipi_next;
4126 if (cpu_online(remsd->cpu))
4127 __smp_call_function_single(remsd->cpu,
4128 &remsd->csd, 0);
4129 remsd = next;
4131 } else
4132 #endif
4133 local_irq_enable();
4136 static int process_backlog(struct napi_struct *napi, int quota)
4138 int work = 0;
4139 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4141 #ifdef CONFIG_RPS
4142 /* Check if we have pending ipi, its better to send them now,
4143 * not waiting net_rx_action() end.
4145 if (sd->rps_ipi_list) {
4146 local_irq_disable();
4147 net_rps_action_and_irq_enable(sd);
4149 #endif
4150 napi->weight = weight_p;
4151 local_irq_disable();
4152 while (work < quota) {
4153 struct sk_buff *skb;
4154 unsigned int qlen;
4156 while ((skb = __skb_dequeue(&sd->process_queue))) {
4157 local_irq_enable();
4158 __netif_receive_skb(skb);
4159 local_irq_disable();
4160 input_queue_head_incr(sd);
4161 if (++work >= quota) {
4162 local_irq_enable();
4163 return work;
4167 rps_lock(sd);
4168 qlen = skb_queue_len(&sd->input_pkt_queue);
4169 if (qlen)
4170 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4171 &sd->process_queue);
4173 if (qlen < quota - work) {
4175 * Inline a custom version of __napi_complete().
4176 * only current cpu owns and manipulates this napi,
4177 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
4178 * we can use a plain write instead of clear_bit(),
4179 * and we dont need an smp_mb() memory barrier.
4181 list_del(&napi->poll_list);
4182 napi->state = 0;
4184 quota = work + qlen;
4186 rps_unlock(sd);
4188 local_irq_enable();
4190 return work;
4194 * __napi_schedule - schedule for receive
4195 * @n: entry to schedule
4197 * The entry's receive function will be scheduled to run
4199 void __napi_schedule(struct napi_struct *n)
4201 unsigned long flags;
4203 local_irq_save(flags);
4204 ____napi_schedule(&__get_cpu_var(softnet_data), n);
4205 local_irq_restore(flags);
4207 EXPORT_SYMBOL(__napi_schedule);
4209 void __napi_complete(struct napi_struct *n)
4211 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4212 BUG_ON(n->gro_list);
4214 list_del(&n->poll_list);
4215 smp_mb__before_clear_bit();
4216 clear_bit(NAPI_STATE_SCHED, &n->state);
4218 EXPORT_SYMBOL(__napi_complete);
4220 void napi_complete(struct napi_struct *n)
4222 unsigned long flags;
4225 * don't let napi dequeue from the cpu poll list
4226 * just in case its running on a different cpu
4228 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4229 return;
4231 napi_gro_flush(n, false);
4232 local_irq_save(flags);
4233 __napi_complete(n);
4234 local_irq_restore(flags);
4236 EXPORT_SYMBOL(napi_complete);
4238 /* must be called under rcu_read_lock(), as we dont take a reference */
4239 struct napi_struct *napi_by_id(unsigned int napi_id)
4241 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4242 struct napi_struct *napi;
4244 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4245 if (napi->napi_id == napi_id)
4246 return napi;
4248 return NULL;
4250 EXPORT_SYMBOL_GPL(napi_by_id);
4252 void napi_hash_add(struct napi_struct *napi)
4254 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4256 spin_lock(&napi_hash_lock);
4258 /* 0 is not a valid id, we also skip an id that is taken
4259 * we expect both events to be extremely rare
4261 napi->napi_id = 0;
4262 while (!napi->napi_id) {
4263 napi->napi_id = ++napi_gen_id;
4264 if (napi_by_id(napi->napi_id))
4265 napi->napi_id = 0;
4268 hlist_add_head_rcu(&napi->napi_hash_node,
4269 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4271 spin_unlock(&napi_hash_lock);
4274 EXPORT_SYMBOL_GPL(napi_hash_add);
4276 /* Warning : caller is responsible to make sure rcu grace period
4277 * is respected before freeing memory containing @napi
4279 void napi_hash_del(struct napi_struct *napi)
4281 spin_lock(&napi_hash_lock);
4283 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4284 hlist_del_rcu(&napi->napi_hash_node);
4286 spin_unlock(&napi_hash_lock);
4288 EXPORT_SYMBOL_GPL(napi_hash_del);
4290 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4291 int (*poll)(struct napi_struct *, int), int weight)
4293 INIT_LIST_HEAD(&napi->poll_list);
4294 napi->gro_count = 0;
4295 napi->gro_list = NULL;
4296 napi->skb = NULL;
4297 napi->poll = poll;
4298 if (weight > NAPI_POLL_WEIGHT)
4299 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4300 weight, dev->name);
4301 napi->weight = weight;
4302 list_add(&napi->dev_list, &dev->napi_list);
4303 napi->dev = dev;
4304 #ifdef CONFIG_NETPOLL
4305 spin_lock_init(&napi->poll_lock);
4306 napi->poll_owner = -1;
4307 #endif
4308 set_bit(NAPI_STATE_SCHED, &napi->state);
4310 EXPORT_SYMBOL(netif_napi_add);
4312 void netif_napi_del(struct napi_struct *napi)
4314 list_del_init(&napi->dev_list);
4315 napi_free_frags(napi);
4317 kfree_skb_list(napi->gro_list);
4318 napi->gro_list = NULL;
4319 napi->gro_count = 0;
4321 EXPORT_SYMBOL(netif_napi_del);
4323 static void net_rx_action(struct softirq_action *h)
4325 struct softnet_data *sd = &__get_cpu_var(softnet_data);
4326 unsigned long time_limit = jiffies + 2;
4327 int budget = netdev_budget;
4328 void *have;
4330 local_irq_disable();
4332 while (!list_empty(&sd->poll_list)) {
4333 struct napi_struct *n;
4334 int work, weight;
4336 /* If softirq window is exhuasted then punt.
4337 * Allow this to run for 2 jiffies since which will allow
4338 * an average latency of 1.5/HZ.
4340 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4341 goto softnet_break;
4343 local_irq_enable();
4345 /* Even though interrupts have been re-enabled, this
4346 * access is safe because interrupts can only add new
4347 * entries to the tail of this list, and only ->poll()
4348 * calls can remove this head entry from the list.
4350 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4352 have = netpoll_poll_lock(n);
4354 weight = n->weight;
4356 /* This NAPI_STATE_SCHED test is for avoiding a race
4357 * with netpoll's poll_napi(). Only the entity which
4358 * obtains the lock and sees NAPI_STATE_SCHED set will
4359 * actually make the ->poll() call. Therefore we avoid
4360 * accidentally calling ->poll() when NAPI is not scheduled.
4362 work = 0;
4363 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4364 work = n->poll(n, weight);
4365 trace_napi_poll(n);
4368 WARN_ON_ONCE(work > weight);
4370 budget -= work;
4372 local_irq_disable();
4374 /* Drivers must not modify the NAPI state if they
4375 * consume the entire weight. In such cases this code
4376 * still "owns" the NAPI instance and therefore can
4377 * move the instance around on the list at-will.
4379 if (unlikely(work == weight)) {
4380 if (unlikely(napi_disable_pending(n))) {
4381 local_irq_enable();
4382 napi_complete(n);
4383 local_irq_disable();
4384 } else {
4385 if (n->gro_list) {
4386 /* flush too old packets
4387 * If HZ < 1000, flush all packets.
4389 local_irq_enable();
4390 napi_gro_flush(n, HZ >= 1000);
4391 local_irq_disable();
4393 list_move_tail(&n->poll_list, &sd->poll_list);
4397 netpoll_poll_unlock(have);
4399 out:
4400 net_rps_action_and_irq_enable(sd);
4402 #ifdef CONFIG_NET_DMA
4404 * There may not be any more sk_buffs coming right now, so push
4405 * any pending DMA copies to hardware
4407 dma_issue_pending_all();
4408 #endif
4410 return;
4412 softnet_break:
4413 sd->time_squeeze++;
4414 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4415 goto out;
4418 struct netdev_adjacent {
4419 struct net_device *dev;
4421 /* upper master flag, there can only be one master device per list */
4422 bool master;
4424 /* counter for the number of times this device was added to us */
4425 u16 ref_nr;
4427 /* private field for the users */
4428 void *private;
4430 struct list_head list;
4431 struct rcu_head rcu;
4434 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4435 struct net_device *adj_dev,
4436 struct list_head *adj_list)
4438 struct netdev_adjacent *adj;
4440 list_for_each_entry(adj, adj_list, list) {
4441 if (adj->dev == adj_dev)
4442 return adj;
4444 return NULL;
4448 * netdev_has_upper_dev - Check if device is linked to an upper device
4449 * @dev: device
4450 * @upper_dev: upper device to check
4452 * Find out if a device is linked to specified upper device and return true
4453 * in case it is. Note that this checks only immediate upper device,
4454 * not through a complete stack of devices. The caller must hold the RTNL lock.
4456 bool netdev_has_upper_dev(struct net_device *dev,
4457 struct net_device *upper_dev)
4459 ASSERT_RTNL();
4461 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4463 EXPORT_SYMBOL(netdev_has_upper_dev);
4466 * netdev_has_any_upper_dev - Check if device is linked to some device
4467 * @dev: device
4469 * Find out if a device is linked to an upper device and return true in case
4470 * it is. The caller must hold the RTNL lock.
4472 static bool netdev_has_any_upper_dev(struct net_device *dev)
4474 ASSERT_RTNL();
4476 return !list_empty(&dev->all_adj_list.upper);
4480 * netdev_master_upper_dev_get - Get master upper device
4481 * @dev: device
4483 * Find a master upper device and return pointer to it or NULL in case
4484 * it's not there. The caller must hold the RTNL lock.
4486 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4488 struct netdev_adjacent *upper;
4490 ASSERT_RTNL();
4492 if (list_empty(&dev->adj_list.upper))
4493 return NULL;
4495 upper = list_first_entry(&dev->adj_list.upper,
4496 struct netdev_adjacent, list);
4497 if (likely(upper->master))
4498 return upper->dev;
4499 return NULL;
4501 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4503 void *netdev_adjacent_get_private(struct list_head *adj_list)
4505 struct netdev_adjacent *adj;
4507 adj = list_entry(adj_list, struct netdev_adjacent, list);
4509 return adj->private;
4511 EXPORT_SYMBOL(netdev_adjacent_get_private);
4514 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4515 * @dev: device
4516 * @iter: list_head ** of the current position
4518 * Gets the next device from the dev's upper list, starting from iter
4519 * position. The caller must hold RCU read lock.
4521 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4522 struct list_head **iter)
4524 struct netdev_adjacent *upper;
4526 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4528 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4530 if (&upper->list == &dev->all_adj_list.upper)
4531 return NULL;
4533 *iter = &upper->list;
4535 return upper->dev;
4537 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4540 * netdev_lower_get_next_private - Get the next ->private from the
4541 * lower neighbour list
4542 * @dev: device
4543 * @iter: list_head ** of the current position
4545 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4546 * list, starting from iter position. The caller must hold either hold the
4547 * RTNL lock or its own locking that guarantees that the neighbour lower
4548 * list will remain unchainged.
4550 void *netdev_lower_get_next_private(struct net_device *dev,
4551 struct list_head **iter)
4553 struct netdev_adjacent *lower;
4555 lower = list_entry(*iter, struct netdev_adjacent, list);
4557 if (&lower->list == &dev->adj_list.lower)
4558 return NULL;
4560 if (iter)
4561 *iter = lower->list.next;
4563 return lower->private;
4565 EXPORT_SYMBOL(netdev_lower_get_next_private);
4568 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4569 * lower neighbour list, RCU
4570 * variant
4571 * @dev: device
4572 * @iter: list_head ** of the current position
4574 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4575 * list, starting from iter position. The caller must hold RCU read lock.
4577 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4578 struct list_head **iter)
4580 struct netdev_adjacent *lower;
4582 WARN_ON_ONCE(!rcu_read_lock_held());
4584 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4586 if (&lower->list == &dev->adj_list.lower)
4587 return NULL;
4589 if (iter)
4590 *iter = &lower->list;
4592 return lower->private;
4594 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4597 * netdev_lower_get_first_private_rcu - Get the first ->private from the
4598 * lower neighbour list, RCU
4599 * variant
4600 * @dev: device
4602 * Gets the first netdev_adjacent->private from the dev's lower neighbour
4603 * list. The caller must hold RCU read lock.
4605 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4607 struct netdev_adjacent *lower;
4609 lower = list_first_or_null_rcu(&dev->adj_list.lower,
4610 struct netdev_adjacent, list);
4611 if (lower)
4612 return lower->private;
4613 return NULL;
4615 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4618 * netdev_master_upper_dev_get_rcu - Get master upper device
4619 * @dev: device
4621 * Find a master upper device and return pointer to it or NULL in case
4622 * it's not there. The caller must hold the RCU read lock.
4624 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4626 struct netdev_adjacent *upper;
4628 upper = list_first_or_null_rcu(&dev->adj_list.upper,
4629 struct netdev_adjacent, list);
4630 if (upper && likely(upper->master))
4631 return upper->dev;
4632 return NULL;
4634 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4636 int netdev_adjacent_sysfs_add(struct net_device *dev,
4637 struct net_device *adj_dev,
4638 struct list_head *dev_list)
4640 char linkname[IFNAMSIZ+7];
4641 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4642 "upper_%s" : "lower_%s", adj_dev->name);
4643 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4644 linkname);
4646 void netdev_adjacent_sysfs_del(struct net_device *dev,
4647 char *name,
4648 struct list_head *dev_list)
4650 char linkname[IFNAMSIZ+7];
4651 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4652 "upper_%s" : "lower_%s", name);
4653 sysfs_remove_link(&(dev->dev.kobj), linkname);
4656 #define netdev_adjacent_is_neigh_list(dev, dev_list) \
4657 (dev_list == &dev->adj_list.upper || \
4658 dev_list == &dev->adj_list.lower)
4660 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4661 struct net_device *adj_dev,
4662 struct list_head *dev_list,
4663 void *private, bool master)
4665 struct netdev_adjacent *adj;
4666 int ret;
4668 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4670 if (adj) {
4671 adj->ref_nr++;
4672 return 0;
4675 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4676 if (!adj)
4677 return -ENOMEM;
4679 adj->dev = adj_dev;
4680 adj->master = master;
4681 adj->ref_nr = 1;
4682 adj->private = private;
4683 dev_hold(adj_dev);
4685 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4686 adj_dev->name, dev->name, adj_dev->name);
4688 if (netdev_adjacent_is_neigh_list(dev, dev_list)) {
4689 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
4690 if (ret)
4691 goto free_adj;
4694 /* Ensure that master link is always the first item in list. */
4695 if (master) {
4696 ret = sysfs_create_link(&(dev->dev.kobj),
4697 &(adj_dev->dev.kobj), "master");
4698 if (ret)
4699 goto remove_symlinks;
4701 list_add_rcu(&adj->list, dev_list);
4702 } else {
4703 list_add_tail_rcu(&adj->list, dev_list);
4706 return 0;
4708 remove_symlinks:
4709 if (netdev_adjacent_is_neigh_list(dev, dev_list))
4710 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4711 free_adj:
4712 kfree(adj);
4713 dev_put(adj_dev);
4715 return ret;
4718 static void __netdev_adjacent_dev_remove(struct net_device *dev,
4719 struct net_device *adj_dev,
4720 struct list_head *dev_list)
4722 struct netdev_adjacent *adj;
4724 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4726 if (!adj) {
4727 pr_err("tried to remove device %s from %s\n",
4728 dev->name, adj_dev->name);
4729 BUG();
4732 if (adj->ref_nr > 1) {
4733 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
4734 adj->ref_nr-1);
4735 adj->ref_nr--;
4736 return;
4739 if (adj->master)
4740 sysfs_remove_link(&(dev->dev.kobj), "master");
4742 if (netdev_adjacent_is_neigh_list(dev, dev_list))
4743 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4745 list_del_rcu(&adj->list);
4746 pr_debug("dev_put for %s, because link removed from %s to %s\n",
4747 adj_dev->name, dev->name, adj_dev->name);
4748 dev_put(adj_dev);
4749 kfree_rcu(adj, rcu);
4752 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
4753 struct net_device *upper_dev,
4754 struct list_head *up_list,
4755 struct list_head *down_list,
4756 void *private, bool master)
4758 int ret;
4760 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
4761 master);
4762 if (ret)
4763 return ret;
4765 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
4766 false);
4767 if (ret) {
4768 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4769 return ret;
4772 return 0;
4775 static int __netdev_adjacent_dev_link(struct net_device *dev,
4776 struct net_device *upper_dev)
4778 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
4779 &dev->all_adj_list.upper,
4780 &upper_dev->all_adj_list.lower,
4781 NULL, false);
4784 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
4785 struct net_device *upper_dev,
4786 struct list_head *up_list,
4787 struct list_head *down_list)
4789 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4790 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
4793 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
4794 struct net_device *upper_dev)
4796 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4797 &dev->all_adj_list.upper,
4798 &upper_dev->all_adj_list.lower);
4801 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
4802 struct net_device *upper_dev,
4803 void *private, bool master)
4805 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
4807 if (ret)
4808 return ret;
4810 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
4811 &dev->adj_list.upper,
4812 &upper_dev->adj_list.lower,
4813 private, master);
4814 if (ret) {
4815 __netdev_adjacent_dev_unlink(dev, upper_dev);
4816 return ret;
4819 return 0;
4822 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
4823 struct net_device *upper_dev)
4825 __netdev_adjacent_dev_unlink(dev, upper_dev);
4826 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4827 &dev->adj_list.upper,
4828 &upper_dev->adj_list.lower);
4831 static int __netdev_upper_dev_link(struct net_device *dev,
4832 struct net_device *upper_dev, bool master,
4833 void *private)
4835 struct netdev_adjacent *i, *j, *to_i, *to_j;
4836 int ret = 0;
4838 ASSERT_RTNL();
4840 if (dev == upper_dev)
4841 return -EBUSY;
4843 /* To prevent loops, check if dev is not upper device to upper_dev. */
4844 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
4845 return -EBUSY;
4847 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
4848 return -EEXIST;
4850 if (master && netdev_master_upper_dev_get(dev))
4851 return -EBUSY;
4853 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
4854 master);
4855 if (ret)
4856 return ret;
4858 /* Now that we linked these devs, make all the upper_dev's
4859 * all_adj_list.upper visible to every dev's all_adj_list.lower an
4860 * versa, and don't forget the devices itself. All of these
4861 * links are non-neighbours.
4863 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4864 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
4865 pr_debug("Interlinking %s with %s, non-neighbour\n",
4866 i->dev->name, j->dev->name);
4867 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
4868 if (ret)
4869 goto rollback_mesh;
4873 /* add dev to every upper_dev's upper device */
4874 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
4875 pr_debug("linking %s's upper device %s with %s\n",
4876 upper_dev->name, i->dev->name, dev->name);
4877 ret = __netdev_adjacent_dev_link(dev, i->dev);
4878 if (ret)
4879 goto rollback_upper_mesh;
4882 /* add upper_dev to every dev's lower device */
4883 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4884 pr_debug("linking %s's lower device %s with %s\n", dev->name,
4885 i->dev->name, upper_dev->name);
4886 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
4887 if (ret)
4888 goto rollback_lower_mesh;
4891 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
4892 return 0;
4894 rollback_lower_mesh:
4895 to_i = i;
4896 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4897 if (i == to_i)
4898 break;
4899 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
4902 i = NULL;
4904 rollback_upper_mesh:
4905 to_i = i;
4906 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
4907 if (i == to_i)
4908 break;
4909 __netdev_adjacent_dev_unlink(dev, i->dev);
4912 i = j = NULL;
4914 rollback_mesh:
4915 to_i = i;
4916 to_j = j;
4917 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4918 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
4919 if (i == to_i && j == to_j)
4920 break;
4921 __netdev_adjacent_dev_unlink(i->dev, j->dev);
4923 if (i == to_i)
4924 break;
4927 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
4929 return ret;
4933 * netdev_upper_dev_link - Add a link to the upper device
4934 * @dev: device
4935 * @upper_dev: new upper device
4937 * Adds a link to device which is upper to this one. The caller must hold
4938 * the RTNL lock. On a failure a negative errno code is returned.
4939 * On success the reference counts are adjusted and the function
4940 * returns zero.
4942 int netdev_upper_dev_link(struct net_device *dev,
4943 struct net_device *upper_dev)
4945 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
4947 EXPORT_SYMBOL(netdev_upper_dev_link);
4950 * netdev_master_upper_dev_link - Add a master link to the upper device
4951 * @dev: device
4952 * @upper_dev: new upper device
4954 * Adds a link to device which is upper to this one. In this case, only
4955 * one master upper device can be linked, although other non-master devices
4956 * might be linked as well. The caller must hold the RTNL lock.
4957 * On a failure a negative errno code is returned. On success the reference
4958 * counts are adjusted and the function returns zero.
4960 int netdev_master_upper_dev_link(struct net_device *dev,
4961 struct net_device *upper_dev)
4963 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
4965 EXPORT_SYMBOL(netdev_master_upper_dev_link);
4967 int netdev_master_upper_dev_link_private(struct net_device *dev,
4968 struct net_device *upper_dev,
4969 void *private)
4971 return __netdev_upper_dev_link(dev, upper_dev, true, private);
4973 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
4976 * netdev_upper_dev_unlink - Removes a link to upper device
4977 * @dev: device
4978 * @upper_dev: new upper device
4980 * Removes a link to device which is upper to this one. The caller must hold
4981 * the RTNL lock.
4983 void netdev_upper_dev_unlink(struct net_device *dev,
4984 struct net_device *upper_dev)
4986 struct netdev_adjacent *i, *j;
4987 ASSERT_RTNL();
4989 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
4991 /* Here is the tricky part. We must remove all dev's lower
4992 * devices from all upper_dev's upper devices and vice
4993 * versa, to maintain the graph relationship.
4995 list_for_each_entry(i, &dev->all_adj_list.lower, list)
4996 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
4997 __netdev_adjacent_dev_unlink(i->dev, j->dev);
4999 /* remove also the devices itself from lower/upper device
5000 * list
5002 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5003 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5005 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5006 __netdev_adjacent_dev_unlink(dev, i->dev);
5008 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5010 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5012 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5014 struct netdev_adjacent *iter;
5016 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5017 netdev_adjacent_sysfs_del(iter->dev, oldname,
5018 &iter->dev->adj_list.lower);
5019 netdev_adjacent_sysfs_add(iter->dev, dev,
5020 &iter->dev->adj_list.lower);
5023 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5024 netdev_adjacent_sysfs_del(iter->dev, oldname,
5025 &iter->dev->adj_list.upper);
5026 netdev_adjacent_sysfs_add(iter->dev, dev,
5027 &iter->dev->adj_list.upper);
5031 void *netdev_lower_dev_get_private(struct net_device *dev,
5032 struct net_device *lower_dev)
5034 struct netdev_adjacent *lower;
5036 if (!lower_dev)
5037 return NULL;
5038 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5039 if (!lower)
5040 return NULL;
5042 return lower->private;
5044 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5046 static void dev_change_rx_flags(struct net_device *dev, int flags)
5048 const struct net_device_ops *ops = dev->netdev_ops;
5050 if (ops->ndo_change_rx_flags)
5051 ops->ndo_change_rx_flags(dev, flags);
5054 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5056 unsigned int old_flags = dev->flags;
5057 kuid_t uid;
5058 kgid_t gid;
5060 ASSERT_RTNL();
5062 dev->flags |= IFF_PROMISC;
5063 dev->promiscuity += inc;
5064 if (dev->promiscuity == 0) {
5066 * Avoid overflow.
5067 * If inc causes overflow, untouch promisc and return error.
5069 if (inc < 0)
5070 dev->flags &= ~IFF_PROMISC;
5071 else {
5072 dev->promiscuity -= inc;
5073 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5074 dev->name);
5075 return -EOVERFLOW;
5078 if (dev->flags != old_flags) {
5079 pr_info("device %s %s promiscuous mode\n",
5080 dev->name,
5081 dev->flags & IFF_PROMISC ? "entered" : "left");
5082 if (audit_enabled) {
5083 current_uid_gid(&uid, &gid);
5084 audit_log(current->audit_context, GFP_ATOMIC,
5085 AUDIT_ANOM_PROMISCUOUS,
5086 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5087 dev->name, (dev->flags & IFF_PROMISC),
5088 (old_flags & IFF_PROMISC),
5089 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5090 from_kuid(&init_user_ns, uid),
5091 from_kgid(&init_user_ns, gid),
5092 audit_get_sessionid(current));
5095 dev_change_rx_flags(dev, IFF_PROMISC);
5097 if (notify)
5098 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5099 return 0;
5103 * dev_set_promiscuity - update promiscuity count on a device
5104 * @dev: device
5105 * @inc: modifier
5107 * Add or remove promiscuity from a device. While the count in the device
5108 * remains above zero the interface remains promiscuous. Once it hits zero
5109 * the device reverts back to normal filtering operation. A negative inc
5110 * value is used to drop promiscuity on the device.
5111 * Return 0 if successful or a negative errno code on error.
5113 int dev_set_promiscuity(struct net_device *dev, int inc)
5115 unsigned int old_flags = dev->flags;
5116 int err;
5118 err = __dev_set_promiscuity(dev, inc, true);
5119 if (err < 0)
5120 return err;
5121 if (dev->flags != old_flags)
5122 dev_set_rx_mode(dev);
5123 return err;
5125 EXPORT_SYMBOL(dev_set_promiscuity);
5127 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5129 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5131 ASSERT_RTNL();
5133 dev->flags |= IFF_ALLMULTI;
5134 dev->allmulti += inc;
5135 if (dev->allmulti == 0) {
5137 * Avoid overflow.
5138 * If inc causes overflow, untouch allmulti and return error.
5140 if (inc < 0)
5141 dev->flags &= ~IFF_ALLMULTI;
5142 else {
5143 dev->allmulti -= inc;
5144 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5145 dev->name);
5146 return -EOVERFLOW;
5149 if (dev->flags ^ old_flags) {
5150 dev_change_rx_flags(dev, IFF_ALLMULTI);
5151 dev_set_rx_mode(dev);
5152 if (notify)
5153 __dev_notify_flags(dev, old_flags,
5154 dev->gflags ^ old_gflags);
5156 return 0;
5160 * dev_set_allmulti - update allmulti count on a device
5161 * @dev: device
5162 * @inc: modifier
5164 * Add or remove reception of all multicast frames to a device. While the
5165 * count in the device remains above zero the interface remains listening
5166 * to all interfaces. Once it hits zero the device reverts back to normal
5167 * filtering operation. A negative @inc value is used to drop the counter
5168 * when releasing a resource needing all multicasts.
5169 * Return 0 if successful or a negative errno code on error.
5172 int dev_set_allmulti(struct net_device *dev, int inc)
5174 return __dev_set_allmulti(dev, inc, true);
5176 EXPORT_SYMBOL(dev_set_allmulti);
5179 * Upload unicast and multicast address lists to device and
5180 * configure RX filtering. When the device doesn't support unicast
5181 * filtering it is put in promiscuous mode while unicast addresses
5182 * are present.
5184 void __dev_set_rx_mode(struct net_device *dev)
5186 const struct net_device_ops *ops = dev->netdev_ops;
5188 /* dev_open will call this function so the list will stay sane. */
5189 if (!(dev->flags&IFF_UP))
5190 return;
5192 if (!netif_device_present(dev))
5193 return;
5195 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5196 /* Unicast addresses changes may only happen under the rtnl,
5197 * therefore calling __dev_set_promiscuity here is safe.
5199 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5200 __dev_set_promiscuity(dev, 1, false);
5201 dev->uc_promisc = true;
5202 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5203 __dev_set_promiscuity(dev, -1, false);
5204 dev->uc_promisc = false;
5208 if (ops->ndo_set_rx_mode)
5209 ops->ndo_set_rx_mode(dev);
5212 void dev_set_rx_mode(struct net_device *dev)
5214 netif_addr_lock_bh(dev);
5215 __dev_set_rx_mode(dev);
5216 netif_addr_unlock_bh(dev);
5220 * dev_get_flags - get flags reported to userspace
5221 * @dev: device
5223 * Get the combination of flag bits exported through APIs to userspace.
5225 unsigned int dev_get_flags(const struct net_device *dev)
5227 unsigned int flags;
5229 flags = (dev->flags & ~(IFF_PROMISC |
5230 IFF_ALLMULTI |
5231 IFF_RUNNING |
5232 IFF_LOWER_UP |
5233 IFF_DORMANT)) |
5234 (dev->gflags & (IFF_PROMISC |
5235 IFF_ALLMULTI));
5237 if (netif_running(dev)) {
5238 if (netif_oper_up(dev))
5239 flags |= IFF_RUNNING;
5240 if (netif_carrier_ok(dev))
5241 flags |= IFF_LOWER_UP;
5242 if (netif_dormant(dev))
5243 flags |= IFF_DORMANT;
5246 return flags;
5248 EXPORT_SYMBOL(dev_get_flags);
5250 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5252 unsigned int old_flags = dev->flags;
5253 int ret;
5255 ASSERT_RTNL();
5258 * Set the flags on our device.
5261 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5262 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5263 IFF_AUTOMEDIA)) |
5264 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5265 IFF_ALLMULTI));
5268 * Load in the correct multicast list now the flags have changed.
5271 if ((old_flags ^ flags) & IFF_MULTICAST)
5272 dev_change_rx_flags(dev, IFF_MULTICAST);
5274 dev_set_rx_mode(dev);
5277 * Have we downed the interface. We handle IFF_UP ourselves
5278 * according to user attempts to set it, rather than blindly
5279 * setting it.
5282 ret = 0;
5283 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
5284 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5286 if (!ret)
5287 dev_set_rx_mode(dev);
5290 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5291 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5292 unsigned int old_flags = dev->flags;
5294 dev->gflags ^= IFF_PROMISC;
5296 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5297 if (dev->flags != old_flags)
5298 dev_set_rx_mode(dev);
5301 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5302 is important. Some (broken) drivers set IFF_PROMISC, when
5303 IFF_ALLMULTI is requested not asking us and not reporting.
5305 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5306 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5308 dev->gflags ^= IFF_ALLMULTI;
5309 __dev_set_allmulti(dev, inc, false);
5312 return ret;
5315 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5316 unsigned int gchanges)
5318 unsigned int changes = dev->flags ^ old_flags;
5320 if (gchanges)
5321 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5323 if (changes & IFF_UP) {
5324 if (dev->flags & IFF_UP)
5325 call_netdevice_notifiers(NETDEV_UP, dev);
5326 else
5327 call_netdevice_notifiers(NETDEV_DOWN, dev);
5330 if (dev->flags & IFF_UP &&
5331 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5332 struct netdev_notifier_change_info change_info;
5334 change_info.flags_changed = changes;
5335 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5336 &change_info.info);
5341 * dev_change_flags - change device settings
5342 * @dev: device
5343 * @flags: device state flags
5345 * Change settings on device based state flags. The flags are
5346 * in the userspace exported format.
5348 int dev_change_flags(struct net_device *dev, unsigned int flags)
5350 int ret;
5351 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5353 ret = __dev_change_flags(dev, flags);
5354 if (ret < 0)
5355 return ret;
5357 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5358 __dev_notify_flags(dev, old_flags, changes);
5359 return ret;
5361 EXPORT_SYMBOL(dev_change_flags);
5363 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5365 const struct net_device_ops *ops = dev->netdev_ops;
5367 if (ops->ndo_change_mtu)
5368 return ops->ndo_change_mtu(dev, new_mtu);
5370 dev->mtu = new_mtu;
5371 return 0;
5375 * dev_set_mtu - Change maximum transfer unit
5376 * @dev: device
5377 * @new_mtu: new transfer unit
5379 * Change the maximum transfer size of the network device.
5381 int dev_set_mtu(struct net_device *dev, int new_mtu)
5383 int err, orig_mtu;
5385 if (new_mtu == dev->mtu)
5386 return 0;
5388 /* MTU must be positive. */
5389 if (new_mtu < 0)
5390 return -EINVAL;
5392 if (!netif_device_present(dev))
5393 return -ENODEV;
5395 orig_mtu = dev->mtu;
5396 err = __dev_set_mtu(dev, new_mtu);
5398 if (!err) {
5399 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5400 err = notifier_to_errno(err);
5401 if (err) {
5402 /* setting mtu back and notifying everyone again,
5403 * so that they have a chance to revert changes.
5405 __dev_set_mtu(dev, orig_mtu);
5406 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5409 return err;
5411 EXPORT_SYMBOL(dev_set_mtu);
5414 * dev_set_group - Change group this device belongs to
5415 * @dev: device
5416 * @new_group: group this device should belong to
5418 void dev_set_group(struct net_device *dev, int new_group)
5420 dev->group = new_group;
5422 EXPORT_SYMBOL(dev_set_group);
5425 * dev_set_mac_address - Change Media Access Control Address
5426 * @dev: device
5427 * @sa: new address
5429 * Change the hardware (MAC) address of the device
5431 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5433 const struct net_device_ops *ops = dev->netdev_ops;
5434 int err;
5436 if (!ops->ndo_set_mac_address)
5437 return -EOPNOTSUPP;
5438 if (sa->sa_family != dev->type)
5439 return -EINVAL;
5440 if (!netif_device_present(dev))
5441 return -ENODEV;
5442 err = ops->ndo_set_mac_address(dev, sa);
5443 if (err)
5444 return err;
5445 dev->addr_assign_type = NET_ADDR_SET;
5446 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5447 add_device_randomness(dev->dev_addr, dev->addr_len);
5448 return 0;
5450 EXPORT_SYMBOL(dev_set_mac_address);
5453 * dev_change_carrier - Change device carrier
5454 * @dev: device
5455 * @new_carrier: new value
5457 * Change device carrier
5459 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5461 const struct net_device_ops *ops = dev->netdev_ops;
5463 if (!ops->ndo_change_carrier)
5464 return -EOPNOTSUPP;
5465 if (!netif_device_present(dev))
5466 return -ENODEV;
5467 return ops->ndo_change_carrier(dev, new_carrier);
5469 EXPORT_SYMBOL(dev_change_carrier);
5472 * dev_get_phys_port_id - Get device physical port ID
5473 * @dev: device
5474 * @ppid: port ID
5476 * Get device physical port ID
5478 int dev_get_phys_port_id(struct net_device *dev,
5479 struct netdev_phys_port_id *ppid)
5481 const struct net_device_ops *ops = dev->netdev_ops;
5483 if (!ops->ndo_get_phys_port_id)
5484 return -EOPNOTSUPP;
5485 return ops->ndo_get_phys_port_id(dev, ppid);
5487 EXPORT_SYMBOL(dev_get_phys_port_id);
5490 * dev_new_index - allocate an ifindex
5491 * @net: the applicable net namespace
5493 * Returns a suitable unique value for a new device interface
5494 * number. The caller must hold the rtnl semaphore or the
5495 * dev_base_lock to be sure it remains unique.
5497 static int dev_new_index(struct net *net)
5499 int ifindex = net->ifindex;
5500 for (;;) {
5501 if (++ifindex <= 0)
5502 ifindex = 1;
5503 if (!__dev_get_by_index(net, ifindex))
5504 return net->ifindex = ifindex;
5508 /* Delayed registration/unregisteration */
5509 static LIST_HEAD(net_todo_list);
5510 static DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5512 static void net_set_todo(struct net_device *dev)
5514 list_add_tail(&dev->todo_list, &net_todo_list);
5515 dev_net(dev)->dev_unreg_count++;
5518 static void rollback_registered_many(struct list_head *head)
5520 struct net_device *dev, *tmp;
5521 LIST_HEAD(close_head);
5523 BUG_ON(dev_boot_phase);
5524 ASSERT_RTNL();
5526 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5527 /* Some devices call without registering
5528 * for initialization unwind. Remove those
5529 * devices and proceed with the remaining.
5531 if (dev->reg_state == NETREG_UNINITIALIZED) {
5532 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5533 dev->name, dev);
5535 WARN_ON(1);
5536 list_del(&dev->unreg_list);
5537 continue;
5539 dev->dismantle = true;
5540 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5543 /* If device is running, close it first. */
5544 list_for_each_entry(dev, head, unreg_list)
5545 list_add_tail(&dev->close_list, &close_head);
5546 dev_close_many(&close_head);
5548 list_for_each_entry(dev, head, unreg_list) {
5549 /* And unlink it from device chain. */
5550 unlist_netdevice(dev);
5552 dev->reg_state = NETREG_UNREGISTERING;
5555 synchronize_net();
5557 list_for_each_entry(dev, head, unreg_list) {
5558 /* Shutdown queueing discipline. */
5559 dev_shutdown(dev);
5562 /* Notify protocols, that we are about to destroy
5563 this device. They should clean all the things.
5565 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5567 if (!dev->rtnl_link_ops ||
5568 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5569 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5572 * Flush the unicast and multicast chains
5574 dev_uc_flush(dev);
5575 dev_mc_flush(dev);
5577 if (dev->netdev_ops->ndo_uninit)
5578 dev->netdev_ops->ndo_uninit(dev);
5580 /* Notifier chain MUST detach us all upper devices. */
5581 WARN_ON(netdev_has_any_upper_dev(dev));
5583 /* Remove entries from kobject tree */
5584 netdev_unregister_kobject(dev);
5585 #ifdef CONFIG_XPS
5586 /* Remove XPS queueing entries */
5587 netif_reset_xps_queues_gt(dev, 0);
5588 #endif
5591 synchronize_net();
5593 list_for_each_entry(dev, head, unreg_list)
5594 dev_put(dev);
5597 static void rollback_registered(struct net_device *dev)
5599 LIST_HEAD(single);
5601 list_add(&dev->unreg_list, &single);
5602 rollback_registered_many(&single);
5603 list_del(&single);
5606 static netdev_features_t netdev_fix_features(struct net_device *dev,
5607 netdev_features_t features)
5609 /* Fix illegal checksum combinations */
5610 if ((features & NETIF_F_HW_CSUM) &&
5611 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5612 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5613 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5616 /* TSO requires that SG is present as well. */
5617 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5618 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5619 features &= ~NETIF_F_ALL_TSO;
5622 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5623 !(features & NETIF_F_IP_CSUM)) {
5624 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5625 features &= ~NETIF_F_TSO;
5626 features &= ~NETIF_F_TSO_ECN;
5629 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5630 !(features & NETIF_F_IPV6_CSUM)) {
5631 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5632 features &= ~NETIF_F_TSO6;
5635 /* TSO ECN requires that TSO is present as well. */
5636 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5637 features &= ~NETIF_F_TSO_ECN;
5639 /* Software GSO depends on SG. */
5640 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5641 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5642 features &= ~NETIF_F_GSO;
5645 /* UFO needs SG and checksumming */
5646 if (features & NETIF_F_UFO) {
5647 /* maybe split UFO into V4 and V6? */
5648 if (!((features & NETIF_F_GEN_CSUM) ||
5649 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5650 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5651 netdev_dbg(dev,
5652 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5653 features &= ~NETIF_F_UFO;
5656 if (!(features & NETIF_F_SG)) {
5657 netdev_dbg(dev,
5658 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5659 features &= ~NETIF_F_UFO;
5663 return features;
5666 int __netdev_update_features(struct net_device *dev)
5668 netdev_features_t features;
5669 int err = 0;
5671 ASSERT_RTNL();
5673 features = netdev_get_wanted_features(dev);
5675 if (dev->netdev_ops->ndo_fix_features)
5676 features = dev->netdev_ops->ndo_fix_features(dev, features);
5678 /* driver might be less strict about feature dependencies */
5679 features = netdev_fix_features(dev, features);
5681 if (dev->features == features)
5682 return 0;
5684 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5685 &dev->features, &features);
5687 if (dev->netdev_ops->ndo_set_features)
5688 err = dev->netdev_ops->ndo_set_features(dev, features);
5690 if (unlikely(err < 0)) {
5691 netdev_err(dev,
5692 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5693 err, &features, &dev->features);
5694 return -1;
5697 if (!err)
5698 dev->features = features;
5700 return 1;
5704 * netdev_update_features - recalculate device features
5705 * @dev: the device to check
5707 * Recalculate dev->features set and send notifications if it
5708 * has changed. Should be called after driver or hardware dependent
5709 * conditions might have changed that influence the features.
5711 void netdev_update_features(struct net_device *dev)
5713 if (__netdev_update_features(dev))
5714 netdev_features_change(dev);
5716 EXPORT_SYMBOL(netdev_update_features);
5719 * netdev_change_features - recalculate device features
5720 * @dev: the device to check
5722 * Recalculate dev->features set and send notifications even
5723 * if they have not changed. Should be called instead of
5724 * netdev_update_features() if also dev->vlan_features might
5725 * have changed to allow the changes to be propagated to stacked
5726 * VLAN devices.
5728 void netdev_change_features(struct net_device *dev)
5730 __netdev_update_features(dev);
5731 netdev_features_change(dev);
5733 EXPORT_SYMBOL(netdev_change_features);
5736 * netif_stacked_transfer_operstate - transfer operstate
5737 * @rootdev: the root or lower level device to transfer state from
5738 * @dev: the device to transfer operstate to
5740 * Transfer operational state from root to device. This is normally
5741 * called when a stacking relationship exists between the root
5742 * device and the device(a leaf device).
5744 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5745 struct net_device *dev)
5747 if (rootdev->operstate == IF_OPER_DORMANT)
5748 netif_dormant_on(dev);
5749 else
5750 netif_dormant_off(dev);
5752 if (netif_carrier_ok(rootdev)) {
5753 if (!netif_carrier_ok(dev))
5754 netif_carrier_on(dev);
5755 } else {
5756 if (netif_carrier_ok(dev))
5757 netif_carrier_off(dev);
5760 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5762 #ifdef CONFIG_RPS
5763 static int netif_alloc_rx_queues(struct net_device *dev)
5765 unsigned int i, count = dev->num_rx_queues;
5766 struct netdev_rx_queue *rx;
5768 BUG_ON(count < 1);
5770 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5771 if (!rx)
5772 return -ENOMEM;
5774 dev->_rx = rx;
5776 for (i = 0; i < count; i++)
5777 rx[i].dev = dev;
5778 return 0;
5780 #endif
5782 static void netdev_init_one_queue(struct net_device *dev,
5783 struct netdev_queue *queue, void *_unused)
5785 /* Initialize queue lock */
5786 spin_lock_init(&queue->_xmit_lock);
5787 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5788 queue->xmit_lock_owner = -1;
5789 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5790 queue->dev = dev;
5791 #ifdef CONFIG_BQL
5792 dql_init(&queue->dql, HZ);
5793 #endif
5796 static void netif_free_tx_queues(struct net_device *dev)
5798 if (is_vmalloc_addr(dev->_tx))
5799 vfree(dev->_tx);
5800 else
5801 kfree(dev->_tx);
5804 static int netif_alloc_netdev_queues(struct net_device *dev)
5806 unsigned int count = dev->num_tx_queues;
5807 struct netdev_queue *tx;
5808 size_t sz = count * sizeof(*tx);
5810 BUG_ON(count < 1 || count > 0xffff);
5812 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
5813 if (!tx) {
5814 tx = vzalloc(sz);
5815 if (!tx)
5816 return -ENOMEM;
5818 dev->_tx = tx;
5820 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5821 spin_lock_init(&dev->tx_global_lock);
5823 return 0;
5827 * register_netdevice - register a network device
5828 * @dev: device to register
5830 * Take a completed network device structure and add it to the kernel
5831 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5832 * chain. 0 is returned on success. A negative errno code is returned
5833 * on a failure to set up the device, or if the name is a duplicate.
5835 * Callers must hold the rtnl semaphore. You may want
5836 * register_netdev() instead of this.
5838 * BUGS:
5839 * The locking appears insufficient to guarantee two parallel registers
5840 * will not get the same name.
5843 int register_netdevice(struct net_device *dev)
5845 int ret;
5846 struct net *net = dev_net(dev);
5848 BUG_ON(dev_boot_phase);
5849 ASSERT_RTNL();
5851 might_sleep();
5853 /* When net_device's are persistent, this will be fatal. */
5854 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5855 BUG_ON(!net);
5857 spin_lock_init(&dev->addr_list_lock);
5858 netdev_set_addr_lockdep_class(dev);
5860 dev->iflink = -1;
5862 ret = dev_get_valid_name(net, dev, dev->name);
5863 if (ret < 0)
5864 goto out;
5866 /* Init, if this function is available */
5867 if (dev->netdev_ops->ndo_init) {
5868 ret = dev->netdev_ops->ndo_init(dev);
5869 if (ret) {
5870 if (ret > 0)
5871 ret = -EIO;
5872 goto out;
5876 if (((dev->hw_features | dev->features) &
5877 NETIF_F_HW_VLAN_CTAG_FILTER) &&
5878 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
5879 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
5880 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
5881 ret = -EINVAL;
5882 goto err_uninit;
5885 ret = -EBUSY;
5886 if (!dev->ifindex)
5887 dev->ifindex = dev_new_index(net);
5888 else if (__dev_get_by_index(net, dev->ifindex))
5889 goto err_uninit;
5891 if (dev->iflink == -1)
5892 dev->iflink = dev->ifindex;
5894 /* Transfer changeable features to wanted_features and enable
5895 * software offloads (GSO and GRO).
5897 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5898 dev->features |= NETIF_F_SOFT_FEATURES;
5899 dev->wanted_features = dev->features & dev->hw_features;
5901 if (!(dev->flags & IFF_LOOPBACK)) {
5902 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5905 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5907 dev->vlan_features |= NETIF_F_HIGHDMA;
5909 /* Make NETIF_F_SG inheritable to tunnel devices.
5911 dev->hw_enc_features |= NETIF_F_SG;
5913 /* Make NETIF_F_SG inheritable to MPLS.
5915 dev->mpls_features |= NETIF_F_SG;
5917 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5918 ret = notifier_to_errno(ret);
5919 if (ret)
5920 goto err_uninit;
5922 ret = netdev_register_kobject(dev);
5923 if (ret)
5924 goto err_uninit;
5925 dev->reg_state = NETREG_REGISTERED;
5927 __netdev_update_features(dev);
5930 * Default initial state at registry is that the
5931 * device is present.
5934 set_bit(__LINK_STATE_PRESENT, &dev->state);
5936 linkwatch_init_dev(dev);
5938 dev_init_scheduler(dev);
5939 dev_hold(dev);
5940 list_netdevice(dev);
5941 add_device_randomness(dev->dev_addr, dev->addr_len);
5943 /* If the device has permanent device address, driver should
5944 * set dev_addr and also addr_assign_type should be set to
5945 * NET_ADDR_PERM (default value).
5947 if (dev->addr_assign_type == NET_ADDR_PERM)
5948 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5950 /* Notify protocols, that a new device appeared. */
5951 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5952 ret = notifier_to_errno(ret);
5953 if (ret) {
5954 rollback_registered(dev);
5955 dev->reg_state = NETREG_UNREGISTERED;
5958 * Prevent userspace races by waiting until the network
5959 * device is fully setup before sending notifications.
5961 if (!dev->rtnl_link_ops ||
5962 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5963 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
5965 out:
5966 return ret;
5968 err_uninit:
5969 if (dev->netdev_ops->ndo_uninit)
5970 dev->netdev_ops->ndo_uninit(dev);
5971 goto out;
5973 EXPORT_SYMBOL(register_netdevice);
5976 * init_dummy_netdev - init a dummy network device for NAPI
5977 * @dev: device to init
5979 * This takes a network device structure and initialize the minimum
5980 * amount of fields so it can be used to schedule NAPI polls without
5981 * registering a full blown interface. This is to be used by drivers
5982 * that need to tie several hardware interfaces to a single NAPI
5983 * poll scheduler due to HW limitations.
5985 int init_dummy_netdev(struct net_device *dev)
5987 /* Clear everything. Note we don't initialize spinlocks
5988 * are they aren't supposed to be taken by any of the
5989 * NAPI code and this dummy netdev is supposed to be
5990 * only ever used for NAPI polls
5992 memset(dev, 0, sizeof(struct net_device));
5994 /* make sure we BUG if trying to hit standard
5995 * register/unregister code path
5997 dev->reg_state = NETREG_DUMMY;
5999 /* NAPI wants this */
6000 INIT_LIST_HEAD(&dev->napi_list);
6002 /* a dummy interface is started by default */
6003 set_bit(__LINK_STATE_PRESENT, &dev->state);
6004 set_bit(__LINK_STATE_START, &dev->state);
6006 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6007 * because users of this 'device' dont need to change
6008 * its refcount.
6011 return 0;
6013 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6017 * register_netdev - register a network device
6018 * @dev: device to register
6020 * Take a completed network device structure and add it to the kernel
6021 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6022 * chain. 0 is returned on success. A negative errno code is returned
6023 * on a failure to set up the device, or if the name is a duplicate.
6025 * This is a wrapper around register_netdevice that takes the rtnl semaphore
6026 * and expands the device name if you passed a format string to
6027 * alloc_netdev.
6029 int register_netdev(struct net_device *dev)
6031 int err;
6033 rtnl_lock();
6034 err = register_netdevice(dev);
6035 rtnl_unlock();
6036 return err;
6038 EXPORT_SYMBOL(register_netdev);
6040 int netdev_refcnt_read(const struct net_device *dev)
6042 int i, refcnt = 0;
6044 for_each_possible_cpu(i)
6045 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6046 return refcnt;
6048 EXPORT_SYMBOL(netdev_refcnt_read);
6051 * netdev_wait_allrefs - wait until all references are gone.
6052 * @dev: target net_device
6054 * This is called when unregistering network devices.
6056 * Any protocol or device that holds a reference should register
6057 * for netdevice notification, and cleanup and put back the
6058 * reference if they receive an UNREGISTER event.
6059 * We can get stuck here if buggy protocols don't correctly
6060 * call dev_put.
6062 static void netdev_wait_allrefs(struct net_device *dev)
6064 unsigned long rebroadcast_time, warning_time;
6065 int refcnt;
6067 linkwatch_forget_dev(dev);
6069 rebroadcast_time = warning_time = jiffies;
6070 refcnt = netdev_refcnt_read(dev);
6072 while (refcnt != 0) {
6073 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6074 rtnl_lock();
6076 /* Rebroadcast unregister notification */
6077 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6079 __rtnl_unlock();
6080 rcu_barrier();
6081 rtnl_lock();
6083 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6084 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6085 &dev->state)) {
6086 /* We must not have linkwatch events
6087 * pending on unregister. If this
6088 * happens, we simply run the queue
6089 * unscheduled, resulting in a noop
6090 * for this device.
6092 linkwatch_run_queue();
6095 __rtnl_unlock();
6097 rebroadcast_time = jiffies;
6100 msleep(250);
6102 refcnt = netdev_refcnt_read(dev);
6104 if (time_after(jiffies, warning_time + 10 * HZ)) {
6105 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6106 dev->name, refcnt);
6107 warning_time = jiffies;
6112 /* The sequence is:
6114 * rtnl_lock();
6115 * ...
6116 * register_netdevice(x1);
6117 * register_netdevice(x2);
6118 * ...
6119 * unregister_netdevice(y1);
6120 * unregister_netdevice(y2);
6121 * ...
6122 * rtnl_unlock();
6123 * free_netdev(y1);
6124 * free_netdev(y2);
6126 * We are invoked by rtnl_unlock().
6127 * This allows us to deal with problems:
6128 * 1) We can delete sysfs objects which invoke hotplug
6129 * without deadlocking with linkwatch via keventd.
6130 * 2) Since we run with the RTNL semaphore not held, we can sleep
6131 * safely in order to wait for the netdev refcnt to drop to zero.
6133 * We must not return until all unregister events added during
6134 * the interval the lock was held have been completed.
6136 void netdev_run_todo(void)
6138 struct list_head list;
6140 /* Snapshot list, allow later requests */
6141 list_replace_init(&net_todo_list, &list);
6143 __rtnl_unlock();
6146 /* Wait for rcu callbacks to finish before next phase */
6147 if (!list_empty(&list))
6148 rcu_barrier();
6150 while (!list_empty(&list)) {
6151 struct net_device *dev
6152 = list_first_entry(&list, struct net_device, todo_list);
6153 list_del(&dev->todo_list);
6155 rtnl_lock();
6156 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6157 __rtnl_unlock();
6159 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6160 pr_err("network todo '%s' but state %d\n",
6161 dev->name, dev->reg_state);
6162 dump_stack();
6163 continue;
6166 dev->reg_state = NETREG_UNREGISTERED;
6168 on_each_cpu(flush_backlog, dev, 1);
6170 netdev_wait_allrefs(dev);
6172 /* paranoia */
6173 BUG_ON(netdev_refcnt_read(dev));
6174 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6175 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6176 WARN_ON(dev->dn_ptr);
6178 if (dev->destructor)
6179 dev->destructor(dev);
6181 /* Report a network device has been unregistered */
6182 rtnl_lock();
6183 dev_net(dev)->dev_unreg_count--;
6184 __rtnl_unlock();
6185 wake_up(&netdev_unregistering_wq);
6187 /* Free network device */
6188 kobject_put(&dev->dev.kobj);
6192 /* Convert net_device_stats to rtnl_link_stats64. They have the same
6193 * fields in the same order, with only the type differing.
6195 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6196 const struct net_device_stats *netdev_stats)
6198 #if BITS_PER_LONG == 64
6199 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6200 memcpy(stats64, netdev_stats, sizeof(*stats64));
6201 #else
6202 size_t i, n = sizeof(*stats64) / sizeof(u64);
6203 const unsigned long *src = (const unsigned long *)netdev_stats;
6204 u64 *dst = (u64 *)stats64;
6206 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6207 sizeof(*stats64) / sizeof(u64));
6208 for (i = 0; i < n; i++)
6209 dst[i] = src[i];
6210 #endif
6212 EXPORT_SYMBOL(netdev_stats_to_stats64);
6215 * dev_get_stats - get network device statistics
6216 * @dev: device to get statistics from
6217 * @storage: place to store stats
6219 * Get network statistics from device. Return @storage.
6220 * The device driver may provide its own method by setting
6221 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6222 * otherwise the internal statistics structure is used.
6224 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6225 struct rtnl_link_stats64 *storage)
6227 const struct net_device_ops *ops = dev->netdev_ops;
6229 if (ops->ndo_get_stats64) {
6230 memset(storage, 0, sizeof(*storage));
6231 ops->ndo_get_stats64(dev, storage);
6232 } else if (ops->ndo_get_stats) {
6233 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6234 } else {
6235 netdev_stats_to_stats64(storage, &dev->stats);
6237 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6238 return storage;
6240 EXPORT_SYMBOL(dev_get_stats);
6242 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6244 struct netdev_queue *queue = dev_ingress_queue(dev);
6246 #ifdef CONFIG_NET_CLS_ACT
6247 if (queue)
6248 return queue;
6249 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6250 if (!queue)
6251 return NULL;
6252 netdev_init_one_queue(dev, queue, NULL);
6253 queue->qdisc = &noop_qdisc;
6254 queue->qdisc_sleeping = &noop_qdisc;
6255 rcu_assign_pointer(dev->ingress_queue, queue);
6256 #endif
6257 return queue;
6260 static const struct ethtool_ops default_ethtool_ops;
6262 void netdev_set_default_ethtool_ops(struct net_device *dev,
6263 const struct ethtool_ops *ops)
6265 if (dev->ethtool_ops == &default_ethtool_ops)
6266 dev->ethtool_ops = ops;
6268 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6270 void netdev_freemem(struct net_device *dev)
6272 char *addr = (char *)dev - dev->padded;
6274 if (is_vmalloc_addr(addr))
6275 vfree(addr);
6276 else
6277 kfree(addr);
6281 * alloc_netdev_mqs - allocate network device
6282 * @sizeof_priv: size of private data to allocate space for
6283 * @name: device name format string
6284 * @setup: callback to initialize device
6285 * @txqs: the number of TX subqueues to allocate
6286 * @rxqs: the number of RX subqueues to allocate
6288 * Allocates a struct net_device with private data area for driver use
6289 * and performs basic initialization. Also allocates subquue structs
6290 * for each queue on the device.
6292 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6293 void (*setup)(struct net_device *),
6294 unsigned int txqs, unsigned int rxqs)
6296 struct net_device *dev;
6297 size_t alloc_size;
6298 struct net_device *p;
6300 BUG_ON(strlen(name) >= sizeof(dev->name));
6302 if (txqs < 1) {
6303 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6304 return NULL;
6307 #ifdef CONFIG_RPS
6308 if (rxqs < 1) {
6309 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6310 return NULL;
6312 #endif
6314 alloc_size = sizeof(struct net_device);
6315 if (sizeof_priv) {
6316 /* ensure 32-byte alignment of private area */
6317 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6318 alloc_size += sizeof_priv;
6320 /* ensure 32-byte alignment of whole construct */
6321 alloc_size += NETDEV_ALIGN - 1;
6323 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6324 if (!p)
6325 p = vzalloc(alloc_size);
6326 if (!p)
6327 return NULL;
6329 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6330 dev->padded = (char *)dev - (char *)p;
6332 dev->pcpu_refcnt = alloc_percpu(int);
6333 if (!dev->pcpu_refcnt)
6334 goto free_dev;
6336 if (dev_addr_init(dev))
6337 goto free_pcpu;
6339 dev_mc_init(dev);
6340 dev_uc_init(dev);
6342 dev_net_set(dev, &init_net);
6344 dev->gso_max_size = GSO_MAX_SIZE;
6345 dev->gso_max_segs = GSO_MAX_SEGS;
6347 INIT_LIST_HEAD(&dev->napi_list);
6348 INIT_LIST_HEAD(&dev->unreg_list);
6349 INIT_LIST_HEAD(&dev->close_list);
6350 INIT_LIST_HEAD(&dev->link_watch_list);
6351 INIT_LIST_HEAD(&dev->adj_list.upper);
6352 INIT_LIST_HEAD(&dev->adj_list.lower);
6353 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6354 INIT_LIST_HEAD(&dev->all_adj_list.lower);
6355 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6356 setup(dev);
6358 dev->num_tx_queues = txqs;
6359 dev->real_num_tx_queues = txqs;
6360 if (netif_alloc_netdev_queues(dev))
6361 goto free_all;
6363 #ifdef CONFIG_RPS
6364 dev->num_rx_queues = rxqs;
6365 dev->real_num_rx_queues = rxqs;
6366 if (netif_alloc_rx_queues(dev))
6367 goto free_all;
6368 #endif
6370 strcpy(dev->name, name);
6371 dev->group = INIT_NETDEV_GROUP;
6372 if (!dev->ethtool_ops)
6373 dev->ethtool_ops = &default_ethtool_ops;
6374 return dev;
6376 free_all:
6377 free_netdev(dev);
6378 return NULL;
6380 free_pcpu:
6381 free_percpu(dev->pcpu_refcnt);
6382 netif_free_tx_queues(dev);
6383 #ifdef CONFIG_RPS
6384 kfree(dev->_rx);
6385 #endif
6387 free_dev:
6388 netdev_freemem(dev);
6389 return NULL;
6391 EXPORT_SYMBOL(alloc_netdev_mqs);
6394 * free_netdev - free network device
6395 * @dev: device
6397 * This function does the last stage of destroying an allocated device
6398 * interface. The reference to the device object is released.
6399 * If this is the last reference then it will be freed.
6401 void free_netdev(struct net_device *dev)
6403 struct napi_struct *p, *n;
6405 release_net(dev_net(dev));
6407 netif_free_tx_queues(dev);
6408 #ifdef CONFIG_RPS
6409 kfree(dev->_rx);
6410 #endif
6412 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6414 /* Flush device addresses */
6415 dev_addr_flush(dev);
6417 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6418 netif_napi_del(p);
6420 free_percpu(dev->pcpu_refcnt);
6421 dev->pcpu_refcnt = NULL;
6423 /* Compatibility with error handling in drivers */
6424 if (dev->reg_state == NETREG_UNINITIALIZED) {
6425 netdev_freemem(dev);
6426 return;
6429 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6430 dev->reg_state = NETREG_RELEASED;
6432 /* will free via device release */
6433 put_device(&dev->dev);
6435 EXPORT_SYMBOL(free_netdev);
6438 * synchronize_net - Synchronize with packet receive processing
6440 * Wait for packets currently being received to be done.
6441 * Does not block later packets from starting.
6443 void synchronize_net(void)
6445 might_sleep();
6446 if (rtnl_is_locked())
6447 synchronize_rcu_expedited();
6448 else
6449 synchronize_rcu();
6451 EXPORT_SYMBOL(synchronize_net);
6454 * unregister_netdevice_queue - remove device from the kernel
6455 * @dev: device
6456 * @head: list
6458 * This function shuts down a device interface and removes it
6459 * from the kernel tables.
6460 * If head not NULL, device is queued to be unregistered later.
6462 * Callers must hold the rtnl semaphore. You may want
6463 * unregister_netdev() instead of this.
6466 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6468 ASSERT_RTNL();
6470 if (head) {
6471 list_move_tail(&dev->unreg_list, head);
6472 } else {
6473 rollback_registered(dev);
6474 /* Finish processing unregister after unlock */
6475 net_set_todo(dev);
6478 EXPORT_SYMBOL(unregister_netdevice_queue);
6481 * unregister_netdevice_many - unregister many devices
6482 * @head: list of devices
6484 void unregister_netdevice_many(struct list_head *head)
6486 struct net_device *dev;
6488 if (!list_empty(head)) {
6489 rollback_registered_many(head);
6490 list_for_each_entry(dev, head, unreg_list)
6491 net_set_todo(dev);
6494 EXPORT_SYMBOL(unregister_netdevice_many);
6497 * unregister_netdev - remove device from the kernel
6498 * @dev: device
6500 * This function shuts down a device interface and removes it
6501 * from the kernel tables.
6503 * This is just a wrapper for unregister_netdevice that takes
6504 * the rtnl semaphore. In general you want to use this and not
6505 * unregister_netdevice.
6507 void unregister_netdev(struct net_device *dev)
6509 rtnl_lock();
6510 unregister_netdevice(dev);
6511 rtnl_unlock();
6513 EXPORT_SYMBOL(unregister_netdev);
6516 * dev_change_net_namespace - move device to different nethost namespace
6517 * @dev: device
6518 * @net: network namespace
6519 * @pat: If not NULL name pattern to try if the current device name
6520 * is already taken in the destination network namespace.
6522 * This function shuts down a device interface and moves it
6523 * to a new network namespace. On success 0 is returned, on
6524 * a failure a netagive errno code is returned.
6526 * Callers must hold the rtnl semaphore.
6529 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6531 int err;
6533 ASSERT_RTNL();
6535 /* Don't allow namespace local devices to be moved. */
6536 err = -EINVAL;
6537 if (dev->features & NETIF_F_NETNS_LOCAL)
6538 goto out;
6540 /* Ensure the device has been registrered */
6541 if (dev->reg_state != NETREG_REGISTERED)
6542 goto out;
6544 /* Get out if there is nothing todo */
6545 err = 0;
6546 if (net_eq(dev_net(dev), net))
6547 goto out;
6549 /* Pick the destination device name, and ensure
6550 * we can use it in the destination network namespace.
6552 err = -EEXIST;
6553 if (__dev_get_by_name(net, dev->name)) {
6554 /* We get here if we can't use the current device name */
6555 if (!pat)
6556 goto out;
6557 if (dev_get_valid_name(net, dev, pat) < 0)
6558 goto out;
6562 * And now a mini version of register_netdevice unregister_netdevice.
6565 /* If device is running close it first. */
6566 dev_close(dev);
6568 /* And unlink it from device chain */
6569 err = -ENODEV;
6570 unlist_netdevice(dev);
6572 synchronize_net();
6574 /* Shutdown queueing discipline. */
6575 dev_shutdown(dev);
6577 /* Notify protocols, that we are about to destroy
6578 this device. They should clean all the things.
6580 Note that dev->reg_state stays at NETREG_REGISTERED.
6581 This is wanted because this way 8021q and macvlan know
6582 the device is just moving and can keep their slaves up.
6584 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6585 rcu_barrier();
6586 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6587 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6590 * Flush the unicast and multicast chains
6592 dev_uc_flush(dev);
6593 dev_mc_flush(dev);
6595 /* Send a netdev-removed uevent to the old namespace */
6596 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6598 /* Actually switch the network namespace */
6599 dev_net_set(dev, net);
6601 /* If there is an ifindex conflict assign a new one */
6602 if (__dev_get_by_index(net, dev->ifindex)) {
6603 int iflink = (dev->iflink == dev->ifindex);
6604 dev->ifindex = dev_new_index(net);
6605 if (iflink)
6606 dev->iflink = dev->ifindex;
6609 /* Send a netdev-add uevent to the new namespace */
6610 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6612 /* Fixup kobjects */
6613 err = device_rename(&dev->dev, dev->name);
6614 WARN_ON(err);
6616 /* Add the device back in the hashes */
6617 list_netdevice(dev);
6619 /* Notify protocols, that a new device appeared. */
6620 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6623 * Prevent userspace races by waiting until the network
6624 * device is fully setup before sending notifications.
6626 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6628 synchronize_net();
6629 err = 0;
6630 out:
6631 return err;
6633 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6635 static int dev_cpu_callback(struct notifier_block *nfb,
6636 unsigned long action,
6637 void *ocpu)
6639 struct sk_buff **list_skb;
6640 struct sk_buff *skb;
6641 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6642 struct softnet_data *sd, *oldsd;
6644 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6645 return NOTIFY_OK;
6647 local_irq_disable();
6648 cpu = smp_processor_id();
6649 sd = &per_cpu(softnet_data, cpu);
6650 oldsd = &per_cpu(softnet_data, oldcpu);
6652 /* Find end of our completion_queue. */
6653 list_skb = &sd->completion_queue;
6654 while (*list_skb)
6655 list_skb = &(*list_skb)->next;
6656 /* Append completion queue from offline CPU. */
6657 *list_skb = oldsd->completion_queue;
6658 oldsd->completion_queue = NULL;
6660 /* Append output queue from offline CPU. */
6661 if (oldsd->output_queue) {
6662 *sd->output_queue_tailp = oldsd->output_queue;
6663 sd->output_queue_tailp = oldsd->output_queue_tailp;
6664 oldsd->output_queue = NULL;
6665 oldsd->output_queue_tailp = &oldsd->output_queue;
6667 /* Append NAPI poll list from offline CPU. */
6668 if (!list_empty(&oldsd->poll_list)) {
6669 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6670 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6673 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6674 local_irq_enable();
6676 /* Process offline CPU's input_pkt_queue */
6677 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6678 netif_rx_internal(skb);
6679 input_queue_head_incr(oldsd);
6681 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6682 netif_rx_internal(skb);
6683 input_queue_head_incr(oldsd);
6686 return NOTIFY_OK;
6691 * netdev_increment_features - increment feature set by one
6692 * @all: current feature set
6693 * @one: new feature set
6694 * @mask: mask feature set
6696 * Computes a new feature set after adding a device with feature set
6697 * @one to the master device with current feature set @all. Will not
6698 * enable anything that is off in @mask. Returns the new feature set.
6700 netdev_features_t netdev_increment_features(netdev_features_t all,
6701 netdev_features_t one, netdev_features_t mask)
6703 if (mask & NETIF_F_GEN_CSUM)
6704 mask |= NETIF_F_ALL_CSUM;
6705 mask |= NETIF_F_VLAN_CHALLENGED;
6707 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6708 all &= one | ~NETIF_F_ALL_FOR_ALL;
6710 /* If one device supports hw checksumming, set for all. */
6711 if (all & NETIF_F_GEN_CSUM)
6712 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6714 return all;
6716 EXPORT_SYMBOL(netdev_increment_features);
6718 static struct hlist_head * __net_init netdev_create_hash(void)
6720 int i;
6721 struct hlist_head *hash;
6723 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6724 if (hash != NULL)
6725 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6726 INIT_HLIST_HEAD(&hash[i]);
6728 return hash;
6731 /* Initialize per network namespace state */
6732 static int __net_init netdev_init(struct net *net)
6734 if (net != &init_net)
6735 INIT_LIST_HEAD(&net->dev_base_head);
6737 net->dev_name_head = netdev_create_hash();
6738 if (net->dev_name_head == NULL)
6739 goto err_name;
6741 net->dev_index_head = netdev_create_hash();
6742 if (net->dev_index_head == NULL)
6743 goto err_idx;
6745 return 0;
6747 err_idx:
6748 kfree(net->dev_name_head);
6749 err_name:
6750 return -ENOMEM;
6754 * netdev_drivername - network driver for the device
6755 * @dev: network device
6757 * Determine network driver for device.
6759 const char *netdev_drivername(const struct net_device *dev)
6761 const struct device_driver *driver;
6762 const struct device *parent;
6763 const char *empty = "";
6765 parent = dev->dev.parent;
6766 if (!parent)
6767 return empty;
6769 driver = parent->driver;
6770 if (driver && driver->name)
6771 return driver->name;
6772 return empty;
6775 static int __netdev_printk(const char *level, const struct net_device *dev,
6776 struct va_format *vaf)
6778 int r;
6780 if (dev && dev->dev.parent) {
6781 r = dev_printk_emit(level[1] - '0',
6782 dev->dev.parent,
6783 "%s %s %s: %pV",
6784 dev_driver_string(dev->dev.parent),
6785 dev_name(dev->dev.parent),
6786 netdev_name(dev), vaf);
6787 } else if (dev) {
6788 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6789 } else {
6790 r = printk("%s(NULL net_device): %pV", level, vaf);
6793 return r;
6796 int netdev_printk(const char *level, const struct net_device *dev,
6797 const char *format, ...)
6799 struct va_format vaf;
6800 va_list args;
6801 int r;
6803 va_start(args, format);
6805 vaf.fmt = format;
6806 vaf.va = &args;
6808 r = __netdev_printk(level, dev, &vaf);
6810 va_end(args);
6812 return r;
6814 EXPORT_SYMBOL(netdev_printk);
6816 #define define_netdev_printk_level(func, level) \
6817 int func(const struct net_device *dev, const char *fmt, ...) \
6819 int r; \
6820 struct va_format vaf; \
6821 va_list args; \
6823 va_start(args, fmt); \
6825 vaf.fmt = fmt; \
6826 vaf.va = &args; \
6828 r = __netdev_printk(level, dev, &vaf); \
6830 va_end(args); \
6832 return r; \
6834 EXPORT_SYMBOL(func);
6836 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6837 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6838 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6839 define_netdev_printk_level(netdev_err, KERN_ERR);
6840 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6841 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6842 define_netdev_printk_level(netdev_info, KERN_INFO);
6844 static void __net_exit netdev_exit(struct net *net)
6846 kfree(net->dev_name_head);
6847 kfree(net->dev_index_head);
6850 static struct pernet_operations __net_initdata netdev_net_ops = {
6851 .init = netdev_init,
6852 .exit = netdev_exit,
6855 static void __net_exit default_device_exit(struct net *net)
6857 struct net_device *dev, *aux;
6859 * Push all migratable network devices back to the
6860 * initial network namespace
6862 rtnl_lock();
6863 for_each_netdev_safe(net, dev, aux) {
6864 int err;
6865 char fb_name[IFNAMSIZ];
6867 /* Ignore unmoveable devices (i.e. loopback) */
6868 if (dev->features & NETIF_F_NETNS_LOCAL)
6869 continue;
6871 /* Leave virtual devices for the generic cleanup */
6872 if (dev->rtnl_link_ops)
6873 continue;
6875 /* Push remaining network devices to init_net */
6876 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6877 err = dev_change_net_namespace(dev, &init_net, fb_name);
6878 if (err) {
6879 pr_emerg("%s: failed to move %s to init_net: %d\n",
6880 __func__, dev->name, err);
6881 BUG();
6884 rtnl_unlock();
6887 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
6889 /* Return with the rtnl_lock held when there are no network
6890 * devices unregistering in any network namespace in net_list.
6892 struct net *net;
6893 bool unregistering;
6894 DEFINE_WAIT(wait);
6896 for (;;) {
6897 prepare_to_wait(&netdev_unregistering_wq, &wait,
6898 TASK_UNINTERRUPTIBLE);
6899 unregistering = false;
6900 rtnl_lock();
6901 list_for_each_entry(net, net_list, exit_list) {
6902 if (net->dev_unreg_count > 0) {
6903 unregistering = true;
6904 break;
6907 if (!unregistering)
6908 break;
6909 __rtnl_unlock();
6910 schedule();
6912 finish_wait(&netdev_unregistering_wq, &wait);
6915 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6917 /* At exit all network devices most be removed from a network
6918 * namespace. Do this in the reverse order of registration.
6919 * Do this across as many network namespaces as possible to
6920 * improve batching efficiency.
6922 struct net_device *dev;
6923 struct net *net;
6924 LIST_HEAD(dev_kill_list);
6926 /* To prevent network device cleanup code from dereferencing
6927 * loopback devices or network devices that have been freed
6928 * wait here for all pending unregistrations to complete,
6929 * before unregistring the loopback device and allowing the
6930 * network namespace be freed.
6932 * The netdev todo list containing all network devices
6933 * unregistrations that happen in default_device_exit_batch
6934 * will run in the rtnl_unlock() at the end of
6935 * default_device_exit_batch.
6937 rtnl_lock_unregistering(net_list);
6938 list_for_each_entry(net, net_list, exit_list) {
6939 for_each_netdev_reverse(net, dev) {
6940 if (dev->rtnl_link_ops)
6941 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6942 else
6943 unregister_netdevice_queue(dev, &dev_kill_list);
6946 unregister_netdevice_many(&dev_kill_list);
6947 list_del(&dev_kill_list);
6948 rtnl_unlock();
6951 static struct pernet_operations __net_initdata default_device_ops = {
6952 .exit = default_device_exit,
6953 .exit_batch = default_device_exit_batch,
6957 * Initialize the DEV module. At boot time this walks the device list and
6958 * unhooks any devices that fail to initialise (normally hardware not
6959 * present) and leaves us with a valid list of present and active devices.
6964 * This is called single threaded during boot, so no need
6965 * to take the rtnl semaphore.
6967 static int __init net_dev_init(void)
6969 int i, rc = -ENOMEM;
6971 BUG_ON(!dev_boot_phase);
6973 if (dev_proc_init())
6974 goto out;
6976 if (netdev_kobject_init())
6977 goto out;
6979 INIT_LIST_HEAD(&ptype_all);
6980 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6981 INIT_LIST_HEAD(&ptype_base[i]);
6983 INIT_LIST_HEAD(&offload_base);
6985 if (register_pernet_subsys(&netdev_net_ops))
6986 goto out;
6989 * Initialise the packet receive queues.
6992 for_each_possible_cpu(i) {
6993 struct softnet_data *sd = &per_cpu(softnet_data, i);
6995 memset(sd, 0, sizeof(*sd));
6996 skb_queue_head_init(&sd->input_pkt_queue);
6997 skb_queue_head_init(&sd->process_queue);
6998 sd->completion_queue = NULL;
6999 INIT_LIST_HEAD(&sd->poll_list);
7000 sd->output_queue = NULL;
7001 sd->output_queue_tailp = &sd->output_queue;
7002 #ifdef CONFIG_RPS
7003 sd->csd.func = rps_trigger_softirq;
7004 sd->csd.info = sd;
7005 sd->csd.flags = 0;
7006 sd->cpu = i;
7007 #endif
7009 sd->backlog.poll = process_backlog;
7010 sd->backlog.weight = weight_p;
7011 sd->backlog.gro_list = NULL;
7012 sd->backlog.gro_count = 0;
7014 #ifdef CONFIG_NET_FLOW_LIMIT
7015 sd->flow_limit = NULL;
7016 #endif
7019 dev_boot_phase = 0;
7021 /* The loopback device is special if any other network devices
7022 * is present in a network namespace the loopback device must
7023 * be present. Since we now dynamically allocate and free the
7024 * loopback device ensure this invariant is maintained by
7025 * keeping the loopback device as the first device on the
7026 * list of network devices. Ensuring the loopback devices
7027 * is the first device that appears and the last network device
7028 * that disappears.
7030 if (register_pernet_device(&loopback_net_ops))
7031 goto out;
7033 if (register_pernet_device(&default_device_ops))
7034 goto out;
7036 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7037 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7039 hotcpu_notifier(dev_cpu_callback, 0);
7040 dst_init();
7041 rc = 0;
7042 out:
7043 return rc;
7046 subsys_initcall(net_dev_init);