btrfs: introduce _in_rcu variants of message printing functions
[linux-2.6/btrfs-unstable.git] / mm / migrate.c
blob7452a00bbb50c134b529c1d024dfc53fcfca093b
1 /*
2 * Memory Migration functionality - linux/mm/migration.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/page_idle.h>
42 #include <asm/tlbflush.h>
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/migrate.h>
47 #include "internal.h"
50 * migrate_prep() needs to be called before we start compiling a list of pages
51 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
52 * undesirable, use migrate_prep_local()
54 int migrate_prep(void)
57 * Clear the LRU lists so pages can be isolated.
58 * Note that pages may be moved off the LRU after we have
59 * drained them. Those pages will fail to migrate like other
60 * pages that may be busy.
62 lru_add_drain_all();
64 return 0;
67 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
68 int migrate_prep_local(void)
70 lru_add_drain();
72 return 0;
76 * Put previously isolated pages back onto the appropriate lists
77 * from where they were once taken off for compaction/migration.
79 * This function shall be used whenever the isolated pageset has been
80 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
81 * and isolate_huge_page().
83 void putback_movable_pages(struct list_head *l)
85 struct page *page;
86 struct page *page2;
88 list_for_each_entry_safe(page, page2, l, lru) {
89 if (unlikely(PageHuge(page))) {
90 putback_active_hugepage(page);
91 continue;
93 list_del(&page->lru);
94 dec_zone_page_state(page, NR_ISOLATED_ANON +
95 page_is_file_cache(page));
96 if (unlikely(isolated_balloon_page(page)))
97 balloon_page_putback(page);
98 else
99 putback_lru_page(page);
104 * Restore a potential migration pte to a working pte entry
106 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
107 unsigned long addr, void *old)
109 struct mm_struct *mm = vma->vm_mm;
110 swp_entry_t entry;
111 pmd_t *pmd;
112 pte_t *ptep, pte;
113 spinlock_t *ptl;
115 if (unlikely(PageHuge(new))) {
116 ptep = huge_pte_offset(mm, addr);
117 if (!ptep)
118 goto out;
119 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
120 } else {
121 pmd = mm_find_pmd(mm, addr);
122 if (!pmd)
123 goto out;
125 ptep = pte_offset_map(pmd, addr);
128 * Peek to check is_swap_pte() before taking ptlock? No, we
129 * can race mremap's move_ptes(), which skips anon_vma lock.
132 ptl = pte_lockptr(mm, pmd);
135 spin_lock(ptl);
136 pte = *ptep;
137 if (!is_swap_pte(pte))
138 goto unlock;
140 entry = pte_to_swp_entry(pte);
142 if (!is_migration_entry(entry) ||
143 migration_entry_to_page(entry) != old)
144 goto unlock;
146 get_page(new);
147 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
148 if (pte_swp_soft_dirty(*ptep))
149 pte = pte_mksoft_dirty(pte);
151 /* Recheck VMA as permissions can change since migration started */
152 if (is_write_migration_entry(entry))
153 pte = maybe_mkwrite(pte, vma);
155 #ifdef CONFIG_HUGETLB_PAGE
156 if (PageHuge(new)) {
157 pte = pte_mkhuge(pte);
158 pte = arch_make_huge_pte(pte, vma, new, 0);
160 #endif
161 flush_dcache_page(new);
162 set_pte_at(mm, addr, ptep, pte);
164 if (PageHuge(new)) {
165 if (PageAnon(new))
166 hugepage_add_anon_rmap(new, vma, addr);
167 else
168 page_dup_rmap(new);
169 } else if (PageAnon(new))
170 page_add_anon_rmap(new, vma, addr);
171 else
172 page_add_file_rmap(new);
174 /* No need to invalidate - it was non-present before */
175 update_mmu_cache(vma, addr, ptep);
176 unlock:
177 pte_unmap_unlock(ptep, ptl);
178 out:
179 return SWAP_AGAIN;
183 * Get rid of all migration entries and replace them by
184 * references to the indicated page.
186 static void remove_migration_ptes(struct page *old, struct page *new)
188 struct rmap_walk_control rwc = {
189 .rmap_one = remove_migration_pte,
190 .arg = old,
193 rmap_walk(new, &rwc);
197 * Something used the pte of a page under migration. We need to
198 * get to the page and wait until migration is finished.
199 * When we return from this function the fault will be retried.
201 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
202 spinlock_t *ptl)
204 pte_t pte;
205 swp_entry_t entry;
206 struct page *page;
208 spin_lock(ptl);
209 pte = *ptep;
210 if (!is_swap_pte(pte))
211 goto out;
213 entry = pte_to_swp_entry(pte);
214 if (!is_migration_entry(entry))
215 goto out;
217 page = migration_entry_to_page(entry);
220 * Once radix-tree replacement of page migration started, page_count
221 * *must* be zero. And, we don't want to call wait_on_page_locked()
222 * against a page without get_page().
223 * So, we use get_page_unless_zero(), here. Even failed, page fault
224 * will occur again.
226 if (!get_page_unless_zero(page))
227 goto out;
228 pte_unmap_unlock(ptep, ptl);
229 wait_on_page_locked(page);
230 put_page(page);
231 return;
232 out:
233 pte_unmap_unlock(ptep, ptl);
236 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
237 unsigned long address)
239 spinlock_t *ptl = pte_lockptr(mm, pmd);
240 pte_t *ptep = pte_offset_map(pmd, address);
241 __migration_entry_wait(mm, ptep, ptl);
244 void migration_entry_wait_huge(struct vm_area_struct *vma,
245 struct mm_struct *mm, pte_t *pte)
247 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
248 __migration_entry_wait(mm, pte, ptl);
251 #ifdef CONFIG_BLOCK
252 /* Returns true if all buffers are successfully locked */
253 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
254 enum migrate_mode mode)
256 struct buffer_head *bh = head;
258 /* Simple case, sync compaction */
259 if (mode != MIGRATE_ASYNC) {
260 do {
261 get_bh(bh);
262 lock_buffer(bh);
263 bh = bh->b_this_page;
265 } while (bh != head);
267 return true;
270 /* async case, we cannot block on lock_buffer so use trylock_buffer */
271 do {
272 get_bh(bh);
273 if (!trylock_buffer(bh)) {
275 * We failed to lock the buffer and cannot stall in
276 * async migration. Release the taken locks
278 struct buffer_head *failed_bh = bh;
279 put_bh(failed_bh);
280 bh = head;
281 while (bh != failed_bh) {
282 unlock_buffer(bh);
283 put_bh(bh);
284 bh = bh->b_this_page;
286 return false;
289 bh = bh->b_this_page;
290 } while (bh != head);
291 return true;
293 #else
294 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
295 enum migrate_mode mode)
297 return true;
299 #endif /* CONFIG_BLOCK */
302 * Replace the page in the mapping.
304 * The number of remaining references must be:
305 * 1 for anonymous pages without a mapping
306 * 2 for pages with a mapping
307 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
309 int migrate_page_move_mapping(struct address_space *mapping,
310 struct page *newpage, struct page *page,
311 struct buffer_head *head, enum migrate_mode mode,
312 int extra_count)
314 int expected_count = 1 + extra_count;
315 void **pslot;
317 if (!mapping) {
318 /* Anonymous page without mapping */
319 if (page_count(page) != expected_count)
320 return -EAGAIN;
321 return MIGRATEPAGE_SUCCESS;
324 spin_lock_irq(&mapping->tree_lock);
326 pslot = radix_tree_lookup_slot(&mapping->page_tree,
327 page_index(page));
329 expected_count += 1 + page_has_private(page);
330 if (page_count(page) != expected_count ||
331 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
332 spin_unlock_irq(&mapping->tree_lock);
333 return -EAGAIN;
336 if (!page_freeze_refs(page, expected_count)) {
337 spin_unlock_irq(&mapping->tree_lock);
338 return -EAGAIN;
342 * In the async migration case of moving a page with buffers, lock the
343 * buffers using trylock before the mapping is moved. If the mapping
344 * was moved, we later failed to lock the buffers and could not move
345 * the mapping back due to an elevated page count, we would have to
346 * block waiting on other references to be dropped.
348 if (mode == MIGRATE_ASYNC && head &&
349 !buffer_migrate_lock_buffers(head, mode)) {
350 page_unfreeze_refs(page, expected_count);
351 spin_unlock_irq(&mapping->tree_lock);
352 return -EAGAIN;
356 * Now we know that no one else is looking at the page.
358 get_page(newpage); /* add cache reference */
359 if (PageSwapCache(page)) {
360 SetPageSwapCache(newpage);
361 set_page_private(newpage, page_private(page));
364 radix_tree_replace_slot(pslot, newpage);
367 * Drop cache reference from old page by unfreezing
368 * to one less reference.
369 * We know this isn't the last reference.
371 page_unfreeze_refs(page, expected_count - 1);
374 * If moved to a different zone then also account
375 * the page for that zone. Other VM counters will be
376 * taken care of when we establish references to the
377 * new page and drop references to the old page.
379 * Note that anonymous pages are accounted for
380 * via NR_FILE_PAGES and NR_ANON_PAGES if they
381 * are mapped to swap space.
383 __dec_zone_page_state(page, NR_FILE_PAGES);
384 __inc_zone_page_state(newpage, NR_FILE_PAGES);
385 if (!PageSwapCache(page) && PageSwapBacked(page)) {
386 __dec_zone_page_state(page, NR_SHMEM);
387 __inc_zone_page_state(newpage, NR_SHMEM);
389 spin_unlock_irq(&mapping->tree_lock);
391 return MIGRATEPAGE_SUCCESS;
395 * The expected number of remaining references is the same as that
396 * of migrate_page_move_mapping().
398 int migrate_huge_page_move_mapping(struct address_space *mapping,
399 struct page *newpage, struct page *page)
401 int expected_count;
402 void **pslot;
404 if (!mapping) {
405 if (page_count(page) != 1)
406 return -EAGAIN;
407 return MIGRATEPAGE_SUCCESS;
410 spin_lock_irq(&mapping->tree_lock);
412 pslot = radix_tree_lookup_slot(&mapping->page_tree,
413 page_index(page));
415 expected_count = 2 + page_has_private(page);
416 if (page_count(page) != expected_count ||
417 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
418 spin_unlock_irq(&mapping->tree_lock);
419 return -EAGAIN;
422 if (!page_freeze_refs(page, expected_count)) {
423 spin_unlock_irq(&mapping->tree_lock);
424 return -EAGAIN;
427 get_page(newpage);
429 radix_tree_replace_slot(pslot, newpage);
431 page_unfreeze_refs(page, expected_count - 1);
433 spin_unlock_irq(&mapping->tree_lock);
434 return MIGRATEPAGE_SUCCESS;
438 * Gigantic pages are so large that we do not guarantee that page++ pointer
439 * arithmetic will work across the entire page. We need something more
440 * specialized.
442 static void __copy_gigantic_page(struct page *dst, struct page *src,
443 int nr_pages)
445 int i;
446 struct page *dst_base = dst;
447 struct page *src_base = src;
449 for (i = 0; i < nr_pages; ) {
450 cond_resched();
451 copy_highpage(dst, src);
453 i++;
454 dst = mem_map_next(dst, dst_base, i);
455 src = mem_map_next(src, src_base, i);
459 static void copy_huge_page(struct page *dst, struct page *src)
461 int i;
462 int nr_pages;
464 if (PageHuge(src)) {
465 /* hugetlbfs page */
466 struct hstate *h = page_hstate(src);
467 nr_pages = pages_per_huge_page(h);
469 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
470 __copy_gigantic_page(dst, src, nr_pages);
471 return;
473 } else {
474 /* thp page */
475 BUG_ON(!PageTransHuge(src));
476 nr_pages = hpage_nr_pages(src);
479 for (i = 0; i < nr_pages; i++) {
480 cond_resched();
481 copy_highpage(dst + i, src + i);
486 * Copy the page to its new location
488 void migrate_page_copy(struct page *newpage, struct page *page)
490 int cpupid;
492 if (PageHuge(page) || PageTransHuge(page))
493 copy_huge_page(newpage, page);
494 else
495 copy_highpage(newpage, page);
497 if (PageError(page))
498 SetPageError(newpage);
499 if (PageReferenced(page))
500 SetPageReferenced(newpage);
501 if (PageUptodate(page))
502 SetPageUptodate(newpage);
503 if (TestClearPageActive(page)) {
504 VM_BUG_ON_PAGE(PageUnevictable(page), page);
505 SetPageActive(newpage);
506 } else if (TestClearPageUnevictable(page))
507 SetPageUnevictable(newpage);
508 if (PageChecked(page))
509 SetPageChecked(newpage);
510 if (PageMappedToDisk(page))
511 SetPageMappedToDisk(newpage);
513 if (PageDirty(page)) {
514 clear_page_dirty_for_io(page);
516 * Want to mark the page and the radix tree as dirty, and
517 * redo the accounting that clear_page_dirty_for_io undid,
518 * but we can't use set_page_dirty because that function
519 * is actually a signal that all of the page has become dirty.
520 * Whereas only part of our page may be dirty.
522 if (PageSwapBacked(page))
523 SetPageDirty(newpage);
524 else
525 __set_page_dirty_nobuffers(newpage);
528 if (page_is_young(page))
529 set_page_young(newpage);
530 if (page_is_idle(page))
531 set_page_idle(newpage);
534 * Copy NUMA information to the new page, to prevent over-eager
535 * future migrations of this same page.
537 cpupid = page_cpupid_xchg_last(page, -1);
538 page_cpupid_xchg_last(newpage, cpupid);
540 mlock_migrate_page(newpage, page);
541 ksm_migrate_page(newpage, page);
543 * Please do not reorder this without considering how mm/ksm.c's
544 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
546 if (PageSwapCache(page))
547 ClearPageSwapCache(page);
548 ClearPagePrivate(page);
549 set_page_private(page, 0);
552 * If any waiters have accumulated on the new page then
553 * wake them up.
555 if (PageWriteback(newpage))
556 end_page_writeback(newpage);
559 /************************************************************
560 * Migration functions
561 ***********************************************************/
564 * Common logic to directly migrate a single page suitable for
565 * pages that do not use PagePrivate/PagePrivate2.
567 * Pages are locked upon entry and exit.
569 int migrate_page(struct address_space *mapping,
570 struct page *newpage, struct page *page,
571 enum migrate_mode mode)
573 int rc;
575 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
577 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
579 if (rc != MIGRATEPAGE_SUCCESS)
580 return rc;
582 migrate_page_copy(newpage, page);
583 return MIGRATEPAGE_SUCCESS;
585 EXPORT_SYMBOL(migrate_page);
587 #ifdef CONFIG_BLOCK
589 * Migration function for pages with buffers. This function can only be used
590 * if the underlying filesystem guarantees that no other references to "page"
591 * exist.
593 int buffer_migrate_page(struct address_space *mapping,
594 struct page *newpage, struct page *page, enum migrate_mode mode)
596 struct buffer_head *bh, *head;
597 int rc;
599 if (!page_has_buffers(page))
600 return migrate_page(mapping, newpage, page, mode);
602 head = page_buffers(page);
604 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
606 if (rc != MIGRATEPAGE_SUCCESS)
607 return rc;
610 * In the async case, migrate_page_move_mapping locked the buffers
611 * with an IRQ-safe spinlock held. In the sync case, the buffers
612 * need to be locked now
614 if (mode != MIGRATE_ASYNC)
615 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
617 ClearPagePrivate(page);
618 set_page_private(newpage, page_private(page));
619 set_page_private(page, 0);
620 put_page(page);
621 get_page(newpage);
623 bh = head;
624 do {
625 set_bh_page(bh, newpage, bh_offset(bh));
626 bh = bh->b_this_page;
628 } while (bh != head);
630 SetPagePrivate(newpage);
632 migrate_page_copy(newpage, page);
634 bh = head;
635 do {
636 unlock_buffer(bh);
637 put_bh(bh);
638 bh = bh->b_this_page;
640 } while (bh != head);
642 return MIGRATEPAGE_SUCCESS;
644 EXPORT_SYMBOL(buffer_migrate_page);
645 #endif
648 * Writeback a page to clean the dirty state
650 static int writeout(struct address_space *mapping, struct page *page)
652 struct writeback_control wbc = {
653 .sync_mode = WB_SYNC_NONE,
654 .nr_to_write = 1,
655 .range_start = 0,
656 .range_end = LLONG_MAX,
657 .for_reclaim = 1
659 int rc;
661 if (!mapping->a_ops->writepage)
662 /* No write method for the address space */
663 return -EINVAL;
665 if (!clear_page_dirty_for_io(page))
666 /* Someone else already triggered a write */
667 return -EAGAIN;
670 * A dirty page may imply that the underlying filesystem has
671 * the page on some queue. So the page must be clean for
672 * migration. Writeout may mean we loose the lock and the
673 * page state is no longer what we checked for earlier.
674 * At this point we know that the migration attempt cannot
675 * be successful.
677 remove_migration_ptes(page, page);
679 rc = mapping->a_ops->writepage(page, &wbc);
681 if (rc != AOP_WRITEPAGE_ACTIVATE)
682 /* unlocked. Relock */
683 lock_page(page);
685 return (rc < 0) ? -EIO : -EAGAIN;
689 * Default handling if a filesystem does not provide a migration function.
691 static int fallback_migrate_page(struct address_space *mapping,
692 struct page *newpage, struct page *page, enum migrate_mode mode)
694 if (PageDirty(page)) {
695 /* Only writeback pages in full synchronous migration */
696 if (mode != MIGRATE_SYNC)
697 return -EBUSY;
698 return writeout(mapping, page);
702 * Buffers may be managed in a filesystem specific way.
703 * We must have no buffers or drop them.
705 if (page_has_private(page) &&
706 !try_to_release_page(page, GFP_KERNEL))
707 return -EAGAIN;
709 return migrate_page(mapping, newpage, page, mode);
713 * Move a page to a newly allocated page
714 * The page is locked and all ptes have been successfully removed.
716 * The new page will have replaced the old page if this function
717 * is successful.
719 * Return value:
720 * < 0 - error code
721 * MIGRATEPAGE_SUCCESS - success
723 static int move_to_new_page(struct page *newpage, struct page *page,
724 int page_was_mapped, enum migrate_mode mode)
726 struct address_space *mapping;
727 int rc;
730 * Block others from accessing the page when we get around to
731 * establishing additional references. We are the only one
732 * holding a reference to the new page at this point.
734 if (!trylock_page(newpage))
735 BUG();
737 /* Prepare mapping for the new page.*/
738 newpage->index = page->index;
739 newpage->mapping = page->mapping;
740 if (PageSwapBacked(page))
741 SetPageSwapBacked(newpage);
743 mapping = page_mapping(page);
744 if (!mapping)
745 rc = migrate_page(mapping, newpage, page, mode);
746 else if (mapping->a_ops->migratepage)
748 * Most pages have a mapping and most filesystems provide a
749 * migratepage callback. Anonymous pages are part of swap
750 * space which also has its own migratepage callback. This
751 * is the most common path for page migration.
753 rc = mapping->a_ops->migratepage(mapping,
754 newpage, page, mode);
755 else
756 rc = fallback_migrate_page(mapping, newpage, page, mode);
758 if (rc != MIGRATEPAGE_SUCCESS) {
759 newpage->mapping = NULL;
760 } else {
761 mem_cgroup_migrate(page, newpage, false);
762 if (page_was_mapped)
763 remove_migration_ptes(page, newpage);
764 page->mapping = NULL;
767 unlock_page(newpage);
769 return rc;
772 static int __unmap_and_move(struct page *page, struct page *newpage,
773 int force, enum migrate_mode mode)
775 int rc = -EAGAIN;
776 int page_was_mapped = 0;
777 struct anon_vma *anon_vma = NULL;
779 if (!trylock_page(page)) {
780 if (!force || mode == MIGRATE_ASYNC)
781 goto out;
784 * It's not safe for direct compaction to call lock_page.
785 * For example, during page readahead pages are added locked
786 * to the LRU. Later, when the IO completes the pages are
787 * marked uptodate and unlocked. However, the queueing
788 * could be merging multiple pages for one bio (e.g.
789 * mpage_readpages). If an allocation happens for the
790 * second or third page, the process can end up locking
791 * the same page twice and deadlocking. Rather than
792 * trying to be clever about what pages can be locked,
793 * avoid the use of lock_page for direct compaction
794 * altogether.
796 if (current->flags & PF_MEMALLOC)
797 goto out;
799 lock_page(page);
802 if (PageWriteback(page)) {
804 * Only in the case of a full synchronous migration is it
805 * necessary to wait for PageWriteback. In the async case,
806 * the retry loop is too short and in the sync-light case,
807 * the overhead of stalling is too much
809 if (mode != MIGRATE_SYNC) {
810 rc = -EBUSY;
811 goto out_unlock;
813 if (!force)
814 goto out_unlock;
815 wait_on_page_writeback(page);
818 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
819 * we cannot notice that anon_vma is freed while we migrates a page.
820 * This get_anon_vma() delays freeing anon_vma pointer until the end
821 * of migration. File cache pages are no problem because of page_lock()
822 * File Caches may use write_page() or lock_page() in migration, then,
823 * just care Anon page here.
825 if (PageAnon(page) && !PageKsm(page)) {
827 * Only page_lock_anon_vma_read() understands the subtleties of
828 * getting a hold on an anon_vma from outside one of its mms.
830 anon_vma = page_get_anon_vma(page);
831 if (anon_vma) {
833 * Anon page
835 } else if (PageSwapCache(page)) {
837 * We cannot be sure that the anon_vma of an unmapped
838 * swapcache page is safe to use because we don't
839 * know in advance if the VMA that this page belonged
840 * to still exists. If the VMA and others sharing the
841 * data have been freed, then the anon_vma could
842 * already be invalid.
844 * To avoid this possibility, swapcache pages get
845 * migrated but are not remapped when migration
846 * completes
848 } else {
849 goto out_unlock;
853 if (unlikely(isolated_balloon_page(page))) {
855 * A ballooned page does not need any special attention from
856 * physical to virtual reverse mapping procedures.
857 * Skip any attempt to unmap PTEs or to remap swap cache,
858 * in order to avoid burning cycles at rmap level, and perform
859 * the page migration right away (proteced by page lock).
861 rc = balloon_page_migrate(newpage, page, mode);
862 goto out_unlock;
866 * Corner case handling:
867 * 1. When a new swap-cache page is read into, it is added to the LRU
868 * and treated as swapcache but it has no rmap yet.
869 * Calling try_to_unmap() against a page->mapping==NULL page will
870 * trigger a BUG. So handle it here.
871 * 2. An orphaned page (see truncate_complete_page) might have
872 * fs-private metadata. The page can be picked up due to memory
873 * offlining. Everywhere else except page reclaim, the page is
874 * invisible to the vm, so the page can not be migrated. So try to
875 * free the metadata, so the page can be freed.
877 if (!page->mapping) {
878 VM_BUG_ON_PAGE(PageAnon(page), page);
879 if (page_has_private(page)) {
880 try_to_free_buffers(page);
881 goto out_unlock;
883 goto skip_unmap;
886 /* Establish migration ptes or remove ptes */
887 if (page_mapped(page)) {
888 try_to_unmap(page,
889 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
890 page_was_mapped = 1;
893 skip_unmap:
894 if (!page_mapped(page))
895 rc = move_to_new_page(newpage, page, page_was_mapped, mode);
897 if (rc && page_was_mapped)
898 remove_migration_ptes(page, page);
900 /* Drop an anon_vma reference if we took one */
901 if (anon_vma)
902 put_anon_vma(anon_vma);
904 out_unlock:
905 unlock_page(page);
906 out:
907 return rc;
911 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
912 * around it.
914 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
915 #define ICE_noinline noinline
916 #else
917 #define ICE_noinline
918 #endif
921 * Obtain the lock on page, remove all ptes and migrate the page
922 * to the newly allocated page in newpage.
924 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
925 free_page_t put_new_page,
926 unsigned long private, struct page *page,
927 int force, enum migrate_mode mode,
928 enum migrate_reason reason)
930 int rc = 0;
931 int *result = NULL;
932 struct page *newpage = get_new_page(page, private, &result);
934 if (!newpage)
935 return -ENOMEM;
937 if (page_count(page) == 1) {
938 /* page was freed from under us. So we are done. */
939 goto out;
942 if (unlikely(PageTransHuge(page)))
943 if (unlikely(split_huge_page(page)))
944 goto out;
946 rc = __unmap_and_move(page, newpage, force, mode);
948 out:
949 if (rc != -EAGAIN) {
951 * A page that has been migrated has all references
952 * removed and will be freed. A page that has not been
953 * migrated will have kepts its references and be
954 * restored.
956 list_del(&page->lru);
957 dec_zone_page_state(page, NR_ISOLATED_ANON +
958 page_is_file_cache(page));
959 /* Soft-offlined page shouldn't go through lru cache list */
960 if (reason == MR_MEMORY_FAILURE) {
961 put_page(page);
962 if (!test_set_page_hwpoison(page))
963 num_poisoned_pages_inc();
964 } else
965 putback_lru_page(page);
969 * If migration was not successful and there's a freeing callback, use
970 * it. Otherwise, putback_lru_page() will drop the reference grabbed
971 * during isolation.
973 if (rc != MIGRATEPAGE_SUCCESS && put_new_page) {
974 ClearPageSwapBacked(newpage);
975 put_new_page(newpage, private);
976 } else if (unlikely(__is_movable_balloon_page(newpage))) {
977 /* drop our reference, page already in the balloon */
978 put_page(newpage);
979 } else
980 putback_lru_page(newpage);
982 if (result) {
983 if (rc)
984 *result = rc;
985 else
986 *result = page_to_nid(newpage);
988 return rc;
992 * Counterpart of unmap_and_move_page() for hugepage migration.
994 * This function doesn't wait the completion of hugepage I/O
995 * because there is no race between I/O and migration for hugepage.
996 * Note that currently hugepage I/O occurs only in direct I/O
997 * where no lock is held and PG_writeback is irrelevant,
998 * and writeback status of all subpages are counted in the reference
999 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1000 * under direct I/O, the reference of the head page is 512 and a bit more.)
1001 * This means that when we try to migrate hugepage whose subpages are
1002 * doing direct I/O, some references remain after try_to_unmap() and
1003 * hugepage migration fails without data corruption.
1005 * There is also no race when direct I/O is issued on the page under migration,
1006 * because then pte is replaced with migration swap entry and direct I/O code
1007 * will wait in the page fault for migration to complete.
1009 static int unmap_and_move_huge_page(new_page_t get_new_page,
1010 free_page_t put_new_page, unsigned long private,
1011 struct page *hpage, int force,
1012 enum migrate_mode mode)
1014 int rc = 0;
1015 int *result = NULL;
1016 int page_was_mapped = 0;
1017 struct page *new_hpage;
1018 struct anon_vma *anon_vma = NULL;
1021 * Movability of hugepages depends on architectures and hugepage size.
1022 * This check is necessary because some callers of hugepage migration
1023 * like soft offline and memory hotremove don't walk through page
1024 * tables or check whether the hugepage is pmd-based or not before
1025 * kicking migration.
1027 if (!hugepage_migration_supported(page_hstate(hpage))) {
1028 putback_active_hugepage(hpage);
1029 return -ENOSYS;
1032 new_hpage = get_new_page(hpage, private, &result);
1033 if (!new_hpage)
1034 return -ENOMEM;
1036 rc = -EAGAIN;
1038 if (!trylock_page(hpage)) {
1039 if (!force || mode != MIGRATE_SYNC)
1040 goto out;
1041 lock_page(hpage);
1044 if (PageAnon(hpage))
1045 anon_vma = page_get_anon_vma(hpage);
1047 if (page_mapped(hpage)) {
1048 try_to_unmap(hpage,
1049 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1050 page_was_mapped = 1;
1053 if (!page_mapped(hpage))
1054 rc = move_to_new_page(new_hpage, hpage, page_was_mapped, mode);
1056 if (rc != MIGRATEPAGE_SUCCESS && page_was_mapped)
1057 remove_migration_ptes(hpage, hpage);
1059 if (anon_vma)
1060 put_anon_vma(anon_vma);
1062 if (rc == MIGRATEPAGE_SUCCESS)
1063 hugetlb_cgroup_migrate(hpage, new_hpage);
1065 unlock_page(hpage);
1066 out:
1067 if (rc != -EAGAIN)
1068 putback_active_hugepage(hpage);
1071 * If migration was not successful and there's a freeing callback, use
1072 * it. Otherwise, put_page() will drop the reference grabbed during
1073 * isolation.
1075 if (rc != MIGRATEPAGE_SUCCESS && put_new_page)
1076 put_new_page(new_hpage, private);
1077 else
1078 putback_active_hugepage(new_hpage);
1080 if (result) {
1081 if (rc)
1082 *result = rc;
1083 else
1084 *result = page_to_nid(new_hpage);
1086 return rc;
1090 * migrate_pages - migrate the pages specified in a list, to the free pages
1091 * supplied as the target for the page migration
1093 * @from: The list of pages to be migrated.
1094 * @get_new_page: The function used to allocate free pages to be used
1095 * as the target of the page migration.
1096 * @put_new_page: The function used to free target pages if migration
1097 * fails, or NULL if no special handling is necessary.
1098 * @private: Private data to be passed on to get_new_page()
1099 * @mode: The migration mode that specifies the constraints for
1100 * page migration, if any.
1101 * @reason: The reason for page migration.
1103 * The function returns after 10 attempts or if no pages are movable any more
1104 * because the list has become empty or no retryable pages exist any more.
1105 * The caller should call putback_lru_pages() to return pages to the LRU
1106 * or free list only if ret != 0.
1108 * Returns the number of pages that were not migrated, or an error code.
1110 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1111 free_page_t put_new_page, unsigned long private,
1112 enum migrate_mode mode, int reason)
1114 int retry = 1;
1115 int nr_failed = 0;
1116 int nr_succeeded = 0;
1117 int pass = 0;
1118 struct page *page;
1119 struct page *page2;
1120 int swapwrite = current->flags & PF_SWAPWRITE;
1121 int rc;
1123 if (!swapwrite)
1124 current->flags |= PF_SWAPWRITE;
1126 for(pass = 0; pass < 10 && retry; pass++) {
1127 retry = 0;
1129 list_for_each_entry_safe(page, page2, from, lru) {
1130 cond_resched();
1132 if (PageHuge(page))
1133 rc = unmap_and_move_huge_page(get_new_page,
1134 put_new_page, private, page,
1135 pass > 2, mode);
1136 else
1137 rc = unmap_and_move(get_new_page, put_new_page,
1138 private, page, pass > 2, mode,
1139 reason);
1141 switch(rc) {
1142 case -ENOMEM:
1143 goto out;
1144 case -EAGAIN:
1145 retry++;
1146 break;
1147 case MIGRATEPAGE_SUCCESS:
1148 nr_succeeded++;
1149 break;
1150 default:
1152 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1153 * unlike -EAGAIN case, the failed page is
1154 * removed from migration page list and not
1155 * retried in the next outer loop.
1157 nr_failed++;
1158 break;
1162 rc = nr_failed + retry;
1163 out:
1164 if (nr_succeeded)
1165 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1166 if (nr_failed)
1167 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1168 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1170 if (!swapwrite)
1171 current->flags &= ~PF_SWAPWRITE;
1173 return rc;
1176 #ifdef CONFIG_NUMA
1178 * Move a list of individual pages
1180 struct page_to_node {
1181 unsigned long addr;
1182 struct page *page;
1183 int node;
1184 int status;
1187 static struct page *new_page_node(struct page *p, unsigned long private,
1188 int **result)
1190 struct page_to_node *pm = (struct page_to_node *)private;
1192 while (pm->node != MAX_NUMNODES && pm->page != p)
1193 pm++;
1195 if (pm->node == MAX_NUMNODES)
1196 return NULL;
1198 *result = &pm->status;
1200 if (PageHuge(p))
1201 return alloc_huge_page_node(page_hstate(compound_head(p)),
1202 pm->node);
1203 else
1204 return __alloc_pages_node(pm->node,
1205 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1209 * Move a set of pages as indicated in the pm array. The addr
1210 * field must be set to the virtual address of the page to be moved
1211 * and the node number must contain a valid target node.
1212 * The pm array ends with node = MAX_NUMNODES.
1214 static int do_move_page_to_node_array(struct mm_struct *mm,
1215 struct page_to_node *pm,
1216 int migrate_all)
1218 int err;
1219 struct page_to_node *pp;
1220 LIST_HEAD(pagelist);
1222 down_read(&mm->mmap_sem);
1225 * Build a list of pages to migrate
1227 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1228 struct vm_area_struct *vma;
1229 struct page *page;
1231 err = -EFAULT;
1232 vma = find_vma(mm, pp->addr);
1233 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1234 goto set_status;
1236 /* FOLL_DUMP to ignore special (like zero) pages */
1237 page = follow_page(vma, pp->addr,
1238 FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1240 err = PTR_ERR(page);
1241 if (IS_ERR(page))
1242 goto set_status;
1244 err = -ENOENT;
1245 if (!page)
1246 goto set_status;
1248 pp->page = page;
1249 err = page_to_nid(page);
1251 if (err == pp->node)
1253 * Node already in the right place
1255 goto put_and_set;
1257 err = -EACCES;
1258 if (page_mapcount(page) > 1 &&
1259 !migrate_all)
1260 goto put_and_set;
1262 if (PageHuge(page)) {
1263 if (PageHead(page))
1264 isolate_huge_page(page, &pagelist);
1265 goto put_and_set;
1268 err = isolate_lru_page(page);
1269 if (!err) {
1270 list_add_tail(&page->lru, &pagelist);
1271 inc_zone_page_state(page, NR_ISOLATED_ANON +
1272 page_is_file_cache(page));
1274 put_and_set:
1276 * Either remove the duplicate refcount from
1277 * isolate_lru_page() or drop the page ref if it was
1278 * not isolated.
1280 put_page(page);
1281 set_status:
1282 pp->status = err;
1285 err = 0;
1286 if (!list_empty(&pagelist)) {
1287 err = migrate_pages(&pagelist, new_page_node, NULL,
1288 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1289 if (err)
1290 putback_movable_pages(&pagelist);
1293 up_read(&mm->mmap_sem);
1294 return err;
1298 * Migrate an array of page address onto an array of nodes and fill
1299 * the corresponding array of status.
1301 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1302 unsigned long nr_pages,
1303 const void __user * __user *pages,
1304 const int __user *nodes,
1305 int __user *status, int flags)
1307 struct page_to_node *pm;
1308 unsigned long chunk_nr_pages;
1309 unsigned long chunk_start;
1310 int err;
1312 err = -ENOMEM;
1313 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1314 if (!pm)
1315 goto out;
1317 migrate_prep();
1320 * Store a chunk of page_to_node array in a page,
1321 * but keep the last one as a marker
1323 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1325 for (chunk_start = 0;
1326 chunk_start < nr_pages;
1327 chunk_start += chunk_nr_pages) {
1328 int j;
1330 if (chunk_start + chunk_nr_pages > nr_pages)
1331 chunk_nr_pages = nr_pages - chunk_start;
1333 /* fill the chunk pm with addrs and nodes from user-space */
1334 for (j = 0; j < chunk_nr_pages; j++) {
1335 const void __user *p;
1336 int node;
1338 err = -EFAULT;
1339 if (get_user(p, pages + j + chunk_start))
1340 goto out_pm;
1341 pm[j].addr = (unsigned long) p;
1343 if (get_user(node, nodes + j + chunk_start))
1344 goto out_pm;
1346 err = -ENODEV;
1347 if (node < 0 || node >= MAX_NUMNODES)
1348 goto out_pm;
1350 if (!node_state(node, N_MEMORY))
1351 goto out_pm;
1353 err = -EACCES;
1354 if (!node_isset(node, task_nodes))
1355 goto out_pm;
1357 pm[j].node = node;
1360 /* End marker for this chunk */
1361 pm[chunk_nr_pages].node = MAX_NUMNODES;
1363 /* Migrate this chunk */
1364 err = do_move_page_to_node_array(mm, pm,
1365 flags & MPOL_MF_MOVE_ALL);
1366 if (err < 0)
1367 goto out_pm;
1369 /* Return status information */
1370 for (j = 0; j < chunk_nr_pages; j++)
1371 if (put_user(pm[j].status, status + j + chunk_start)) {
1372 err = -EFAULT;
1373 goto out_pm;
1376 err = 0;
1378 out_pm:
1379 free_page((unsigned long)pm);
1380 out:
1381 return err;
1385 * Determine the nodes of an array of pages and store it in an array of status.
1387 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1388 const void __user **pages, int *status)
1390 unsigned long i;
1392 down_read(&mm->mmap_sem);
1394 for (i = 0; i < nr_pages; i++) {
1395 unsigned long addr = (unsigned long)(*pages);
1396 struct vm_area_struct *vma;
1397 struct page *page;
1398 int err = -EFAULT;
1400 vma = find_vma(mm, addr);
1401 if (!vma || addr < vma->vm_start)
1402 goto set_status;
1404 /* FOLL_DUMP to ignore special (like zero) pages */
1405 page = follow_page(vma, addr, FOLL_DUMP);
1407 err = PTR_ERR(page);
1408 if (IS_ERR(page))
1409 goto set_status;
1411 err = page ? page_to_nid(page) : -ENOENT;
1412 set_status:
1413 *status = err;
1415 pages++;
1416 status++;
1419 up_read(&mm->mmap_sem);
1423 * Determine the nodes of a user array of pages and store it in
1424 * a user array of status.
1426 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1427 const void __user * __user *pages,
1428 int __user *status)
1430 #define DO_PAGES_STAT_CHUNK_NR 16
1431 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1432 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1434 while (nr_pages) {
1435 unsigned long chunk_nr;
1437 chunk_nr = nr_pages;
1438 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1439 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1441 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1442 break;
1444 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1446 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1447 break;
1449 pages += chunk_nr;
1450 status += chunk_nr;
1451 nr_pages -= chunk_nr;
1453 return nr_pages ? -EFAULT : 0;
1457 * Move a list of pages in the address space of the currently executing
1458 * process.
1460 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1461 const void __user * __user *, pages,
1462 const int __user *, nodes,
1463 int __user *, status, int, flags)
1465 const struct cred *cred = current_cred(), *tcred;
1466 struct task_struct *task;
1467 struct mm_struct *mm;
1468 int err;
1469 nodemask_t task_nodes;
1471 /* Check flags */
1472 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1473 return -EINVAL;
1475 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1476 return -EPERM;
1478 /* Find the mm_struct */
1479 rcu_read_lock();
1480 task = pid ? find_task_by_vpid(pid) : current;
1481 if (!task) {
1482 rcu_read_unlock();
1483 return -ESRCH;
1485 get_task_struct(task);
1488 * Check if this process has the right to modify the specified
1489 * process. The right exists if the process has administrative
1490 * capabilities, superuser privileges or the same
1491 * userid as the target process.
1493 tcred = __task_cred(task);
1494 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1495 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1496 !capable(CAP_SYS_NICE)) {
1497 rcu_read_unlock();
1498 err = -EPERM;
1499 goto out;
1501 rcu_read_unlock();
1503 err = security_task_movememory(task);
1504 if (err)
1505 goto out;
1507 task_nodes = cpuset_mems_allowed(task);
1508 mm = get_task_mm(task);
1509 put_task_struct(task);
1511 if (!mm)
1512 return -EINVAL;
1514 if (nodes)
1515 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1516 nodes, status, flags);
1517 else
1518 err = do_pages_stat(mm, nr_pages, pages, status);
1520 mmput(mm);
1521 return err;
1523 out:
1524 put_task_struct(task);
1525 return err;
1528 #ifdef CONFIG_NUMA_BALANCING
1530 * Returns true if this is a safe migration target node for misplaced NUMA
1531 * pages. Currently it only checks the watermarks which crude
1533 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1534 unsigned long nr_migrate_pages)
1536 int z;
1537 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1538 struct zone *zone = pgdat->node_zones + z;
1540 if (!populated_zone(zone))
1541 continue;
1543 if (!zone_reclaimable(zone))
1544 continue;
1546 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1547 if (!zone_watermark_ok(zone, 0,
1548 high_wmark_pages(zone) +
1549 nr_migrate_pages,
1550 0, 0))
1551 continue;
1552 return true;
1554 return false;
1557 static struct page *alloc_misplaced_dst_page(struct page *page,
1558 unsigned long data,
1559 int **result)
1561 int nid = (int) data;
1562 struct page *newpage;
1564 newpage = __alloc_pages_node(nid,
1565 (GFP_HIGHUSER_MOVABLE |
1566 __GFP_THISNODE | __GFP_NOMEMALLOC |
1567 __GFP_NORETRY | __GFP_NOWARN) &
1568 ~GFP_IOFS, 0);
1570 return newpage;
1574 * page migration rate limiting control.
1575 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1576 * window of time. Default here says do not migrate more than 1280M per second.
1578 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1579 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1581 /* Returns true if the node is migrate rate-limited after the update */
1582 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1583 unsigned long nr_pages)
1586 * Rate-limit the amount of data that is being migrated to a node.
1587 * Optimal placement is no good if the memory bus is saturated and
1588 * all the time is being spent migrating!
1590 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1591 spin_lock(&pgdat->numabalancing_migrate_lock);
1592 pgdat->numabalancing_migrate_nr_pages = 0;
1593 pgdat->numabalancing_migrate_next_window = jiffies +
1594 msecs_to_jiffies(migrate_interval_millisecs);
1595 spin_unlock(&pgdat->numabalancing_migrate_lock);
1597 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1598 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1599 nr_pages);
1600 return true;
1604 * This is an unlocked non-atomic update so errors are possible.
1605 * The consequences are failing to migrate when we potentiall should
1606 * have which is not severe enough to warrant locking. If it is ever
1607 * a problem, it can be converted to a per-cpu counter.
1609 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1610 return false;
1613 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1615 int page_lru;
1617 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1619 /* Avoid migrating to a node that is nearly full */
1620 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1621 return 0;
1623 if (isolate_lru_page(page))
1624 return 0;
1627 * migrate_misplaced_transhuge_page() skips page migration's usual
1628 * check on page_count(), so we must do it here, now that the page
1629 * has been isolated: a GUP pin, or any other pin, prevents migration.
1630 * The expected page count is 3: 1 for page's mapcount and 1 for the
1631 * caller's pin and 1 for the reference taken by isolate_lru_page().
1633 if (PageTransHuge(page) && page_count(page) != 3) {
1634 putback_lru_page(page);
1635 return 0;
1638 page_lru = page_is_file_cache(page);
1639 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1640 hpage_nr_pages(page));
1643 * Isolating the page has taken another reference, so the
1644 * caller's reference can be safely dropped without the page
1645 * disappearing underneath us during migration.
1647 put_page(page);
1648 return 1;
1651 bool pmd_trans_migrating(pmd_t pmd)
1653 struct page *page = pmd_page(pmd);
1654 return PageLocked(page);
1658 * Attempt to migrate a misplaced page to the specified destination
1659 * node. Caller is expected to have an elevated reference count on
1660 * the page that will be dropped by this function before returning.
1662 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1663 int node)
1665 pg_data_t *pgdat = NODE_DATA(node);
1666 int isolated;
1667 int nr_remaining;
1668 LIST_HEAD(migratepages);
1671 * Don't migrate file pages that are mapped in multiple processes
1672 * with execute permissions as they are probably shared libraries.
1674 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1675 (vma->vm_flags & VM_EXEC))
1676 goto out;
1679 * Rate-limit the amount of data that is being migrated to a node.
1680 * Optimal placement is no good if the memory bus is saturated and
1681 * all the time is being spent migrating!
1683 if (numamigrate_update_ratelimit(pgdat, 1))
1684 goto out;
1686 isolated = numamigrate_isolate_page(pgdat, page);
1687 if (!isolated)
1688 goto out;
1690 list_add(&page->lru, &migratepages);
1691 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1692 NULL, node, MIGRATE_ASYNC,
1693 MR_NUMA_MISPLACED);
1694 if (nr_remaining) {
1695 if (!list_empty(&migratepages)) {
1696 list_del(&page->lru);
1697 dec_zone_page_state(page, NR_ISOLATED_ANON +
1698 page_is_file_cache(page));
1699 putback_lru_page(page);
1701 isolated = 0;
1702 } else
1703 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1704 BUG_ON(!list_empty(&migratepages));
1705 return isolated;
1707 out:
1708 put_page(page);
1709 return 0;
1711 #endif /* CONFIG_NUMA_BALANCING */
1713 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1715 * Migrates a THP to a given target node. page must be locked and is unlocked
1716 * before returning.
1718 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1719 struct vm_area_struct *vma,
1720 pmd_t *pmd, pmd_t entry,
1721 unsigned long address,
1722 struct page *page, int node)
1724 spinlock_t *ptl;
1725 pg_data_t *pgdat = NODE_DATA(node);
1726 int isolated = 0;
1727 struct page *new_page = NULL;
1728 int page_lru = page_is_file_cache(page);
1729 unsigned long mmun_start = address & HPAGE_PMD_MASK;
1730 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1731 pmd_t orig_entry;
1734 * Rate-limit the amount of data that is being migrated to a node.
1735 * Optimal placement is no good if the memory bus is saturated and
1736 * all the time is being spent migrating!
1738 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1739 goto out_dropref;
1741 new_page = alloc_pages_node(node,
1742 (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_WAIT,
1743 HPAGE_PMD_ORDER);
1744 if (!new_page)
1745 goto out_fail;
1747 isolated = numamigrate_isolate_page(pgdat, page);
1748 if (!isolated) {
1749 put_page(new_page);
1750 goto out_fail;
1753 if (mm_tlb_flush_pending(mm))
1754 flush_tlb_range(vma, mmun_start, mmun_end);
1756 /* Prepare a page as a migration target */
1757 __set_page_locked(new_page);
1758 SetPageSwapBacked(new_page);
1760 /* anon mapping, we can simply copy page->mapping to the new page: */
1761 new_page->mapping = page->mapping;
1762 new_page->index = page->index;
1763 migrate_page_copy(new_page, page);
1764 WARN_ON(PageLRU(new_page));
1766 /* Recheck the target PMD */
1767 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1768 ptl = pmd_lock(mm, pmd);
1769 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1770 fail_putback:
1771 spin_unlock(ptl);
1772 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1774 /* Reverse changes made by migrate_page_copy() */
1775 if (TestClearPageActive(new_page))
1776 SetPageActive(page);
1777 if (TestClearPageUnevictable(new_page))
1778 SetPageUnevictable(page);
1779 mlock_migrate_page(page, new_page);
1781 unlock_page(new_page);
1782 put_page(new_page); /* Free it */
1784 /* Retake the callers reference and putback on LRU */
1785 get_page(page);
1786 putback_lru_page(page);
1787 mod_zone_page_state(page_zone(page),
1788 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1790 goto out_unlock;
1793 orig_entry = *pmd;
1794 entry = mk_pmd(new_page, vma->vm_page_prot);
1795 entry = pmd_mkhuge(entry);
1796 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1799 * Clear the old entry under pagetable lock and establish the new PTE.
1800 * Any parallel GUP will either observe the old page blocking on the
1801 * page lock, block on the page table lock or observe the new page.
1802 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1803 * guarantee the copy is visible before the pagetable update.
1805 flush_cache_range(vma, mmun_start, mmun_end);
1806 page_add_anon_rmap(new_page, vma, mmun_start);
1807 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
1808 set_pmd_at(mm, mmun_start, pmd, entry);
1809 flush_tlb_range(vma, mmun_start, mmun_end);
1810 update_mmu_cache_pmd(vma, address, &entry);
1812 if (page_count(page) != 2) {
1813 set_pmd_at(mm, mmun_start, pmd, orig_entry);
1814 flush_tlb_range(vma, mmun_start, mmun_end);
1815 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1816 update_mmu_cache_pmd(vma, address, &entry);
1817 page_remove_rmap(new_page);
1818 goto fail_putback;
1821 mem_cgroup_migrate(page, new_page, false);
1823 page_remove_rmap(page);
1825 spin_unlock(ptl);
1826 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1828 /* Take an "isolate" reference and put new page on the LRU. */
1829 get_page(new_page);
1830 putback_lru_page(new_page);
1832 unlock_page(new_page);
1833 unlock_page(page);
1834 put_page(page); /* Drop the rmap reference */
1835 put_page(page); /* Drop the LRU isolation reference */
1837 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1838 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1840 mod_zone_page_state(page_zone(page),
1841 NR_ISOLATED_ANON + page_lru,
1842 -HPAGE_PMD_NR);
1843 return isolated;
1845 out_fail:
1846 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1847 out_dropref:
1848 ptl = pmd_lock(mm, pmd);
1849 if (pmd_same(*pmd, entry)) {
1850 entry = pmd_modify(entry, vma->vm_page_prot);
1851 set_pmd_at(mm, mmun_start, pmd, entry);
1852 update_mmu_cache_pmd(vma, address, &entry);
1854 spin_unlock(ptl);
1856 out_unlock:
1857 unlock_page(page);
1858 put_page(page);
1859 return 0;
1861 #endif /* CONFIG_NUMA_BALANCING */
1863 #endif /* CONFIG_NUMA */