iwlwifi: rs: remove unneeded check of average tpt in window
[linux-2.6/btrfs-unstable.git] / include / linux / perf_event.h
blob61992cf2e9771699ee06595c8fbb1bd39633018a
1 /*
2 * Performance events:
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
8 * Data type definitions, declarations, prototypes.
10 * Started by: Thomas Gleixner and Ingo Molnar
12 * For licencing details see kernel-base/COPYING
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
17 #include <uapi/linux/perf_event.h>
20 * Kernel-internal data types and definitions:
23 #ifdef CONFIG_PERF_EVENTS
24 # include <asm/perf_event.h>
25 # include <asm/local64.h>
26 #endif
28 struct perf_guest_info_callbacks {
29 int (*is_in_guest)(void);
30 int (*is_user_mode)(void);
31 unsigned long (*get_guest_ip)(void);
34 #ifdef CONFIG_HAVE_HW_BREAKPOINT
35 #include <asm/hw_breakpoint.h>
36 #endif
38 #include <linux/list.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/rcupdate.h>
42 #include <linux/spinlock.h>
43 #include <linux/hrtimer.h>
44 #include <linux/fs.h>
45 #include <linux/pid_namespace.h>
46 #include <linux/workqueue.h>
47 #include <linux/ftrace.h>
48 #include <linux/cpu.h>
49 #include <linux/irq_work.h>
50 #include <linux/static_key.h>
51 #include <linux/jump_label_ratelimit.h>
52 #include <linux/atomic.h>
53 #include <linux/sysfs.h>
54 #include <linux/perf_regs.h>
55 #include <linux/workqueue.h>
56 #include <linux/cgroup.h>
57 #include <asm/local.h>
59 struct perf_callchain_entry {
60 __u64 nr;
61 __u64 ip[PERF_MAX_STACK_DEPTH];
64 struct perf_raw_record {
65 u32 size;
66 void *data;
70 * branch stack layout:
71 * nr: number of taken branches stored in entries[]
73 * Note that nr can vary from sample to sample
74 * branches (to, from) are stored from most recent
75 * to least recent, i.e., entries[0] contains the most
76 * recent branch.
78 struct perf_branch_stack {
79 __u64 nr;
80 struct perf_branch_entry entries[0];
83 struct task_struct;
86 * extra PMU register associated with an event
88 struct hw_perf_event_extra {
89 u64 config; /* register value */
90 unsigned int reg; /* register address or index */
91 int alloc; /* extra register already allocated */
92 int idx; /* index in shared_regs->regs[] */
95 struct event_constraint;
97 /**
98 * struct hw_perf_event - performance event hardware details:
100 struct hw_perf_event {
101 #ifdef CONFIG_PERF_EVENTS
102 union {
103 struct { /* hardware */
104 u64 config;
105 u64 last_tag;
106 unsigned long config_base;
107 unsigned long event_base;
108 int event_base_rdpmc;
109 int idx;
110 int last_cpu;
111 int flags;
113 struct hw_perf_event_extra extra_reg;
114 struct hw_perf_event_extra branch_reg;
116 struct event_constraint *constraint;
118 struct { /* software */
119 struct hrtimer hrtimer;
121 struct { /* tracepoint */
122 /* for tp_event->class */
123 struct list_head tp_list;
125 struct { /* intel_cqm */
126 int cqm_state;
127 int cqm_rmid;
128 struct list_head cqm_events_entry;
129 struct list_head cqm_groups_entry;
130 struct list_head cqm_group_entry;
132 struct { /* itrace */
133 int itrace_started;
135 #ifdef CONFIG_HAVE_HW_BREAKPOINT
136 struct { /* breakpoint */
138 * Crufty hack to avoid the chicken and egg
139 * problem hw_breakpoint has with context
140 * creation and event initalization.
142 struct arch_hw_breakpoint info;
143 struct list_head bp_list;
145 #endif
147 struct task_struct *target;
148 int state;
149 local64_t prev_count;
150 u64 sample_period;
151 u64 last_period;
152 local64_t period_left;
153 u64 interrupts_seq;
154 u64 interrupts;
156 u64 freq_time_stamp;
157 u64 freq_count_stamp;
158 #endif
162 * hw_perf_event::state flags
164 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
165 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
166 #define PERF_HES_ARCH 0x04
168 struct perf_event;
171 * Common implementation detail of pmu::{start,commit,cancel}_txn
173 #define PERF_EVENT_TXN 0x1
176 * pmu::capabilities flags
178 #define PERF_PMU_CAP_NO_INTERRUPT 0x01
179 #define PERF_PMU_CAP_NO_NMI 0x02
180 #define PERF_PMU_CAP_AUX_NO_SG 0x04
181 #define PERF_PMU_CAP_AUX_SW_DOUBLEBUF 0x08
182 #define PERF_PMU_CAP_EXCLUSIVE 0x10
183 #define PERF_PMU_CAP_ITRACE 0x20
186 * struct pmu - generic performance monitoring unit
188 struct pmu {
189 struct list_head entry;
191 struct module *module;
192 struct device *dev;
193 const struct attribute_group **attr_groups;
194 const char *name;
195 int type;
198 * various common per-pmu feature flags
200 int capabilities;
202 int * __percpu pmu_disable_count;
203 struct perf_cpu_context * __percpu pmu_cpu_context;
204 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */
205 int task_ctx_nr;
206 int hrtimer_interval_ms;
209 * Fully disable/enable this PMU, can be used to protect from the PMI
210 * as well as for lazy/batch writing of the MSRs.
212 void (*pmu_enable) (struct pmu *pmu); /* optional */
213 void (*pmu_disable) (struct pmu *pmu); /* optional */
216 * Try and initialize the event for this PMU.
217 * Should return -ENOENT when the @event doesn't match this PMU.
219 int (*event_init) (struct perf_event *event);
222 * Notification that the event was mapped or unmapped. Called
223 * in the context of the mapping task.
225 void (*event_mapped) (struct perf_event *event); /*optional*/
226 void (*event_unmapped) (struct perf_event *event); /*optional*/
228 #define PERF_EF_START 0x01 /* start the counter when adding */
229 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
230 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
233 * Adds/Removes a counter to/from the PMU, can be done inside
234 * a transaction, see the ->*_txn() methods.
236 int (*add) (struct perf_event *event, int flags);
237 void (*del) (struct perf_event *event, int flags);
240 * Starts/Stops a counter present on the PMU. The PMI handler
241 * should stop the counter when perf_event_overflow() returns
242 * !0. ->start() will be used to continue.
244 void (*start) (struct perf_event *event, int flags);
245 void (*stop) (struct perf_event *event, int flags);
248 * Updates the counter value of the event.
250 void (*read) (struct perf_event *event);
253 * Group events scheduling is treated as a transaction, add
254 * group events as a whole and perform one schedulability test.
255 * If the test fails, roll back the whole group
257 * Start the transaction, after this ->add() doesn't need to
258 * do schedulability tests.
260 void (*start_txn) (struct pmu *pmu); /* optional */
262 * If ->start_txn() disabled the ->add() schedulability test
263 * then ->commit_txn() is required to perform one. On success
264 * the transaction is closed. On error the transaction is kept
265 * open until ->cancel_txn() is called.
267 int (*commit_txn) (struct pmu *pmu); /* optional */
269 * Will cancel the transaction, assumes ->del() is called
270 * for each successful ->add() during the transaction.
272 void (*cancel_txn) (struct pmu *pmu); /* optional */
275 * Will return the value for perf_event_mmap_page::index for this event,
276 * if no implementation is provided it will default to: event->hw.idx + 1.
278 int (*event_idx) (struct perf_event *event); /*optional */
281 * context-switches callback
283 void (*sched_task) (struct perf_event_context *ctx,
284 bool sched_in);
286 * PMU specific data size
288 size_t task_ctx_size;
292 * Return the count value for a counter.
294 u64 (*count) (struct perf_event *event); /*optional*/
297 * Set up pmu-private data structures for an AUX area
299 void *(*setup_aux) (int cpu, void **pages,
300 int nr_pages, bool overwrite);
301 /* optional */
304 * Free pmu-private AUX data structures
306 void (*free_aux) (void *aux); /* optional */
310 * enum perf_event_active_state - the states of a event
312 enum perf_event_active_state {
313 PERF_EVENT_STATE_EXIT = -3,
314 PERF_EVENT_STATE_ERROR = -2,
315 PERF_EVENT_STATE_OFF = -1,
316 PERF_EVENT_STATE_INACTIVE = 0,
317 PERF_EVENT_STATE_ACTIVE = 1,
320 struct file;
321 struct perf_sample_data;
323 typedef void (*perf_overflow_handler_t)(struct perf_event *,
324 struct perf_sample_data *,
325 struct pt_regs *regs);
327 enum perf_group_flag {
328 PERF_GROUP_SOFTWARE = 0x1,
331 #define SWEVENT_HLIST_BITS 8
332 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
334 struct swevent_hlist {
335 struct hlist_head heads[SWEVENT_HLIST_SIZE];
336 struct rcu_head rcu_head;
339 #define PERF_ATTACH_CONTEXT 0x01
340 #define PERF_ATTACH_GROUP 0x02
341 #define PERF_ATTACH_TASK 0x04
342 #define PERF_ATTACH_TASK_DATA 0x08
344 struct perf_cgroup;
345 struct ring_buffer;
348 * struct perf_event - performance event kernel representation:
350 struct perf_event {
351 #ifdef CONFIG_PERF_EVENTS
353 * entry onto perf_event_context::event_list;
354 * modifications require ctx->lock
355 * RCU safe iterations.
357 struct list_head event_entry;
360 * XXX: group_entry and sibling_list should be mutually exclusive;
361 * either you're a sibling on a group, or you're the group leader.
362 * Rework the code to always use the same list element.
364 * Locked for modification by both ctx->mutex and ctx->lock; holding
365 * either sufficies for read.
367 struct list_head group_entry;
368 struct list_head sibling_list;
371 * We need storage to track the entries in perf_pmu_migrate_context; we
372 * cannot use the event_entry because of RCU and we want to keep the
373 * group in tact which avoids us using the other two entries.
375 struct list_head migrate_entry;
377 struct hlist_node hlist_entry;
378 struct list_head active_entry;
379 int nr_siblings;
380 int group_flags;
381 struct perf_event *group_leader;
382 struct pmu *pmu;
384 enum perf_event_active_state state;
385 unsigned int attach_state;
386 local64_t count;
387 atomic64_t child_count;
390 * These are the total time in nanoseconds that the event
391 * has been enabled (i.e. eligible to run, and the task has
392 * been scheduled in, if this is a per-task event)
393 * and running (scheduled onto the CPU), respectively.
395 * They are computed from tstamp_enabled, tstamp_running and
396 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
398 u64 total_time_enabled;
399 u64 total_time_running;
402 * These are timestamps used for computing total_time_enabled
403 * and total_time_running when the event is in INACTIVE or
404 * ACTIVE state, measured in nanoseconds from an arbitrary point
405 * in time.
406 * tstamp_enabled: the notional time when the event was enabled
407 * tstamp_running: the notional time when the event was scheduled on
408 * tstamp_stopped: in INACTIVE state, the notional time when the
409 * event was scheduled off.
411 u64 tstamp_enabled;
412 u64 tstamp_running;
413 u64 tstamp_stopped;
416 * timestamp shadows the actual context timing but it can
417 * be safely used in NMI interrupt context. It reflects the
418 * context time as it was when the event was last scheduled in.
420 * ctx_time already accounts for ctx->timestamp. Therefore to
421 * compute ctx_time for a sample, simply add perf_clock().
423 u64 shadow_ctx_time;
425 struct perf_event_attr attr;
426 u16 header_size;
427 u16 id_header_size;
428 u16 read_size;
429 struct hw_perf_event hw;
431 struct perf_event_context *ctx;
432 atomic_long_t refcount;
435 * These accumulate total time (in nanoseconds) that children
436 * events have been enabled and running, respectively.
438 atomic64_t child_total_time_enabled;
439 atomic64_t child_total_time_running;
442 * Protect attach/detach and child_list:
444 struct mutex child_mutex;
445 struct list_head child_list;
446 struct perf_event *parent;
448 int oncpu;
449 int cpu;
451 struct list_head owner_entry;
452 struct task_struct *owner;
454 /* mmap bits */
455 struct mutex mmap_mutex;
456 atomic_t mmap_count;
458 struct ring_buffer *rb;
459 struct list_head rb_entry;
460 unsigned long rcu_batches;
461 int rcu_pending;
463 /* poll related */
464 wait_queue_head_t waitq;
465 struct fasync_struct *fasync;
467 /* delayed work for NMIs and such */
468 int pending_wakeup;
469 int pending_kill;
470 int pending_disable;
471 struct irq_work pending;
473 atomic_t event_limit;
475 void (*destroy)(struct perf_event *);
476 struct rcu_head rcu_head;
478 struct pid_namespace *ns;
479 u64 id;
481 u64 (*clock)(void);
482 perf_overflow_handler_t overflow_handler;
483 void *overflow_handler_context;
485 #ifdef CONFIG_EVENT_TRACING
486 struct ftrace_event_call *tp_event;
487 struct event_filter *filter;
488 #ifdef CONFIG_FUNCTION_TRACER
489 struct ftrace_ops ftrace_ops;
490 #endif
491 #endif
493 #ifdef CONFIG_CGROUP_PERF
494 struct perf_cgroup *cgrp; /* cgroup event is attach to */
495 int cgrp_defer_enabled;
496 #endif
498 #endif /* CONFIG_PERF_EVENTS */
502 * struct perf_event_context - event context structure
504 * Used as a container for task events and CPU events as well:
506 struct perf_event_context {
507 struct pmu *pmu;
509 * Protect the states of the events in the list,
510 * nr_active, and the list:
512 raw_spinlock_t lock;
514 * Protect the list of events. Locking either mutex or lock
515 * is sufficient to ensure the list doesn't change; to change
516 * the list you need to lock both the mutex and the spinlock.
518 struct mutex mutex;
520 struct list_head active_ctx_list;
521 struct list_head pinned_groups;
522 struct list_head flexible_groups;
523 struct list_head event_list;
524 int nr_events;
525 int nr_active;
526 int is_active;
527 int nr_stat;
528 int nr_freq;
529 int rotate_disable;
530 atomic_t refcount;
531 struct task_struct *task;
534 * Context clock, runs when context enabled.
536 u64 time;
537 u64 timestamp;
540 * These fields let us detect when two contexts have both
541 * been cloned (inherited) from a common ancestor.
543 struct perf_event_context *parent_ctx;
544 u64 parent_gen;
545 u64 generation;
546 int pin_count;
547 int nr_cgroups; /* cgroup evts */
548 void *task_ctx_data; /* pmu specific data */
549 struct rcu_head rcu_head;
551 struct delayed_work orphans_remove;
552 bool orphans_remove_sched;
556 * Number of contexts where an event can trigger:
557 * task, softirq, hardirq, nmi.
559 #define PERF_NR_CONTEXTS 4
562 * struct perf_event_cpu_context - per cpu event context structure
564 struct perf_cpu_context {
565 struct perf_event_context ctx;
566 struct perf_event_context *task_ctx;
567 int active_oncpu;
568 int exclusive;
569 struct hrtimer hrtimer;
570 ktime_t hrtimer_interval;
571 struct pmu *unique_pmu;
572 struct perf_cgroup *cgrp;
575 struct perf_output_handle {
576 struct perf_event *event;
577 struct ring_buffer *rb;
578 unsigned long wakeup;
579 unsigned long size;
580 union {
581 void *addr;
582 unsigned long head;
584 int page;
587 #ifdef CONFIG_CGROUP_PERF
590 * perf_cgroup_info keeps track of time_enabled for a cgroup.
591 * This is a per-cpu dynamically allocated data structure.
593 struct perf_cgroup_info {
594 u64 time;
595 u64 timestamp;
598 struct perf_cgroup {
599 struct cgroup_subsys_state css;
600 struct perf_cgroup_info __percpu *info;
604 * Must ensure cgroup is pinned (css_get) before calling
605 * this function. In other words, we cannot call this function
606 * if there is no cgroup event for the current CPU context.
608 static inline struct perf_cgroup *
609 perf_cgroup_from_task(struct task_struct *task)
611 return container_of(task_css(task, perf_event_cgrp_id),
612 struct perf_cgroup, css);
614 #endif /* CONFIG_CGROUP_PERF */
616 #ifdef CONFIG_PERF_EVENTS
618 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
619 struct perf_event *event);
620 extern void perf_aux_output_end(struct perf_output_handle *handle,
621 unsigned long size, bool truncated);
622 extern int perf_aux_output_skip(struct perf_output_handle *handle,
623 unsigned long size);
624 extern void *perf_get_aux(struct perf_output_handle *handle);
626 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
627 extern void perf_pmu_unregister(struct pmu *pmu);
629 extern int perf_num_counters(void);
630 extern const char *perf_pmu_name(void);
631 extern void __perf_event_task_sched_in(struct task_struct *prev,
632 struct task_struct *task);
633 extern void __perf_event_task_sched_out(struct task_struct *prev,
634 struct task_struct *next);
635 extern int perf_event_init_task(struct task_struct *child);
636 extern void perf_event_exit_task(struct task_struct *child);
637 extern void perf_event_free_task(struct task_struct *task);
638 extern void perf_event_delayed_put(struct task_struct *task);
639 extern void perf_event_print_debug(void);
640 extern void perf_pmu_disable(struct pmu *pmu);
641 extern void perf_pmu_enable(struct pmu *pmu);
642 extern void perf_sched_cb_dec(struct pmu *pmu);
643 extern void perf_sched_cb_inc(struct pmu *pmu);
644 extern int perf_event_task_disable(void);
645 extern int perf_event_task_enable(void);
646 extern int perf_event_refresh(struct perf_event *event, int refresh);
647 extern void perf_event_update_userpage(struct perf_event *event);
648 extern int perf_event_release_kernel(struct perf_event *event);
649 extern struct perf_event *
650 perf_event_create_kernel_counter(struct perf_event_attr *attr,
651 int cpu,
652 struct task_struct *task,
653 perf_overflow_handler_t callback,
654 void *context);
655 extern void perf_pmu_migrate_context(struct pmu *pmu,
656 int src_cpu, int dst_cpu);
657 extern u64 perf_event_read_value(struct perf_event *event,
658 u64 *enabled, u64 *running);
661 struct perf_sample_data {
663 * Fields set by perf_sample_data_init(), group so as to
664 * minimize the cachelines touched.
666 u64 addr;
667 struct perf_raw_record *raw;
668 struct perf_branch_stack *br_stack;
669 u64 period;
670 u64 weight;
671 u64 txn;
672 union perf_mem_data_src data_src;
675 * The other fields, optionally {set,used} by
676 * perf_{prepare,output}_sample().
678 u64 type;
679 u64 ip;
680 struct {
681 u32 pid;
682 u32 tid;
683 } tid_entry;
684 u64 time;
685 u64 id;
686 u64 stream_id;
687 struct {
688 u32 cpu;
689 u32 reserved;
690 } cpu_entry;
691 struct perf_callchain_entry *callchain;
694 * regs_user may point to task_pt_regs or to regs_user_copy, depending
695 * on arch details.
697 struct perf_regs regs_user;
698 struct pt_regs regs_user_copy;
700 struct perf_regs regs_intr;
701 u64 stack_user_size;
702 } ____cacheline_aligned;
704 /* default value for data source */
705 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\
706 PERF_MEM_S(LVL, NA) |\
707 PERF_MEM_S(SNOOP, NA) |\
708 PERF_MEM_S(LOCK, NA) |\
709 PERF_MEM_S(TLB, NA))
711 static inline void perf_sample_data_init(struct perf_sample_data *data,
712 u64 addr, u64 period)
714 /* remaining struct members initialized in perf_prepare_sample() */
715 data->addr = addr;
716 data->raw = NULL;
717 data->br_stack = NULL;
718 data->period = period;
719 data->weight = 0;
720 data->data_src.val = PERF_MEM_NA;
721 data->txn = 0;
724 extern void perf_output_sample(struct perf_output_handle *handle,
725 struct perf_event_header *header,
726 struct perf_sample_data *data,
727 struct perf_event *event);
728 extern void perf_prepare_sample(struct perf_event_header *header,
729 struct perf_sample_data *data,
730 struct perf_event *event,
731 struct pt_regs *regs);
733 extern int perf_event_overflow(struct perf_event *event,
734 struct perf_sample_data *data,
735 struct pt_regs *regs);
737 static inline bool is_sampling_event(struct perf_event *event)
739 return event->attr.sample_period != 0;
743 * Return 1 for a software event, 0 for a hardware event
745 static inline int is_software_event(struct perf_event *event)
747 return event->pmu->task_ctx_nr == perf_sw_context;
750 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
752 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
753 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
755 #ifndef perf_arch_fetch_caller_regs
756 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
757 #endif
760 * Take a snapshot of the regs. Skip ip and frame pointer to
761 * the nth caller. We only need a few of the regs:
762 * - ip for PERF_SAMPLE_IP
763 * - cs for user_mode() tests
764 * - bp for callchains
765 * - eflags, for future purposes, just in case
767 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
769 memset(regs, 0, sizeof(*regs));
771 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
774 static __always_inline void
775 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
777 if (static_key_false(&perf_swevent_enabled[event_id]))
778 __perf_sw_event(event_id, nr, regs, addr);
781 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
784 * 'Special' version for the scheduler, it hard assumes no recursion,
785 * which is guaranteed by us not actually scheduling inside other swevents
786 * because those disable preemption.
788 static __always_inline void
789 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
791 if (static_key_false(&perf_swevent_enabled[event_id])) {
792 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
794 perf_fetch_caller_regs(regs);
795 ___perf_sw_event(event_id, nr, regs, addr);
799 extern struct static_key_deferred perf_sched_events;
801 static inline void perf_event_task_sched_in(struct task_struct *prev,
802 struct task_struct *task)
804 if (static_key_false(&perf_sched_events.key))
805 __perf_event_task_sched_in(prev, task);
808 static inline void perf_event_task_sched_out(struct task_struct *prev,
809 struct task_struct *next)
811 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
813 if (static_key_false(&perf_sched_events.key))
814 __perf_event_task_sched_out(prev, next);
817 static inline u64 __perf_event_count(struct perf_event *event)
819 return local64_read(&event->count) + atomic64_read(&event->child_count);
822 extern void perf_event_mmap(struct vm_area_struct *vma);
823 extern struct perf_guest_info_callbacks *perf_guest_cbs;
824 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
825 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
827 extern void perf_event_exec(void);
828 extern void perf_event_comm(struct task_struct *tsk, bool exec);
829 extern void perf_event_fork(struct task_struct *tsk);
831 /* Callchains */
832 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
834 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
835 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
837 static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
839 if (entry->nr < PERF_MAX_STACK_DEPTH)
840 entry->ip[entry->nr++] = ip;
843 extern int sysctl_perf_event_paranoid;
844 extern int sysctl_perf_event_mlock;
845 extern int sysctl_perf_event_sample_rate;
846 extern int sysctl_perf_cpu_time_max_percent;
848 extern void perf_sample_event_took(u64 sample_len_ns);
850 extern int perf_proc_update_handler(struct ctl_table *table, int write,
851 void __user *buffer, size_t *lenp,
852 loff_t *ppos);
853 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
854 void __user *buffer, size_t *lenp,
855 loff_t *ppos);
858 static inline bool perf_paranoid_tracepoint_raw(void)
860 return sysctl_perf_event_paranoid > -1;
863 static inline bool perf_paranoid_cpu(void)
865 return sysctl_perf_event_paranoid > 0;
868 static inline bool perf_paranoid_kernel(void)
870 return sysctl_perf_event_paranoid > 1;
873 extern void perf_event_init(void);
874 extern void perf_tp_event(u64 addr, u64 count, void *record,
875 int entry_size, struct pt_regs *regs,
876 struct hlist_head *head, int rctx,
877 struct task_struct *task);
878 extern void perf_bp_event(struct perf_event *event, void *data);
880 #ifndef perf_misc_flags
881 # define perf_misc_flags(regs) \
882 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
883 # define perf_instruction_pointer(regs) instruction_pointer(regs)
884 #endif
886 static inline bool has_branch_stack(struct perf_event *event)
888 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
891 static inline bool needs_branch_stack(struct perf_event *event)
893 return event->attr.branch_sample_type != 0;
896 static inline bool has_aux(struct perf_event *event)
898 return event->pmu->setup_aux;
901 extern int perf_output_begin(struct perf_output_handle *handle,
902 struct perf_event *event, unsigned int size);
903 extern void perf_output_end(struct perf_output_handle *handle);
904 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
905 const void *buf, unsigned int len);
906 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
907 unsigned int len);
908 extern int perf_swevent_get_recursion_context(void);
909 extern void perf_swevent_put_recursion_context(int rctx);
910 extern u64 perf_swevent_set_period(struct perf_event *event);
911 extern void perf_event_enable(struct perf_event *event);
912 extern void perf_event_disable(struct perf_event *event);
913 extern int __perf_event_disable(void *info);
914 extern void perf_event_task_tick(void);
915 #else /* !CONFIG_PERF_EVENTS: */
916 static inline void *
917 perf_aux_output_begin(struct perf_output_handle *handle,
918 struct perf_event *event) { return NULL; }
919 static inline void
920 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size,
921 bool truncated) { }
922 static inline int
923 perf_aux_output_skip(struct perf_output_handle *handle,
924 unsigned long size) { return -EINVAL; }
925 static inline void *
926 perf_get_aux(struct perf_output_handle *handle) { return NULL; }
927 static inline void
928 perf_event_task_sched_in(struct task_struct *prev,
929 struct task_struct *task) { }
930 static inline void
931 perf_event_task_sched_out(struct task_struct *prev,
932 struct task_struct *next) { }
933 static inline int perf_event_init_task(struct task_struct *child) { return 0; }
934 static inline void perf_event_exit_task(struct task_struct *child) { }
935 static inline void perf_event_free_task(struct task_struct *task) { }
936 static inline void perf_event_delayed_put(struct task_struct *task) { }
937 static inline void perf_event_print_debug(void) { }
938 static inline int perf_event_task_disable(void) { return -EINVAL; }
939 static inline int perf_event_task_enable(void) { return -EINVAL; }
940 static inline int perf_event_refresh(struct perf_event *event, int refresh)
942 return -EINVAL;
945 static inline void
946 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
947 static inline void
948 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { }
949 static inline void
950 perf_bp_event(struct perf_event *event, void *data) { }
952 static inline int perf_register_guest_info_callbacks
953 (struct perf_guest_info_callbacks *callbacks) { return 0; }
954 static inline int perf_unregister_guest_info_callbacks
955 (struct perf_guest_info_callbacks *callbacks) { return 0; }
957 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
958 static inline void perf_event_exec(void) { }
959 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { }
960 static inline void perf_event_fork(struct task_struct *tsk) { }
961 static inline void perf_event_init(void) { }
962 static inline int perf_swevent_get_recursion_context(void) { return -1; }
963 static inline void perf_swevent_put_recursion_context(int rctx) { }
964 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
965 static inline void perf_event_enable(struct perf_event *event) { }
966 static inline void perf_event_disable(struct perf_event *event) { }
967 static inline int __perf_event_disable(void *info) { return -1; }
968 static inline void perf_event_task_tick(void) { }
969 #endif
971 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_NO_HZ_FULL)
972 extern bool perf_event_can_stop_tick(void);
973 #else
974 static inline bool perf_event_can_stop_tick(void) { return true; }
975 #endif
977 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
978 extern void perf_restore_debug_store(void);
979 #else
980 static inline void perf_restore_debug_store(void) { }
981 #endif
983 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
986 * This has to have a higher priority than migration_notifier in sched/core.c.
988 #define perf_cpu_notifier(fn) \
989 do { \
990 static struct notifier_block fn##_nb = \
991 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
992 unsigned long cpu = smp_processor_id(); \
993 unsigned long flags; \
995 cpu_notifier_register_begin(); \
996 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \
997 (void *)(unsigned long)cpu); \
998 local_irq_save(flags); \
999 fn(&fn##_nb, (unsigned long)CPU_STARTING, \
1000 (void *)(unsigned long)cpu); \
1001 local_irq_restore(flags); \
1002 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \
1003 (void *)(unsigned long)cpu); \
1004 __register_cpu_notifier(&fn##_nb); \
1005 cpu_notifier_register_done(); \
1006 } while (0)
1009 * Bare-bones version of perf_cpu_notifier(), which doesn't invoke the
1010 * callback for already online CPUs.
1012 #define __perf_cpu_notifier(fn) \
1013 do { \
1014 static struct notifier_block fn##_nb = \
1015 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
1017 __register_cpu_notifier(&fn##_nb); \
1018 } while (0)
1020 struct perf_pmu_events_attr {
1021 struct device_attribute attr;
1022 u64 id;
1023 const char *event_str;
1026 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1027 char *page);
1029 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \
1030 static struct perf_pmu_events_attr _var = { \
1031 .attr = __ATTR(_name, 0444, _show, NULL), \
1032 .id = _id, \
1035 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \
1036 static struct perf_pmu_events_attr _var = { \
1037 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1038 .id = 0, \
1039 .event_str = _str, \
1042 #define PMU_FORMAT_ATTR(_name, _format) \
1043 static ssize_t \
1044 _name##_show(struct device *dev, \
1045 struct device_attribute *attr, \
1046 char *page) \
1048 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
1049 return sprintf(page, _format "\n"); \
1052 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1054 #endif /* _LINUX_PERF_EVENT_H */