block: move stats from disk to part0
[linux-2.6/btrfs-unstable.git] / block / blk-core.c
blob98138f0025240caa4b5aaeca28603a982124a9ad
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/interrupt.h>
30 #include <linux/cpu.h>
31 #include <linux/blktrace_api.h>
32 #include <linux/fault-inject.h>
34 #include "blk.h"
36 static int __make_request(struct request_queue *q, struct bio *bio);
39 * For the allocated request tables
41 static struct kmem_cache *request_cachep;
44 * For queue allocation
46 struct kmem_cache *blk_requestq_cachep;
49 * Controlling structure to kblockd
51 static struct workqueue_struct *kblockd_workqueue;
53 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
55 static void drive_stat_acct(struct request *rq, int new_io)
57 struct hd_struct *part;
58 int rw = rq_data_dir(rq);
59 int cpu;
61 if (!blk_fs_request(rq) || !rq->rq_disk)
62 return;
64 cpu = part_stat_lock();
65 part = disk_map_sector_rcu(rq->rq_disk, rq->sector);
67 if (!new_io)
68 part_stat_inc(cpu, part, merges[rw]);
69 else {
70 part_round_stats(cpu, part);
71 part_inc_in_flight(part);
74 part_stat_unlock();
77 void blk_queue_congestion_threshold(struct request_queue *q)
79 int nr;
81 nr = q->nr_requests - (q->nr_requests / 8) + 1;
82 if (nr > q->nr_requests)
83 nr = q->nr_requests;
84 q->nr_congestion_on = nr;
86 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
87 if (nr < 1)
88 nr = 1;
89 q->nr_congestion_off = nr;
92 /**
93 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
94 * @bdev: device
96 * Locates the passed device's request queue and returns the address of its
97 * backing_dev_info
99 * Will return NULL if the request queue cannot be located.
101 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
103 struct backing_dev_info *ret = NULL;
104 struct request_queue *q = bdev_get_queue(bdev);
106 if (q)
107 ret = &q->backing_dev_info;
108 return ret;
110 EXPORT_SYMBOL(blk_get_backing_dev_info);
112 void blk_rq_init(struct request_queue *q, struct request *rq)
114 memset(rq, 0, sizeof(*rq));
116 INIT_LIST_HEAD(&rq->queuelist);
117 INIT_LIST_HEAD(&rq->donelist);
118 rq->q = q;
119 rq->sector = rq->hard_sector = (sector_t) -1;
120 INIT_HLIST_NODE(&rq->hash);
121 RB_CLEAR_NODE(&rq->rb_node);
122 rq->cmd = rq->__cmd;
123 rq->tag = -1;
124 rq->ref_count = 1;
126 EXPORT_SYMBOL(blk_rq_init);
128 static void req_bio_endio(struct request *rq, struct bio *bio,
129 unsigned int nbytes, int error)
131 struct request_queue *q = rq->q;
133 if (&q->bar_rq != rq) {
134 if (error)
135 clear_bit(BIO_UPTODATE, &bio->bi_flags);
136 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
137 error = -EIO;
139 if (unlikely(nbytes > bio->bi_size)) {
140 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
141 __func__, nbytes, bio->bi_size);
142 nbytes = bio->bi_size;
145 bio->bi_size -= nbytes;
146 bio->bi_sector += (nbytes >> 9);
148 if (bio_integrity(bio))
149 bio_integrity_advance(bio, nbytes);
151 if (bio->bi_size == 0)
152 bio_endio(bio, error);
153 } else {
156 * Okay, this is the barrier request in progress, just
157 * record the error;
159 if (error && !q->orderr)
160 q->orderr = error;
164 void blk_dump_rq_flags(struct request *rq, char *msg)
166 int bit;
168 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
169 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
170 rq->cmd_flags);
172 printk(KERN_INFO " sector %llu, nr/cnr %lu/%u\n",
173 (unsigned long long)rq->sector,
174 rq->nr_sectors,
175 rq->current_nr_sectors);
176 printk(KERN_INFO " bio %p, biotail %p, buffer %p, data %p, len %u\n",
177 rq->bio, rq->biotail,
178 rq->buffer, rq->data,
179 rq->data_len);
181 if (blk_pc_request(rq)) {
182 printk(KERN_INFO " cdb: ");
183 for (bit = 0; bit < BLK_MAX_CDB; bit++)
184 printk("%02x ", rq->cmd[bit]);
185 printk("\n");
188 EXPORT_SYMBOL(blk_dump_rq_flags);
191 * "plug" the device if there are no outstanding requests: this will
192 * force the transfer to start only after we have put all the requests
193 * on the list.
195 * This is called with interrupts off and no requests on the queue and
196 * with the queue lock held.
198 void blk_plug_device(struct request_queue *q)
200 WARN_ON(!irqs_disabled());
203 * don't plug a stopped queue, it must be paired with blk_start_queue()
204 * which will restart the queueing
206 if (blk_queue_stopped(q))
207 return;
209 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
210 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
211 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
214 EXPORT_SYMBOL(blk_plug_device);
217 * blk_plug_device_unlocked - plug a device without queue lock held
218 * @q: The &struct request_queue to plug
220 * Description:
221 * Like @blk_plug_device(), but grabs the queue lock and disables
222 * interrupts.
224 void blk_plug_device_unlocked(struct request_queue *q)
226 unsigned long flags;
228 spin_lock_irqsave(q->queue_lock, flags);
229 blk_plug_device(q);
230 spin_unlock_irqrestore(q->queue_lock, flags);
232 EXPORT_SYMBOL(blk_plug_device_unlocked);
235 * remove the queue from the plugged list, if present. called with
236 * queue lock held and interrupts disabled.
238 int blk_remove_plug(struct request_queue *q)
240 WARN_ON(!irqs_disabled());
242 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
243 return 0;
245 del_timer(&q->unplug_timer);
246 return 1;
248 EXPORT_SYMBOL(blk_remove_plug);
251 * remove the plug and let it rip..
253 void __generic_unplug_device(struct request_queue *q)
255 if (unlikely(blk_queue_stopped(q)))
256 return;
258 if (!blk_remove_plug(q))
259 return;
261 q->request_fn(q);
263 EXPORT_SYMBOL(__generic_unplug_device);
266 * generic_unplug_device - fire a request queue
267 * @q: The &struct request_queue in question
269 * Description:
270 * Linux uses plugging to build bigger requests queues before letting
271 * the device have at them. If a queue is plugged, the I/O scheduler
272 * is still adding and merging requests on the queue. Once the queue
273 * gets unplugged, the request_fn defined for the queue is invoked and
274 * transfers started.
276 void generic_unplug_device(struct request_queue *q)
278 if (blk_queue_plugged(q)) {
279 spin_lock_irq(q->queue_lock);
280 __generic_unplug_device(q);
281 spin_unlock_irq(q->queue_lock);
284 EXPORT_SYMBOL(generic_unplug_device);
286 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
287 struct page *page)
289 struct request_queue *q = bdi->unplug_io_data;
291 blk_unplug(q);
294 void blk_unplug_work(struct work_struct *work)
296 struct request_queue *q =
297 container_of(work, struct request_queue, unplug_work);
299 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
300 q->rq.count[READ] + q->rq.count[WRITE]);
302 q->unplug_fn(q);
305 void blk_unplug_timeout(unsigned long data)
307 struct request_queue *q = (struct request_queue *)data;
309 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
310 q->rq.count[READ] + q->rq.count[WRITE]);
312 kblockd_schedule_work(&q->unplug_work);
315 void blk_unplug(struct request_queue *q)
318 * devices don't necessarily have an ->unplug_fn defined
320 if (q->unplug_fn) {
321 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
322 q->rq.count[READ] + q->rq.count[WRITE]);
324 q->unplug_fn(q);
327 EXPORT_SYMBOL(blk_unplug);
330 * blk_start_queue - restart a previously stopped queue
331 * @q: The &struct request_queue in question
333 * Description:
334 * blk_start_queue() will clear the stop flag on the queue, and call
335 * the request_fn for the queue if it was in a stopped state when
336 * entered. Also see blk_stop_queue(). Queue lock must be held.
338 void blk_start_queue(struct request_queue *q)
340 WARN_ON(!irqs_disabled());
342 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
345 * one level of recursion is ok and is much faster than kicking
346 * the unplug handling
348 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
349 q->request_fn(q);
350 queue_flag_clear(QUEUE_FLAG_REENTER, q);
351 } else {
352 blk_plug_device(q);
353 kblockd_schedule_work(&q->unplug_work);
356 EXPORT_SYMBOL(blk_start_queue);
359 * blk_stop_queue - stop a queue
360 * @q: The &struct request_queue in question
362 * Description:
363 * The Linux block layer assumes that a block driver will consume all
364 * entries on the request queue when the request_fn strategy is called.
365 * Often this will not happen, because of hardware limitations (queue
366 * depth settings). If a device driver gets a 'queue full' response,
367 * or if it simply chooses not to queue more I/O at one point, it can
368 * call this function to prevent the request_fn from being called until
369 * the driver has signalled it's ready to go again. This happens by calling
370 * blk_start_queue() to restart queue operations. Queue lock must be held.
372 void blk_stop_queue(struct request_queue *q)
374 blk_remove_plug(q);
375 queue_flag_set(QUEUE_FLAG_STOPPED, q);
377 EXPORT_SYMBOL(blk_stop_queue);
380 * blk_sync_queue - cancel any pending callbacks on a queue
381 * @q: the queue
383 * Description:
384 * The block layer may perform asynchronous callback activity
385 * on a queue, such as calling the unplug function after a timeout.
386 * A block device may call blk_sync_queue to ensure that any
387 * such activity is cancelled, thus allowing it to release resources
388 * that the callbacks might use. The caller must already have made sure
389 * that its ->make_request_fn will not re-add plugging prior to calling
390 * this function.
393 void blk_sync_queue(struct request_queue *q)
395 del_timer_sync(&q->unplug_timer);
396 kblockd_flush_work(&q->unplug_work);
398 EXPORT_SYMBOL(blk_sync_queue);
401 * blk_run_queue - run a single device queue
402 * @q: The queue to run
404 void __blk_run_queue(struct request_queue *q)
406 blk_remove_plug(q);
409 * Only recurse once to avoid overrunning the stack, let the unplug
410 * handling reinvoke the handler shortly if we already got there.
412 if (!elv_queue_empty(q)) {
413 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
414 q->request_fn(q);
415 queue_flag_clear(QUEUE_FLAG_REENTER, q);
416 } else {
417 blk_plug_device(q);
418 kblockd_schedule_work(&q->unplug_work);
422 EXPORT_SYMBOL(__blk_run_queue);
425 * blk_run_queue - run a single device queue
426 * @q: The queue to run
428 void blk_run_queue(struct request_queue *q)
430 unsigned long flags;
432 spin_lock_irqsave(q->queue_lock, flags);
433 __blk_run_queue(q);
434 spin_unlock_irqrestore(q->queue_lock, flags);
436 EXPORT_SYMBOL(blk_run_queue);
438 void blk_put_queue(struct request_queue *q)
440 kobject_put(&q->kobj);
443 void blk_cleanup_queue(struct request_queue *q)
445 mutex_lock(&q->sysfs_lock);
446 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
447 mutex_unlock(&q->sysfs_lock);
449 if (q->elevator)
450 elevator_exit(q->elevator);
452 blk_put_queue(q);
454 EXPORT_SYMBOL(blk_cleanup_queue);
456 static int blk_init_free_list(struct request_queue *q)
458 struct request_list *rl = &q->rq;
460 rl->count[READ] = rl->count[WRITE] = 0;
461 rl->starved[READ] = rl->starved[WRITE] = 0;
462 rl->elvpriv = 0;
463 init_waitqueue_head(&rl->wait[READ]);
464 init_waitqueue_head(&rl->wait[WRITE]);
466 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
467 mempool_free_slab, request_cachep, q->node);
469 if (!rl->rq_pool)
470 return -ENOMEM;
472 return 0;
475 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
477 return blk_alloc_queue_node(gfp_mask, -1);
479 EXPORT_SYMBOL(blk_alloc_queue);
481 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
483 struct request_queue *q;
484 int err;
486 q = kmem_cache_alloc_node(blk_requestq_cachep,
487 gfp_mask | __GFP_ZERO, node_id);
488 if (!q)
489 return NULL;
491 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
492 q->backing_dev_info.unplug_io_data = q;
493 err = bdi_init(&q->backing_dev_info);
494 if (err) {
495 kmem_cache_free(blk_requestq_cachep, q);
496 return NULL;
499 init_timer(&q->unplug_timer);
501 kobject_init(&q->kobj, &blk_queue_ktype);
503 mutex_init(&q->sysfs_lock);
504 spin_lock_init(&q->__queue_lock);
506 return q;
508 EXPORT_SYMBOL(blk_alloc_queue_node);
511 * blk_init_queue - prepare a request queue for use with a block device
512 * @rfn: The function to be called to process requests that have been
513 * placed on the queue.
514 * @lock: Request queue spin lock
516 * Description:
517 * If a block device wishes to use the standard request handling procedures,
518 * which sorts requests and coalesces adjacent requests, then it must
519 * call blk_init_queue(). The function @rfn will be called when there
520 * are requests on the queue that need to be processed. If the device
521 * supports plugging, then @rfn may not be called immediately when requests
522 * are available on the queue, but may be called at some time later instead.
523 * Plugged queues are generally unplugged when a buffer belonging to one
524 * of the requests on the queue is needed, or due to memory pressure.
526 * @rfn is not required, or even expected, to remove all requests off the
527 * queue, but only as many as it can handle at a time. If it does leave
528 * requests on the queue, it is responsible for arranging that the requests
529 * get dealt with eventually.
531 * The queue spin lock must be held while manipulating the requests on the
532 * request queue; this lock will be taken also from interrupt context, so irq
533 * disabling is needed for it.
535 * Function returns a pointer to the initialized request queue, or %NULL if
536 * it didn't succeed.
538 * Note:
539 * blk_init_queue() must be paired with a blk_cleanup_queue() call
540 * when the block device is deactivated (such as at module unload).
543 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
545 return blk_init_queue_node(rfn, lock, -1);
547 EXPORT_SYMBOL(blk_init_queue);
549 struct request_queue *
550 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
552 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
554 if (!q)
555 return NULL;
557 q->node = node_id;
558 if (blk_init_free_list(q)) {
559 kmem_cache_free(blk_requestq_cachep, q);
560 return NULL;
564 * if caller didn't supply a lock, they get per-queue locking with
565 * our embedded lock
567 if (!lock)
568 lock = &q->__queue_lock;
570 q->request_fn = rfn;
571 q->prep_rq_fn = NULL;
572 q->unplug_fn = generic_unplug_device;
573 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
574 q->queue_lock = lock;
576 blk_queue_segment_boundary(q, 0xffffffff);
578 blk_queue_make_request(q, __make_request);
579 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
581 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
582 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
584 q->sg_reserved_size = INT_MAX;
586 blk_set_cmd_filter_defaults(&q->cmd_filter);
589 * all done
591 if (!elevator_init(q, NULL)) {
592 blk_queue_congestion_threshold(q);
593 return q;
596 blk_put_queue(q);
597 return NULL;
599 EXPORT_SYMBOL(blk_init_queue_node);
601 int blk_get_queue(struct request_queue *q)
603 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
604 kobject_get(&q->kobj);
605 return 0;
608 return 1;
611 static inline void blk_free_request(struct request_queue *q, struct request *rq)
613 if (rq->cmd_flags & REQ_ELVPRIV)
614 elv_put_request(q, rq);
615 mempool_free(rq, q->rq.rq_pool);
618 static struct request *
619 blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
621 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
623 if (!rq)
624 return NULL;
626 blk_rq_init(q, rq);
628 rq->cmd_flags = rw | REQ_ALLOCED;
630 if (priv) {
631 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
632 mempool_free(rq, q->rq.rq_pool);
633 return NULL;
635 rq->cmd_flags |= REQ_ELVPRIV;
638 return rq;
642 * ioc_batching returns true if the ioc is a valid batching request and
643 * should be given priority access to a request.
645 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
647 if (!ioc)
648 return 0;
651 * Make sure the process is able to allocate at least 1 request
652 * even if the batch times out, otherwise we could theoretically
653 * lose wakeups.
655 return ioc->nr_batch_requests == q->nr_batching ||
656 (ioc->nr_batch_requests > 0
657 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
661 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
662 * will cause the process to be a "batcher" on all queues in the system. This
663 * is the behaviour we want though - once it gets a wakeup it should be given
664 * a nice run.
666 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
668 if (!ioc || ioc_batching(q, ioc))
669 return;
671 ioc->nr_batch_requests = q->nr_batching;
672 ioc->last_waited = jiffies;
675 static void __freed_request(struct request_queue *q, int rw)
677 struct request_list *rl = &q->rq;
679 if (rl->count[rw] < queue_congestion_off_threshold(q))
680 blk_clear_queue_congested(q, rw);
682 if (rl->count[rw] + 1 <= q->nr_requests) {
683 if (waitqueue_active(&rl->wait[rw]))
684 wake_up(&rl->wait[rw]);
686 blk_clear_queue_full(q, rw);
691 * A request has just been released. Account for it, update the full and
692 * congestion status, wake up any waiters. Called under q->queue_lock.
694 static void freed_request(struct request_queue *q, int rw, int priv)
696 struct request_list *rl = &q->rq;
698 rl->count[rw]--;
699 if (priv)
700 rl->elvpriv--;
702 __freed_request(q, rw);
704 if (unlikely(rl->starved[rw ^ 1]))
705 __freed_request(q, rw ^ 1);
708 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
710 * Get a free request, queue_lock must be held.
711 * Returns NULL on failure, with queue_lock held.
712 * Returns !NULL on success, with queue_lock *not held*.
714 static struct request *get_request(struct request_queue *q, int rw_flags,
715 struct bio *bio, gfp_t gfp_mask)
717 struct request *rq = NULL;
718 struct request_list *rl = &q->rq;
719 struct io_context *ioc = NULL;
720 const int rw = rw_flags & 0x01;
721 int may_queue, priv;
723 may_queue = elv_may_queue(q, rw_flags);
724 if (may_queue == ELV_MQUEUE_NO)
725 goto rq_starved;
727 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
728 if (rl->count[rw]+1 >= q->nr_requests) {
729 ioc = current_io_context(GFP_ATOMIC, q->node);
731 * The queue will fill after this allocation, so set
732 * it as full, and mark this process as "batching".
733 * This process will be allowed to complete a batch of
734 * requests, others will be blocked.
736 if (!blk_queue_full(q, rw)) {
737 ioc_set_batching(q, ioc);
738 blk_set_queue_full(q, rw);
739 } else {
740 if (may_queue != ELV_MQUEUE_MUST
741 && !ioc_batching(q, ioc)) {
743 * The queue is full and the allocating
744 * process is not a "batcher", and not
745 * exempted by the IO scheduler
747 goto out;
751 blk_set_queue_congested(q, rw);
755 * Only allow batching queuers to allocate up to 50% over the defined
756 * limit of requests, otherwise we could have thousands of requests
757 * allocated with any setting of ->nr_requests
759 if (rl->count[rw] >= (3 * q->nr_requests / 2))
760 goto out;
762 rl->count[rw]++;
763 rl->starved[rw] = 0;
765 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
766 if (priv)
767 rl->elvpriv++;
769 spin_unlock_irq(q->queue_lock);
771 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
772 if (unlikely(!rq)) {
774 * Allocation failed presumably due to memory. Undo anything
775 * we might have messed up.
777 * Allocating task should really be put onto the front of the
778 * wait queue, but this is pretty rare.
780 spin_lock_irq(q->queue_lock);
781 freed_request(q, rw, priv);
784 * in the very unlikely event that allocation failed and no
785 * requests for this direction was pending, mark us starved
786 * so that freeing of a request in the other direction will
787 * notice us. another possible fix would be to split the
788 * rq mempool into READ and WRITE
790 rq_starved:
791 if (unlikely(rl->count[rw] == 0))
792 rl->starved[rw] = 1;
794 goto out;
798 * ioc may be NULL here, and ioc_batching will be false. That's
799 * OK, if the queue is under the request limit then requests need
800 * not count toward the nr_batch_requests limit. There will always
801 * be some limit enforced by BLK_BATCH_TIME.
803 if (ioc_batching(q, ioc))
804 ioc->nr_batch_requests--;
806 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
807 out:
808 return rq;
812 * No available requests for this queue, unplug the device and wait for some
813 * requests to become available.
815 * Called with q->queue_lock held, and returns with it unlocked.
817 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
818 struct bio *bio)
820 const int rw = rw_flags & 0x01;
821 struct request *rq;
823 rq = get_request(q, rw_flags, bio, GFP_NOIO);
824 while (!rq) {
825 DEFINE_WAIT(wait);
826 struct io_context *ioc;
827 struct request_list *rl = &q->rq;
829 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
830 TASK_UNINTERRUPTIBLE);
832 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
834 __generic_unplug_device(q);
835 spin_unlock_irq(q->queue_lock);
836 io_schedule();
839 * After sleeping, we become a "batching" process and
840 * will be able to allocate at least one request, and
841 * up to a big batch of them for a small period time.
842 * See ioc_batching, ioc_set_batching
844 ioc = current_io_context(GFP_NOIO, q->node);
845 ioc_set_batching(q, ioc);
847 spin_lock_irq(q->queue_lock);
848 finish_wait(&rl->wait[rw], &wait);
850 rq = get_request(q, rw_flags, bio, GFP_NOIO);
853 return rq;
856 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
858 struct request *rq;
860 BUG_ON(rw != READ && rw != WRITE);
862 spin_lock_irq(q->queue_lock);
863 if (gfp_mask & __GFP_WAIT) {
864 rq = get_request_wait(q, rw, NULL);
865 } else {
866 rq = get_request(q, rw, NULL, gfp_mask);
867 if (!rq)
868 spin_unlock_irq(q->queue_lock);
870 /* q->queue_lock is unlocked at this point */
872 return rq;
874 EXPORT_SYMBOL(blk_get_request);
877 * blk_start_queueing - initiate dispatch of requests to device
878 * @q: request queue to kick into gear
880 * This is basically a helper to remove the need to know whether a queue
881 * is plugged or not if someone just wants to initiate dispatch of requests
882 * for this queue.
884 * The queue lock must be held with interrupts disabled.
886 void blk_start_queueing(struct request_queue *q)
888 if (!blk_queue_plugged(q))
889 q->request_fn(q);
890 else
891 __generic_unplug_device(q);
893 EXPORT_SYMBOL(blk_start_queueing);
896 * blk_requeue_request - put a request back on queue
897 * @q: request queue where request should be inserted
898 * @rq: request to be inserted
900 * Description:
901 * Drivers often keep queueing requests until the hardware cannot accept
902 * more, when that condition happens we need to put the request back
903 * on the queue. Must be called with queue lock held.
905 void blk_requeue_request(struct request_queue *q, struct request *rq)
907 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
909 if (blk_rq_tagged(rq))
910 blk_queue_end_tag(q, rq);
912 elv_requeue_request(q, rq);
914 EXPORT_SYMBOL(blk_requeue_request);
917 * blk_insert_request - insert a special request into a request queue
918 * @q: request queue where request should be inserted
919 * @rq: request to be inserted
920 * @at_head: insert request at head or tail of queue
921 * @data: private data
923 * Description:
924 * Many block devices need to execute commands asynchronously, so they don't
925 * block the whole kernel from preemption during request execution. This is
926 * accomplished normally by inserting aritficial requests tagged as
927 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
928 * be scheduled for actual execution by the request queue.
930 * We have the option of inserting the head or the tail of the queue.
931 * Typically we use the tail for new ioctls and so forth. We use the head
932 * of the queue for things like a QUEUE_FULL message from a device, or a
933 * host that is unable to accept a particular command.
935 void blk_insert_request(struct request_queue *q, struct request *rq,
936 int at_head, void *data)
938 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
939 unsigned long flags;
942 * tell I/O scheduler that this isn't a regular read/write (ie it
943 * must not attempt merges on this) and that it acts as a soft
944 * barrier
946 rq->cmd_type = REQ_TYPE_SPECIAL;
947 rq->cmd_flags |= REQ_SOFTBARRIER;
949 rq->special = data;
951 spin_lock_irqsave(q->queue_lock, flags);
954 * If command is tagged, release the tag
956 if (blk_rq_tagged(rq))
957 blk_queue_end_tag(q, rq);
959 drive_stat_acct(rq, 1);
960 __elv_add_request(q, rq, where, 0);
961 blk_start_queueing(q);
962 spin_unlock_irqrestore(q->queue_lock, flags);
964 EXPORT_SYMBOL(blk_insert_request);
967 * add-request adds a request to the linked list.
968 * queue lock is held and interrupts disabled, as we muck with the
969 * request queue list.
971 static inline void add_request(struct request_queue *q, struct request *req)
973 drive_stat_acct(req, 1);
976 * elevator indicated where it wants this request to be
977 * inserted at elevator_merge time
979 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
982 static void part_round_stats_single(int cpu, struct hd_struct *part,
983 unsigned long now)
985 if (now == part->stamp)
986 return;
988 if (part->in_flight) {
989 __part_stat_add(cpu, part, time_in_queue,
990 part->in_flight * (now - part->stamp));
991 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
993 part->stamp = now;
997 * part_round_stats() - Round off the performance stats on a struct
998 * disk_stats.
1000 * The average IO queue length and utilisation statistics are maintained
1001 * by observing the current state of the queue length and the amount of
1002 * time it has been in this state for.
1004 * Normally, that accounting is done on IO completion, but that can result
1005 * in more than a second's worth of IO being accounted for within any one
1006 * second, leading to >100% utilisation. To deal with that, we call this
1007 * function to do a round-off before returning the results when reading
1008 * /proc/diskstats. This accounts immediately for all queue usage up to
1009 * the current jiffies and restarts the counters again.
1011 void part_round_stats(int cpu, struct hd_struct *part)
1013 unsigned long now = jiffies;
1015 if (part->partno)
1016 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1017 part_round_stats_single(cpu, part, now);
1019 EXPORT_SYMBOL_GPL(part_round_stats);
1022 * queue lock must be held
1024 void __blk_put_request(struct request_queue *q, struct request *req)
1026 if (unlikely(!q))
1027 return;
1028 if (unlikely(--req->ref_count))
1029 return;
1031 elv_completed_request(q, req);
1034 * Request may not have originated from ll_rw_blk. if not,
1035 * it didn't come out of our reserved rq pools
1037 if (req->cmd_flags & REQ_ALLOCED) {
1038 int rw = rq_data_dir(req);
1039 int priv = req->cmd_flags & REQ_ELVPRIV;
1041 BUG_ON(!list_empty(&req->queuelist));
1042 BUG_ON(!hlist_unhashed(&req->hash));
1044 blk_free_request(q, req);
1045 freed_request(q, rw, priv);
1048 EXPORT_SYMBOL_GPL(__blk_put_request);
1050 void blk_put_request(struct request *req)
1052 unsigned long flags;
1053 struct request_queue *q = req->q;
1055 spin_lock_irqsave(q->queue_lock, flags);
1056 __blk_put_request(q, req);
1057 spin_unlock_irqrestore(q->queue_lock, flags);
1059 EXPORT_SYMBOL(blk_put_request);
1061 void init_request_from_bio(struct request *req, struct bio *bio)
1063 req->cmd_type = REQ_TYPE_FS;
1066 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1068 if (bio_rw_ahead(bio) || bio_failfast(bio))
1069 req->cmd_flags |= REQ_FAILFAST;
1072 * REQ_BARRIER implies no merging, but lets make it explicit
1074 if (unlikely(bio_discard(bio))) {
1075 req->cmd_flags |= REQ_DISCARD;
1076 if (bio_barrier(bio))
1077 req->cmd_flags |= REQ_SOFTBARRIER;
1078 req->q->prepare_discard_fn(req->q, req);
1079 } else if (unlikely(bio_barrier(bio)))
1080 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
1082 if (bio_sync(bio))
1083 req->cmd_flags |= REQ_RW_SYNC;
1084 if (bio_rw_meta(bio))
1085 req->cmd_flags |= REQ_RW_META;
1087 req->errors = 0;
1088 req->hard_sector = req->sector = bio->bi_sector;
1089 req->ioprio = bio_prio(bio);
1090 req->start_time = jiffies;
1091 blk_rq_bio_prep(req->q, req, bio);
1094 static int __make_request(struct request_queue *q, struct bio *bio)
1096 struct request *req;
1097 int el_ret, nr_sectors, barrier, discard, err;
1098 const unsigned short prio = bio_prio(bio);
1099 const int sync = bio_sync(bio);
1100 int rw_flags;
1102 nr_sectors = bio_sectors(bio);
1105 * low level driver can indicate that it wants pages above a
1106 * certain limit bounced to low memory (ie for highmem, or even
1107 * ISA dma in theory)
1109 blk_queue_bounce(q, &bio);
1111 barrier = bio_barrier(bio);
1112 if (unlikely(barrier) && bio_has_data(bio) &&
1113 (q->next_ordered == QUEUE_ORDERED_NONE)) {
1114 err = -EOPNOTSUPP;
1115 goto end_io;
1118 discard = bio_discard(bio);
1119 if (unlikely(discard) && !q->prepare_discard_fn) {
1120 err = -EOPNOTSUPP;
1121 goto end_io;
1124 spin_lock_irq(q->queue_lock);
1126 if (unlikely(barrier) || elv_queue_empty(q))
1127 goto get_rq;
1129 el_ret = elv_merge(q, &req, bio);
1130 switch (el_ret) {
1131 case ELEVATOR_BACK_MERGE:
1132 BUG_ON(!rq_mergeable(req));
1134 if (!ll_back_merge_fn(q, req, bio))
1135 break;
1137 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
1139 req->biotail->bi_next = bio;
1140 req->biotail = bio;
1141 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1142 req->ioprio = ioprio_best(req->ioprio, prio);
1143 drive_stat_acct(req, 0);
1144 if (!attempt_back_merge(q, req))
1145 elv_merged_request(q, req, el_ret);
1146 goto out;
1148 case ELEVATOR_FRONT_MERGE:
1149 BUG_ON(!rq_mergeable(req));
1151 if (!ll_front_merge_fn(q, req, bio))
1152 break;
1154 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
1156 bio->bi_next = req->bio;
1157 req->bio = bio;
1160 * may not be valid. if the low level driver said
1161 * it didn't need a bounce buffer then it better
1162 * not touch req->buffer either...
1164 req->buffer = bio_data(bio);
1165 req->current_nr_sectors = bio_cur_sectors(bio);
1166 req->hard_cur_sectors = req->current_nr_sectors;
1167 req->sector = req->hard_sector = bio->bi_sector;
1168 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1169 req->ioprio = ioprio_best(req->ioprio, prio);
1170 drive_stat_acct(req, 0);
1171 if (!attempt_front_merge(q, req))
1172 elv_merged_request(q, req, el_ret);
1173 goto out;
1175 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1176 default:
1180 get_rq:
1182 * This sync check and mask will be re-done in init_request_from_bio(),
1183 * but we need to set it earlier to expose the sync flag to the
1184 * rq allocator and io schedulers.
1186 rw_flags = bio_data_dir(bio);
1187 if (sync)
1188 rw_flags |= REQ_RW_SYNC;
1191 * Grab a free request. This is might sleep but can not fail.
1192 * Returns with the queue unlocked.
1194 req = get_request_wait(q, rw_flags, bio);
1197 * After dropping the lock and possibly sleeping here, our request
1198 * may now be mergeable after it had proven unmergeable (above).
1199 * We don't worry about that case for efficiency. It won't happen
1200 * often, and the elevators are able to handle it.
1202 init_request_from_bio(req, bio);
1204 spin_lock_irq(q->queue_lock);
1205 if (elv_queue_empty(q))
1206 blk_plug_device(q);
1207 add_request(q, req);
1208 out:
1209 if (sync)
1210 __generic_unplug_device(q);
1212 spin_unlock_irq(q->queue_lock);
1213 return 0;
1215 end_io:
1216 bio_endio(bio, err);
1217 return 0;
1221 * If bio->bi_dev is a partition, remap the location
1223 static inline void blk_partition_remap(struct bio *bio)
1225 struct block_device *bdev = bio->bi_bdev;
1227 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1228 struct hd_struct *p = bdev->bd_part;
1230 bio->bi_sector += p->start_sect;
1231 bio->bi_bdev = bdev->bd_contains;
1233 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
1234 bdev->bd_dev, bio->bi_sector,
1235 bio->bi_sector - p->start_sect);
1239 static void handle_bad_sector(struct bio *bio)
1241 char b[BDEVNAME_SIZE];
1243 printk(KERN_INFO "attempt to access beyond end of device\n");
1244 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1245 bdevname(bio->bi_bdev, b),
1246 bio->bi_rw,
1247 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1248 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1250 set_bit(BIO_EOF, &bio->bi_flags);
1253 #ifdef CONFIG_FAIL_MAKE_REQUEST
1255 static DECLARE_FAULT_ATTR(fail_make_request);
1257 static int __init setup_fail_make_request(char *str)
1259 return setup_fault_attr(&fail_make_request, str);
1261 __setup("fail_make_request=", setup_fail_make_request);
1263 static int should_fail_request(struct bio *bio)
1265 struct hd_struct *part = bio->bi_bdev->bd_part;
1267 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
1268 return should_fail(&fail_make_request, bio->bi_size);
1270 return 0;
1273 static int __init fail_make_request_debugfs(void)
1275 return init_fault_attr_dentries(&fail_make_request,
1276 "fail_make_request");
1279 late_initcall(fail_make_request_debugfs);
1281 #else /* CONFIG_FAIL_MAKE_REQUEST */
1283 static inline int should_fail_request(struct bio *bio)
1285 return 0;
1288 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1291 * Check whether this bio extends beyond the end of the device.
1293 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1295 sector_t maxsector;
1297 if (!nr_sectors)
1298 return 0;
1300 /* Test device or partition size, when known. */
1301 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1302 if (maxsector) {
1303 sector_t sector = bio->bi_sector;
1305 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1307 * This may well happen - the kernel calls bread()
1308 * without checking the size of the device, e.g., when
1309 * mounting a device.
1311 handle_bad_sector(bio);
1312 return 1;
1316 return 0;
1320 * generic_make_request - hand a buffer to its device driver for I/O
1321 * @bio: The bio describing the location in memory and on the device.
1323 * generic_make_request() is used to make I/O requests of block
1324 * devices. It is passed a &struct bio, which describes the I/O that needs
1325 * to be done.
1327 * generic_make_request() does not return any status. The
1328 * success/failure status of the request, along with notification of
1329 * completion, is delivered asynchronously through the bio->bi_end_io
1330 * function described (one day) else where.
1332 * The caller of generic_make_request must make sure that bi_io_vec
1333 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1334 * set to describe the device address, and the
1335 * bi_end_io and optionally bi_private are set to describe how
1336 * completion notification should be signaled.
1338 * generic_make_request and the drivers it calls may use bi_next if this
1339 * bio happens to be merged with someone else, and may change bi_dev and
1340 * bi_sector for remaps as it sees fit. So the values of these fields
1341 * should NOT be depended on after the call to generic_make_request.
1343 static inline void __generic_make_request(struct bio *bio)
1345 struct request_queue *q;
1346 sector_t old_sector;
1347 int ret, nr_sectors = bio_sectors(bio);
1348 dev_t old_dev;
1349 int err = -EIO;
1351 might_sleep();
1353 if (bio_check_eod(bio, nr_sectors))
1354 goto end_io;
1357 * Resolve the mapping until finished. (drivers are
1358 * still free to implement/resolve their own stacking
1359 * by explicitly returning 0)
1361 * NOTE: we don't repeat the blk_size check for each new device.
1362 * Stacking drivers are expected to know what they are doing.
1364 old_sector = -1;
1365 old_dev = 0;
1366 do {
1367 char b[BDEVNAME_SIZE];
1369 q = bdev_get_queue(bio->bi_bdev);
1370 if (!q) {
1371 printk(KERN_ERR
1372 "generic_make_request: Trying to access "
1373 "nonexistent block-device %s (%Lu)\n",
1374 bdevname(bio->bi_bdev, b),
1375 (long long) bio->bi_sector);
1376 end_io:
1377 bio_endio(bio, err);
1378 break;
1381 if (unlikely(nr_sectors > q->max_hw_sectors)) {
1382 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1383 bdevname(bio->bi_bdev, b),
1384 bio_sectors(bio),
1385 q->max_hw_sectors);
1386 goto end_io;
1389 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1390 goto end_io;
1392 if (should_fail_request(bio))
1393 goto end_io;
1396 * If this device has partitions, remap block n
1397 * of partition p to block n+start(p) of the disk.
1399 blk_partition_remap(bio);
1401 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1402 goto end_io;
1404 if (old_sector != -1)
1405 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
1406 old_sector);
1408 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
1410 old_sector = bio->bi_sector;
1411 old_dev = bio->bi_bdev->bd_dev;
1413 if (bio_check_eod(bio, nr_sectors))
1414 goto end_io;
1415 if ((bio_empty_barrier(bio) && !q->prepare_flush_fn) ||
1416 (bio_discard(bio) && !q->prepare_discard_fn)) {
1417 err = -EOPNOTSUPP;
1418 goto end_io;
1421 ret = q->make_request_fn(q, bio);
1422 } while (ret);
1426 * We only want one ->make_request_fn to be active at a time,
1427 * else stack usage with stacked devices could be a problem.
1428 * So use current->bio_{list,tail} to keep a list of requests
1429 * submited by a make_request_fn function.
1430 * current->bio_tail is also used as a flag to say if
1431 * generic_make_request is currently active in this task or not.
1432 * If it is NULL, then no make_request is active. If it is non-NULL,
1433 * then a make_request is active, and new requests should be added
1434 * at the tail
1436 void generic_make_request(struct bio *bio)
1438 if (current->bio_tail) {
1439 /* make_request is active */
1440 *(current->bio_tail) = bio;
1441 bio->bi_next = NULL;
1442 current->bio_tail = &bio->bi_next;
1443 return;
1445 /* following loop may be a bit non-obvious, and so deserves some
1446 * explanation.
1447 * Before entering the loop, bio->bi_next is NULL (as all callers
1448 * ensure that) so we have a list with a single bio.
1449 * We pretend that we have just taken it off a longer list, so
1450 * we assign bio_list to the next (which is NULL) and bio_tail
1451 * to &bio_list, thus initialising the bio_list of new bios to be
1452 * added. __generic_make_request may indeed add some more bios
1453 * through a recursive call to generic_make_request. If it
1454 * did, we find a non-NULL value in bio_list and re-enter the loop
1455 * from the top. In this case we really did just take the bio
1456 * of the top of the list (no pretending) and so fixup bio_list and
1457 * bio_tail or bi_next, and call into __generic_make_request again.
1459 * The loop was structured like this to make only one call to
1460 * __generic_make_request (which is important as it is large and
1461 * inlined) and to keep the structure simple.
1463 BUG_ON(bio->bi_next);
1464 do {
1465 current->bio_list = bio->bi_next;
1466 if (bio->bi_next == NULL)
1467 current->bio_tail = &current->bio_list;
1468 else
1469 bio->bi_next = NULL;
1470 __generic_make_request(bio);
1471 bio = current->bio_list;
1472 } while (bio);
1473 current->bio_tail = NULL; /* deactivate */
1475 EXPORT_SYMBOL(generic_make_request);
1478 * submit_bio - submit a bio to the block device layer for I/O
1479 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1480 * @bio: The &struct bio which describes the I/O
1482 * submit_bio() is very similar in purpose to generic_make_request(), and
1483 * uses that function to do most of the work. Both are fairly rough
1484 * interfaces; @bio must be presetup and ready for I/O.
1487 void submit_bio(int rw, struct bio *bio)
1489 int count = bio_sectors(bio);
1491 bio->bi_rw |= rw;
1494 * If it's a regular read/write or a barrier with data attached,
1495 * go through the normal accounting stuff before submission.
1497 if (bio_has_data(bio)) {
1498 if (rw & WRITE) {
1499 count_vm_events(PGPGOUT, count);
1500 } else {
1501 task_io_account_read(bio->bi_size);
1502 count_vm_events(PGPGIN, count);
1505 if (unlikely(block_dump)) {
1506 char b[BDEVNAME_SIZE];
1507 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
1508 current->comm, task_pid_nr(current),
1509 (rw & WRITE) ? "WRITE" : "READ",
1510 (unsigned long long)bio->bi_sector,
1511 bdevname(bio->bi_bdev, b));
1515 generic_make_request(bio);
1517 EXPORT_SYMBOL(submit_bio);
1520 * __end_that_request_first - end I/O on a request
1521 * @req: the request being processed
1522 * @error: %0 for success, < %0 for error
1523 * @nr_bytes: number of bytes to complete
1525 * Description:
1526 * Ends I/O on a number of bytes attached to @req, and sets it up
1527 * for the next range of segments (if any) in the cluster.
1529 * Return:
1530 * %0 - we are done with this request, call end_that_request_last()
1531 * %1 - still buffers pending for this request
1533 static int __end_that_request_first(struct request *req, int error,
1534 int nr_bytes)
1536 int total_bytes, bio_nbytes, next_idx = 0;
1537 struct bio *bio;
1539 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
1542 * for a REQ_TYPE_BLOCK_PC request, we want to carry any eventual
1543 * sense key with us all the way through
1545 if (!blk_pc_request(req))
1546 req->errors = 0;
1548 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1549 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1550 req->rq_disk ? req->rq_disk->disk_name : "?",
1551 (unsigned long long)req->sector);
1554 if (blk_fs_request(req) && req->rq_disk) {
1555 const int rw = rq_data_dir(req);
1556 struct hd_struct *part;
1557 int cpu;
1559 cpu = part_stat_lock();
1560 part = disk_map_sector_rcu(req->rq_disk, req->sector);
1561 part_stat_add(cpu, part, sectors[rw], nr_bytes >> 9);
1562 part_stat_unlock();
1565 total_bytes = bio_nbytes = 0;
1566 while ((bio = req->bio) != NULL) {
1567 int nbytes;
1570 * For an empty barrier request, the low level driver must
1571 * store a potential error location in ->sector. We pass
1572 * that back up in ->bi_sector.
1574 if (blk_empty_barrier(req))
1575 bio->bi_sector = req->sector;
1577 if (nr_bytes >= bio->bi_size) {
1578 req->bio = bio->bi_next;
1579 nbytes = bio->bi_size;
1580 req_bio_endio(req, bio, nbytes, error);
1581 next_idx = 0;
1582 bio_nbytes = 0;
1583 } else {
1584 int idx = bio->bi_idx + next_idx;
1586 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
1587 blk_dump_rq_flags(req, "__end_that");
1588 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
1589 __func__, bio->bi_idx, bio->bi_vcnt);
1590 break;
1593 nbytes = bio_iovec_idx(bio, idx)->bv_len;
1594 BIO_BUG_ON(nbytes > bio->bi_size);
1597 * not a complete bvec done
1599 if (unlikely(nbytes > nr_bytes)) {
1600 bio_nbytes += nr_bytes;
1601 total_bytes += nr_bytes;
1602 break;
1606 * advance to the next vector
1608 next_idx++;
1609 bio_nbytes += nbytes;
1612 total_bytes += nbytes;
1613 nr_bytes -= nbytes;
1615 bio = req->bio;
1616 if (bio) {
1618 * end more in this run, or just return 'not-done'
1620 if (unlikely(nr_bytes <= 0))
1621 break;
1626 * completely done
1628 if (!req->bio)
1629 return 0;
1632 * if the request wasn't completed, update state
1634 if (bio_nbytes) {
1635 req_bio_endio(req, bio, bio_nbytes, error);
1636 bio->bi_idx += next_idx;
1637 bio_iovec(bio)->bv_offset += nr_bytes;
1638 bio_iovec(bio)->bv_len -= nr_bytes;
1641 blk_recalc_rq_sectors(req, total_bytes >> 9);
1642 blk_recalc_rq_segments(req);
1643 return 1;
1647 * splice the completion data to a local structure and hand off to
1648 * process_completion_queue() to complete the requests
1650 static void blk_done_softirq(struct softirq_action *h)
1652 struct list_head *cpu_list, local_list;
1654 local_irq_disable();
1655 cpu_list = &__get_cpu_var(blk_cpu_done);
1656 list_replace_init(cpu_list, &local_list);
1657 local_irq_enable();
1659 while (!list_empty(&local_list)) {
1660 struct request *rq;
1662 rq = list_entry(local_list.next, struct request, donelist);
1663 list_del_init(&rq->donelist);
1664 rq->q->softirq_done_fn(rq);
1668 static int __cpuinit blk_cpu_notify(struct notifier_block *self,
1669 unsigned long action, void *hcpu)
1672 * If a CPU goes away, splice its entries to the current CPU
1673 * and trigger a run of the softirq
1675 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1676 int cpu = (unsigned long) hcpu;
1678 local_irq_disable();
1679 list_splice_init(&per_cpu(blk_cpu_done, cpu),
1680 &__get_cpu_var(blk_cpu_done));
1681 raise_softirq_irqoff(BLOCK_SOFTIRQ);
1682 local_irq_enable();
1685 return NOTIFY_OK;
1689 static struct notifier_block blk_cpu_notifier __cpuinitdata = {
1690 .notifier_call = blk_cpu_notify,
1694 * blk_complete_request - end I/O on a request
1695 * @req: the request being processed
1697 * Description:
1698 * Ends all I/O on a request. It does not handle partial completions,
1699 * unless the driver actually implements this in its completion callback
1700 * through requeueing. The actual completion happens out-of-order,
1701 * through a softirq handler. The user must have registered a completion
1702 * callback through blk_queue_softirq_done().
1705 void blk_complete_request(struct request *req)
1707 struct list_head *cpu_list;
1708 unsigned long flags;
1710 BUG_ON(!req->q->softirq_done_fn);
1712 local_irq_save(flags);
1714 cpu_list = &__get_cpu_var(blk_cpu_done);
1715 list_add_tail(&req->donelist, cpu_list);
1716 raise_softirq_irqoff(BLOCK_SOFTIRQ);
1718 local_irq_restore(flags);
1720 EXPORT_SYMBOL(blk_complete_request);
1723 * queue lock must be held
1725 static void end_that_request_last(struct request *req, int error)
1727 struct gendisk *disk = req->rq_disk;
1729 if (blk_rq_tagged(req))
1730 blk_queue_end_tag(req->q, req);
1732 if (blk_queued_rq(req))
1733 blkdev_dequeue_request(req);
1735 if (unlikely(laptop_mode) && blk_fs_request(req))
1736 laptop_io_completion();
1739 * Account IO completion. bar_rq isn't accounted as a normal
1740 * IO on queueing nor completion. Accounting the containing
1741 * request is enough.
1743 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
1744 unsigned long duration = jiffies - req->start_time;
1745 const int rw = rq_data_dir(req);
1746 struct hd_struct *part;
1747 int cpu;
1749 cpu = part_stat_lock();
1750 part = disk_map_sector_rcu(disk, req->sector);
1752 part_stat_inc(cpu, part, ios[rw]);
1753 part_stat_add(cpu, part, ticks[rw], duration);
1754 part_round_stats(cpu, part);
1755 part_dec_in_flight(part);
1757 part_stat_unlock();
1760 if (req->end_io)
1761 req->end_io(req, error);
1762 else {
1763 if (blk_bidi_rq(req))
1764 __blk_put_request(req->next_rq->q, req->next_rq);
1766 __blk_put_request(req->q, req);
1770 static inline void __end_request(struct request *rq, int uptodate,
1771 unsigned int nr_bytes)
1773 int error = 0;
1775 if (uptodate <= 0)
1776 error = uptodate ? uptodate : -EIO;
1778 __blk_end_request(rq, error, nr_bytes);
1782 * blk_rq_bytes - Returns bytes left to complete in the entire request
1783 * @rq: the request being processed
1785 unsigned int blk_rq_bytes(struct request *rq)
1787 if (blk_fs_request(rq))
1788 return rq->hard_nr_sectors << 9;
1790 return rq->data_len;
1792 EXPORT_SYMBOL_GPL(blk_rq_bytes);
1795 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
1796 * @rq: the request being processed
1798 unsigned int blk_rq_cur_bytes(struct request *rq)
1800 if (blk_fs_request(rq))
1801 return rq->current_nr_sectors << 9;
1803 if (rq->bio)
1804 return rq->bio->bi_size;
1806 return rq->data_len;
1808 EXPORT_SYMBOL_GPL(blk_rq_cur_bytes);
1811 * end_queued_request - end all I/O on a queued request
1812 * @rq: the request being processed
1813 * @uptodate: error value or %0/%1 uptodate flag
1815 * Description:
1816 * Ends all I/O on a request, and removes it from the block layer queues.
1817 * Not suitable for normal I/O completion, unless the driver still has
1818 * the request attached to the block layer.
1821 void end_queued_request(struct request *rq, int uptodate)
1823 __end_request(rq, uptodate, blk_rq_bytes(rq));
1825 EXPORT_SYMBOL(end_queued_request);
1828 * end_dequeued_request - end all I/O on a dequeued request
1829 * @rq: the request being processed
1830 * @uptodate: error value or %0/%1 uptodate flag
1832 * Description:
1833 * Ends all I/O on a request. The request must already have been
1834 * dequeued using blkdev_dequeue_request(), as is normally the case
1835 * for most drivers.
1838 void end_dequeued_request(struct request *rq, int uptodate)
1840 __end_request(rq, uptodate, blk_rq_bytes(rq));
1842 EXPORT_SYMBOL(end_dequeued_request);
1846 * end_request - end I/O on the current segment of the request
1847 * @req: the request being processed
1848 * @uptodate: error value or %0/%1 uptodate flag
1850 * Description:
1851 * Ends I/O on the current segment of a request. If that is the only
1852 * remaining segment, the request is also completed and freed.
1854 * This is a remnant of how older block drivers handled I/O completions.
1855 * Modern drivers typically end I/O on the full request in one go, unless
1856 * they have a residual value to account for. For that case this function
1857 * isn't really useful, unless the residual just happens to be the
1858 * full current segment. In other words, don't use this function in new
1859 * code. Either use end_request_completely(), or the
1860 * end_that_request_chunk() (along with end_that_request_last()) for
1861 * partial completions.
1864 void end_request(struct request *req, int uptodate)
1866 __end_request(req, uptodate, req->hard_cur_sectors << 9);
1868 EXPORT_SYMBOL(end_request);
1871 * blk_end_io - Generic end_io function to complete a request.
1872 * @rq: the request being processed
1873 * @error: %0 for success, < %0 for error
1874 * @nr_bytes: number of bytes to complete @rq
1875 * @bidi_bytes: number of bytes to complete @rq->next_rq
1876 * @drv_callback: function called between completion of bios in the request
1877 * and completion of the request.
1878 * If the callback returns non %0, this helper returns without
1879 * completion of the request.
1881 * Description:
1882 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1883 * If @rq has leftover, sets it up for the next range of segments.
1885 * Return:
1886 * %0 - we are done with this request
1887 * %1 - this request is not freed yet, it still has pending buffers.
1889 static int blk_end_io(struct request *rq, int error, unsigned int nr_bytes,
1890 unsigned int bidi_bytes,
1891 int (drv_callback)(struct request *))
1893 struct request_queue *q = rq->q;
1894 unsigned long flags = 0UL;
1896 if (bio_has_data(rq->bio) || blk_discard_rq(rq)) {
1897 if (__end_that_request_first(rq, error, nr_bytes))
1898 return 1;
1900 /* Bidi request must be completed as a whole */
1901 if (blk_bidi_rq(rq) &&
1902 __end_that_request_first(rq->next_rq, error, bidi_bytes))
1903 return 1;
1906 /* Special feature for tricky drivers */
1907 if (drv_callback && drv_callback(rq))
1908 return 1;
1910 add_disk_randomness(rq->rq_disk);
1912 spin_lock_irqsave(q->queue_lock, flags);
1913 end_that_request_last(rq, error);
1914 spin_unlock_irqrestore(q->queue_lock, flags);
1916 return 0;
1920 * blk_end_request - Helper function for drivers to complete the request.
1921 * @rq: the request being processed
1922 * @error: %0 for success, < %0 for error
1923 * @nr_bytes: number of bytes to complete
1925 * Description:
1926 * Ends I/O on a number of bytes attached to @rq.
1927 * If @rq has leftover, sets it up for the next range of segments.
1929 * Return:
1930 * %0 - we are done with this request
1931 * %1 - still buffers pending for this request
1933 int blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
1935 return blk_end_io(rq, error, nr_bytes, 0, NULL);
1937 EXPORT_SYMBOL_GPL(blk_end_request);
1940 * __blk_end_request - Helper function for drivers to complete the request.
1941 * @rq: the request being processed
1942 * @error: %0 for success, < %0 for error
1943 * @nr_bytes: number of bytes to complete
1945 * Description:
1946 * Must be called with queue lock held unlike blk_end_request().
1948 * Return:
1949 * %0 - we are done with this request
1950 * %1 - still buffers pending for this request
1952 int __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
1954 if ((bio_has_data(rq->bio) || blk_discard_rq(rq)) &&
1955 __end_that_request_first(rq, error, nr_bytes))
1956 return 1;
1958 add_disk_randomness(rq->rq_disk);
1960 end_that_request_last(rq, error);
1962 return 0;
1964 EXPORT_SYMBOL_GPL(__blk_end_request);
1967 * blk_end_bidi_request - Helper function for drivers to complete bidi request.
1968 * @rq: the bidi request being processed
1969 * @error: %0 for success, < %0 for error
1970 * @nr_bytes: number of bytes to complete @rq
1971 * @bidi_bytes: number of bytes to complete @rq->next_rq
1973 * Description:
1974 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1976 * Return:
1977 * %0 - we are done with this request
1978 * %1 - still buffers pending for this request
1980 int blk_end_bidi_request(struct request *rq, int error, unsigned int nr_bytes,
1981 unsigned int bidi_bytes)
1983 return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL);
1985 EXPORT_SYMBOL_GPL(blk_end_bidi_request);
1988 * blk_end_request_callback - Special helper function for tricky drivers
1989 * @rq: the request being processed
1990 * @error: %0 for success, < %0 for error
1991 * @nr_bytes: number of bytes to complete
1992 * @drv_callback: function called between completion of bios in the request
1993 * and completion of the request.
1994 * If the callback returns non %0, this helper returns without
1995 * completion of the request.
1997 * Description:
1998 * Ends I/O on a number of bytes attached to @rq.
1999 * If @rq has leftover, sets it up for the next range of segments.
2001 * This special helper function is used only for existing tricky drivers.
2002 * (e.g. cdrom_newpc_intr() of ide-cd)
2003 * This interface will be removed when such drivers are rewritten.
2004 * Don't use this interface in other places anymore.
2006 * Return:
2007 * %0 - we are done with this request
2008 * %1 - this request is not freed yet.
2009 * this request still has pending buffers or
2010 * the driver doesn't want to finish this request yet.
2012 int blk_end_request_callback(struct request *rq, int error,
2013 unsigned int nr_bytes,
2014 int (drv_callback)(struct request *))
2016 return blk_end_io(rq, error, nr_bytes, 0, drv_callback);
2018 EXPORT_SYMBOL_GPL(blk_end_request_callback);
2020 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2021 struct bio *bio)
2023 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw, and
2024 we want BIO_RW_AHEAD (bit 1) to imply REQ_FAILFAST (bit 1). */
2025 rq->cmd_flags |= (bio->bi_rw & 3);
2027 if (bio_has_data(bio)) {
2028 rq->nr_phys_segments = bio_phys_segments(q, bio);
2029 rq->buffer = bio_data(bio);
2031 rq->current_nr_sectors = bio_cur_sectors(bio);
2032 rq->hard_cur_sectors = rq->current_nr_sectors;
2033 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
2034 rq->data_len = bio->bi_size;
2036 rq->bio = rq->biotail = bio;
2038 if (bio->bi_bdev)
2039 rq->rq_disk = bio->bi_bdev->bd_disk;
2042 int kblockd_schedule_work(struct work_struct *work)
2044 return queue_work(kblockd_workqueue, work);
2046 EXPORT_SYMBOL(kblockd_schedule_work);
2048 void kblockd_flush_work(struct work_struct *work)
2050 cancel_work_sync(work);
2052 EXPORT_SYMBOL(kblockd_flush_work);
2054 int __init blk_dev_init(void)
2056 int i;
2058 kblockd_workqueue = create_workqueue("kblockd");
2059 if (!kblockd_workqueue)
2060 panic("Failed to create kblockd\n");
2062 request_cachep = kmem_cache_create("blkdev_requests",
2063 sizeof(struct request), 0, SLAB_PANIC, NULL);
2065 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2066 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2068 for_each_possible_cpu(i)
2069 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
2071 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
2072 register_hotcpu_notifier(&blk_cpu_notifier);
2074 return 0;