Merge branch 'bpf-Allow-selecting-numa-node-during-map-creation'
[linux-2.6/btrfs-unstable.git] / include / linux / netdevice.h
blobc5475b37a63145628b36b47ac8c7fa6749a3eb3b
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Definitions for the Interfaces handler.
8 * Version: @(#)dev.h 1.0.10 08/12/93
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
23 * Moved to /usr/include/linux for NET3
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #ifdef CONFIG_DCB
45 #include <net/dcbnl.h>
46 #endif
47 #include <net/netprio_cgroup.h>
49 #include <linux/netdev_features.h>
50 #include <linux/neighbour.h>
51 #include <uapi/linux/netdevice.h>
52 #include <uapi/linux/if_bonding.h>
53 #include <uapi/linux/pkt_cls.h>
54 #include <linux/hashtable.h>
56 struct netpoll_info;
57 struct device;
58 struct phy_device;
59 struct dsa_switch_tree;
61 /* 802.11 specific */
62 struct wireless_dev;
63 /* 802.15.4 specific */
64 struct wpan_dev;
65 struct mpls_dev;
66 /* UDP Tunnel offloads */
67 struct udp_tunnel_info;
68 struct bpf_prog;
69 struct xdp_buff;
71 void netdev_set_default_ethtool_ops(struct net_device *dev,
72 const struct ethtool_ops *ops);
74 /* Backlog congestion levels */
75 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
76 #define NET_RX_DROP 1 /* packet dropped */
79 * Transmit return codes: transmit return codes originate from three different
80 * namespaces:
82 * - qdisc return codes
83 * - driver transmit return codes
84 * - errno values
86 * Drivers are allowed to return any one of those in their hard_start_xmit()
87 * function. Real network devices commonly used with qdiscs should only return
88 * the driver transmit return codes though - when qdiscs are used, the actual
89 * transmission happens asynchronously, so the value is not propagated to
90 * higher layers. Virtual network devices transmit synchronously; in this case
91 * the driver transmit return codes are consumed by dev_queue_xmit(), and all
92 * others are propagated to higher layers.
95 /* qdisc ->enqueue() return codes. */
96 #define NET_XMIT_SUCCESS 0x00
97 #define NET_XMIT_DROP 0x01 /* skb dropped */
98 #define NET_XMIT_CN 0x02 /* congestion notification */
99 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
101 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
102 * indicates that the device will soon be dropping packets, or already drops
103 * some packets of the same priority; prompting us to send less aggressively. */
104 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
105 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
107 /* Driver transmit return codes */
108 #define NETDEV_TX_MASK 0xf0
110 enum netdev_tx {
111 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
112 NETDEV_TX_OK = 0x00, /* driver took care of packet */
113 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
115 typedef enum netdev_tx netdev_tx_t;
118 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
119 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121 static inline bool dev_xmit_complete(int rc)
124 * Positive cases with an skb consumed by a driver:
125 * - successful transmission (rc == NETDEV_TX_OK)
126 * - error while transmitting (rc < 0)
127 * - error while queueing to a different device (rc & NET_XMIT_MASK)
129 if (likely(rc < NET_XMIT_MASK))
130 return true;
132 return false;
136 * Compute the worst-case header length according to the protocols
137 * used.
140 #if defined(CONFIG_HYPERV_NET)
141 # define LL_MAX_HEADER 128
142 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
143 # if defined(CONFIG_MAC80211_MESH)
144 # define LL_MAX_HEADER 128
145 # else
146 # define LL_MAX_HEADER 96
147 # endif
148 #else
149 # define LL_MAX_HEADER 32
150 #endif
152 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
153 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
154 #define MAX_HEADER LL_MAX_HEADER
155 #else
156 #define MAX_HEADER (LL_MAX_HEADER + 48)
157 #endif
160 * Old network device statistics. Fields are native words
161 * (unsigned long) so they can be read and written atomically.
164 struct net_device_stats {
165 unsigned long rx_packets;
166 unsigned long tx_packets;
167 unsigned long rx_bytes;
168 unsigned long tx_bytes;
169 unsigned long rx_errors;
170 unsigned long tx_errors;
171 unsigned long rx_dropped;
172 unsigned long tx_dropped;
173 unsigned long multicast;
174 unsigned long collisions;
175 unsigned long rx_length_errors;
176 unsigned long rx_over_errors;
177 unsigned long rx_crc_errors;
178 unsigned long rx_frame_errors;
179 unsigned long rx_fifo_errors;
180 unsigned long rx_missed_errors;
181 unsigned long tx_aborted_errors;
182 unsigned long tx_carrier_errors;
183 unsigned long tx_fifo_errors;
184 unsigned long tx_heartbeat_errors;
185 unsigned long tx_window_errors;
186 unsigned long rx_compressed;
187 unsigned long tx_compressed;
191 #include <linux/cache.h>
192 #include <linux/skbuff.h>
194 #ifdef CONFIG_RPS
195 #include <linux/static_key.h>
196 extern struct static_key rps_needed;
197 extern struct static_key rfs_needed;
198 #endif
200 struct neighbour;
201 struct neigh_parms;
202 struct sk_buff;
204 struct netdev_hw_addr {
205 struct list_head list;
206 unsigned char addr[MAX_ADDR_LEN];
207 unsigned char type;
208 #define NETDEV_HW_ADDR_T_LAN 1
209 #define NETDEV_HW_ADDR_T_SAN 2
210 #define NETDEV_HW_ADDR_T_SLAVE 3
211 #define NETDEV_HW_ADDR_T_UNICAST 4
212 #define NETDEV_HW_ADDR_T_MULTICAST 5
213 bool global_use;
214 int sync_cnt;
215 int refcount;
216 int synced;
217 struct rcu_head rcu_head;
220 struct netdev_hw_addr_list {
221 struct list_head list;
222 int count;
225 #define netdev_hw_addr_list_count(l) ((l)->count)
226 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
227 #define netdev_hw_addr_list_for_each(ha, l) \
228 list_for_each_entry(ha, &(l)->list, list)
230 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
231 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
232 #define netdev_for_each_uc_addr(ha, dev) \
233 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
235 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
236 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
237 #define netdev_for_each_mc_addr(ha, dev) \
238 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
240 struct hh_cache {
241 unsigned int hh_len;
242 seqlock_t hh_lock;
244 /* cached hardware header; allow for machine alignment needs. */
245 #define HH_DATA_MOD 16
246 #define HH_DATA_OFF(__len) \
247 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
248 #define HH_DATA_ALIGN(__len) \
249 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
250 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
253 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
254 * Alternative is:
255 * dev->hard_header_len ? (dev->hard_header_len +
256 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
258 * We could use other alignment values, but we must maintain the
259 * relationship HH alignment <= LL alignment.
261 #define LL_RESERVED_SPACE(dev) \
262 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
263 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
264 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
266 struct header_ops {
267 int (*create) (struct sk_buff *skb, struct net_device *dev,
268 unsigned short type, const void *daddr,
269 const void *saddr, unsigned int len);
270 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
271 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
272 void (*cache_update)(struct hh_cache *hh,
273 const struct net_device *dev,
274 const unsigned char *haddr);
275 bool (*validate)(const char *ll_header, unsigned int len);
278 /* These flag bits are private to the generic network queueing
279 * layer; they may not be explicitly referenced by any other
280 * code.
283 enum netdev_state_t {
284 __LINK_STATE_START,
285 __LINK_STATE_PRESENT,
286 __LINK_STATE_NOCARRIER,
287 __LINK_STATE_LINKWATCH_PENDING,
288 __LINK_STATE_DORMANT,
293 * This structure holds boot-time configured netdevice settings. They
294 * are then used in the device probing.
296 struct netdev_boot_setup {
297 char name[IFNAMSIZ];
298 struct ifmap map;
300 #define NETDEV_BOOT_SETUP_MAX 8
302 int __init netdev_boot_setup(char *str);
305 * Structure for NAPI scheduling similar to tasklet but with weighting
307 struct napi_struct {
308 /* The poll_list must only be managed by the entity which
309 * changes the state of the NAPI_STATE_SCHED bit. This means
310 * whoever atomically sets that bit can add this napi_struct
311 * to the per-CPU poll_list, and whoever clears that bit
312 * can remove from the list right before clearing the bit.
314 struct list_head poll_list;
316 unsigned long state;
317 int weight;
318 unsigned int gro_count;
319 int (*poll)(struct napi_struct *, int);
320 #ifdef CONFIG_NETPOLL
321 int poll_owner;
322 #endif
323 struct net_device *dev;
324 struct sk_buff *gro_list;
325 struct sk_buff *skb;
326 struct hrtimer timer;
327 struct list_head dev_list;
328 struct hlist_node napi_hash_node;
329 unsigned int napi_id;
332 enum {
333 NAPI_STATE_SCHED, /* Poll is scheduled */
334 NAPI_STATE_MISSED, /* reschedule a napi */
335 NAPI_STATE_DISABLE, /* Disable pending */
336 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
337 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */
338 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
339 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
342 enum {
343 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED),
344 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED),
345 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE),
346 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC),
347 NAPIF_STATE_HASHED = BIT(NAPI_STATE_HASHED),
348 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
349 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
352 enum gro_result {
353 GRO_MERGED,
354 GRO_MERGED_FREE,
355 GRO_HELD,
356 GRO_NORMAL,
357 GRO_DROP,
358 GRO_CONSUMED,
360 typedef enum gro_result gro_result_t;
363 * enum rx_handler_result - Possible return values for rx_handlers.
364 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
365 * further.
366 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
367 * case skb->dev was changed by rx_handler.
368 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
369 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
371 * rx_handlers are functions called from inside __netif_receive_skb(), to do
372 * special processing of the skb, prior to delivery to protocol handlers.
374 * Currently, a net_device can only have a single rx_handler registered. Trying
375 * to register a second rx_handler will return -EBUSY.
377 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
378 * To unregister a rx_handler on a net_device, use
379 * netdev_rx_handler_unregister().
381 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
382 * do with the skb.
384 * If the rx_handler consumed the skb in some way, it should return
385 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
386 * the skb to be delivered in some other way.
388 * If the rx_handler changed skb->dev, to divert the skb to another
389 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
390 * new device will be called if it exists.
392 * If the rx_handler decides the skb should be ignored, it should return
393 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
394 * are registered on exact device (ptype->dev == skb->dev).
396 * If the rx_handler didn't change skb->dev, but wants the skb to be normally
397 * delivered, it should return RX_HANDLER_PASS.
399 * A device without a registered rx_handler will behave as if rx_handler
400 * returned RX_HANDLER_PASS.
403 enum rx_handler_result {
404 RX_HANDLER_CONSUMED,
405 RX_HANDLER_ANOTHER,
406 RX_HANDLER_EXACT,
407 RX_HANDLER_PASS,
409 typedef enum rx_handler_result rx_handler_result_t;
410 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
412 void __napi_schedule(struct napi_struct *n);
413 void __napi_schedule_irqoff(struct napi_struct *n);
415 static inline bool napi_disable_pending(struct napi_struct *n)
417 return test_bit(NAPI_STATE_DISABLE, &n->state);
420 bool napi_schedule_prep(struct napi_struct *n);
423 * napi_schedule - schedule NAPI poll
424 * @n: NAPI context
426 * Schedule NAPI poll routine to be called if it is not already
427 * running.
429 static inline void napi_schedule(struct napi_struct *n)
431 if (napi_schedule_prep(n))
432 __napi_schedule(n);
436 * napi_schedule_irqoff - schedule NAPI poll
437 * @n: NAPI context
439 * Variant of napi_schedule(), assuming hard irqs are masked.
441 static inline void napi_schedule_irqoff(struct napi_struct *n)
443 if (napi_schedule_prep(n))
444 __napi_schedule_irqoff(n);
447 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
448 static inline bool napi_reschedule(struct napi_struct *napi)
450 if (napi_schedule_prep(napi)) {
451 __napi_schedule(napi);
452 return true;
454 return false;
457 bool napi_complete_done(struct napi_struct *n, int work_done);
459 * napi_complete - NAPI processing complete
460 * @n: NAPI context
462 * Mark NAPI processing as complete.
463 * Consider using napi_complete_done() instead.
464 * Return false if device should avoid rearming interrupts.
466 static inline bool napi_complete(struct napi_struct *n)
468 return napi_complete_done(n, 0);
472 * napi_hash_del - remove a NAPI from global table
473 * @napi: NAPI context
475 * Warning: caller must observe RCU grace period
476 * before freeing memory containing @napi, if
477 * this function returns true.
478 * Note: core networking stack automatically calls it
479 * from netif_napi_del().
480 * Drivers might want to call this helper to combine all
481 * the needed RCU grace periods into a single one.
483 bool napi_hash_del(struct napi_struct *napi);
486 * napi_disable - prevent NAPI from scheduling
487 * @n: NAPI context
489 * Stop NAPI from being scheduled on this context.
490 * Waits till any outstanding processing completes.
492 void napi_disable(struct napi_struct *n);
495 * napi_enable - enable NAPI scheduling
496 * @n: NAPI context
498 * Resume NAPI from being scheduled on this context.
499 * Must be paired with napi_disable.
501 static inline void napi_enable(struct napi_struct *n)
503 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
504 smp_mb__before_atomic();
505 clear_bit(NAPI_STATE_SCHED, &n->state);
506 clear_bit(NAPI_STATE_NPSVC, &n->state);
510 * napi_synchronize - wait until NAPI is not running
511 * @n: NAPI context
513 * Wait until NAPI is done being scheduled on this context.
514 * Waits till any outstanding processing completes but
515 * does not disable future activations.
517 static inline void napi_synchronize(const struct napi_struct *n)
519 if (IS_ENABLED(CONFIG_SMP))
520 while (test_bit(NAPI_STATE_SCHED, &n->state))
521 msleep(1);
522 else
523 barrier();
526 enum netdev_queue_state_t {
527 __QUEUE_STATE_DRV_XOFF,
528 __QUEUE_STATE_STACK_XOFF,
529 __QUEUE_STATE_FROZEN,
532 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
533 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
534 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
536 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
537 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
538 QUEUE_STATE_FROZEN)
539 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
540 QUEUE_STATE_FROZEN)
543 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
544 * netif_tx_* functions below are used to manipulate this flag. The
545 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
546 * queue independently. The netif_xmit_*stopped functions below are called
547 * to check if the queue has been stopped by the driver or stack (either
548 * of the XOFF bits are set in the state). Drivers should not need to call
549 * netif_xmit*stopped functions, they should only be using netif_tx_*.
552 struct netdev_queue {
554 * read-mostly part
556 struct net_device *dev;
557 struct Qdisc __rcu *qdisc;
558 struct Qdisc *qdisc_sleeping;
559 #ifdef CONFIG_SYSFS
560 struct kobject kobj;
561 #endif
562 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
563 int numa_node;
564 #endif
565 unsigned long tx_maxrate;
567 * Number of TX timeouts for this queue
568 * (/sys/class/net/DEV/Q/trans_timeout)
570 unsigned long trans_timeout;
572 * write-mostly part
574 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
575 int xmit_lock_owner;
577 * Time (in jiffies) of last Tx
579 unsigned long trans_start;
581 unsigned long state;
583 #ifdef CONFIG_BQL
584 struct dql dql;
585 #endif
586 } ____cacheline_aligned_in_smp;
588 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
590 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
591 return q->numa_node;
592 #else
593 return NUMA_NO_NODE;
594 #endif
597 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
599 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
600 q->numa_node = node;
601 #endif
604 #ifdef CONFIG_RPS
606 * This structure holds an RPS map which can be of variable length. The
607 * map is an array of CPUs.
609 struct rps_map {
610 unsigned int len;
611 struct rcu_head rcu;
612 u16 cpus[0];
614 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
617 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
618 * tail pointer for that CPU's input queue at the time of last enqueue, and
619 * a hardware filter index.
621 struct rps_dev_flow {
622 u16 cpu;
623 u16 filter;
624 unsigned int last_qtail;
626 #define RPS_NO_FILTER 0xffff
629 * The rps_dev_flow_table structure contains a table of flow mappings.
631 struct rps_dev_flow_table {
632 unsigned int mask;
633 struct rcu_head rcu;
634 struct rps_dev_flow flows[0];
636 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
637 ((_num) * sizeof(struct rps_dev_flow)))
640 * The rps_sock_flow_table contains mappings of flows to the last CPU
641 * on which they were processed by the application (set in recvmsg).
642 * Each entry is a 32bit value. Upper part is the high-order bits
643 * of flow hash, lower part is CPU number.
644 * rps_cpu_mask is used to partition the space, depending on number of
645 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
646 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
647 * meaning we use 32-6=26 bits for the hash.
649 struct rps_sock_flow_table {
650 u32 mask;
652 u32 ents[0] ____cacheline_aligned_in_smp;
654 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
656 #define RPS_NO_CPU 0xffff
658 extern u32 rps_cpu_mask;
659 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
661 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
662 u32 hash)
664 if (table && hash) {
665 unsigned int index = hash & table->mask;
666 u32 val = hash & ~rps_cpu_mask;
668 /* We only give a hint, preemption can change CPU under us */
669 val |= raw_smp_processor_id();
671 if (table->ents[index] != val)
672 table->ents[index] = val;
676 #ifdef CONFIG_RFS_ACCEL
677 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
678 u16 filter_id);
679 #endif
680 #endif /* CONFIG_RPS */
682 /* This structure contains an instance of an RX queue. */
683 struct netdev_rx_queue {
684 #ifdef CONFIG_RPS
685 struct rps_map __rcu *rps_map;
686 struct rps_dev_flow_table __rcu *rps_flow_table;
687 #endif
688 struct kobject kobj;
689 struct net_device *dev;
690 } ____cacheline_aligned_in_smp;
693 * RX queue sysfs structures and functions.
695 struct rx_queue_attribute {
696 struct attribute attr;
697 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
698 ssize_t (*store)(struct netdev_rx_queue *queue,
699 const char *buf, size_t len);
702 #ifdef CONFIG_XPS
704 * This structure holds an XPS map which can be of variable length. The
705 * map is an array of queues.
707 struct xps_map {
708 unsigned int len;
709 unsigned int alloc_len;
710 struct rcu_head rcu;
711 u16 queues[0];
713 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
714 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
715 - sizeof(struct xps_map)) / sizeof(u16))
718 * This structure holds all XPS maps for device. Maps are indexed by CPU.
720 struct xps_dev_maps {
721 struct rcu_head rcu;
722 struct xps_map __rcu *cpu_map[0];
724 #define XPS_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \
725 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
726 #endif /* CONFIG_XPS */
728 #define TC_MAX_QUEUE 16
729 #define TC_BITMASK 15
730 /* HW offloaded queuing disciplines txq count and offset maps */
731 struct netdev_tc_txq {
732 u16 count;
733 u16 offset;
736 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
738 * This structure is to hold information about the device
739 * configured to run FCoE protocol stack.
741 struct netdev_fcoe_hbainfo {
742 char manufacturer[64];
743 char serial_number[64];
744 char hardware_version[64];
745 char driver_version[64];
746 char optionrom_version[64];
747 char firmware_version[64];
748 char model[256];
749 char model_description[256];
751 #endif
753 #define MAX_PHYS_ITEM_ID_LEN 32
755 /* This structure holds a unique identifier to identify some
756 * physical item (port for example) used by a netdevice.
758 struct netdev_phys_item_id {
759 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
760 unsigned char id_len;
763 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
764 struct netdev_phys_item_id *b)
766 return a->id_len == b->id_len &&
767 memcmp(a->id, b->id, a->id_len) == 0;
770 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
771 struct sk_buff *skb);
773 enum tc_setup_type {
774 TC_SETUP_MQPRIO,
775 TC_SETUP_CLSU32,
776 TC_SETUP_CLSFLOWER,
777 TC_SETUP_CLSMATCHALL,
778 TC_SETUP_CLSBPF,
781 /* These structures hold the attributes of xdp state that are being passed
782 * to the netdevice through the xdp op.
784 enum xdp_netdev_command {
785 /* Set or clear a bpf program used in the earliest stages of packet
786 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
787 * is responsible for calling bpf_prog_put on any old progs that are
788 * stored. In case of error, the callee need not release the new prog
789 * reference, but on success it takes ownership and must bpf_prog_put
790 * when it is no longer used.
792 XDP_SETUP_PROG,
793 XDP_SETUP_PROG_HW,
794 /* Check if a bpf program is set on the device. The callee should
795 * set @prog_attached to one of XDP_ATTACHED_* values, note that "true"
796 * is equivalent to XDP_ATTACHED_DRV.
798 XDP_QUERY_PROG,
801 struct netlink_ext_ack;
803 struct netdev_xdp {
804 enum xdp_netdev_command command;
805 union {
806 /* XDP_SETUP_PROG */
807 struct {
808 u32 flags;
809 struct bpf_prog *prog;
810 struct netlink_ext_ack *extack;
812 /* XDP_QUERY_PROG */
813 struct {
814 u8 prog_attached;
815 u32 prog_id;
820 #ifdef CONFIG_XFRM_OFFLOAD
821 struct xfrmdev_ops {
822 int (*xdo_dev_state_add) (struct xfrm_state *x);
823 void (*xdo_dev_state_delete) (struct xfrm_state *x);
824 void (*xdo_dev_state_free) (struct xfrm_state *x);
825 bool (*xdo_dev_offload_ok) (struct sk_buff *skb,
826 struct xfrm_state *x);
828 #endif
831 * This structure defines the management hooks for network devices.
832 * The following hooks can be defined; unless noted otherwise, they are
833 * optional and can be filled with a null pointer.
835 * int (*ndo_init)(struct net_device *dev);
836 * This function is called once when a network device is registered.
837 * The network device can use this for any late stage initialization
838 * or semantic validation. It can fail with an error code which will
839 * be propagated back to register_netdev.
841 * void (*ndo_uninit)(struct net_device *dev);
842 * This function is called when device is unregistered or when registration
843 * fails. It is not called if init fails.
845 * int (*ndo_open)(struct net_device *dev);
846 * This function is called when a network device transitions to the up
847 * state.
849 * int (*ndo_stop)(struct net_device *dev);
850 * This function is called when a network device transitions to the down
851 * state.
853 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
854 * struct net_device *dev);
855 * Called when a packet needs to be transmitted.
856 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
857 * the queue before that can happen; it's for obsolete devices and weird
858 * corner cases, but the stack really does a non-trivial amount
859 * of useless work if you return NETDEV_TX_BUSY.
860 * Required; cannot be NULL.
862 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
863 * struct net_device *dev
864 * netdev_features_t features);
865 * Called by core transmit path to determine if device is capable of
866 * performing offload operations on a given packet. This is to give
867 * the device an opportunity to implement any restrictions that cannot
868 * be otherwise expressed by feature flags. The check is called with
869 * the set of features that the stack has calculated and it returns
870 * those the driver believes to be appropriate.
872 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
873 * void *accel_priv, select_queue_fallback_t fallback);
874 * Called to decide which queue to use when device supports multiple
875 * transmit queues.
877 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
878 * This function is called to allow device receiver to make
879 * changes to configuration when multicast or promiscuous is enabled.
881 * void (*ndo_set_rx_mode)(struct net_device *dev);
882 * This function is called device changes address list filtering.
883 * If driver handles unicast address filtering, it should set
884 * IFF_UNICAST_FLT in its priv_flags.
886 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
887 * This function is called when the Media Access Control address
888 * needs to be changed. If this interface is not defined, the
889 * MAC address can not be changed.
891 * int (*ndo_validate_addr)(struct net_device *dev);
892 * Test if Media Access Control address is valid for the device.
894 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
895 * Called when a user requests an ioctl which can't be handled by
896 * the generic interface code. If not defined ioctls return
897 * not supported error code.
899 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
900 * Used to set network devices bus interface parameters. This interface
901 * is retained for legacy reasons; new devices should use the bus
902 * interface (PCI) for low level management.
904 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
905 * Called when a user wants to change the Maximum Transfer Unit
906 * of a device.
908 * void (*ndo_tx_timeout)(struct net_device *dev);
909 * Callback used when the transmitter has not made any progress
910 * for dev->watchdog ticks.
912 * void (*ndo_get_stats64)(struct net_device *dev,
913 * struct rtnl_link_stats64 *storage);
914 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
915 * Called when a user wants to get the network device usage
916 * statistics. Drivers must do one of the following:
917 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
918 * rtnl_link_stats64 structure passed by the caller.
919 * 2. Define @ndo_get_stats to update a net_device_stats structure
920 * (which should normally be dev->stats) and return a pointer to
921 * it. The structure may be changed asynchronously only if each
922 * field is written atomically.
923 * 3. Update dev->stats asynchronously and atomically, and define
924 * neither operation.
926 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
927 * Return true if this device supports offload stats of this attr_id.
929 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
930 * void *attr_data)
931 * Get statistics for offload operations by attr_id. Write it into the
932 * attr_data pointer.
934 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
935 * If device supports VLAN filtering this function is called when a
936 * VLAN id is registered.
938 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
939 * If device supports VLAN filtering this function is called when a
940 * VLAN id is unregistered.
942 * void (*ndo_poll_controller)(struct net_device *dev);
944 * SR-IOV management functions.
945 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
946 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
947 * u8 qos, __be16 proto);
948 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
949 * int max_tx_rate);
950 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
951 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
952 * int (*ndo_get_vf_config)(struct net_device *dev,
953 * int vf, struct ifla_vf_info *ivf);
954 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
955 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
956 * struct nlattr *port[]);
958 * Enable or disable the VF ability to query its RSS Redirection Table and
959 * Hash Key. This is needed since on some devices VF share this information
960 * with PF and querying it may introduce a theoretical security risk.
961 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
962 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
963 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
964 * void *type_data);
965 * Called to setup any 'tc' scheduler, classifier or action on @dev.
966 * This is always called from the stack with the rtnl lock held and netif
967 * tx queues stopped. This allows the netdevice to perform queue
968 * management safely.
970 * Fiber Channel over Ethernet (FCoE) offload functions.
971 * int (*ndo_fcoe_enable)(struct net_device *dev);
972 * Called when the FCoE protocol stack wants to start using LLD for FCoE
973 * so the underlying device can perform whatever needed configuration or
974 * initialization to support acceleration of FCoE traffic.
976 * int (*ndo_fcoe_disable)(struct net_device *dev);
977 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
978 * so the underlying device can perform whatever needed clean-ups to
979 * stop supporting acceleration of FCoE traffic.
981 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
982 * struct scatterlist *sgl, unsigned int sgc);
983 * Called when the FCoE Initiator wants to initialize an I/O that
984 * is a possible candidate for Direct Data Placement (DDP). The LLD can
985 * perform necessary setup and returns 1 to indicate the device is set up
986 * successfully to perform DDP on this I/O, otherwise this returns 0.
988 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
989 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
990 * indicated by the FC exchange id 'xid', so the underlying device can
991 * clean up and reuse resources for later DDP requests.
993 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
994 * struct scatterlist *sgl, unsigned int sgc);
995 * Called when the FCoE Target wants to initialize an I/O that
996 * is a possible candidate for Direct Data Placement (DDP). The LLD can
997 * perform necessary setup and returns 1 to indicate the device is set up
998 * successfully to perform DDP on this I/O, otherwise this returns 0.
1000 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1001 * struct netdev_fcoe_hbainfo *hbainfo);
1002 * Called when the FCoE Protocol stack wants information on the underlying
1003 * device. This information is utilized by the FCoE protocol stack to
1004 * register attributes with Fiber Channel management service as per the
1005 * FC-GS Fabric Device Management Information(FDMI) specification.
1007 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1008 * Called when the underlying device wants to override default World Wide
1009 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1010 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1011 * protocol stack to use.
1013 * RFS acceleration.
1014 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1015 * u16 rxq_index, u32 flow_id);
1016 * Set hardware filter for RFS. rxq_index is the target queue index;
1017 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1018 * Return the filter ID on success, or a negative error code.
1020 * Slave management functions (for bridge, bonding, etc).
1021 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1022 * Called to make another netdev an underling.
1024 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1025 * Called to release previously enslaved netdev.
1027 * Feature/offload setting functions.
1028 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1029 * netdev_features_t features);
1030 * Adjusts the requested feature flags according to device-specific
1031 * constraints, and returns the resulting flags. Must not modify
1032 * the device state.
1034 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1035 * Called to update device configuration to new features. Passed
1036 * feature set might be less than what was returned by ndo_fix_features()).
1037 * Must return >0 or -errno if it changed dev->features itself.
1039 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1040 * struct net_device *dev,
1041 * const unsigned char *addr, u16 vid, u16 flags)
1042 * Adds an FDB entry to dev for addr.
1043 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1044 * struct net_device *dev,
1045 * const unsigned char *addr, u16 vid)
1046 * Deletes the FDB entry from dev coresponding to addr.
1047 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1048 * struct net_device *dev, struct net_device *filter_dev,
1049 * int *idx)
1050 * Used to add FDB entries to dump requests. Implementers should add
1051 * entries to skb and update idx with the number of entries.
1053 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1054 * u16 flags)
1055 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1056 * struct net_device *dev, u32 filter_mask,
1057 * int nlflags)
1058 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1059 * u16 flags);
1061 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1062 * Called to change device carrier. Soft-devices (like dummy, team, etc)
1063 * which do not represent real hardware may define this to allow their
1064 * userspace components to manage their virtual carrier state. Devices
1065 * that determine carrier state from physical hardware properties (eg
1066 * network cables) or protocol-dependent mechanisms (eg
1067 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1069 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1070 * struct netdev_phys_item_id *ppid);
1071 * Called to get ID of physical port of this device. If driver does
1072 * not implement this, it is assumed that the hw is not able to have
1073 * multiple net devices on single physical port.
1075 * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1076 * struct udp_tunnel_info *ti);
1077 * Called by UDP tunnel to notify a driver about the UDP port and socket
1078 * address family that a UDP tunnel is listnening to. It is called only
1079 * when a new port starts listening. The operation is protected by the
1080 * RTNL.
1082 * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1083 * struct udp_tunnel_info *ti);
1084 * Called by UDP tunnel to notify the driver about a UDP port and socket
1085 * address family that the UDP tunnel is not listening to anymore. The
1086 * operation is protected by the RTNL.
1088 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1089 * struct net_device *dev)
1090 * Called by upper layer devices to accelerate switching or other
1091 * station functionality into hardware. 'pdev is the lowerdev
1092 * to use for the offload and 'dev' is the net device that will
1093 * back the offload. Returns a pointer to the private structure
1094 * the upper layer will maintain.
1095 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1096 * Called by upper layer device to delete the station created
1097 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1098 * the station and priv is the structure returned by the add
1099 * operation.
1100 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1101 * int queue_index, u32 maxrate);
1102 * Called when a user wants to set a max-rate limitation of specific
1103 * TX queue.
1104 * int (*ndo_get_iflink)(const struct net_device *dev);
1105 * Called to get the iflink value of this device.
1106 * void (*ndo_change_proto_down)(struct net_device *dev,
1107 * bool proto_down);
1108 * This function is used to pass protocol port error state information
1109 * to the switch driver. The switch driver can react to the proto_down
1110 * by doing a phys down on the associated switch port.
1111 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1112 * This function is used to get egress tunnel information for given skb.
1113 * This is useful for retrieving outer tunnel header parameters while
1114 * sampling packet.
1115 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1116 * This function is used to specify the headroom that the skb must
1117 * consider when allocation skb during packet reception. Setting
1118 * appropriate rx headroom value allows avoiding skb head copy on
1119 * forward. Setting a negative value resets the rx headroom to the
1120 * default value.
1121 * int (*ndo_xdp)(struct net_device *dev, struct netdev_xdp *xdp);
1122 * This function is used to set or query state related to XDP on the
1123 * netdevice. See definition of enum xdp_netdev_command for details.
1124 * int (*ndo_xdp_xmit)(struct net_device *dev, struct xdp_buff *xdp);
1125 * This function is used to submit a XDP packet for transmit on a
1126 * netdevice.
1127 * void (*ndo_xdp_flush)(struct net_device *dev);
1128 * This function is used to inform the driver to flush a paticular
1129 * xpd tx queue. Must be called on same CPU as xdp_xmit.
1131 struct net_device_ops {
1132 int (*ndo_init)(struct net_device *dev);
1133 void (*ndo_uninit)(struct net_device *dev);
1134 int (*ndo_open)(struct net_device *dev);
1135 int (*ndo_stop)(struct net_device *dev);
1136 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1137 struct net_device *dev);
1138 netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1139 struct net_device *dev,
1140 netdev_features_t features);
1141 u16 (*ndo_select_queue)(struct net_device *dev,
1142 struct sk_buff *skb,
1143 void *accel_priv,
1144 select_queue_fallback_t fallback);
1145 void (*ndo_change_rx_flags)(struct net_device *dev,
1146 int flags);
1147 void (*ndo_set_rx_mode)(struct net_device *dev);
1148 int (*ndo_set_mac_address)(struct net_device *dev,
1149 void *addr);
1150 int (*ndo_validate_addr)(struct net_device *dev);
1151 int (*ndo_do_ioctl)(struct net_device *dev,
1152 struct ifreq *ifr, int cmd);
1153 int (*ndo_set_config)(struct net_device *dev,
1154 struct ifmap *map);
1155 int (*ndo_change_mtu)(struct net_device *dev,
1156 int new_mtu);
1157 int (*ndo_neigh_setup)(struct net_device *dev,
1158 struct neigh_parms *);
1159 void (*ndo_tx_timeout) (struct net_device *dev);
1161 void (*ndo_get_stats64)(struct net_device *dev,
1162 struct rtnl_link_stats64 *storage);
1163 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1164 int (*ndo_get_offload_stats)(int attr_id,
1165 const struct net_device *dev,
1166 void *attr_data);
1167 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1169 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1170 __be16 proto, u16 vid);
1171 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1172 __be16 proto, u16 vid);
1173 #ifdef CONFIG_NET_POLL_CONTROLLER
1174 void (*ndo_poll_controller)(struct net_device *dev);
1175 int (*ndo_netpoll_setup)(struct net_device *dev,
1176 struct netpoll_info *info);
1177 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1178 #endif
1179 int (*ndo_set_vf_mac)(struct net_device *dev,
1180 int queue, u8 *mac);
1181 int (*ndo_set_vf_vlan)(struct net_device *dev,
1182 int queue, u16 vlan,
1183 u8 qos, __be16 proto);
1184 int (*ndo_set_vf_rate)(struct net_device *dev,
1185 int vf, int min_tx_rate,
1186 int max_tx_rate);
1187 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1188 int vf, bool setting);
1189 int (*ndo_set_vf_trust)(struct net_device *dev,
1190 int vf, bool setting);
1191 int (*ndo_get_vf_config)(struct net_device *dev,
1192 int vf,
1193 struct ifla_vf_info *ivf);
1194 int (*ndo_set_vf_link_state)(struct net_device *dev,
1195 int vf, int link_state);
1196 int (*ndo_get_vf_stats)(struct net_device *dev,
1197 int vf,
1198 struct ifla_vf_stats
1199 *vf_stats);
1200 int (*ndo_set_vf_port)(struct net_device *dev,
1201 int vf,
1202 struct nlattr *port[]);
1203 int (*ndo_get_vf_port)(struct net_device *dev,
1204 int vf, struct sk_buff *skb);
1205 int (*ndo_set_vf_guid)(struct net_device *dev,
1206 int vf, u64 guid,
1207 int guid_type);
1208 int (*ndo_set_vf_rss_query_en)(
1209 struct net_device *dev,
1210 int vf, bool setting);
1211 int (*ndo_setup_tc)(struct net_device *dev,
1212 enum tc_setup_type type,
1213 void *type_data);
1214 #if IS_ENABLED(CONFIG_FCOE)
1215 int (*ndo_fcoe_enable)(struct net_device *dev);
1216 int (*ndo_fcoe_disable)(struct net_device *dev);
1217 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1218 u16 xid,
1219 struct scatterlist *sgl,
1220 unsigned int sgc);
1221 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1222 u16 xid);
1223 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1224 u16 xid,
1225 struct scatterlist *sgl,
1226 unsigned int sgc);
1227 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1228 struct netdev_fcoe_hbainfo *hbainfo);
1229 #endif
1231 #if IS_ENABLED(CONFIG_LIBFCOE)
1232 #define NETDEV_FCOE_WWNN 0
1233 #define NETDEV_FCOE_WWPN 1
1234 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1235 u64 *wwn, int type);
1236 #endif
1238 #ifdef CONFIG_RFS_ACCEL
1239 int (*ndo_rx_flow_steer)(struct net_device *dev,
1240 const struct sk_buff *skb,
1241 u16 rxq_index,
1242 u32 flow_id);
1243 #endif
1244 int (*ndo_add_slave)(struct net_device *dev,
1245 struct net_device *slave_dev);
1246 int (*ndo_del_slave)(struct net_device *dev,
1247 struct net_device *slave_dev);
1248 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1249 netdev_features_t features);
1250 int (*ndo_set_features)(struct net_device *dev,
1251 netdev_features_t features);
1252 int (*ndo_neigh_construct)(struct net_device *dev,
1253 struct neighbour *n);
1254 void (*ndo_neigh_destroy)(struct net_device *dev,
1255 struct neighbour *n);
1257 int (*ndo_fdb_add)(struct ndmsg *ndm,
1258 struct nlattr *tb[],
1259 struct net_device *dev,
1260 const unsigned char *addr,
1261 u16 vid,
1262 u16 flags);
1263 int (*ndo_fdb_del)(struct ndmsg *ndm,
1264 struct nlattr *tb[],
1265 struct net_device *dev,
1266 const unsigned char *addr,
1267 u16 vid);
1268 int (*ndo_fdb_dump)(struct sk_buff *skb,
1269 struct netlink_callback *cb,
1270 struct net_device *dev,
1271 struct net_device *filter_dev,
1272 int *idx);
1274 int (*ndo_bridge_setlink)(struct net_device *dev,
1275 struct nlmsghdr *nlh,
1276 u16 flags);
1277 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1278 u32 pid, u32 seq,
1279 struct net_device *dev,
1280 u32 filter_mask,
1281 int nlflags);
1282 int (*ndo_bridge_dellink)(struct net_device *dev,
1283 struct nlmsghdr *nlh,
1284 u16 flags);
1285 int (*ndo_change_carrier)(struct net_device *dev,
1286 bool new_carrier);
1287 int (*ndo_get_phys_port_id)(struct net_device *dev,
1288 struct netdev_phys_item_id *ppid);
1289 int (*ndo_get_phys_port_name)(struct net_device *dev,
1290 char *name, size_t len);
1291 void (*ndo_udp_tunnel_add)(struct net_device *dev,
1292 struct udp_tunnel_info *ti);
1293 void (*ndo_udp_tunnel_del)(struct net_device *dev,
1294 struct udp_tunnel_info *ti);
1295 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1296 struct net_device *dev);
1297 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1298 void *priv);
1300 int (*ndo_get_lock_subclass)(struct net_device *dev);
1301 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1302 int queue_index,
1303 u32 maxrate);
1304 int (*ndo_get_iflink)(const struct net_device *dev);
1305 int (*ndo_change_proto_down)(struct net_device *dev,
1306 bool proto_down);
1307 int (*ndo_fill_metadata_dst)(struct net_device *dev,
1308 struct sk_buff *skb);
1309 void (*ndo_set_rx_headroom)(struct net_device *dev,
1310 int needed_headroom);
1311 int (*ndo_xdp)(struct net_device *dev,
1312 struct netdev_xdp *xdp);
1313 int (*ndo_xdp_xmit)(struct net_device *dev,
1314 struct xdp_buff *xdp);
1315 void (*ndo_xdp_flush)(struct net_device *dev);
1319 * enum net_device_priv_flags - &struct net_device priv_flags
1321 * These are the &struct net_device, they are only set internally
1322 * by drivers and used in the kernel. These flags are invisible to
1323 * userspace; this means that the order of these flags can change
1324 * during any kernel release.
1326 * You should have a pretty good reason to be extending these flags.
1328 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1329 * @IFF_EBRIDGE: Ethernet bridging device
1330 * @IFF_BONDING: bonding master or slave
1331 * @IFF_ISATAP: ISATAP interface (RFC4214)
1332 * @IFF_WAN_HDLC: WAN HDLC device
1333 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1334 * release skb->dst
1335 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1336 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1337 * @IFF_MACVLAN_PORT: device used as macvlan port
1338 * @IFF_BRIDGE_PORT: device used as bridge port
1339 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1340 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1341 * @IFF_UNICAST_FLT: Supports unicast filtering
1342 * @IFF_TEAM_PORT: device used as team port
1343 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1344 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1345 * change when it's running
1346 * @IFF_MACVLAN: Macvlan device
1347 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1348 * underlying stacked devices
1349 * @IFF_IPVLAN_MASTER: IPvlan master device
1350 * @IFF_IPVLAN_SLAVE: IPvlan slave device
1351 * @IFF_L3MDEV_MASTER: device is an L3 master device
1352 * @IFF_NO_QUEUE: device can run without qdisc attached
1353 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1354 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1355 * @IFF_TEAM: device is a team device
1356 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1357 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1358 * entity (i.e. the master device for bridged veth)
1359 * @IFF_MACSEC: device is a MACsec device
1361 enum netdev_priv_flags {
1362 IFF_802_1Q_VLAN = 1<<0,
1363 IFF_EBRIDGE = 1<<1,
1364 IFF_BONDING = 1<<2,
1365 IFF_ISATAP = 1<<3,
1366 IFF_WAN_HDLC = 1<<4,
1367 IFF_XMIT_DST_RELEASE = 1<<5,
1368 IFF_DONT_BRIDGE = 1<<6,
1369 IFF_DISABLE_NETPOLL = 1<<7,
1370 IFF_MACVLAN_PORT = 1<<8,
1371 IFF_BRIDGE_PORT = 1<<9,
1372 IFF_OVS_DATAPATH = 1<<10,
1373 IFF_TX_SKB_SHARING = 1<<11,
1374 IFF_UNICAST_FLT = 1<<12,
1375 IFF_TEAM_PORT = 1<<13,
1376 IFF_SUPP_NOFCS = 1<<14,
1377 IFF_LIVE_ADDR_CHANGE = 1<<15,
1378 IFF_MACVLAN = 1<<16,
1379 IFF_XMIT_DST_RELEASE_PERM = 1<<17,
1380 IFF_IPVLAN_MASTER = 1<<18,
1381 IFF_IPVLAN_SLAVE = 1<<19,
1382 IFF_L3MDEV_MASTER = 1<<20,
1383 IFF_NO_QUEUE = 1<<21,
1384 IFF_OPENVSWITCH = 1<<22,
1385 IFF_L3MDEV_SLAVE = 1<<23,
1386 IFF_TEAM = 1<<24,
1387 IFF_RXFH_CONFIGURED = 1<<25,
1388 IFF_PHONY_HEADROOM = 1<<26,
1389 IFF_MACSEC = 1<<27,
1392 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1393 #define IFF_EBRIDGE IFF_EBRIDGE
1394 #define IFF_BONDING IFF_BONDING
1395 #define IFF_ISATAP IFF_ISATAP
1396 #define IFF_WAN_HDLC IFF_WAN_HDLC
1397 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1398 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1399 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1400 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1401 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1402 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1403 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1404 #define IFF_UNICAST_FLT IFF_UNICAST_FLT
1405 #define IFF_TEAM_PORT IFF_TEAM_PORT
1406 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1407 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1408 #define IFF_MACVLAN IFF_MACVLAN
1409 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1410 #define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER
1411 #define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE
1412 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER
1413 #define IFF_NO_QUEUE IFF_NO_QUEUE
1414 #define IFF_OPENVSWITCH IFF_OPENVSWITCH
1415 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE
1416 #define IFF_TEAM IFF_TEAM
1417 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED
1418 #define IFF_MACSEC IFF_MACSEC
1421 * struct net_device - The DEVICE structure.
1423 * Actually, this whole structure is a big mistake. It mixes I/O
1424 * data with strictly "high-level" data, and it has to know about
1425 * almost every data structure used in the INET module.
1427 * @name: This is the first field of the "visible" part of this structure
1428 * (i.e. as seen by users in the "Space.c" file). It is the name
1429 * of the interface.
1431 * @name_hlist: Device name hash chain, please keep it close to name[]
1432 * @ifalias: SNMP alias
1433 * @mem_end: Shared memory end
1434 * @mem_start: Shared memory start
1435 * @base_addr: Device I/O address
1436 * @irq: Device IRQ number
1438 * @carrier_changes: Stats to monitor carrier on<->off transitions
1440 * @state: Generic network queuing layer state, see netdev_state_t
1441 * @dev_list: The global list of network devices
1442 * @napi_list: List entry used for polling NAPI devices
1443 * @unreg_list: List entry when we are unregistering the
1444 * device; see the function unregister_netdev
1445 * @close_list: List entry used when we are closing the device
1446 * @ptype_all: Device-specific packet handlers for all protocols
1447 * @ptype_specific: Device-specific, protocol-specific packet handlers
1449 * @adj_list: Directly linked devices, like slaves for bonding
1450 * @features: Currently active device features
1451 * @hw_features: User-changeable features
1453 * @wanted_features: User-requested features
1454 * @vlan_features: Mask of features inheritable by VLAN devices
1456 * @hw_enc_features: Mask of features inherited by encapsulating devices
1457 * This field indicates what encapsulation
1458 * offloads the hardware is capable of doing,
1459 * and drivers will need to set them appropriately.
1461 * @mpls_features: Mask of features inheritable by MPLS
1463 * @ifindex: interface index
1464 * @group: The group the device belongs to
1466 * @stats: Statistics struct, which was left as a legacy, use
1467 * rtnl_link_stats64 instead
1469 * @rx_dropped: Dropped packets by core network,
1470 * do not use this in drivers
1471 * @tx_dropped: Dropped packets by core network,
1472 * do not use this in drivers
1473 * @rx_nohandler: nohandler dropped packets by core network on
1474 * inactive devices, do not use this in drivers
1476 * @wireless_handlers: List of functions to handle Wireless Extensions,
1477 * instead of ioctl,
1478 * see <net/iw_handler.h> for details.
1479 * @wireless_data: Instance data managed by the core of wireless extensions
1481 * @netdev_ops: Includes several pointers to callbacks,
1482 * if one wants to override the ndo_*() functions
1483 * @ethtool_ops: Management operations
1484 * @ndisc_ops: Includes callbacks for different IPv6 neighbour
1485 * discovery handling. Necessary for e.g. 6LoWPAN.
1486 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1487 * of Layer 2 headers.
1489 * @flags: Interface flags (a la BSD)
1490 * @priv_flags: Like 'flags' but invisible to userspace,
1491 * see if.h for the definitions
1492 * @gflags: Global flags ( kept as legacy )
1493 * @padded: How much padding added by alloc_netdev()
1494 * @operstate: RFC2863 operstate
1495 * @link_mode: Mapping policy to operstate
1496 * @if_port: Selectable AUI, TP, ...
1497 * @dma: DMA channel
1498 * @mtu: Interface MTU value
1499 * @min_mtu: Interface Minimum MTU value
1500 * @max_mtu: Interface Maximum MTU value
1501 * @type: Interface hardware type
1502 * @hard_header_len: Maximum hardware header length.
1503 * @min_header_len: Minimum hardware header length
1505 * @needed_headroom: Extra headroom the hardware may need, but not in all
1506 * cases can this be guaranteed
1507 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1508 * cases can this be guaranteed. Some cases also use
1509 * LL_MAX_HEADER instead to allocate the skb
1511 * interface address info:
1513 * @perm_addr: Permanent hw address
1514 * @addr_assign_type: Hw address assignment type
1515 * @addr_len: Hardware address length
1516 * @neigh_priv_len: Used in neigh_alloc()
1517 * @dev_id: Used to differentiate devices that share
1518 * the same link layer address
1519 * @dev_port: Used to differentiate devices that share
1520 * the same function
1521 * @addr_list_lock: XXX: need comments on this one
1522 * @uc_promisc: Counter that indicates promiscuous mode
1523 * has been enabled due to the need to listen to
1524 * additional unicast addresses in a device that
1525 * does not implement ndo_set_rx_mode()
1526 * @uc: unicast mac addresses
1527 * @mc: multicast mac addresses
1528 * @dev_addrs: list of device hw addresses
1529 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1530 * @promiscuity: Number of times the NIC is told to work in
1531 * promiscuous mode; if it becomes 0 the NIC will
1532 * exit promiscuous mode
1533 * @allmulti: Counter, enables or disables allmulticast mode
1535 * @vlan_info: VLAN info
1536 * @dsa_ptr: dsa specific data
1537 * @tipc_ptr: TIPC specific data
1538 * @atalk_ptr: AppleTalk link
1539 * @ip_ptr: IPv4 specific data
1540 * @dn_ptr: DECnet specific data
1541 * @ip6_ptr: IPv6 specific data
1542 * @ax25_ptr: AX.25 specific data
1543 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1545 * @dev_addr: Hw address (before bcast,
1546 * because most packets are unicast)
1548 * @_rx: Array of RX queues
1549 * @num_rx_queues: Number of RX queues
1550 * allocated at register_netdev() time
1551 * @real_num_rx_queues: Number of RX queues currently active in device
1553 * @rx_handler: handler for received packets
1554 * @rx_handler_data: XXX: need comments on this one
1555 * @ingress_queue: XXX: need comments on this one
1556 * @broadcast: hw bcast address
1558 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1559 * indexed by RX queue number. Assigned by driver.
1560 * This must only be set if the ndo_rx_flow_steer
1561 * operation is defined
1562 * @index_hlist: Device index hash chain
1564 * @_tx: Array of TX queues
1565 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1566 * @real_num_tx_queues: Number of TX queues currently active in device
1567 * @qdisc: Root qdisc from userspace point of view
1568 * @tx_queue_len: Max frames per queue allowed
1569 * @tx_global_lock: XXX: need comments on this one
1571 * @xps_maps: XXX: need comments on this one
1573 * @watchdog_timeo: Represents the timeout that is used by
1574 * the watchdog (see dev_watchdog())
1575 * @watchdog_timer: List of timers
1577 * @pcpu_refcnt: Number of references to this device
1578 * @todo_list: Delayed register/unregister
1579 * @link_watch_list: XXX: need comments on this one
1581 * @reg_state: Register/unregister state machine
1582 * @dismantle: Device is going to be freed
1583 * @rtnl_link_state: This enum represents the phases of creating
1584 * a new link
1586 * @needs_free_netdev: Should unregister perform free_netdev?
1587 * @priv_destructor: Called from unregister
1588 * @npinfo: XXX: need comments on this one
1589 * @nd_net: Network namespace this network device is inside
1591 * @ml_priv: Mid-layer private
1592 * @lstats: Loopback statistics
1593 * @tstats: Tunnel statistics
1594 * @dstats: Dummy statistics
1595 * @vstats: Virtual ethernet statistics
1597 * @garp_port: GARP
1598 * @mrp_port: MRP
1600 * @dev: Class/net/name entry
1601 * @sysfs_groups: Space for optional device, statistics and wireless
1602 * sysfs groups
1604 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1605 * @rtnl_link_ops: Rtnl_link_ops
1607 * @gso_max_size: Maximum size of generic segmentation offload
1608 * @gso_max_segs: Maximum number of segments that can be passed to the
1609 * NIC for GSO
1611 * @dcbnl_ops: Data Center Bridging netlink ops
1612 * @num_tc: Number of traffic classes in the net device
1613 * @tc_to_txq: XXX: need comments on this one
1614 * @prio_tc_map: XXX: need comments on this one
1616 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1618 * @priomap: XXX: need comments on this one
1619 * @phydev: Physical device may attach itself
1620 * for hardware timestamping
1622 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1623 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1625 * @proto_down: protocol port state information can be sent to the
1626 * switch driver and used to set the phys state of the
1627 * switch port.
1629 * FIXME: cleanup struct net_device such that network protocol info
1630 * moves out.
1633 struct net_device {
1634 char name[IFNAMSIZ];
1635 struct hlist_node name_hlist;
1636 char *ifalias;
1638 * I/O specific fields
1639 * FIXME: Merge these and struct ifmap into one
1641 unsigned long mem_end;
1642 unsigned long mem_start;
1643 unsigned long base_addr;
1644 int irq;
1646 atomic_t carrier_changes;
1649 * Some hardware also needs these fields (state,dev_list,
1650 * napi_list,unreg_list,close_list) but they are not
1651 * part of the usual set specified in Space.c.
1654 unsigned long state;
1656 struct list_head dev_list;
1657 struct list_head napi_list;
1658 struct list_head unreg_list;
1659 struct list_head close_list;
1660 struct list_head ptype_all;
1661 struct list_head ptype_specific;
1663 struct {
1664 struct list_head upper;
1665 struct list_head lower;
1666 } adj_list;
1668 netdev_features_t features;
1669 netdev_features_t hw_features;
1670 netdev_features_t wanted_features;
1671 netdev_features_t vlan_features;
1672 netdev_features_t hw_enc_features;
1673 netdev_features_t mpls_features;
1674 netdev_features_t gso_partial_features;
1676 int ifindex;
1677 int group;
1679 struct net_device_stats stats;
1681 atomic_long_t rx_dropped;
1682 atomic_long_t tx_dropped;
1683 atomic_long_t rx_nohandler;
1685 #ifdef CONFIG_WIRELESS_EXT
1686 const struct iw_handler_def *wireless_handlers;
1687 struct iw_public_data *wireless_data;
1688 #endif
1689 const struct net_device_ops *netdev_ops;
1690 const struct ethtool_ops *ethtool_ops;
1691 #ifdef CONFIG_NET_SWITCHDEV
1692 const struct switchdev_ops *switchdev_ops;
1693 #endif
1694 #ifdef CONFIG_NET_L3_MASTER_DEV
1695 const struct l3mdev_ops *l3mdev_ops;
1696 #endif
1697 #if IS_ENABLED(CONFIG_IPV6)
1698 const struct ndisc_ops *ndisc_ops;
1699 #endif
1701 #ifdef CONFIG_XFRM
1702 const struct xfrmdev_ops *xfrmdev_ops;
1703 #endif
1705 const struct header_ops *header_ops;
1707 unsigned int flags;
1708 unsigned int priv_flags;
1710 unsigned short gflags;
1711 unsigned short padded;
1713 unsigned char operstate;
1714 unsigned char link_mode;
1716 unsigned char if_port;
1717 unsigned char dma;
1719 unsigned int mtu;
1720 unsigned int min_mtu;
1721 unsigned int max_mtu;
1722 unsigned short type;
1723 unsigned short hard_header_len;
1724 unsigned char min_header_len;
1726 unsigned short needed_headroom;
1727 unsigned short needed_tailroom;
1729 /* Interface address info. */
1730 unsigned char perm_addr[MAX_ADDR_LEN];
1731 unsigned char addr_assign_type;
1732 unsigned char addr_len;
1733 unsigned short neigh_priv_len;
1734 unsigned short dev_id;
1735 unsigned short dev_port;
1736 spinlock_t addr_list_lock;
1737 unsigned char name_assign_type;
1738 bool uc_promisc;
1739 struct netdev_hw_addr_list uc;
1740 struct netdev_hw_addr_list mc;
1741 struct netdev_hw_addr_list dev_addrs;
1743 #ifdef CONFIG_SYSFS
1744 struct kset *queues_kset;
1745 #endif
1746 unsigned int promiscuity;
1747 unsigned int allmulti;
1750 /* Protocol-specific pointers */
1752 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1753 struct vlan_info __rcu *vlan_info;
1754 #endif
1755 #if IS_ENABLED(CONFIG_NET_DSA)
1756 struct dsa_switch_tree *dsa_ptr;
1757 #endif
1758 #if IS_ENABLED(CONFIG_TIPC)
1759 struct tipc_bearer __rcu *tipc_ptr;
1760 #endif
1761 void *atalk_ptr;
1762 struct in_device __rcu *ip_ptr;
1763 struct dn_dev __rcu *dn_ptr;
1764 struct inet6_dev __rcu *ip6_ptr;
1765 void *ax25_ptr;
1766 struct wireless_dev *ieee80211_ptr;
1767 struct wpan_dev *ieee802154_ptr;
1768 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1769 struct mpls_dev __rcu *mpls_ptr;
1770 #endif
1773 * Cache lines mostly used on receive path (including eth_type_trans())
1775 /* Interface address info used in eth_type_trans() */
1776 unsigned char *dev_addr;
1778 #ifdef CONFIG_SYSFS
1779 struct netdev_rx_queue *_rx;
1781 unsigned int num_rx_queues;
1782 unsigned int real_num_rx_queues;
1783 #endif
1785 struct bpf_prog __rcu *xdp_prog;
1786 unsigned long gro_flush_timeout;
1787 rx_handler_func_t __rcu *rx_handler;
1788 void __rcu *rx_handler_data;
1790 #ifdef CONFIG_NET_CLS_ACT
1791 struct tcf_proto __rcu *ingress_cl_list;
1792 #endif
1793 struct netdev_queue __rcu *ingress_queue;
1794 #ifdef CONFIG_NETFILTER_INGRESS
1795 struct nf_hook_entry __rcu *nf_hooks_ingress;
1796 #endif
1798 unsigned char broadcast[MAX_ADDR_LEN];
1799 #ifdef CONFIG_RFS_ACCEL
1800 struct cpu_rmap *rx_cpu_rmap;
1801 #endif
1802 struct hlist_node index_hlist;
1805 * Cache lines mostly used on transmit path
1807 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1808 unsigned int num_tx_queues;
1809 unsigned int real_num_tx_queues;
1810 struct Qdisc *qdisc;
1811 #ifdef CONFIG_NET_SCHED
1812 DECLARE_HASHTABLE (qdisc_hash, 4);
1813 #endif
1814 unsigned int tx_queue_len;
1815 spinlock_t tx_global_lock;
1816 int watchdog_timeo;
1818 #ifdef CONFIG_XPS
1819 struct xps_dev_maps __rcu *xps_maps;
1820 #endif
1821 #ifdef CONFIG_NET_CLS_ACT
1822 struct tcf_proto __rcu *egress_cl_list;
1823 #endif
1825 /* These may be needed for future network-power-down code. */
1826 struct timer_list watchdog_timer;
1828 int __percpu *pcpu_refcnt;
1829 struct list_head todo_list;
1831 struct list_head link_watch_list;
1833 enum { NETREG_UNINITIALIZED=0,
1834 NETREG_REGISTERED, /* completed register_netdevice */
1835 NETREG_UNREGISTERING, /* called unregister_netdevice */
1836 NETREG_UNREGISTERED, /* completed unregister todo */
1837 NETREG_RELEASED, /* called free_netdev */
1838 NETREG_DUMMY, /* dummy device for NAPI poll */
1839 } reg_state:8;
1841 bool dismantle;
1843 enum {
1844 RTNL_LINK_INITIALIZED,
1845 RTNL_LINK_INITIALIZING,
1846 } rtnl_link_state:16;
1848 bool needs_free_netdev;
1849 void (*priv_destructor)(struct net_device *dev);
1851 #ifdef CONFIG_NETPOLL
1852 struct netpoll_info __rcu *npinfo;
1853 #endif
1855 possible_net_t nd_net;
1857 /* mid-layer private */
1858 union {
1859 void *ml_priv;
1860 struct pcpu_lstats __percpu *lstats;
1861 struct pcpu_sw_netstats __percpu *tstats;
1862 struct pcpu_dstats __percpu *dstats;
1863 struct pcpu_vstats __percpu *vstats;
1866 #if IS_ENABLED(CONFIG_GARP)
1867 struct garp_port __rcu *garp_port;
1868 #endif
1869 #if IS_ENABLED(CONFIG_MRP)
1870 struct mrp_port __rcu *mrp_port;
1871 #endif
1873 struct device dev;
1874 const struct attribute_group *sysfs_groups[4];
1875 const struct attribute_group *sysfs_rx_queue_group;
1877 const struct rtnl_link_ops *rtnl_link_ops;
1879 /* for setting kernel sock attribute on TCP connection setup */
1880 #define GSO_MAX_SIZE 65536
1881 unsigned int gso_max_size;
1882 #define GSO_MAX_SEGS 65535
1883 u16 gso_max_segs;
1885 #ifdef CONFIG_DCB
1886 const struct dcbnl_rtnl_ops *dcbnl_ops;
1887 #endif
1888 u8 num_tc;
1889 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1890 u8 prio_tc_map[TC_BITMASK + 1];
1892 #if IS_ENABLED(CONFIG_FCOE)
1893 unsigned int fcoe_ddp_xid;
1894 #endif
1895 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1896 struct netprio_map __rcu *priomap;
1897 #endif
1898 struct phy_device *phydev;
1899 struct lock_class_key *qdisc_tx_busylock;
1900 struct lock_class_key *qdisc_running_key;
1901 bool proto_down;
1903 #define to_net_dev(d) container_of(d, struct net_device, dev)
1905 static inline bool netif_elide_gro(const struct net_device *dev)
1907 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
1908 return true;
1909 return false;
1912 #define NETDEV_ALIGN 32
1914 static inline
1915 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1917 return dev->prio_tc_map[prio & TC_BITMASK];
1920 static inline
1921 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1923 if (tc >= dev->num_tc)
1924 return -EINVAL;
1926 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1927 return 0;
1930 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
1931 void netdev_reset_tc(struct net_device *dev);
1932 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
1933 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
1935 static inline
1936 int netdev_get_num_tc(struct net_device *dev)
1938 return dev->num_tc;
1941 static inline
1942 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1943 unsigned int index)
1945 return &dev->_tx[index];
1948 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1949 const struct sk_buff *skb)
1951 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1954 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1955 void (*f)(struct net_device *,
1956 struct netdev_queue *,
1957 void *),
1958 void *arg)
1960 unsigned int i;
1962 for (i = 0; i < dev->num_tx_queues; i++)
1963 f(dev, &dev->_tx[i], arg);
1966 #define netdev_lockdep_set_classes(dev) \
1968 static struct lock_class_key qdisc_tx_busylock_key; \
1969 static struct lock_class_key qdisc_running_key; \
1970 static struct lock_class_key qdisc_xmit_lock_key; \
1971 static struct lock_class_key dev_addr_list_lock_key; \
1972 unsigned int i; \
1974 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \
1975 (dev)->qdisc_running_key = &qdisc_running_key; \
1976 lockdep_set_class(&(dev)->addr_list_lock, \
1977 &dev_addr_list_lock_key); \
1978 for (i = 0; i < (dev)->num_tx_queues; i++) \
1979 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \
1980 &qdisc_xmit_lock_key); \
1983 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1984 struct sk_buff *skb,
1985 void *accel_priv);
1987 /* returns the headroom that the master device needs to take in account
1988 * when forwarding to this dev
1990 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
1992 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
1995 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
1997 if (dev->netdev_ops->ndo_set_rx_headroom)
1998 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2001 /* set the device rx headroom to the dev's default */
2002 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2004 netdev_set_rx_headroom(dev, -1);
2008 * Net namespace inlines
2010 static inline
2011 struct net *dev_net(const struct net_device *dev)
2013 return read_pnet(&dev->nd_net);
2016 static inline
2017 void dev_net_set(struct net_device *dev, struct net *net)
2019 write_pnet(&dev->nd_net, net);
2023 * netdev_priv - access network device private data
2024 * @dev: network device
2026 * Get network device private data
2028 static inline void *netdev_priv(const struct net_device *dev)
2030 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2033 /* Set the sysfs physical device reference for the network logical device
2034 * if set prior to registration will cause a symlink during initialization.
2036 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
2038 /* Set the sysfs device type for the network logical device to allow
2039 * fine-grained identification of different network device types. For
2040 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2042 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
2044 /* Default NAPI poll() weight
2045 * Device drivers are strongly advised to not use bigger value
2047 #define NAPI_POLL_WEIGHT 64
2050 * netif_napi_add - initialize a NAPI context
2051 * @dev: network device
2052 * @napi: NAPI context
2053 * @poll: polling function
2054 * @weight: default weight
2056 * netif_napi_add() must be used to initialize a NAPI context prior to calling
2057 * *any* of the other NAPI-related functions.
2059 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2060 int (*poll)(struct napi_struct *, int), int weight);
2063 * netif_tx_napi_add - initialize a NAPI context
2064 * @dev: network device
2065 * @napi: NAPI context
2066 * @poll: polling function
2067 * @weight: default weight
2069 * This variant of netif_napi_add() should be used from drivers using NAPI
2070 * to exclusively poll a TX queue.
2071 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2073 static inline void netif_tx_napi_add(struct net_device *dev,
2074 struct napi_struct *napi,
2075 int (*poll)(struct napi_struct *, int),
2076 int weight)
2078 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2079 netif_napi_add(dev, napi, poll, weight);
2083 * netif_napi_del - remove a NAPI context
2084 * @napi: NAPI context
2086 * netif_napi_del() removes a NAPI context from the network device NAPI list
2088 void netif_napi_del(struct napi_struct *napi);
2090 struct napi_gro_cb {
2091 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2092 void *frag0;
2094 /* Length of frag0. */
2095 unsigned int frag0_len;
2097 /* This indicates where we are processing relative to skb->data. */
2098 int data_offset;
2100 /* This is non-zero if the packet cannot be merged with the new skb. */
2101 u16 flush;
2103 /* Save the IP ID here and check when we get to the transport layer */
2104 u16 flush_id;
2106 /* Number of segments aggregated. */
2107 u16 count;
2109 /* Start offset for remote checksum offload */
2110 u16 gro_remcsum_start;
2112 /* jiffies when first packet was created/queued */
2113 unsigned long age;
2115 /* Used in ipv6_gro_receive() and foo-over-udp */
2116 u16 proto;
2118 /* This is non-zero if the packet may be of the same flow. */
2119 u8 same_flow:1;
2121 /* Used in tunnel GRO receive */
2122 u8 encap_mark:1;
2124 /* GRO checksum is valid */
2125 u8 csum_valid:1;
2127 /* Number of checksums via CHECKSUM_UNNECESSARY */
2128 u8 csum_cnt:3;
2130 /* Free the skb? */
2131 u8 free:2;
2132 #define NAPI_GRO_FREE 1
2133 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2135 /* Used in foo-over-udp, set in udp[46]_gro_receive */
2136 u8 is_ipv6:1;
2138 /* Used in GRE, set in fou/gue_gro_receive */
2139 u8 is_fou:1;
2141 /* Used to determine if flush_id can be ignored */
2142 u8 is_atomic:1;
2144 /* Number of gro_receive callbacks this packet already went through */
2145 u8 recursion_counter:4;
2147 /* 1 bit hole */
2149 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2150 __wsum csum;
2152 /* used in skb_gro_receive() slow path */
2153 struct sk_buff *last;
2156 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2158 #define GRO_RECURSION_LIMIT 15
2159 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2161 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2164 typedef struct sk_buff **(*gro_receive_t)(struct sk_buff **, struct sk_buff *);
2165 static inline struct sk_buff **call_gro_receive(gro_receive_t cb,
2166 struct sk_buff **head,
2167 struct sk_buff *skb)
2169 if (unlikely(gro_recursion_inc_test(skb))) {
2170 NAPI_GRO_CB(skb)->flush |= 1;
2171 return NULL;
2174 return cb(head, skb);
2177 typedef struct sk_buff **(*gro_receive_sk_t)(struct sock *, struct sk_buff **,
2178 struct sk_buff *);
2179 static inline struct sk_buff **call_gro_receive_sk(gro_receive_sk_t cb,
2180 struct sock *sk,
2181 struct sk_buff **head,
2182 struct sk_buff *skb)
2184 if (unlikely(gro_recursion_inc_test(skb))) {
2185 NAPI_GRO_CB(skb)->flush |= 1;
2186 return NULL;
2189 return cb(sk, head, skb);
2192 struct packet_type {
2193 __be16 type; /* This is really htons(ether_type). */
2194 struct net_device *dev; /* NULL is wildcarded here */
2195 int (*func) (struct sk_buff *,
2196 struct net_device *,
2197 struct packet_type *,
2198 struct net_device *);
2199 bool (*id_match)(struct packet_type *ptype,
2200 struct sock *sk);
2201 void *af_packet_priv;
2202 struct list_head list;
2205 struct offload_callbacks {
2206 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
2207 netdev_features_t features);
2208 struct sk_buff **(*gro_receive)(struct sk_buff **head,
2209 struct sk_buff *skb);
2210 int (*gro_complete)(struct sk_buff *skb, int nhoff);
2213 struct packet_offload {
2214 __be16 type; /* This is really htons(ether_type). */
2215 u16 priority;
2216 struct offload_callbacks callbacks;
2217 struct list_head list;
2220 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2221 struct pcpu_sw_netstats {
2222 u64 rx_packets;
2223 u64 rx_bytes;
2224 u64 tx_packets;
2225 u64 tx_bytes;
2226 struct u64_stats_sync syncp;
2229 #define __netdev_alloc_pcpu_stats(type, gfp) \
2230 ({ \
2231 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2232 if (pcpu_stats) { \
2233 int __cpu; \
2234 for_each_possible_cpu(__cpu) { \
2235 typeof(type) *stat; \
2236 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2237 u64_stats_init(&stat->syncp); \
2240 pcpu_stats; \
2243 #define netdev_alloc_pcpu_stats(type) \
2244 __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2246 enum netdev_lag_tx_type {
2247 NETDEV_LAG_TX_TYPE_UNKNOWN,
2248 NETDEV_LAG_TX_TYPE_RANDOM,
2249 NETDEV_LAG_TX_TYPE_BROADCAST,
2250 NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2251 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2252 NETDEV_LAG_TX_TYPE_HASH,
2255 struct netdev_lag_upper_info {
2256 enum netdev_lag_tx_type tx_type;
2259 struct netdev_lag_lower_state_info {
2260 u8 link_up : 1,
2261 tx_enabled : 1;
2264 #include <linux/notifier.h>
2266 /* netdevice notifier chain. Please remember to update the rtnetlink
2267 * notification exclusion list in rtnetlink_event() when adding new
2268 * types.
2270 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
2271 #define NETDEV_DOWN 0x0002
2272 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
2273 detected a hardware crash and restarted
2274 - we can use this eg to kick tcp sessions
2275 once done */
2276 #define NETDEV_CHANGE 0x0004 /* Notify device state change */
2277 #define NETDEV_REGISTER 0x0005
2278 #define NETDEV_UNREGISTER 0x0006
2279 #define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */
2280 #define NETDEV_CHANGEADDR 0x0008
2281 #define NETDEV_GOING_DOWN 0x0009
2282 #define NETDEV_CHANGENAME 0x000A
2283 #define NETDEV_FEAT_CHANGE 0x000B
2284 #define NETDEV_BONDING_FAILOVER 0x000C
2285 #define NETDEV_PRE_UP 0x000D
2286 #define NETDEV_PRE_TYPE_CHANGE 0x000E
2287 #define NETDEV_POST_TYPE_CHANGE 0x000F
2288 #define NETDEV_POST_INIT 0x0010
2289 #define NETDEV_UNREGISTER_FINAL 0x0011
2290 #define NETDEV_RELEASE 0x0012
2291 #define NETDEV_NOTIFY_PEERS 0x0013
2292 #define NETDEV_JOIN 0x0014
2293 #define NETDEV_CHANGEUPPER 0x0015
2294 #define NETDEV_RESEND_IGMP 0x0016
2295 #define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */
2296 #define NETDEV_CHANGEINFODATA 0x0018
2297 #define NETDEV_BONDING_INFO 0x0019
2298 #define NETDEV_PRECHANGEUPPER 0x001A
2299 #define NETDEV_CHANGELOWERSTATE 0x001B
2300 #define NETDEV_UDP_TUNNEL_PUSH_INFO 0x001C
2301 #define NETDEV_UDP_TUNNEL_DROP_INFO 0x001D
2302 #define NETDEV_CHANGE_TX_QUEUE_LEN 0x001E
2304 int register_netdevice_notifier(struct notifier_block *nb);
2305 int unregister_netdevice_notifier(struct notifier_block *nb);
2307 struct netdev_notifier_info {
2308 struct net_device *dev;
2311 struct netdev_notifier_change_info {
2312 struct netdev_notifier_info info; /* must be first */
2313 unsigned int flags_changed;
2316 struct netdev_notifier_changeupper_info {
2317 struct netdev_notifier_info info; /* must be first */
2318 struct net_device *upper_dev; /* new upper dev */
2319 bool master; /* is upper dev master */
2320 bool linking; /* is the notification for link or unlink */
2321 void *upper_info; /* upper dev info */
2324 struct netdev_notifier_changelowerstate_info {
2325 struct netdev_notifier_info info; /* must be first */
2326 void *lower_state_info; /* is lower dev state */
2329 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2330 struct net_device *dev)
2332 info->dev = dev;
2335 static inline struct net_device *
2336 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2338 return info->dev;
2341 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2344 extern rwlock_t dev_base_lock; /* Device list lock */
2346 #define for_each_netdev(net, d) \
2347 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2348 #define for_each_netdev_reverse(net, d) \
2349 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2350 #define for_each_netdev_rcu(net, d) \
2351 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2352 #define for_each_netdev_safe(net, d, n) \
2353 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2354 #define for_each_netdev_continue(net, d) \
2355 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2356 #define for_each_netdev_continue_rcu(net, d) \
2357 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2358 #define for_each_netdev_in_bond_rcu(bond, slave) \
2359 for_each_netdev_rcu(&init_net, slave) \
2360 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2361 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2363 static inline struct net_device *next_net_device(struct net_device *dev)
2365 struct list_head *lh;
2366 struct net *net;
2368 net = dev_net(dev);
2369 lh = dev->dev_list.next;
2370 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2373 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2375 struct list_head *lh;
2376 struct net *net;
2378 net = dev_net(dev);
2379 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2380 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2383 static inline struct net_device *first_net_device(struct net *net)
2385 return list_empty(&net->dev_base_head) ? NULL :
2386 net_device_entry(net->dev_base_head.next);
2389 static inline struct net_device *first_net_device_rcu(struct net *net)
2391 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2393 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2396 int netdev_boot_setup_check(struct net_device *dev);
2397 unsigned long netdev_boot_base(const char *prefix, int unit);
2398 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2399 const char *hwaddr);
2400 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2401 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2402 void dev_add_pack(struct packet_type *pt);
2403 void dev_remove_pack(struct packet_type *pt);
2404 void __dev_remove_pack(struct packet_type *pt);
2405 void dev_add_offload(struct packet_offload *po);
2406 void dev_remove_offload(struct packet_offload *po);
2408 int dev_get_iflink(const struct net_device *dev);
2409 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2410 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2411 unsigned short mask);
2412 struct net_device *dev_get_by_name(struct net *net, const char *name);
2413 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2414 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2415 int dev_alloc_name(struct net_device *dev, const char *name);
2416 int dev_open(struct net_device *dev);
2417 void dev_close(struct net_device *dev);
2418 void dev_close_many(struct list_head *head, bool unlink);
2419 void dev_disable_lro(struct net_device *dev);
2420 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2421 int dev_queue_xmit(struct sk_buff *skb);
2422 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2423 int register_netdevice(struct net_device *dev);
2424 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2425 void unregister_netdevice_many(struct list_head *head);
2426 static inline void unregister_netdevice(struct net_device *dev)
2428 unregister_netdevice_queue(dev, NULL);
2431 int netdev_refcnt_read(const struct net_device *dev);
2432 void free_netdev(struct net_device *dev);
2433 void netdev_freemem(struct net_device *dev);
2434 void synchronize_net(void);
2435 int init_dummy_netdev(struct net_device *dev);
2437 DECLARE_PER_CPU(int, xmit_recursion);
2438 #define XMIT_RECURSION_LIMIT 10
2440 static inline int dev_recursion_level(void)
2442 return this_cpu_read(xmit_recursion);
2445 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2446 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2447 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2448 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2449 int netdev_get_name(struct net *net, char *name, int ifindex);
2450 int dev_restart(struct net_device *dev);
2451 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2453 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2455 return NAPI_GRO_CB(skb)->data_offset;
2458 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2460 return skb->len - NAPI_GRO_CB(skb)->data_offset;
2463 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2465 NAPI_GRO_CB(skb)->data_offset += len;
2468 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2469 unsigned int offset)
2471 return NAPI_GRO_CB(skb)->frag0 + offset;
2474 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2476 return NAPI_GRO_CB(skb)->frag0_len < hlen;
2479 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2481 NAPI_GRO_CB(skb)->frag0 = NULL;
2482 NAPI_GRO_CB(skb)->frag0_len = 0;
2485 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2486 unsigned int offset)
2488 if (!pskb_may_pull(skb, hlen))
2489 return NULL;
2491 skb_gro_frag0_invalidate(skb);
2492 return skb->data + offset;
2495 static inline void *skb_gro_network_header(struct sk_buff *skb)
2497 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2498 skb_network_offset(skb);
2501 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2502 const void *start, unsigned int len)
2504 if (NAPI_GRO_CB(skb)->csum_valid)
2505 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2506 csum_partial(start, len, 0));
2509 /* GRO checksum functions. These are logical equivalents of the normal
2510 * checksum functions (in skbuff.h) except that they operate on the GRO
2511 * offsets and fields in sk_buff.
2514 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2516 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2518 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2521 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2522 bool zero_okay,
2523 __sum16 check)
2525 return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2526 skb_checksum_start_offset(skb) <
2527 skb_gro_offset(skb)) &&
2528 !skb_at_gro_remcsum_start(skb) &&
2529 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2530 (!zero_okay || check));
2533 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2534 __wsum psum)
2536 if (NAPI_GRO_CB(skb)->csum_valid &&
2537 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2538 return 0;
2540 NAPI_GRO_CB(skb)->csum = psum;
2542 return __skb_gro_checksum_complete(skb);
2545 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2547 if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2548 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2549 NAPI_GRO_CB(skb)->csum_cnt--;
2550 } else {
2551 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2552 * verified a new top level checksum or an encapsulated one
2553 * during GRO. This saves work if we fallback to normal path.
2555 __skb_incr_checksum_unnecessary(skb);
2559 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \
2560 compute_pseudo) \
2561 ({ \
2562 __sum16 __ret = 0; \
2563 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \
2564 __ret = __skb_gro_checksum_validate_complete(skb, \
2565 compute_pseudo(skb, proto)); \
2566 if (!__ret) \
2567 skb_gro_incr_csum_unnecessary(skb); \
2568 __ret; \
2571 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \
2572 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2574 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \
2575 compute_pseudo) \
2576 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2578 #define skb_gro_checksum_simple_validate(skb) \
2579 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2581 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2583 return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2584 !NAPI_GRO_CB(skb)->csum_valid);
2587 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2588 __sum16 check, __wsum pseudo)
2590 NAPI_GRO_CB(skb)->csum = ~pseudo;
2591 NAPI_GRO_CB(skb)->csum_valid = 1;
2594 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2595 do { \
2596 if (__skb_gro_checksum_convert_check(skb)) \
2597 __skb_gro_checksum_convert(skb, check, \
2598 compute_pseudo(skb, proto)); \
2599 } while (0)
2601 struct gro_remcsum {
2602 int offset;
2603 __wsum delta;
2606 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2608 grc->offset = 0;
2609 grc->delta = 0;
2612 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2613 unsigned int off, size_t hdrlen,
2614 int start, int offset,
2615 struct gro_remcsum *grc,
2616 bool nopartial)
2618 __wsum delta;
2619 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2621 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2623 if (!nopartial) {
2624 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2625 return ptr;
2628 ptr = skb_gro_header_fast(skb, off);
2629 if (skb_gro_header_hard(skb, off + plen)) {
2630 ptr = skb_gro_header_slow(skb, off + plen, off);
2631 if (!ptr)
2632 return NULL;
2635 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2636 start, offset);
2638 /* Adjust skb->csum since we changed the packet */
2639 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2641 grc->offset = off + hdrlen + offset;
2642 grc->delta = delta;
2644 return ptr;
2647 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2648 struct gro_remcsum *grc)
2650 void *ptr;
2651 size_t plen = grc->offset + sizeof(u16);
2653 if (!grc->delta)
2654 return;
2656 ptr = skb_gro_header_fast(skb, grc->offset);
2657 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2658 ptr = skb_gro_header_slow(skb, plen, grc->offset);
2659 if (!ptr)
2660 return;
2663 remcsum_unadjust((__sum16 *)ptr, grc->delta);
2666 #ifdef CONFIG_XFRM_OFFLOAD
2667 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush)
2669 if (PTR_ERR(pp) != -EINPROGRESS)
2670 NAPI_GRO_CB(skb)->flush |= flush;
2672 #else
2673 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush)
2675 NAPI_GRO_CB(skb)->flush |= flush;
2677 #endif
2679 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2680 unsigned short type,
2681 const void *daddr, const void *saddr,
2682 unsigned int len)
2684 if (!dev->header_ops || !dev->header_ops->create)
2685 return 0;
2687 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2690 static inline int dev_parse_header(const struct sk_buff *skb,
2691 unsigned char *haddr)
2693 const struct net_device *dev = skb->dev;
2695 if (!dev->header_ops || !dev->header_ops->parse)
2696 return 0;
2697 return dev->header_ops->parse(skb, haddr);
2700 /* ll_header must have at least hard_header_len allocated */
2701 static inline bool dev_validate_header(const struct net_device *dev,
2702 char *ll_header, int len)
2704 if (likely(len >= dev->hard_header_len))
2705 return true;
2706 if (len < dev->min_header_len)
2707 return false;
2709 if (capable(CAP_SYS_RAWIO)) {
2710 memset(ll_header + len, 0, dev->hard_header_len - len);
2711 return true;
2714 if (dev->header_ops && dev->header_ops->validate)
2715 return dev->header_ops->validate(ll_header, len);
2717 return false;
2720 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2721 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2722 static inline int unregister_gifconf(unsigned int family)
2724 return register_gifconf(family, NULL);
2727 #ifdef CONFIG_NET_FLOW_LIMIT
2728 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
2729 struct sd_flow_limit {
2730 u64 count;
2731 unsigned int num_buckets;
2732 unsigned int history_head;
2733 u16 history[FLOW_LIMIT_HISTORY];
2734 u8 buckets[];
2737 extern int netdev_flow_limit_table_len;
2738 #endif /* CONFIG_NET_FLOW_LIMIT */
2741 * Incoming packets are placed on per-CPU queues
2743 struct softnet_data {
2744 struct list_head poll_list;
2745 struct sk_buff_head process_queue;
2747 /* stats */
2748 unsigned int processed;
2749 unsigned int time_squeeze;
2750 unsigned int received_rps;
2751 #ifdef CONFIG_RPS
2752 struct softnet_data *rps_ipi_list;
2753 #endif
2754 #ifdef CONFIG_NET_FLOW_LIMIT
2755 struct sd_flow_limit __rcu *flow_limit;
2756 #endif
2757 struct Qdisc *output_queue;
2758 struct Qdisc **output_queue_tailp;
2759 struct sk_buff *completion_queue;
2761 #ifdef CONFIG_RPS
2762 /* input_queue_head should be written by cpu owning this struct,
2763 * and only read by other cpus. Worth using a cache line.
2765 unsigned int input_queue_head ____cacheline_aligned_in_smp;
2767 /* Elements below can be accessed between CPUs for RPS/RFS */
2768 struct call_single_data csd ____cacheline_aligned_in_smp;
2769 struct softnet_data *rps_ipi_next;
2770 unsigned int cpu;
2771 unsigned int input_queue_tail;
2772 #endif
2773 unsigned int dropped;
2774 struct sk_buff_head input_pkt_queue;
2775 struct napi_struct backlog;
2779 static inline void input_queue_head_incr(struct softnet_data *sd)
2781 #ifdef CONFIG_RPS
2782 sd->input_queue_head++;
2783 #endif
2786 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2787 unsigned int *qtail)
2789 #ifdef CONFIG_RPS
2790 *qtail = ++sd->input_queue_tail;
2791 #endif
2794 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2796 void __netif_schedule(struct Qdisc *q);
2797 void netif_schedule_queue(struct netdev_queue *txq);
2799 static inline void netif_tx_schedule_all(struct net_device *dev)
2801 unsigned int i;
2803 for (i = 0; i < dev->num_tx_queues; i++)
2804 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2807 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2809 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2813 * netif_start_queue - allow transmit
2814 * @dev: network device
2816 * Allow upper layers to call the device hard_start_xmit routine.
2818 static inline void netif_start_queue(struct net_device *dev)
2820 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2823 static inline void netif_tx_start_all_queues(struct net_device *dev)
2825 unsigned int i;
2827 for (i = 0; i < dev->num_tx_queues; i++) {
2828 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2829 netif_tx_start_queue(txq);
2833 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2836 * netif_wake_queue - restart transmit
2837 * @dev: network device
2839 * Allow upper layers to call the device hard_start_xmit routine.
2840 * Used for flow control when transmit resources are available.
2842 static inline void netif_wake_queue(struct net_device *dev)
2844 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2847 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2849 unsigned int i;
2851 for (i = 0; i < dev->num_tx_queues; i++) {
2852 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2853 netif_tx_wake_queue(txq);
2857 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2859 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2863 * netif_stop_queue - stop transmitted packets
2864 * @dev: network device
2866 * Stop upper layers calling the device hard_start_xmit routine.
2867 * Used for flow control when transmit resources are unavailable.
2869 static inline void netif_stop_queue(struct net_device *dev)
2871 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2874 void netif_tx_stop_all_queues(struct net_device *dev);
2876 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2878 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2882 * netif_queue_stopped - test if transmit queue is flowblocked
2883 * @dev: network device
2885 * Test if transmit queue on device is currently unable to send.
2887 static inline bool netif_queue_stopped(const struct net_device *dev)
2889 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2892 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2894 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2897 static inline bool
2898 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2900 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2903 static inline bool
2904 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2906 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2910 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2911 * @dev_queue: pointer to transmit queue
2913 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2914 * to give appropriate hint to the CPU.
2916 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2918 #ifdef CONFIG_BQL
2919 prefetchw(&dev_queue->dql.num_queued);
2920 #endif
2924 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2925 * @dev_queue: pointer to transmit queue
2927 * BQL enabled drivers might use this helper in their TX completion path,
2928 * to give appropriate hint to the CPU.
2930 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2932 #ifdef CONFIG_BQL
2933 prefetchw(&dev_queue->dql.limit);
2934 #endif
2937 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2938 unsigned int bytes)
2940 #ifdef CONFIG_BQL
2941 dql_queued(&dev_queue->dql, bytes);
2943 if (likely(dql_avail(&dev_queue->dql) >= 0))
2944 return;
2946 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2949 * The XOFF flag must be set before checking the dql_avail below,
2950 * because in netdev_tx_completed_queue we update the dql_completed
2951 * before checking the XOFF flag.
2953 smp_mb();
2955 /* check again in case another CPU has just made room avail */
2956 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2957 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2958 #endif
2962 * netdev_sent_queue - report the number of bytes queued to hardware
2963 * @dev: network device
2964 * @bytes: number of bytes queued to the hardware device queue
2966 * Report the number of bytes queued for sending/completion to the network
2967 * device hardware queue. @bytes should be a good approximation and should
2968 * exactly match netdev_completed_queue() @bytes
2970 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2972 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2975 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2976 unsigned int pkts, unsigned int bytes)
2978 #ifdef CONFIG_BQL
2979 if (unlikely(!bytes))
2980 return;
2982 dql_completed(&dev_queue->dql, bytes);
2985 * Without the memory barrier there is a small possiblity that
2986 * netdev_tx_sent_queue will miss the update and cause the queue to
2987 * be stopped forever
2989 smp_mb();
2991 if (dql_avail(&dev_queue->dql) < 0)
2992 return;
2994 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2995 netif_schedule_queue(dev_queue);
2996 #endif
3000 * netdev_completed_queue - report bytes and packets completed by device
3001 * @dev: network device
3002 * @pkts: actual number of packets sent over the medium
3003 * @bytes: actual number of bytes sent over the medium
3005 * Report the number of bytes and packets transmitted by the network device
3006 * hardware queue over the physical medium, @bytes must exactly match the
3007 * @bytes amount passed to netdev_sent_queue()
3009 static inline void netdev_completed_queue(struct net_device *dev,
3010 unsigned int pkts, unsigned int bytes)
3012 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3015 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3017 #ifdef CONFIG_BQL
3018 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3019 dql_reset(&q->dql);
3020 #endif
3024 * netdev_reset_queue - reset the packets and bytes count of a network device
3025 * @dev_queue: network device
3027 * Reset the bytes and packet count of a network device and clear the
3028 * software flow control OFF bit for this network device
3030 static inline void netdev_reset_queue(struct net_device *dev_queue)
3032 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3036 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
3037 * @dev: network device
3038 * @queue_index: given tx queue index
3040 * Returns 0 if given tx queue index >= number of device tx queues,
3041 * otherwise returns the originally passed tx queue index.
3043 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3045 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3046 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3047 dev->name, queue_index,
3048 dev->real_num_tx_queues);
3049 return 0;
3052 return queue_index;
3056 * netif_running - test if up
3057 * @dev: network device
3059 * Test if the device has been brought up.
3061 static inline bool netif_running(const struct net_device *dev)
3063 return test_bit(__LINK_STATE_START, &dev->state);
3067 * Routines to manage the subqueues on a device. We only need start,
3068 * stop, and a check if it's stopped. All other device management is
3069 * done at the overall netdevice level.
3070 * Also test the device if we're multiqueue.
3074 * netif_start_subqueue - allow sending packets on subqueue
3075 * @dev: network device
3076 * @queue_index: sub queue index
3078 * Start individual transmit queue of a device with multiple transmit queues.
3080 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3082 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3084 netif_tx_start_queue(txq);
3088 * netif_stop_subqueue - stop sending packets on subqueue
3089 * @dev: network device
3090 * @queue_index: sub queue index
3092 * Stop individual transmit queue of a device with multiple transmit queues.
3094 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3096 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3097 netif_tx_stop_queue(txq);
3101 * netif_subqueue_stopped - test status of subqueue
3102 * @dev: network device
3103 * @queue_index: sub queue index
3105 * Check individual transmit queue of a device with multiple transmit queues.
3107 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3108 u16 queue_index)
3110 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3112 return netif_tx_queue_stopped(txq);
3115 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3116 struct sk_buff *skb)
3118 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3122 * netif_wake_subqueue - allow sending packets on subqueue
3123 * @dev: network device
3124 * @queue_index: sub queue index
3126 * Resume individual transmit queue of a device with multiple transmit queues.
3128 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3130 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3132 netif_tx_wake_queue(txq);
3135 #ifdef CONFIG_XPS
3136 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3137 u16 index);
3138 #else
3139 static inline int netif_set_xps_queue(struct net_device *dev,
3140 const struct cpumask *mask,
3141 u16 index)
3143 return 0;
3145 #endif
3147 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3148 unsigned int num_tx_queues);
3151 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
3152 * as a distribution range limit for the returned value.
3154 static inline u16 skb_tx_hash(const struct net_device *dev,
3155 struct sk_buff *skb)
3157 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
3161 * netif_is_multiqueue - test if device has multiple transmit queues
3162 * @dev: network device
3164 * Check if device has multiple transmit queues
3166 static inline bool netif_is_multiqueue(const struct net_device *dev)
3168 return dev->num_tx_queues > 1;
3171 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3173 #ifdef CONFIG_SYSFS
3174 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3175 #else
3176 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3177 unsigned int rxq)
3179 return 0;
3181 #endif
3183 #ifdef CONFIG_SYSFS
3184 static inline unsigned int get_netdev_rx_queue_index(
3185 struct netdev_rx_queue *queue)
3187 struct net_device *dev = queue->dev;
3188 int index = queue - dev->_rx;
3190 BUG_ON(index >= dev->num_rx_queues);
3191 return index;
3193 #endif
3195 #define DEFAULT_MAX_NUM_RSS_QUEUES (8)
3196 int netif_get_num_default_rss_queues(void);
3198 enum skb_free_reason {
3199 SKB_REASON_CONSUMED,
3200 SKB_REASON_DROPPED,
3203 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3204 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3207 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3208 * interrupt context or with hardware interrupts being disabled.
3209 * (in_irq() || irqs_disabled())
3211 * We provide four helpers that can be used in following contexts :
3213 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3214 * replacing kfree_skb(skb)
3216 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3217 * Typically used in place of consume_skb(skb) in TX completion path
3219 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3220 * replacing kfree_skb(skb)
3222 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3223 * and consumed a packet. Used in place of consume_skb(skb)
3225 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3227 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3230 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3232 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3235 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3237 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3240 static inline void dev_consume_skb_any(struct sk_buff *skb)
3242 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3245 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3246 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3247 int netif_rx(struct sk_buff *skb);
3248 int netif_rx_ni(struct sk_buff *skb);
3249 int netif_receive_skb(struct sk_buff *skb);
3250 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3251 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3252 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3253 gro_result_t napi_gro_frags(struct napi_struct *napi);
3254 struct packet_offload *gro_find_receive_by_type(__be16 type);
3255 struct packet_offload *gro_find_complete_by_type(__be16 type);
3257 static inline void napi_free_frags(struct napi_struct *napi)
3259 kfree_skb(napi->skb);
3260 napi->skb = NULL;
3263 bool netdev_is_rx_handler_busy(struct net_device *dev);
3264 int netdev_rx_handler_register(struct net_device *dev,
3265 rx_handler_func_t *rx_handler,
3266 void *rx_handler_data);
3267 void netdev_rx_handler_unregister(struct net_device *dev);
3269 bool dev_valid_name(const char *name);
3270 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3271 int dev_ethtool(struct net *net, struct ifreq *);
3272 unsigned int dev_get_flags(const struct net_device *);
3273 int __dev_change_flags(struct net_device *, unsigned int flags);
3274 int dev_change_flags(struct net_device *, unsigned int);
3275 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3276 unsigned int gchanges);
3277 int dev_change_name(struct net_device *, const char *);
3278 int dev_set_alias(struct net_device *, const char *, size_t);
3279 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3280 int __dev_set_mtu(struct net_device *, int);
3281 int dev_set_mtu(struct net_device *, int);
3282 void dev_set_group(struct net_device *, int);
3283 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3284 int dev_change_carrier(struct net_device *, bool new_carrier);
3285 int dev_get_phys_port_id(struct net_device *dev,
3286 struct netdev_phys_item_id *ppid);
3287 int dev_get_phys_port_name(struct net_device *dev,
3288 char *name, size_t len);
3289 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3290 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3291 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3292 struct netdev_queue *txq, int *ret);
3294 typedef int (*xdp_op_t)(struct net_device *dev, struct netdev_xdp *xdp);
3295 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3296 int fd, u32 flags);
3297 u8 __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op, u32 *prog_id);
3299 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3300 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3301 bool is_skb_forwardable(const struct net_device *dev,
3302 const struct sk_buff *skb);
3304 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3305 struct sk_buff *skb)
3307 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3308 unlikely(!is_skb_forwardable(dev, skb))) {
3309 atomic_long_inc(&dev->rx_dropped);
3310 kfree_skb(skb);
3311 return NET_RX_DROP;
3314 skb_scrub_packet(skb, true);
3315 skb->priority = 0;
3316 return 0;
3319 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3321 extern int netdev_budget;
3322 extern unsigned int netdev_budget_usecs;
3324 /* Called by rtnetlink.c:rtnl_unlock() */
3325 void netdev_run_todo(void);
3328 * dev_put - release reference to device
3329 * @dev: network device
3331 * Release reference to device to allow it to be freed.
3333 static inline void dev_put(struct net_device *dev)
3335 this_cpu_dec(*dev->pcpu_refcnt);
3339 * dev_hold - get reference to device
3340 * @dev: network device
3342 * Hold reference to device to keep it from being freed.
3344 static inline void dev_hold(struct net_device *dev)
3346 this_cpu_inc(*dev->pcpu_refcnt);
3349 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3350 * and _off may be called from IRQ context, but it is caller
3351 * who is responsible for serialization of these calls.
3353 * The name carrier is inappropriate, these functions should really be
3354 * called netif_lowerlayer_*() because they represent the state of any
3355 * kind of lower layer not just hardware media.
3358 void linkwatch_init_dev(struct net_device *dev);
3359 void linkwatch_fire_event(struct net_device *dev);
3360 void linkwatch_forget_dev(struct net_device *dev);
3363 * netif_carrier_ok - test if carrier present
3364 * @dev: network device
3366 * Check if carrier is present on device
3368 static inline bool netif_carrier_ok(const struct net_device *dev)
3370 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3373 unsigned long dev_trans_start(struct net_device *dev);
3375 void __netdev_watchdog_up(struct net_device *dev);
3377 void netif_carrier_on(struct net_device *dev);
3379 void netif_carrier_off(struct net_device *dev);
3382 * netif_dormant_on - mark device as dormant.
3383 * @dev: network device
3385 * Mark device as dormant (as per RFC2863).
3387 * The dormant state indicates that the relevant interface is not
3388 * actually in a condition to pass packets (i.e., it is not 'up') but is
3389 * in a "pending" state, waiting for some external event. For "on-
3390 * demand" interfaces, this new state identifies the situation where the
3391 * interface is waiting for events to place it in the up state.
3393 static inline void netif_dormant_on(struct net_device *dev)
3395 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3396 linkwatch_fire_event(dev);
3400 * netif_dormant_off - set device as not dormant.
3401 * @dev: network device
3403 * Device is not in dormant state.
3405 static inline void netif_dormant_off(struct net_device *dev)
3407 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3408 linkwatch_fire_event(dev);
3412 * netif_dormant - test if device is dormant
3413 * @dev: network device
3415 * Check if device is dormant.
3417 static inline bool netif_dormant(const struct net_device *dev)
3419 return test_bit(__LINK_STATE_DORMANT, &dev->state);
3424 * netif_oper_up - test if device is operational
3425 * @dev: network device
3427 * Check if carrier is operational
3429 static inline bool netif_oper_up(const struct net_device *dev)
3431 return (dev->operstate == IF_OPER_UP ||
3432 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3436 * netif_device_present - is device available or removed
3437 * @dev: network device
3439 * Check if device has not been removed from system.
3441 static inline bool netif_device_present(struct net_device *dev)
3443 return test_bit(__LINK_STATE_PRESENT, &dev->state);
3446 void netif_device_detach(struct net_device *dev);
3448 void netif_device_attach(struct net_device *dev);
3451 * Network interface message level settings
3454 enum {
3455 NETIF_MSG_DRV = 0x0001,
3456 NETIF_MSG_PROBE = 0x0002,
3457 NETIF_MSG_LINK = 0x0004,
3458 NETIF_MSG_TIMER = 0x0008,
3459 NETIF_MSG_IFDOWN = 0x0010,
3460 NETIF_MSG_IFUP = 0x0020,
3461 NETIF_MSG_RX_ERR = 0x0040,
3462 NETIF_MSG_TX_ERR = 0x0080,
3463 NETIF_MSG_TX_QUEUED = 0x0100,
3464 NETIF_MSG_INTR = 0x0200,
3465 NETIF_MSG_TX_DONE = 0x0400,
3466 NETIF_MSG_RX_STATUS = 0x0800,
3467 NETIF_MSG_PKTDATA = 0x1000,
3468 NETIF_MSG_HW = 0x2000,
3469 NETIF_MSG_WOL = 0x4000,
3472 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
3473 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
3474 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
3475 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
3476 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
3477 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
3478 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
3479 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
3480 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3481 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
3482 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
3483 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3484 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
3485 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
3486 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
3488 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3490 /* use default */
3491 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3492 return default_msg_enable_bits;
3493 if (debug_value == 0) /* no output */
3494 return 0;
3495 /* set low N bits */
3496 return (1 << debug_value) - 1;
3499 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3501 spin_lock(&txq->_xmit_lock);
3502 txq->xmit_lock_owner = cpu;
3505 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3507 __acquire(&txq->_xmit_lock);
3508 return true;
3511 static inline void __netif_tx_release(struct netdev_queue *txq)
3513 __release(&txq->_xmit_lock);
3516 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3518 spin_lock_bh(&txq->_xmit_lock);
3519 txq->xmit_lock_owner = smp_processor_id();
3522 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3524 bool ok = spin_trylock(&txq->_xmit_lock);
3525 if (likely(ok))
3526 txq->xmit_lock_owner = smp_processor_id();
3527 return ok;
3530 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3532 txq->xmit_lock_owner = -1;
3533 spin_unlock(&txq->_xmit_lock);
3536 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3538 txq->xmit_lock_owner = -1;
3539 spin_unlock_bh(&txq->_xmit_lock);
3542 static inline void txq_trans_update(struct netdev_queue *txq)
3544 if (txq->xmit_lock_owner != -1)
3545 txq->trans_start = jiffies;
3548 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3549 static inline void netif_trans_update(struct net_device *dev)
3551 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3553 if (txq->trans_start != jiffies)
3554 txq->trans_start = jiffies;
3558 * netif_tx_lock - grab network device transmit lock
3559 * @dev: network device
3561 * Get network device transmit lock
3563 static inline void netif_tx_lock(struct net_device *dev)
3565 unsigned int i;
3566 int cpu;
3568 spin_lock(&dev->tx_global_lock);
3569 cpu = smp_processor_id();
3570 for (i = 0; i < dev->num_tx_queues; i++) {
3571 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3573 /* We are the only thread of execution doing a
3574 * freeze, but we have to grab the _xmit_lock in
3575 * order to synchronize with threads which are in
3576 * the ->hard_start_xmit() handler and already
3577 * checked the frozen bit.
3579 __netif_tx_lock(txq, cpu);
3580 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3581 __netif_tx_unlock(txq);
3585 static inline void netif_tx_lock_bh(struct net_device *dev)
3587 local_bh_disable();
3588 netif_tx_lock(dev);
3591 static inline void netif_tx_unlock(struct net_device *dev)
3593 unsigned int i;
3595 for (i = 0; i < dev->num_tx_queues; i++) {
3596 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3598 /* No need to grab the _xmit_lock here. If the
3599 * queue is not stopped for another reason, we
3600 * force a schedule.
3602 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3603 netif_schedule_queue(txq);
3605 spin_unlock(&dev->tx_global_lock);
3608 static inline void netif_tx_unlock_bh(struct net_device *dev)
3610 netif_tx_unlock(dev);
3611 local_bh_enable();
3614 #define HARD_TX_LOCK(dev, txq, cpu) { \
3615 if ((dev->features & NETIF_F_LLTX) == 0) { \
3616 __netif_tx_lock(txq, cpu); \
3617 } else { \
3618 __netif_tx_acquire(txq); \
3622 #define HARD_TX_TRYLOCK(dev, txq) \
3623 (((dev->features & NETIF_F_LLTX) == 0) ? \
3624 __netif_tx_trylock(txq) : \
3625 __netif_tx_acquire(txq))
3627 #define HARD_TX_UNLOCK(dev, txq) { \
3628 if ((dev->features & NETIF_F_LLTX) == 0) { \
3629 __netif_tx_unlock(txq); \
3630 } else { \
3631 __netif_tx_release(txq); \
3635 static inline void netif_tx_disable(struct net_device *dev)
3637 unsigned int i;
3638 int cpu;
3640 local_bh_disable();
3641 cpu = smp_processor_id();
3642 for (i = 0; i < dev->num_tx_queues; i++) {
3643 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3645 __netif_tx_lock(txq, cpu);
3646 netif_tx_stop_queue(txq);
3647 __netif_tx_unlock(txq);
3649 local_bh_enable();
3652 static inline void netif_addr_lock(struct net_device *dev)
3654 spin_lock(&dev->addr_list_lock);
3657 static inline void netif_addr_lock_nested(struct net_device *dev)
3659 int subclass = SINGLE_DEPTH_NESTING;
3661 if (dev->netdev_ops->ndo_get_lock_subclass)
3662 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3664 spin_lock_nested(&dev->addr_list_lock, subclass);
3667 static inline void netif_addr_lock_bh(struct net_device *dev)
3669 spin_lock_bh(&dev->addr_list_lock);
3672 static inline void netif_addr_unlock(struct net_device *dev)
3674 spin_unlock(&dev->addr_list_lock);
3677 static inline void netif_addr_unlock_bh(struct net_device *dev)
3679 spin_unlock_bh(&dev->addr_list_lock);
3683 * dev_addrs walker. Should be used only for read access. Call with
3684 * rcu_read_lock held.
3686 #define for_each_dev_addr(dev, ha) \
3687 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3689 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3691 void ether_setup(struct net_device *dev);
3693 /* Support for loadable net-drivers */
3694 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3695 unsigned char name_assign_type,
3696 void (*setup)(struct net_device *),
3697 unsigned int txqs, unsigned int rxqs);
3698 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3699 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3701 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3702 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3703 count)
3705 int register_netdev(struct net_device *dev);
3706 void unregister_netdev(struct net_device *dev);
3708 /* General hardware address lists handling functions */
3709 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3710 struct netdev_hw_addr_list *from_list, int addr_len);
3711 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3712 struct netdev_hw_addr_list *from_list, int addr_len);
3713 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3714 struct net_device *dev,
3715 int (*sync)(struct net_device *, const unsigned char *),
3716 int (*unsync)(struct net_device *,
3717 const unsigned char *));
3718 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3719 struct net_device *dev,
3720 int (*unsync)(struct net_device *,
3721 const unsigned char *));
3722 void __hw_addr_init(struct netdev_hw_addr_list *list);
3724 /* Functions used for device addresses handling */
3725 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3726 unsigned char addr_type);
3727 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3728 unsigned char addr_type);
3729 void dev_addr_flush(struct net_device *dev);
3730 int dev_addr_init(struct net_device *dev);
3732 /* Functions used for unicast addresses handling */
3733 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3734 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3735 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3736 int dev_uc_sync(struct net_device *to, struct net_device *from);
3737 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3738 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3739 void dev_uc_flush(struct net_device *dev);
3740 void dev_uc_init(struct net_device *dev);
3743 * __dev_uc_sync - Synchonize device's unicast list
3744 * @dev: device to sync
3745 * @sync: function to call if address should be added
3746 * @unsync: function to call if address should be removed
3748 * Add newly added addresses to the interface, and release
3749 * addresses that have been deleted.
3751 static inline int __dev_uc_sync(struct net_device *dev,
3752 int (*sync)(struct net_device *,
3753 const unsigned char *),
3754 int (*unsync)(struct net_device *,
3755 const unsigned char *))
3757 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3761 * __dev_uc_unsync - Remove synchronized addresses from device
3762 * @dev: device to sync
3763 * @unsync: function to call if address should be removed
3765 * Remove all addresses that were added to the device by dev_uc_sync().
3767 static inline void __dev_uc_unsync(struct net_device *dev,
3768 int (*unsync)(struct net_device *,
3769 const unsigned char *))
3771 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3774 /* Functions used for multicast addresses handling */
3775 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3776 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3777 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3778 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3779 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3780 int dev_mc_sync(struct net_device *to, struct net_device *from);
3781 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3782 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3783 void dev_mc_flush(struct net_device *dev);
3784 void dev_mc_init(struct net_device *dev);
3787 * __dev_mc_sync - Synchonize device's multicast list
3788 * @dev: device to sync
3789 * @sync: function to call if address should be added
3790 * @unsync: function to call if address should be removed
3792 * Add newly added addresses to the interface, and release
3793 * addresses that have been deleted.
3795 static inline int __dev_mc_sync(struct net_device *dev,
3796 int (*sync)(struct net_device *,
3797 const unsigned char *),
3798 int (*unsync)(struct net_device *,
3799 const unsigned char *))
3801 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3805 * __dev_mc_unsync - Remove synchronized addresses from device
3806 * @dev: device to sync
3807 * @unsync: function to call if address should be removed
3809 * Remove all addresses that were added to the device by dev_mc_sync().
3811 static inline void __dev_mc_unsync(struct net_device *dev,
3812 int (*unsync)(struct net_device *,
3813 const unsigned char *))
3815 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3818 /* Functions used for secondary unicast and multicast support */
3819 void dev_set_rx_mode(struct net_device *dev);
3820 void __dev_set_rx_mode(struct net_device *dev);
3821 int dev_set_promiscuity(struct net_device *dev, int inc);
3822 int dev_set_allmulti(struct net_device *dev, int inc);
3823 void netdev_state_change(struct net_device *dev);
3824 void netdev_notify_peers(struct net_device *dev);
3825 void netdev_features_change(struct net_device *dev);
3826 /* Load a device via the kmod */
3827 void dev_load(struct net *net, const char *name);
3828 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3829 struct rtnl_link_stats64 *storage);
3830 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3831 const struct net_device_stats *netdev_stats);
3833 extern int netdev_max_backlog;
3834 extern int netdev_tstamp_prequeue;
3835 extern int weight_p;
3836 extern int dev_weight_rx_bias;
3837 extern int dev_weight_tx_bias;
3838 extern int dev_rx_weight;
3839 extern int dev_tx_weight;
3841 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3842 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3843 struct list_head **iter);
3844 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3845 struct list_head **iter);
3847 /* iterate through upper list, must be called under RCU read lock */
3848 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3849 for (iter = &(dev)->adj_list.upper, \
3850 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3851 updev; \
3852 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3854 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
3855 int (*fn)(struct net_device *upper_dev,
3856 void *data),
3857 void *data);
3859 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
3860 struct net_device *upper_dev);
3862 void *netdev_lower_get_next_private(struct net_device *dev,
3863 struct list_head **iter);
3864 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3865 struct list_head **iter);
3867 #define netdev_for_each_lower_private(dev, priv, iter) \
3868 for (iter = (dev)->adj_list.lower.next, \
3869 priv = netdev_lower_get_next_private(dev, &(iter)); \
3870 priv; \
3871 priv = netdev_lower_get_next_private(dev, &(iter)))
3873 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3874 for (iter = &(dev)->adj_list.lower, \
3875 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3876 priv; \
3877 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3879 void *netdev_lower_get_next(struct net_device *dev,
3880 struct list_head **iter);
3882 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3883 for (iter = (dev)->adj_list.lower.next, \
3884 ldev = netdev_lower_get_next(dev, &(iter)); \
3885 ldev; \
3886 ldev = netdev_lower_get_next(dev, &(iter)))
3888 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
3889 struct list_head **iter);
3890 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
3891 struct list_head **iter);
3893 int netdev_walk_all_lower_dev(struct net_device *dev,
3894 int (*fn)(struct net_device *lower_dev,
3895 void *data),
3896 void *data);
3897 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
3898 int (*fn)(struct net_device *lower_dev,
3899 void *data),
3900 void *data);
3902 void *netdev_adjacent_get_private(struct list_head *adj_list);
3903 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3904 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3905 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3906 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3907 int netdev_master_upper_dev_link(struct net_device *dev,
3908 struct net_device *upper_dev,
3909 void *upper_priv, void *upper_info);
3910 void netdev_upper_dev_unlink(struct net_device *dev,
3911 struct net_device *upper_dev);
3912 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3913 void *netdev_lower_dev_get_private(struct net_device *dev,
3914 struct net_device *lower_dev);
3915 void netdev_lower_state_changed(struct net_device *lower_dev,
3916 void *lower_state_info);
3918 /* RSS keys are 40 or 52 bytes long */
3919 #define NETDEV_RSS_KEY_LEN 52
3920 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
3921 void netdev_rss_key_fill(void *buffer, size_t len);
3923 int dev_get_nest_level(struct net_device *dev);
3924 int skb_checksum_help(struct sk_buff *skb);
3925 int skb_crc32c_csum_help(struct sk_buff *skb);
3926 int skb_csum_hwoffload_help(struct sk_buff *skb,
3927 const netdev_features_t features);
3929 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3930 netdev_features_t features, bool tx_path);
3931 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3932 netdev_features_t features);
3934 struct netdev_bonding_info {
3935 ifslave slave;
3936 ifbond master;
3939 struct netdev_notifier_bonding_info {
3940 struct netdev_notifier_info info; /* must be first */
3941 struct netdev_bonding_info bonding_info;
3944 void netdev_bonding_info_change(struct net_device *dev,
3945 struct netdev_bonding_info *bonding_info);
3947 static inline
3948 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3950 return __skb_gso_segment(skb, features, true);
3952 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3954 static inline bool can_checksum_protocol(netdev_features_t features,
3955 __be16 protocol)
3957 if (protocol == htons(ETH_P_FCOE))
3958 return !!(features & NETIF_F_FCOE_CRC);
3960 /* Assume this is an IP checksum (not SCTP CRC) */
3962 if (features & NETIF_F_HW_CSUM) {
3963 /* Can checksum everything */
3964 return true;
3967 switch (protocol) {
3968 case htons(ETH_P_IP):
3969 return !!(features & NETIF_F_IP_CSUM);
3970 case htons(ETH_P_IPV6):
3971 return !!(features & NETIF_F_IPV6_CSUM);
3972 default:
3973 return false;
3977 #ifdef CONFIG_BUG
3978 void netdev_rx_csum_fault(struct net_device *dev);
3979 #else
3980 static inline void netdev_rx_csum_fault(struct net_device *dev)
3983 #endif
3984 /* rx skb timestamps */
3985 void net_enable_timestamp(void);
3986 void net_disable_timestamp(void);
3988 #ifdef CONFIG_PROC_FS
3989 int __init dev_proc_init(void);
3990 #else
3991 #define dev_proc_init() 0
3992 #endif
3994 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3995 struct sk_buff *skb, struct net_device *dev,
3996 bool more)
3998 skb->xmit_more = more ? 1 : 0;
3999 return ops->ndo_start_xmit(skb, dev);
4002 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4003 struct netdev_queue *txq, bool more)
4005 const struct net_device_ops *ops = dev->netdev_ops;
4006 int rc;
4008 rc = __netdev_start_xmit(ops, skb, dev, more);
4009 if (rc == NETDEV_TX_OK)
4010 txq_trans_update(txq);
4012 return rc;
4015 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4016 const void *ns);
4017 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4018 const void *ns);
4020 static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4022 return netdev_class_create_file_ns(class_attr, NULL);
4025 static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4027 netdev_class_remove_file_ns(class_attr, NULL);
4030 extern const struct kobj_ns_type_operations net_ns_type_operations;
4032 const char *netdev_drivername(const struct net_device *dev);
4034 void linkwatch_run_queue(void);
4036 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4037 netdev_features_t f2)
4039 if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4040 if (f1 & NETIF_F_HW_CSUM)
4041 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4042 else
4043 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4046 return f1 & f2;
4049 static inline netdev_features_t netdev_get_wanted_features(
4050 struct net_device *dev)
4052 return (dev->features & ~dev->hw_features) | dev->wanted_features;
4054 netdev_features_t netdev_increment_features(netdev_features_t all,
4055 netdev_features_t one, netdev_features_t mask);
4057 /* Allow TSO being used on stacked device :
4058 * Performing the GSO segmentation before last device
4059 * is a performance improvement.
4061 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4062 netdev_features_t mask)
4064 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4067 int __netdev_update_features(struct net_device *dev);
4068 void netdev_update_features(struct net_device *dev);
4069 void netdev_change_features(struct net_device *dev);
4071 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4072 struct net_device *dev);
4074 netdev_features_t passthru_features_check(struct sk_buff *skb,
4075 struct net_device *dev,
4076 netdev_features_t features);
4077 netdev_features_t netif_skb_features(struct sk_buff *skb);
4079 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4081 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4083 /* check flags correspondence */
4084 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4085 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4086 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4087 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4088 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4089 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4090 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4091 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4092 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4093 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4094 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4095 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4096 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4097 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4098 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4099 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4101 return (features & feature) == feature;
4104 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4106 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4107 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4110 static inline bool netif_needs_gso(struct sk_buff *skb,
4111 netdev_features_t features)
4113 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4114 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4115 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4118 static inline void netif_set_gso_max_size(struct net_device *dev,
4119 unsigned int size)
4121 dev->gso_max_size = size;
4124 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4125 int pulled_hlen, u16 mac_offset,
4126 int mac_len)
4128 skb->protocol = protocol;
4129 skb->encapsulation = 1;
4130 skb_push(skb, pulled_hlen);
4131 skb_reset_transport_header(skb);
4132 skb->mac_header = mac_offset;
4133 skb->network_header = skb->mac_header + mac_len;
4134 skb->mac_len = mac_len;
4137 static inline bool netif_is_macsec(const struct net_device *dev)
4139 return dev->priv_flags & IFF_MACSEC;
4142 static inline bool netif_is_macvlan(const struct net_device *dev)
4144 return dev->priv_flags & IFF_MACVLAN;
4147 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4149 return dev->priv_flags & IFF_MACVLAN_PORT;
4152 static inline bool netif_is_ipvlan(const struct net_device *dev)
4154 return dev->priv_flags & IFF_IPVLAN_SLAVE;
4157 static inline bool netif_is_ipvlan_port(const struct net_device *dev)
4159 return dev->priv_flags & IFF_IPVLAN_MASTER;
4162 static inline bool netif_is_bond_master(const struct net_device *dev)
4164 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4167 static inline bool netif_is_bond_slave(const struct net_device *dev)
4169 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4172 static inline bool netif_supports_nofcs(struct net_device *dev)
4174 return dev->priv_flags & IFF_SUPP_NOFCS;
4177 static inline bool netif_is_l3_master(const struct net_device *dev)
4179 return dev->priv_flags & IFF_L3MDEV_MASTER;
4182 static inline bool netif_is_l3_slave(const struct net_device *dev)
4184 return dev->priv_flags & IFF_L3MDEV_SLAVE;
4187 static inline bool netif_is_bridge_master(const struct net_device *dev)
4189 return dev->priv_flags & IFF_EBRIDGE;
4192 static inline bool netif_is_bridge_port(const struct net_device *dev)
4194 return dev->priv_flags & IFF_BRIDGE_PORT;
4197 static inline bool netif_is_ovs_master(const struct net_device *dev)
4199 return dev->priv_flags & IFF_OPENVSWITCH;
4202 static inline bool netif_is_ovs_port(const struct net_device *dev)
4204 return dev->priv_flags & IFF_OVS_DATAPATH;
4207 static inline bool netif_is_team_master(const struct net_device *dev)
4209 return dev->priv_flags & IFF_TEAM;
4212 static inline bool netif_is_team_port(const struct net_device *dev)
4214 return dev->priv_flags & IFF_TEAM_PORT;
4217 static inline bool netif_is_lag_master(const struct net_device *dev)
4219 return netif_is_bond_master(dev) || netif_is_team_master(dev);
4222 static inline bool netif_is_lag_port(const struct net_device *dev)
4224 return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4227 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4229 return dev->priv_flags & IFF_RXFH_CONFIGURED;
4232 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4233 static inline void netif_keep_dst(struct net_device *dev)
4235 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4238 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4239 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4241 /* TODO: reserve and use an additional IFF bit, if we get more users */
4242 return dev->priv_flags & IFF_MACSEC;
4245 extern struct pernet_operations __net_initdata loopback_net_ops;
4247 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4249 /* netdev_printk helpers, similar to dev_printk */
4251 static inline const char *netdev_name(const struct net_device *dev)
4253 if (!dev->name[0] || strchr(dev->name, '%'))
4254 return "(unnamed net_device)";
4255 return dev->name;
4258 static inline bool netdev_unregistering(const struct net_device *dev)
4260 return dev->reg_state == NETREG_UNREGISTERING;
4263 static inline const char *netdev_reg_state(const struct net_device *dev)
4265 switch (dev->reg_state) {
4266 case NETREG_UNINITIALIZED: return " (uninitialized)";
4267 case NETREG_REGISTERED: return "";
4268 case NETREG_UNREGISTERING: return " (unregistering)";
4269 case NETREG_UNREGISTERED: return " (unregistered)";
4270 case NETREG_RELEASED: return " (released)";
4271 case NETREG_DUMMY: return " (dummy)";
4274 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4275 return " (unknown)";
4278 __printf(3, 4)
4279 void netdev_printk(const char *level, const struct net_device *dev,
4280 const char *format, ...);
4281 __printf(2, 3)
4282 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4283 __printf(2, 3)
4284 void netdev_alert(const struct net_device *dev, const char *format, ...);
4285 __printf(2, 3)
4286 void netdev_crit(const struct net_device *dev, const char *format, ...);
4287 __printf(2, 3)
4288 void netdev_err(const struct net_device *dev, const char *format, ...);
4289 __printf(2, 3)
4290 void netdev_warn(const struct net_device *dev, const char *format, ...);
4291 __printf(2, 3)
4292 void netdev_notice(const struct net_device *dev, const char *format, ...);
4293 __printf(2, 3)
4294 void netdev_info(const struct net_device *dev, const char *format, ...);
4296 #define MODULE_ALIAS_NETDEV(device) \
4297 MODULE_ALIAS("netdev-" device)
4299 #if defined(CONFIG_DYNAMIC_DEBUG)
4300 #define netdev_dbg(__dev, format, args...) \
4301 do { \
4302 dynamic_netdev_dbg(__dev, format, ##args); \
4303 } while (0)
4304 #elif defined(DEBUG)
4305 #define netdev_dbg(__dev, format, args...) \
4306 netdev_printk(KERN_DEBUG, __dev, format, ##args)
4307 #else
4308 #define netdev_dbg(__dev, format, args...) \
4309 ({ \
4310 if (0) \
4311 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4313 #endif
4315 #if defined(VERBOSE_DEBUG)
4316 #define netdev_vdbg netdev_dbg
4317 #else
4319 #define netdev_vdbg(dev, format, args...) \
4320 ({ \
4321 if (0) \
4322 netdev_printk(KERN_DEBUG, dev, format, ##args); \
4323 0; \
4325 #endif
4328 * netdev_WARN() acts like dev_printk(), but with the key difference
4329 * of using a WARN/WARN_ON to get the message out, including the
4330 * file/line information and a backtrace.
4332 #define netdev_WARN(dev, format, args...) \
4333 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \
4334 netdev_reg_state(dev), ##args)
4336 /* netif printk helpers, similar to netdev_printk */
4338 #define netif_printk(priv, type, level, dev, fmt, args...) \
4339 do { \
4340 if (netif_msg_##type(priv)) \
4341 netdev_printk(level, (dev), fmt, ##args); \
4342 } while (0)
4344 #define netif_level(level, priv, type, dev, fmt, args...) \
4345 do { \
4346 if (netif_msg_##type(priv)) \
4347 netdev_##level(dev, fmt, ##args); \
4348 } while (0)
4350 #define netif_emerg(priv, type, dev, fmt, args...) \
4351 netif_level(emerg, priv, type, dev, fmt, ##args)
4352 #define netif_alert(priv, type, dev, fmt, args...) \
4353 netif_level(alert, priv, type, dev, fmt, ##args)
4354 #define netif_crit(priv, type, dev, fmt, args...) \
4355 netif_level(crit, priv, type, dev, fmt, ##args)
4356 #define netif_err(priv, type, dev, fmt, args...) \
4357 netif_level(err, priv, type, dev, fmt, ##args)
4358 #define netif_warn(priv, type, dev, fmt, args...) \
4359 netif_level(warn, priv, type, dev, fmt, ##args)
4360 #define netif_notice(priv, type, dev, fmt, args...) \
4361 netif_level(notice, priv, type, dev, fmt, ##args)
4362 #define netif_info(priv, type, dev, fmt, args...) \
4363 netif_level(info, priv, type, dev, fmt, ##args)
4365 #if defined(CONFIG_DYNAMIC_DEBUG)
4366 #define netif_dbg(priv, type, netdev, format, args...) \
4367 do { \
4368 if (netif_msg_##type(priv)) \
4369 dynamic_netdev_dbg(netdev, format, ##args); \
4370 } while (0)
4371 #elif defined(DEBUG)
4372 #define netif_dbg(priv, type, dev, format, args...) \
4373 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4374 #else
4375 #define netif_dbg(priv, type, dev, format, args...) \
4376 ({ \
4377 if (0) \
4378 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4379 0; \
4381 #endif
4383 /* if @cond then downgrade to debug, else print at @level */
4384 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \
4385 do { \
4386 if (cond) \
4387 netif_dbg(priv, type, netdev, fmt, ##args); \
4388 else \
4389 netif_ ## level(priv, type, netdev, fmt, ##args); \
4390 } while (0)
4392 #if defined(VERBOSE_DEBUG)
4393 #define netif_vdbg netif_dbg
4394 #else
4395 #define netif_vdbg(priv, type, dev, format, args...) \
4396 ({ \
4397 if (0) \
4398 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4399 0; \
4401 #endif
4404 * The list of packet types we will receive (as opposed to discard)
4405 * and the routines to invoke.
4407 * Why 16. Because with 16 the only overlap we get on a hash of the
4408 * low nibble of the protocol value is RARP/SNAP/X.25.
4410 * NOTE: That is no longer true with the addition of VLAN tags. Not
4411 * sure which should go first, but I bet it won't make much
4412 * difference if we are running VLANs. The good news is that
4413 * this protocol won't be in the list unless compiled in, so
4414 * the average user (w/out VLANs) will not be adversely affected.
4415 * --BLG
4417 * 0800 IP
4418 * 8100 802.1Q VLAN
4419 * 0001 802.3
4420 * 0002 AX.25
4421 * 0004 802.2
4422 * 8035 RARP
4423 * 0005 SNAP
4424 * 0805 X.25
4425 * 0806 ARP
4426 * 8137 IPX
4427 * 0009 Localtalk
4428 * 86DD IPv6
4430 #define PTYPE_HASH_SIZE (16)
4431 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
4433 #endif /* _LINUX_NETDEVICE_H */