[TCP]: One NET_INC_STATS() could be NET_INC_STATS_BH in tcp_v4_err()
[linux-2.6/btrfs-unstable.git] / mm / shmem.c
blobb378f66cf2f927f01ccfbc4c037060831951a61a
1 /*
2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 * This file is released under the GPL.
21 * This virtual memory filesystem is heavily based on the ramfs. It
22 * extends ramfs by the ability to use swap and honor resource limits
23 * which makes it a completely usable filesystem.
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/fs.h>
29 #include <linux/xattr.h>
30 #include <linux/generic_acl.h>
31 #include <linux/mm.h>
32 #include <linux/mman.h>
33 #include <linux/file.h>
34 #include <linux/swap.h>
35 #include <linux/pagemap.h>
36 #include <linux/string.h>
37 #include <linux/slab.h>
38 #include <linux/backing-dev.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/mount.h>
41 #include <linux/writeback.h>
42 #include <linux/vfs.h>
43 #include <linux/blkdev.h>
44 #include <linux/security.h>
45 #include <linux/swapops.h>
46 #include <linux/mempolicy.h>
47 #include <linux/namei.h>
48 #include <linux/ctype.h>
49 #include <linux/migrate.h>
50 #include <linux/highmem.h>
52 #include <asm/uaccess.h>
53 #include <asm/div64.h>
54 #include <asm/pgtable.h>
56 /* This magic number is used in glibc for posix shared memory */
57 #define TMPFS_MAGIC 0x01021994
59 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
60 #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
61 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
63 #define SHMEM_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
64 #define SHMEM_MAX_BYTES ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
66 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
68 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
69 #define SHMEM_PAGEIN VM_READ
70 #define SHMEM_TRUNCATE VM_WRITE
72 /* Definition to limit shmem_truncate's steps between cond_rescheds */
73 #define LATENCY_LIMIT 64
75 /* Pretend that each entry is of this size in directory's i_size */
76 #define BOGO_DIRENT_SIZE 20
78 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
79 enum sgp_type {
80 SGP_QUICK, /* don't try more than file page cache lookup */
81 SGP_READ, /* don't exceed i_size, don't allocate page */
82 SGP_CACHE, /* don't exceed i_size, may allocate page */
83 SGP_WRITE, /* may exceed i_size, may allocate page */
86 static int shmem_getpage(struct inode *inode, unsigned long idx,
87 struct page **pagep, enum sgp_type sgp, int *type);
89 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
92 * The above definition of ENTRIES_PER_PAGE, and the use of
93 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
94 * might be reconsidered if it ever diverges from PAGE_SIZE.
96 return alloc_pages(gfp_mask, PAGE_CACHE_SHIFT-PAGE_SHIFT);
99 static inline void shmem_dir_free(struct page *page)
101 __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
104 static struct page **shmem_dir_map(struct page *page)
106 return (struct page **)kmap_atomic(page, KM_USER0);
109 static inline void shmem_dir_unmap(struct page **dir)
111 kunmap_atomic(dir, KM_USER0);
114 static swp_entry_t *shmem_swp_map(struct page *page)
116 return (swp_entry_t *)kmap_atomic(page, KM_USER1);
119 static inline void shmem_swp_balance_unmap(void)
122 * When passing a pointer to an i_direct entry, to code which
123 * also handles indirect entries and so will shmem_swp_unmap,
124 * we must arrange for the preempt count to remain in balance.
125 * What kmap_atomic of a lowmem page does depends on config
126 * and architecture, so pretend to kmap_atomic some lowmem page.
128 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
131 static inline void shmem_swp_unmap(swp_entry_t *entry)
133 kunmap_atomic(entry, KM_USER1);
136 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
138 return sb->s_fs_info;
142 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
143 * for shared memory and for shared anonymous (/dev/zero) mappings
144 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
145 * consistent with the pre-accounting of private mappings ...
147 static inline int shmem_acct_size(unsigned long flags, loff_t size)
149 return (flags & VM_ACCOUNT)?
150 security_vm_enough_memory(VM_ACCT(size)): 0;
153 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
155 if (flags & VM_ACCOUNT)
156 vm_unacct_memory(VM_ACCT(size));
160 * ... whereas tmpfs objects are accounted incrementally as
161 * pages are allocated, in order to allow huge sparse files.
162 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
163 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
165 static inline int shmem_acct_block(unsigned long flags)
167 return (flags & VM_ACCOUNT)?
168 0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
171 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
173 if (!(flags & VM_ACCOUNT))
174 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
177 static struct super_operations shmem_ops;
178 static const struct address_space_operations shmem_aops;
179 static struct file_operations shmem_file_operations;
180 static struct inode_operations shmem_inode_operations;
181 static struct inode_operations shmem_dir_inode_operations;
182 static struct inode_operations shmem_special_inode_operations;
183 static struct vm_operations_struct shmem_vm_ops;
185 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
186 .ra_pages = 0, /* No readahead */
187 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
188 .unplug_io_fn = default_unplug_io_fn,
191 static LIST_HEAD(shmem_swaplist);
192 static DEFINE_SPINLOCK(shmem_swaplist_lock);
194 static void shmem_free_blocks(struct inode *inode, long pages)
196 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
197 if (sbinfo->max_blocks) {
198 spin_lock(&sbinfo->stat_lock);
199 sbinfo->free_blocks += pages;
200 inode->i_blocks -= pages*BLOCKS_PER_PAGE;
201 spin_unlock(&sbinfo->stat_lock);
206 * shmem_recalc_inode - recalculate the size of an inode
208 * @inode: inode to recalc
210 * We have to calculate the free blocks since the mm can drop
211 * undirtied hole pages behind our back.
213 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
214 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
216 * It has to be called with the spinlock held.
218 static void shmem_recalc_inode(struct inode *inode)
220 struct shmem_inode_info *info = SHMEM_I(inode);
221 long freed;
223 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
224 if (freed > 0) {
225 info->alloced -= freed;
226 shmem_unacct_blocks(info->flags, freed);
227 shmem_free_blocks(inode, freed);
232 * shmem_swp_entry - find the swap vector position in the info structure
234 * @info: info structure for the inode
235 * @index: index of the page to find
236 * @page: optional page to add to the structure. Has to be preset to
237 * all zeros
239 * If there is no space allocated yet it will return NULL when
240 * page is NULL, else it will use the page for the needed block,
241 * setting it to NULL on return to indicate that it has been used.
243 * The swap vector is organized the following way:
245 * There are SHMEM_NR_DIRECT entries directly stored in the
246 * shmem_inode_info structure. So small files do not need an addional
247 * allocation.
249 * For pages with index > SHMEM_NR_DIRECT there is the pointer
250 * i_indirect which points to a page which holds in the first half
251 * doubly indirect blocks, in the second half triple indirect blocks:
253 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
254 * following layout (for SHMEM_NR_DIRECT == 16):
256 * i_indirect -> dir --> 16-19
257 * | +-> 20-23
259 * +-->dir2 --> 24-27
260 * | +-> 28-31
261 * | +-> 32-35
262 * | +-> 36-39
264 * +-->dir3 --> 40-43
265 * +-> 44-47
266 * +-> 48-51
267 * +-> 52-55
269 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
271 unsigned long offset;
272 struct page **dir;
273 struct page *subdir;
275 if (index < SHMEM_NR_DIRECT) {
276 shmem_swp_balance_unmap();
277 return info->i_direct+index;
279 if (!info->i_indirect) {
280 if (page) {
281 info->i_indirect = *page;
282 *page = NULL;
284 return NULL; /* need another page */
287 index -= SHMEM_NR_DIRECT;
288 offset = index % ENTRIES_PER_PAGE;
289 index /= ENTRIES_PER_PAGE;
290 dir = shmem_dir_map(info->i_indirect);
292 if (index >= ENTRIES_PER_PAGE/2) {
293 index -= ENTRIES_PER_PAGE/2;
294 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
295 index %= ENTRIES_PER_PAGE;
296 subdir = *dir;
297 if (!subdir) {
298 if (page) {
299 *dir = *page;
300 *page = NULL;
302 shmem_dir_unmap(dir);
303 return NULL; /* need another page */
305 shmem_dir_unmap(dir);
306 dir = shmem_dir_map(subdir);
309 dir += index;
310 subdir = *dir;
311 if (!subdir) {
312 if (!page || !(subdir = *page)) {
313 shmem_dir_unmap(dir);
314 return NULL; /* need a page */
316 *dir = subdir;
317 *page = NULL;
319 shmem_dir_unmap(dir);
320 return shmem_swp_map(subdir) + offset;
323 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
325 long incdec = value? 1: -1;
327 entry->val = value;
328 info->swapped += incdec;
329 if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
330 struct page *page = kmap_atomic_to_page(entry);
331 set_page_private(page, page_private(page) + incdec);
336 * shmem_swp_alloc - get the position of the swap entry for the page.
337 * If it does not exist allocate the entry.
339 * @info: info structure for the inode
340 * @index: index of the page to find
341 * @sgp: check and recheck i_size? skip allocation?
343 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
345 struct inode *inode = &info->vfs_inode;
346 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
347 struct page *page = NULL;
348 swp_entry_t *entry;
350 if (sgp != SGP_WRITE &&
351 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
352 return ERR_PTR(-EINVAL);
354 while (!(entry = shmem_swp_entry(info, index, &page))) {
355 if (sgp == SGP_READ)
356 return shmem_swp_map(ZERO_PAGE(0));
358 * Test free_blocks against 1 not 0, since we have 1 data
359 * page (and perhaps indirect index pages) yet to allocate:
360 * a waste to allocate index if we cannot allocate data.
362 if (sbinfo->max_blocks) {
363 spin_lock(&sbinfo->stat_lock);
364 if (sbinfo->free_blocks <= 1) {
365 spin_unlock(&sbinfo->stat_lock);
366 return ERR_PTR(-ENOSPC);
368 sbinfo->free_blocks--;
369 inode->i_blocks += BLOCKS_PER_PAGE;
370 spin_unlock(&sbinfo->stat_lock);
373 spin_unlock(&info->lock);
374 page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping) | __GFP_ZERO);
375 if (page)
376 set_page_private(page, 0);
377 spin_lock(&info->lock);
379 if (!page) {
380 shmem_free_blocks(inode, 1);
381 return ERR_PTR(-ENOMEM);
383 if (sgp != SGP_WRITE &&
384 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
385 entry = ERR_PTR(-EINVAL);
386 break;
388 if (info->next_index <= index)
389 info->next_index = index + 1;
391 if (page) {
392 /* another task gave its page, or truncated the file */
393 shmem_free_blocks(inode, 1);
394 shmem_dir_free(page);
396 if (info->next_index <= index && !IS_ERR(entry))
397 info->next_index = index + 1;
398 return entry;
402 * shmem_free_swp - free some swap entries in a directory
404 * @dir: pointer to the directory
405 * @edir: pointer after last entry of the directory
407 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir)
409 swp_entry_t *ptr;
410 int freed = 0;
412 for (ptr = dir; ptr < edir; ptr++) {
413 if (ptr->val) {
414 free_swap_and_cache(*ptr);
415 *ptr = (swp_entry_t){0};
416 freed++;
419 return freed;
422 static int shmem_map_and_free_swp(struct page *subdir,
423 int offset, int limit, struct page ***dir)
425 swp_entry_t *ptr;
426 int freed = 0;
428 ptr = shmem_swp_map(subdir);
429 for (; offset < limit; offset += LATENCY_LIMIT) {
430 int size = limit - offset;
431 if (size > LATENCY_LIMIT)
432 size = LATENCY_LIMIT;
433 freed += shmem_free_swp(ptr+offset, ptr+offset+size);
434 if (need_resched()) {
435 shmem_swp_unmap(ptr);
436 if (*dir) {
437 shmem_dir_unmap(*dir);
438 *dir = NULL;
440 cond_resched();
441 ptr = shmem_swp_map(subdir);
444 shmem_swp_unmap(ptr);
445 return freed;
448 static void shmem_free_pages(struct list_head *next)
450 struct page *page;
451 int freed = 0;
453 do {
454 page = container_of(next, struct page, lru);
455 next = next->next;
456 shmem_dir_free(page);
457 freed++;
458 if (freed >= LATENCY_LIMIT) {
459 cond_resched();
460 freed = 0;
462 } while (next);
465 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
467 struct shmem_inode_info *info = SHMEM_I(inode);
468 unsigned long idx;
469 unsigned long size;
470 unsigned long limit;
471 unsigned long stage;
472 unsigned long diroff;
473 struct page **dir;
474 struct page *topdir;
475 struct page *middir;
476 struct page *subdir;
477 swp_entry_t *ptr;
478 LIST_HEAD(pages_to_free);
479 long nr_pages_to_free = 0;
480 long nr_swaps_freed = 0;
481 int offset;
482 int freed;
483 int punch_hole = 0;
485 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
486 idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
487 if (idx >= info->next_index)
488 return;
490 spin_lock(&info->lock);
491 info->flags |= SHMEM_TRUNCATE;
492 if (likely(end == (loff_t) -1)) {
493 limit = info->next_index;
494 info->next_index = idx;
495 } else {
496 limit = (end + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
497 if (limit > info->next_index)
498 limit = info->next_index;
499 punch_hole = 1;
502 topdir = info->i_indirect;
503 if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
504 info->i_indirect = NULL;
505 nr_pages_to_free++;
506 list_add(&topdir->lru, &pages_to_free);
508 spin_unlock(&info->lock);
510 if (info->swapped && idx < SHMEM_NR_DIRECT) {
511 ptr = info->i_direct;
512 size = limit;
513 if (size > SHMEM_NR_DIRECT)
514 size = SHMEM_NR_DIRECT;
515 nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size);
517 if (!topdir)
518 goto done2;
520 BUG_ON(limit <= SHMEM_NR_DIRECT);
521 limit -= SHMEM_NR_DIRECT;
522 idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
523 offset = idx % ENTRIES_PER_PAGE;
524 idx -= offset;
526 dir = shmem_dir_map(topdir);
527 stage = ENTRIES_PER_PAGEPAGE/2;
528 if (idx < ENTRIES_PER_PAGEPAGE/2) {
529 middir = topdir;
530 diroff = idx/ENTRIES_PER_PAGE;
531 } else {
532 dir += ENTRIES_PER_PAGE/2;
533 dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
534 while (stage <= idx)
535 stage += ENTRIES_PER_PAGEPAGE;
536 middir = *dir;
537 if (*dir) {
538 diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
539 ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
540 if (!diroff && !offset) {
541 *dir = NULL;
542 nr_pages_to_free++;
543 list_add(&middir->lru, &pages_to_free);
545 shmem_dir_unmap(dir);
546 dir = shmem_dir_map(middir);
547 } else {
548 diroff = 0;
549 offset = 0;
550 idx = stage;
554 for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
555 if (unlikely(idx == stage)) {
556 shmem_dir_unmap(dir);
557 dir = shmem_dir_map(topdir) +
558 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
559 while (!*dir) {
560 dir++;
561 idx += ENTRIES_PER_PAGEPAGE;
562 if (idx >= limit)
563 goto done1;
565 stage = idx + ENTRIES_PER_PAGEPAGE;
566 middir = *dir;
567 *dir = NULL;
568 nr_pages_to_free++;
569 list_add(&middir->lru, &pages_to_free);
570 shmem_dir_unmap(dir);
571 cond_resched();
572 dir = shmem_dir_map(middir);
573 diroff = 0;
575 subdir = dir[diroff];
576 if (subdir && page_private(subdir)) {
577 size = limit - idx;
578 if (size > ENTRIES_PER_PAGE)
579 size = ENTRIES_PER_PAGE;
580 freed = shmem_map_and_free_swp(subdir,
581 offset, size, &dir);
582 if (!dir)
583 dir = shmem_dir_map(middir);
584 nr_swaps_freed += freed;
585 if (offset)
586 spin_lock(&info->lock);
587 set_page_private(subdir, page_private(subdir) - freed);
588 if (offset)
589 spin_unlock(&info->lock);
590 if (!punch_hole)
591 BUG_ON(page_private(subdir) > offset);
593 if (offset)
594 offset = 0;
595 else if (subdir && !page_private(subdir)) {
596 dir[diroff] = NULL;
597 nr_pages_to_free++;
598 list_add(&subdir->lru, &pages_to_free);
601 done1:
602 shmem_dir_unmap(dir);
603 done2:
604 if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
606 * Call truncate_inode_pages again: racing shmem_unuse_inode
607 * may have swizzled a page in from swap since vmtruncate or
608 * generic_delete_inode did it, before we lowered next_index.
609 * Also, though shmem_getpage checks i_size before adding to
610 * cache, no recheck after: so fix the narrow window there too.
612 truncate_inode_pages_range(inode->i_mapping, start, end);
615 spin_lock(&info->lock);
616 info->flags &= ~SHMEM_TRUNCATE;
617 info->swapped -= nr_swaps_freed;
618 if (nr_pages_to_free)
619 shmem_free_blocks(inode, nr_pages_to_free);
620 shmem_recalc_inode(inode);
621 spin_unlock(&info->lock);
624 * Empty swap vector directory pages to be freed?
626 if (!list_empty(&pages_to_free)) {
627 pages_to_free.prev->next = NULL;
628 shmem_free_pages(pages_to_free.next);
632 static void shmem_truncate(struct inode *inode)
634 shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
637 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
639 struct inode *inode = dentry->d_inode;
640 struct page *page = NULL;
641 int error;
643 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
644 if (attr->ia_size < inode->i_size) {
646 * If truncating down to a partial page, then
647 * if that page is already allocated, hold it
648 * in memory until the truncation is over, so
649 * truncate_partial_page cannnot miss it were
650 * it assigned to swap.
652 if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
653 (void) shmem_getpage(inode,
654 attr->ia_size>>PAGE_CACHE_SHIFT,
655 &page, SGP_READ, NULL);
658 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
659 * detect if any pages might have been added to cache
660 * after truncate_inode_pages. But we needn't bother
661 * if it's being fully truncated to zero-length: the
662 * nrpages check is efficient enough in that case.
664 if (attr->ia_size) {
665 struct shmem_inode_info *info = SHMEM_I(inode);
666 spin_lock(&info->lock);
667 info->flags &= ~SHMEM_PAGEIN;
668 spin_unlock(&info->lock);
673 error = inode_change_ok(inode, attr);
674 if (!error)
675 error = inode_setattr(inode, attr);
676 #ifdef CONFIG_TMPFS_POSIX_ACL
677 if (!error && (attr->ia_valid & ATTR_MODE))
678 error = generic_acl_chmod(inode, &shmem_acl_ops);
679 #endif
680 if (page)
681 page_cache_release(page);
682 return error;
685 static void shmem_delete_inode(struct inode *inode)
687 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
688 struct shmem_inode_info *info = SHMEM_I(inode);
690 if (inode->i_op->truncate == shmem_truncate) {
691 truncate_inode_pages(inode->i_mapping, 0);
692 shmem_unacct_size(info->flags, inode->i_size);
693 inode->i_size = 0;
694 shmem_truncate(inode);
695 if (!list_empty(&info->swaplist)) {
696 spin_lock(&shmem_swaplist_lock);
697 list_del_init(&info->swaplist);
698 spin_unlock(&shmem_swaplist_lock);
701 BUG_ON(inode->i_blocks);
702 if (sbinfo->max_inodes) {
703 spin_lock(&sbinfo->stat_lock);
704 sbinfo->free_inodes++;
705 spin_unlock(&sbinfo->stat_lock);
707 clear_inode(inode);
710 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
712 swp_entry_t *ptr;
714 for (ptr = dir; ptr < edir; ptr++) {
715 if (ptr->val == entry.val)
716 return ptr - dir;
718 return -1;
721 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
723 struct inode *inode;
724 unsigned long idx;
725 unsigned long size;
726 unsigned long limit;
727 unsigned long stage;
728 struct page **dir;
729 struct page *subdir;
730 swp_entry_t *ptr;
731 int offset;
733 idx = 0;
734 ptr = info->i_direct;
735 spin_lock(&info->lock);
736 limit = info->next_index;
737 size = limit;
738 if (size > SHMEM_NR_DIRECT)
739 size = SHMEM_NR_DIRECT;
740 offset = shmem_find_swp(entry, ptr, ptr+size);
741 if (offset >= 0) {
742 shmem_swp_balance_unmap();
743 goto found;
745 if (!info->i_indirect)
746 goto lost2;
748 dir = shmem_dir_map(info->i_indirect);
749 stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
751 for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
752 if (unlikely(idx == stage)) {
753 shmem_dir_unmap(dir-1);
754 dir = shmem_dir_map(info->i_indirect) +
755 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
756 while (!*dir) {
757 dir++;
758 idx += ENTRIES_PER_PAGEPAGE;
759 if (idx >= limit)
760 goto lost1;
762 stage = idx + ENTRIES_PER_PAGEPAGE;
763 subdir = *dir;
764 shmem_dir_unmap(dir);
765 dir = shmem_dir_map(subdir);
767 subdir = *dir;
768 if (subdir && page_private(subdir)) {
769 ptr = shmem_swp_map(subdir);
770 size = limit - idx;
771 if (size > ENTRIES_PER_PAGE)
772 size = ENTRIES_PER_PAGE;
773 offset = shmem_find_swp(entry, ptr, ptr+size);
774 if (offset >= 0) {
775 shmem_dir_unmap(dir);
776 goto found;
778 shmem_swp_unmap(ptr);
781 lost1:
782 shmem_dir_unmap(dir-1);
783 lost2:
784 spin_unlock(&info->lock);
785 return 0;
786 found:
787 idx += offset;
788 inode = &info->vfs_inode;
789 if (move_from_swap_cache(page, idx, inode->i_mapping) == 0) {
790 info->flags |= SHMEM_PAGEIN;
791 shmem_swp_set(info, ptr + offset, 0);
793 shmem_swp_unmap(ptr);
794 spin_unlock(&info->lock);
796 * Decrement swap count even when the entry is left behind:
797 * try_to_unuse will skip over mms, then reincrement count.
799 swap_free(entry);
800 return 1;
804 * shmem_unuse() search for an eventually swapped out shmem page.
806 int shmem_unuse(swp_entry_t entry, struct page *page)
808 struct list_head *p, *next;
809 struct shmem_inode_info *info;
810 int found = 0;
812 spin_lock(&shmem_swaplist_lock);
813 list_for_each_safe(p, next, &shmem_swaplist) {
814 info = list_entry(p, struct shmem_inode_info, swaplist);
815 if (!info->swapped)
816 list_del_init(&info->swaplist);
817 else if (shmem_unuse_inode(info, entry, page)) {
818 /* move head to start search for next from here */
819 list_move_tail(&shmem_swaplist, &info->swaplist);
820 found = 1;
821 break;
824 spin_unlock(&shmem_swaplist_lock);
825 return found;
829 * Move the page from the page cache to the swap cache.
831 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
833 struct shmem_inode_info *info;
834 swp_entry_t *entry, swap;
835 struct address_space *mapping;
836 unsigned long index;
837 struct inode *inode;
839 BUG_ON(!PageLocked(page));
840 BUG_ON(page_mapped(page));
842 mapping = page->mapping;
843 index = page->index;
844 inode = mapping->host;
845 info = SHMEM_I(inode);
846 if (info->flags & VM_LOCKED)
847 goto redirty;
848 swap = get_swap_page();
849 if (!swap.val)
850 goto redirty;
852 spin_lock(&info->lock);
853 shmem_recalc_inode(inode);
854 if (index >= info->next_index) {
855 BUG_ON(!(info->flags & SHMEM_TRUNCATE));
856 goto unlock;
858 entry = shmem_swp_entry(info, index, NULL);
859 BUG_ON(!entry);
860 BUG_ON(entry->val);
862 if (move_to_swap_cache(page, swap) == 0) {
863 shmem_swp_set(info, entry, swap.val);
864 shmem_swp_unmap(entry);
865 spin_unlock(&info->lock);
866 if (list_empty(&info->swaplist)) {
867 spin_lock(&shmem_swaplist_lock);
868 /* move instead of add in case we're racing */
869 list_move_tail(&info->swaplist, &shmem_swaplist);
870 spin_unlock(&shmem_swaplist_lock);
872 unlock_page(page);
873 return 0;
876 shmem_swp_unmap(entry);
877 unlock:
878 spin_unlock(&info->lock);
879 swap_free(swap);
880 redirty:
881 set_page_dirty(page);
882 return AOP_WRITEPAGE_ACTIVATE; /* Return with the page locked */
885 #ifdef CONFIG_NUMA
886 static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
888 char *nodelist = strchr(value, ':');
889 int err = 1;
891 if (nodelist) {
892 /* NUL-terminate policy string */
893 *nodelist++ = '\0';
894 if (nodelist_parse(nodelist, *policy_nodes))
895 goto out;
897 if (!strcmp(value, "default")) {
898 *policy = MPOL_DEFAULT;
899 /* Don't allow a nodelist */
900 if (!nodelist)
901 err = 0;
902 } else if (!strcmp(value, "prefer")) {
903 *policy = MPOL_PREFERRED;
904 /* Insist on a nodelist of one node only */
905 if (nodelist) {
906 char *rest = nodelist;
907 while (isdigit(*rest))
908 rest++;
909 if (!*rest)
910 err = 0;
912 } else if (!strcmp(value, "bind")) {
913 *policy = MPOL_BIND;
914 /* Insist on a nodelist */
915 if (nodelist)
916 err = 0;
917 } else if (!strcmp(value, "interleave")) {
918 *policy = MPOL_INTERLEAVE;
919 /* Default to nodes online if no nodelist */
920 if (!nodelist)
921 *policy_nodes = node_online_map;
922 err = 0;
924 out:
925 /* Restore string for error message */
926 if (nodelist)
927 *--nodelist = ':';
928 return err;
931 static struct page *shmem_swapin_async(struct shared_policy *p,
932 swp_entry_t entry, unsigned long idx)
934 struct page *page;
935 struct vm_area_struct pvma;
937 /* Create a pseudo vma that just contains the policy */
938 memset(&pvma, 0, sizeof(struct vm_area_struct));
939 pvma.vm_end = PAGE_SIZE;
940 pvma.vm_pgoff = idx;
941 pvma.vm_policy = mpol_shared_policy_lookup(p, idx);
942 page = read_swap_cache_async(entry, &pvma, 0);
943 mpol_free(pvma.vm_policy);
944 return page;
947 struct page *shmem_swapin(struct shmem_inode_info *info, swp_entry_t entry,
948 unsigned long idx)
950 struct shared_policy *p = &info->policy;
951 int i, num;
952 struct page *page;
953 unsigned long offset;
955 num = valid_swaphandles(entry, &offset);
956 for (i = 0; i < num; offset++, i++) {
957 page = shmem_swapin_async(p,
958 swp_entry(swp_type(entry), offset), idx);
959 if (!page)
960 break;
961 page_cache_release(page);
963 lru_add_drain(); /* Push any new pages onto the LRU now */
964 return shmem_swapin_async(p, entry, idx);
967 static struct page *
968 shmem_alloc_page(gfp_t gfp, struct shmem_inode_info *info,
969 unsigned long idx)
971 struct vm_area_struct pvma;
972 struct page *page;
974 memset(&pvma, 0, sizeof(struct vm_area_struct));
975 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
976 pvma.vm_pgoff = idx;
977 pvma.vm_end = PAGE_SIZE;
978 page = alloc_page_vma(gfp | __GFP_ZERO, &pvma, 0);
979 mpol_free(pvma.vm_policy);
980 return page;
982 #else
983 static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
985 return 1;
988 static inline struct page *
989 shmem_swapin(struct shmem_inode_info *info,swp_entry_t entry,unsigned long idx)
991 swapin_readahead(entry, 0, NULL);
992 return read_swap_cache_async(entry, NULL, 0);
995 static inline struct page *
996 shmem_alloc_page(gfp_t gfp,struct shmem_inode_info *info, unsigned long idx)
998 return alloc_page(gfp | __GFP_ZERO);
1000 #endif
1003 * shmem_getpage - either get the page from swap or allocate a new one
1005 * If we allocate a new one we do not mark it dirty. That's up to the
1006 * vm. If we swap it in we mark it dirty since we also free the swap
1007 * entry since a page cannot live in both the swap and page cache
1009 static int shmem_getpage(struct inode *inode, unsigned long idx,
1010 struct page **pagep, enum sgp_type sgp, int *type)
1012 struct address_space *mapping = inode->i_mapping;
1013 struct shmem_inode_info *info = SHMEM_I(inode);
1014 struct shmem_sb_info *sbinfo;
1015 struct page *filepage = *pagep;
1016 struct page *swappage;
1017 swp_entry_t *entry;
1018 swp_entry_t swap;
1019 int error;
1021 if (idx >= SHMEM_MAX_INDEX)
1022 return -EFBIG;
1024 * Normally, filepage is NULL on entry, and either found
1025 * uptodate immediately, or allocated and zeroed, or read
1026 * in under swappage, which is then assigned to filepage.
1027 * But shmem_prepare_write passes in a locked filepage,
1028 * which may be found not uptodate by other callers too,
1029 * and may need to be copied from the swappage read in.
1031 repeat:
1032 if (!filepage)
1033 filepage = find_lock_page(mapping, idx);
1034 if (filepage && PageUptodate(filepage))
1035 goto done;
1036 error = 0;
1037 if (sgp == SGP_QUICK)
1038 goto failed;
1040 spin_lock(&info->lock);
1041 shmem_recalc_inode(inode);
1042 entry = shmem_swp_alloc(info, idx, sgp);
1043 if (IS_ERR(entry)) {
1044 spin_unlock(&info->lock);
1045 error = PTR_ERR(entry);
1046 goto failed;
1048 swap = *entry;
1050 if (swap.val) {
1051 /* Look it up and read it in.. */
1052 swappage = lookup_swap_cache(swap);
1053 if (!swappage) {
1054 shmem_swp_unmap(entry);
1055 /* here we actually do the io */
1056 if (type && *type == VM_FAULT_MINOR) {
1057 __count_vm_event(PGMAJFAULT);
1058 *type = VM_FAULT_MAJOR;
1060 spin_unlock(&info->lock);
1061 swappage = shmem_swapin(info, swap, idx);
1062 if (!swappage) {
1063 spin_lock(&info->lock);
1064 entry = shmem_swp_alloc(info, idx, sgp);
1065 if (IS_ERR(entry))
1066 error = PTR_ERR(entry);
1067 else {
1068 if (entry->val == swap.val)
1069 error = -ENOMEM;
1070 shmem_swp_unmap(entry);
1072 spin_unlock(&info->lock);
1073 if (error)
1074 goto failed;
1075 goto repeat;
1077 wait_on_page_locked(swappage);
1078 page_cache_release(swappage);
1079 goto repeat;
1082 /* We have to do this with page locked to prevent races */
1083 if (TestSetPageLocked(swappage)) {
1084 shmem_swp_unmap(entry);
1085 spin_unlock(&info->lock);
1086 wait_on_page_locked(swappage);
1087 page_cache_release(swappage);
1088 goto repeat;
1090 if (PageWriteback(swappage)) {
1091 shmem_swp_unmap(entry);
1092 spin_unlock(&info->lock);
1093 wait_on_page_writeback(swappage);
1094 unlock_page(swappage);
1095 page_cache_release(swappage);
1096 goto repeat;
1098 if (!PageUptodate(swappage)) {
1099 shmem_swp_unmap(entry);
1100 spin_unlock(&info->lock);
1101 unlock_page(swappage);
1102 page_cache_release(swappage);
1103 error = -EIO;
1104 goto failed;
1107 if (filepage) {
1108 shmem_swp_set(info, entry, 0);
1109 shmem_swp_unmap(entry);
1110 delete_from_swap_cache(swappage);
1111 spin_unlock(&info->lock);
1112 copy_highpage(filepage, swappage);
1113 unlock_page(swappage);
1114 page_cache_release(swappage);
1115 flush_dcache_page(filepage);
1116 SetPageUptodate(filepage);
1117 set_page_dirty(filepage);
1118 swap_free(swap);
1119 } else if (!(error = move_from_swap_cache(
1120 swappage, idx, mapping))) {
1121 info->flags |= SHMEM_PAGEIN;
1122 shmem_swp_set(info, entry, 0);
1123 shmem_swp_unmap(entry);
1124 spin_unlock(&info->lock);
1125 filepage = swappage;
1126 swap_free(swap);
1127 } else {
1128 shmem_swp_unmap(entry);
1129 spin_unlock(&info->lock);
1130 unlock_page(swappage);
1131 page_cache_release(swappage);
1132 if (error == -ENOMEM) {
1133 /* let kswapd refresh zone for GFP_ATOMICs */
1134 blk_congestion_wait(WRITE, HZ/50);
1136 goto repeat;
1138 } else if (sgp == SGP_READ && !filepage) {
1139 shmem_swp_unmap(entry);
1140 filepage = find_get_page(mapping, idx);
1141 if (filepage &&
1142 (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1143 spin_unlock(&info->lock);
1144 wait_on_page_locked(filepage);
1145 page_cache_release(filepage);
1146 filepage = NULL;
1147 goto repeat;
1149 spin_unlock(&info->lock);
1150 } else {
1151 shmem_swp_unmap(entry);
1152 sbinfo = SHMEM_SB(inode->i_sb);
1153 if (sbinfo->max_blocks) {
1154 spin_lock(&sbinfo->stat_lock);
1155 if (sbinfo->free_blocks == 0 ||
1156 shmem_acct_block(info->flags)) {
1157 spin_unlock(&sbinfo->stat_lock);
1158 spin_unlock(&info->lock);
1159 error = -ENOSPC;
1160 goto failed;
1162 sbinfo->free_blocks--;
1163 inode->i_blocks += BLOCKS_PER_PAGE;
1164 spin_unlock(&sbinfo->stat_lock);
1165 } else if (shmem_acct_block(info->flags)) {
1166 spin_unlock(&info->lock);
1167 error = -ENOSPC;
1168 goto failed;
1171 if (!filepage) {
1172 spin_unlock(&info->lock);
1173 filepage = shmem_alloc_page(mapping_gfp_mask(mapping),
1174 info,
1175 idx);
1176 if (!filepage) {
1177 shmem_unacct_blocks(info->flags, 1);
1178 shmem_free_blocks(inode, 1);
1179 error = -ENOMEM;
1180 goto failed;
1183 spin_lock(&info->lock);
1184 entry = shmem_swp_alloc(info, idx, sgp);
1185 if (IS_ERR(entry))
1186 error = PTR_ERR(entry);
1187 else {
1188 swap = *entry;
1189 shmem_swp_unmap(entry);
1191 if (error || swap.val || 0 != add_to_page_cache_lru(
1192 filepage, mapping, idx, GFP_ATOMIC)) {
1193 spin_unlock(&info->lock);
1194 page_cache_release(filepage);
1195 shmem_unacct_blocks(info->flags, 1);
1196 shmem_free_blocks(inode, 1);
1197 filepage = NULL;
1198 if (error)
1199 goto failed;
1200 goto repeat;
1202 info->flags |= SHMEM_PAGEIN;
1205 info->alloced++;
1206 spin_unlock(&info->lock);
1207 flush_dcache_page(filepage);
1208 SetPageUptodate(filepage);
1210 done:
1211 if (*pagep != filepage) {
1212 unlock_page(filepage);
1213 *pagep = filepage;
1215 return 0;
1217 failed:
1218 if (*pagep != filepage) {
1219 unlock_page(filepage);
1220 page_cache_release(filepage);
1222 return error;
1225 struct page *shmem_nopage(struct vm_area_struct *vma, unsigned long address, int *type)
1227 struct inode *inode = vma->vm_file->f_dentry->d_inode;
1228 struct page *page = NULL;
1229 unsigned long idx;
1230 int error;
1232 idx = (address - vma->vm_start) >> PAGE_SHIFT;
1233 idx += vma->vm_pgoff;
1234 idx >>= PAGE_CACHE_SHIFT - PAGE_SHIFT;
1235 if (((loff_t) idx << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1236 return NOPAGE_SIGBUS;
1238 error = shmem_getpage(inode, idx, &page, SGP_CACHE, type);
1239 if (error)
1240 return (error == -ENOMEM)? NOPAGE_OOM: NOPAGE_SIGBUS;
1242 mark_page_accessed(page);
1243 return page;
1246 static int shmem_populate(struct vm_area_struct *vma,
1247 unsigned long addr, unsigned long len,
1248 pgprot_t prot, unsigned long pgoff, int nonblock)
1250 struct inode *inode = vma->vm_file->f_dentry->d_inode;
1251 struct mm_struct *mm = vma->vm_mm;
1252 enum sgp_type sgp = nonblock? SGP_QUICK: SGP_CACHE;
1253 unsigned long size;
1255 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1256 if (pgoff >= size || pgoff + (len >> PAGE_SHIFT) > size)
1257 return -EINVAL;
1259 while ((long) len > 0) {
1260 struct page *page = NULL;
1261 int err;
1263 * Will need changing if PAGE_CACHE_SIZE != PAGE_SIZE
1265 err = shmem_getpage(inode, pgoff, &page, sgp, NULL);
1266 if (err)
1267 return err;
1268 /* Page may still be null, but only if nonblock was set. */
1269 if (page) {
1270 mark_page_accessed(page);
1271 err = install_page(mm, vma, addr, page, prot);
1272 if (err) {
1273 page_cache_release(page);
1274 return err;
1276 } else if (vma->vm_flags & VM_NONLINEAR) {
1277 /* No page was found just because we can't read it in
1278 * now (being here implies nonblock != 0), but the page
1279 * may exist, so set the PTE to fault it in later. */
1280 err = install_file_pte(mm, vma, addr, pgoff, prot);
1281 if (err)
1282 return err;
1285 len -= PAGE_SIZE;
1286 addr += PAGE_SIZE;
1287 pgoff++;
1289 return 0;
1292 #ifdef CONFIG_NUMA
1293 int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1295 struct inode *i = vma->vm_file->f_dentry->d_inode;
1296 return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1299 struct mempolicy *
1300 shmem_get_policy(struct vm_area_struct *vma, unsigned long addr)
1302 struct inode *i = vma->vm_file->f_dentry->d_inode;
1303 unsigned long idx;
1305 idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1306 return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1308 #endif
1310 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1312 struct inode *inode = file->f_dentry->d_inode;
1313 struct shmem_inode_info *info = SHMEM_I(inode);
1314 int retval = -ENOMEM;
1316 spin_lock(&info->lock);
1317 if (lock && !(info->flags & VM_LOCKED)) {
1318 if (!user_shm_lock(inode->i_size, user))
1319 goto out_nomem;
1320 info->flags |= VM_LOCKED;
1322 if (!lock && (info->flags & VM_LOCKED) && user) {
1323 user_shm_unlock(inode->i_size, user);
1324 info->flags &= ~VM_LOCKED;
1326 retval = 0;
1327 out_nomem:
1328 spin_unlock(&info->lock);
1329 return retval;
1332 int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1334 file_accessed(file);
1335 vma->vm_ops = &shmem_vm_ops;
1336 return 0;
1339 static struct inode *
1340 shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1342 struct inode *inode;
1343 struct shmem_inode_info *info;
1344 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1346 if (sbinfo->max_inodes) {
1347 spin_lock(&sbinfo->stat_lock);
1348 if (!sbinfo->free_inodes) {
1349 spin_unlock(&sbinfo->stat_lock);
1350 return NULL;
1352 sbinfo->free_inodes--;
1353 spin_unlock(&sbinfo->stat_lock);
1356 inode = new_inode(sb);
1357 if (inode) {
1358 inode->i_mode = mode;
1359 inode->i_uid = current->fsuid;
1360 inode->i_gid = current->fsgid;
1361 inode->i_blocks = 0;
1362 inode->i_mapping->a_ops = &shmem_aops;
1363 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1364 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1365 inode->i_generation = get_seconds();
1366 info = SHMEM_I(inode);
1367 memset(info, 0, (char *)inode - (char *)info);
1368 spin_lock_init(&info->lock);
1369 INIT_LIST_HEAD(&info->swaplist);
1371 switch (mode & S_IFMT) {
1372 default:
1373 inode->i_op = &shmem_special_inode_operations;
1374 init_special_inode(inode, mode, dev);
1375 break;
1376 case S_IFREG:
1377 inode->i_op = &shmem_inode_operations;
1378 inode->i_fop = &shmem_file_operations;
1379 mpol_shared_policy_init(&info->policy, sbinfo->policy,
1380 &sbinfo->policy_nodes);
1381 break;
1382 case S_IFDIR:
1383 inc_nlink(inode);
1384 /* Some things misbehave if size == 0 on a directory */
1385 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1386 inode->i_op = &shmem_dir_inode_operations;
1387 inode->i_fop = &simple_dir_operations;
1388 break;
1389 case S_IFLNK:
1391 * Must not load anything in the rbtree,
1392 * mpol_free_shared_policy will not be called.
1394 mpol_shared_policy_init(&info->policy, MPOL_DEFAULT,
1395 NULL);
1396 break;
1398 } else if (sbinfo->max_inodes) {
1399 spin_lock(&sbinfo->stat_lock);
1400 sbinfo->free_inodes++;
1401 spin_unlock(&sbinfo->stat_lock);
1403 return inode;
1406 #ifdef CONFIG_TMPFS
1407 static struct inode_operations shmem_symlink_inode_operations;
1408 static struct inode_operations shmem_symlink_inline_operations;
1411 * Normally tmpfs makes no use of shmem_prepare_write, but it
1412 * lets a tmpfs file be used read-write below the loop driver.
1414 static int
1415 shmem_prepare_write(struct file *file, struct page *page, unsigned offset, unsigned to)
1417 struct inode *inode = page->mapping->host;
1418 return shmem_getpage(inode, page->index, &page, SGP_WRITE, NULL);
1421 static ssize_t
1422 shmem_file_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos)
1424 struct inode *inode = file->f_dentry->d_inode;
1425 loff_t pos;
1426 unsigned long written;
1427 ssize_t err;
1429 if ((ssize_t) count < 0)
1430 return -EINVAL;
1432 if (!access_ok(VERIFY_READ, buf, count))
1433 return -EFAULT;
1435 mutex_lock(&inode->i_mutex);
1437 pos = *ppos;
1438 written = 0;
1440 err = generic_write_checks(file, &pos, &count, 0);
1441 if (err || !count)
1442 goto out;
1444 err = remove_suid(file->f_dentry);
1445 if (err)
1446 goto out;
1448 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1450 do {
1451 struct page *page = NULL;
1452 unsigned long bytes, index, offset;
1453 char *kaddr;
1454 int left;
1456 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1457 index = pos >> PAGE_CACHE_SHIFT;
1458 bytes = PAGE_CACHE_SIZE - offset;
1459 if (bytes > count)
1460 bytes = count;
1463 * We don't hold page lock across copy from user -
1464 * what would it guard against? - so no deadlock here.
1465 * But it still may be a good idea to prefault below.
1468 err = shmem_getpage(inode, index, &page, SGP_WRITE, NULL);
1469 if (err)
1470 break;
1472 left = bytes;
1473 if (PageHighMem(page)) {
1474 volatile unsigned char dummy;
1475 __get_user(dummy, buf);
1476 __get_user(dummy, buf + bytes - 1);
1478 kaddr = kmap_atomic(page, KM_USER0);
1479 left = __copy_from_user_inatomic(kaddr + offset,
1480 buf, bytes);
1481 kunmap_atomic(kaddr, KM_USER0);
1483 if (left) {
1484 kaddr = kmap(page);
1485 left = __copy_from_user(kaddr + offset, buf, bytes);
1486 kunmap(page);
1489 written += bytes;
1490 count -= bytes;
1491 pos += bytes;
1492 buf += bytes;
1493 if (pos > inode->i_size)
1494 i_size_write(inode, pos);
1496 flush_dcache_page(page);
1497 set_page_dirty(page);
1498 mark_page_accessed(page);
1499 page_cache_release(page);
1501 if (left) {
1502 pos -= left;
1503 written -= left;
1504 err = -EFAULT;
1505 break;
1509 * Our dirty pages are not counted in nr_dirty,
1510 * and we do not attempt to balance dirty pages.
1513 cond_resched();
1514 } while (count);
1516 *ppos = pos;
1517 if (written)
1518 err = written;
1519 out:
1520 mutex_unlock(&inode->i_mutex);
1521 return err;
1524 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1526 struct inode *inode = filp->f_dentry->d_inode;
1527 struct address_space *mapping = inode->i_mapping;
1528 unsigned long index, offset;
1530 index = *ppos >> PAGE_CACHE_SHIFT;
1531 offset = *ppos & ~PAGE_CACHE_MASK;
1533 for (;;) {
1534 struct page *page = NULL;
1535 unsigned long end_index, nr, ret;
1536 loff_t i_size = i_size_read(inode);
1538 end_index = i_size >> PAGE_CACHE_SHIFT;
1539 if (index > end_index)
1540 break;
1541 if (index == end_index) {
1542 nr = i_size & ~PAGE_CACHE_MASK;
1543 if (nr <= offset)
1544 break;
1547 desc->error = shmem_getpage(inode, index, &page, SGP_READ, NULL);
1548 if (desc->error) {
1549 if (desc->error == -EINVAL)
1550 desc->error = 0;
1551 break;
1555 * We must evaluate after, since reads (unlike writes)
1556 * are called without i_mutex protection against truncate
1558 nr = PAGE_CACHE_SIZE;
1559 i_size = i_size_read(inode);
1560 end_index = i_size >> PAGE_CACHE_SHIFT;
1561 if (index == end_index) {
1562 nr = i_size & ~PAGE_CACHE_MASK;
1563 if (nr <= offset) {
1564 if (page)
1565 page_cache_release(page);
1566 break;
1569 nr -= offset;
1571 if (page) {
1573 * If users can be writing to this page using arbitrary
1574 * virtual addresses, take care about potential aliasing
1575 * before reading the page on the kernel side.
1577 if (mapping_writably_mapped(mapping))
1578 flush_dcache_page(page);
1580 * Mark the page accessed if we read the beginning.
1582 if (!offset)
1583 mark_page_accessed(page);
1584 } else {
1585 page = ZERO_PAGE(0);
1586 page_cache_get(page);
1590 * Ok, we have the page, and it's up-to-date, so
1591 * now we can copy it to user space...
1593 * The actor routine returns how many bytes were actually used..
1594 * NOTE! This may not be the same as how much of a user buffer
1595 * we filled up (we may be padding etc), so we can only update
1596 * "pos" here (the actor routine has to update the user buffer
1597 * pointers and the remaining count).
1599 ret = actor(desc, page, offset, nr);
1600 offset += ret;
1601 index += offset >> PAGE_CACHE_SHIFT;
1602 offset &= ~PAGE_CACHE_MASK;
1604 page_cache_release(page);
1605 if (ret != nr || !desc->count)
1606 break;
1608 cond_resched();
1611 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1612 file_accessed(filp);
1615 static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1617 read_descriptor_t desc;
1619 if ((ssize_t) count < 0)
1620 return -EINVAL;
1621 if (!access_ok(VERIFY_WRITE, buf, count))
1622 return -EFAULT;
1623 if (!count)
1624 return 0;
1626 desc.written = 0;
1627 desc.count = count;
1628 desc.arg.buf = buf;
1629 desc.error = 0;
1631 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1632 if (desc.written)
1633 return desc.written;
1634 return desc.error;
1637 static ssize_t shmem_file_sendfile(struct file *in_file, loff_t *ppos,
1638 size_t count, read_actor_t actor, void *target)
1640 read_descriptor_t desc;
1642 if (!count)
1643 return 0;
1645 desc.written = 0;
1646 desc.count = count;
1647 desc.arg.data = target;
1648 desc.error = 0;
1650 do_shmem_file_read(in_file, ppos, &desc, actor);
1651 if (desc.written)
1652 return desc.written;
1653 return desc.error;
1656 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1658 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1660 buf->f_type = TMPFS_MAGIC;
1661 buf->f_bsize = PAGE_CACHE_SIZE;
1662 buf->f_namelen = NAME_MAX;
1663 spin_lock(&sbinfo->stat_lock);
1664 if (sbinfo->max_blocks) {
1665 buf->f_blocks = sbinfo->max_blocks;
1666 buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1668 if (sbinfo->max_inodes) {
1669 buf->f_files = sbinfo->max_inodes;
1670 buf->f_ffree = sbinfo->free_inodes;
1672 /* else leave those fields 0 like simple_statfs */
1673 spin_unlock(&sbinfo->stat_lock);
1674 return 0;
1678 * File creation. Allocate an inode, and we're done..
1680 static int
1681 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1683 struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1684 int error = -ENOSPC;
1686 if (inode) {
1687 error = security_inode_init_security(inode, dir, NULL, NULL,
1688 NULL);
1689 if (error) {
1690 if (error != -EOPNOTSUPP) {
1691 iput(inode);
1692 return error;
1695 error = shmem_acl_init(inode, dir);
1696 if (error) {
1697 iput(inode);
1698 return error;
1700 if (dir->i_mode & S_ISGID) {
1701 inode->i_gid = dir->i_gid;
1702 if (S_ISDIR(mode))
1703 inode->i_mode |= S_ISGID;
1705 dir->i_size += BOGO_DIRENT_SIZE;
1706 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1707 d_instantiate(dentry, inode);
1708 dget(dentry); /* Extra count - pin the dentry in core */
1710 return error;
1713 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1715 int error;
1717 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1718 return error;
1719 inc_nlink(dir);
1720 return 0;
1723 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1724 struct nameidata *nd)
1726 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1730 * Link a file..
1732 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1734 struct inode *inode = old_dentry->d_inode;
1735 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1738 * No ordinary (disk based) filesystem counts links as inodes;
1739 * but each new link needs a new dentry, pinning lowmem, and
1740 * tmpfs dentries cannot be pruned until they are unlinked.
1742 if (sbinfo->max_inodes) {
1743 spin_lock(&sbinfo->stat_lock);
1744 if (!sbinfo->free_inodes) {
1745 spin_unlock(&sbinfo->stat_lock);
1746 return -ENOSPC;
1748 sbinfo->free_inodes--;
1749 spin_unlock(&sbinfo->stat_lock);
1752 dir->i_size += BOGO_DIRENT_SIZE;
1753 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1754 inc_nlink(inode);
1755 atomic_inc(&inode->i_count); /* New dentry reference */
1756 dget(dentry); /* Extra pinning count for the created dentry */
1757 d_instantiate(dentry, inode);
1758 return 0;
1761 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1763 struct inode *inode = dentry->d_inode;
1765 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) {
1766 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1767 if (sbinfo->max_inodes) {
1768 spin_lock(&sbinfo->stat_lock);
1769 sbinfo->free_inodes++;
1770 spin_unlock(&sbinfo->stat_lock);
1774 dir->i_size -= BOGO_DIRENT_SIZE;
1775 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1776 drop_nlink(inode);
1777 dput(dentry); /* Undo the count from "create" - this does all the work */
1778 return 0;
1781 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1783 if (!simple_empty(dentry))
1784 return -ENOTEMPTY;
1786 drop_nlink(dentry->d_inode);
1787 drop_nlink(dir);
1788 return shmem_unlink(dir, dentry);
1792 * The VFS layer already does all the dentry stuff for rename,
1793 * we just have to decrement the usage count for the target if
1794 * it exists so that the VFS layer correctly free's it when it
1795 * gets overwritten.
1797 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1799 struct inode *inode = old_dentry->d_inode;
1800 int they_are_dirs = S_ISDIR(inode->i_mode);
1802 if (!simple_empty(new_dentry))
1803 return -ENOTEMPTY;
1805 if (new_dentry->d_inode) {
1806 (void) shmem_unlink(new_dir, new_dentry);
1807 if (they_are_dirs)
1808 drop_nlink(old_dir);
1809 } else if (they_are_dirs) {
1810 drop_nlink(old_dir);
1811 inc_nlink(new_dir);
1814 old_dir->i_size -= BOGO_DIRENT_SIZE;
1815 new_dir->i_size += BOGO_DIRENT_SIZE;
1816 old_dir->i_ctime = old_dir->i_mtime =
1817 new_dir->i_ctime = new_dir->i_mtime =
1818 inode->i_ctime = CURRENT_TIME;
1819 return 0;
1822 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1824 int error;
1825 int len;
1826 struct inode *inode;
1827 struct page *page = NULL;
1828 char *kaddr;
1829 struct shmem_inode_info *info;
1831 len = strlen(symname) + 1;
1832 if (len > PAGE_CACHE_SIZE)
1833 return -ENAMETOOLONG;
1835 inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1836 if (!inode)
1837 return -ENOSPC;
1839 error = security_inode_init_security(inode, dir, NULL, NULL,
1840 NULL);
1841 if (error) {
1842 if (error != -EOPNOTSUPP) {
1843 iput(inode);
1844 return error;
1846 error = 0;
1849 info = SHMEM_I(inode);
1850 inode->i_size = len-1;
1851 if (len <= (char *)inode - (char *)info) {
1852 /* do it inline */
1853 memcpy(info, symname, len);
1854 inode->i_op = &shmem_symlink_inline_operations;
1855 } else {
1856 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1857 if (error) {
1858 iput(inode);
1859 return error;
1861 inode->i_op = &shmem_symlink_inode_operations;
1862 kaddr = kmap_atomic(page, KM_USER0);
1863 memcpy(kaddr, symname, len);
1864 kunmap_atomic(kaddr, KM_USER0);
1865 set_page_dirty(page);
1866 page_cache_release(page);
1868 if (dir->i_mode & S_ISGID)
1869 inode->i_gid = dir->i_gid;
1870 dir->i_size += BOGO_DIRENT_SIZE;
1871 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1872 d_instantiate(dentry, inode);
1873 dget(dentry);
1874 return 0;
1877 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1879 nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1880 return NULL;
1883 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1885 struct page *page = NULL;
1886 int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1887 nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1888 return page;
1891 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1893 if (!IS_ERR(nd_get_link(nd))) {
1894 struct page *page = cookie;
1895 kunmap(page);
1896 mark_page_accessed(page);
1897 page_cache_release(page);
1901 static struct inode_operations shmem_symlink_inline_operations = {
1902 .readlink = generic_readlink,
1903 .follow_link = shmem_follow_link_inline,
1906 static struct inode_operations shmem_symlink_inode_operations = {
1907 .truncate = shmem_truncate,
1908 .readlink = generic_readlink,
1909 .follow_link = shmem_follow_link,
1910 .put_link = shmem_put_link,
1913 #ifdef CONFIG_TMPFS_POSIX_ACL
1915 * Superblocks without xattr inode operations will get security.* xattr
1916 * support from the VFS "for free". As soon as we have any other xattrs
1917 * like ACLs, we also need to implement the security.* handlers at
1918 * filesystem level, though.
1921 static size_t shmem_xattr_security_list(struct inode *inode, char *list,
1922 size_t list_len, const char *name,
1923 size_t name_len)
1925 return security_inode_listsecurity(inode, list, list_len);
1928 static int shmem_xattr_security_get(struct inode *inode, const char *name,
1929 void *buffer, size_t size)
1931 if (strcmp(name, "") == 0)
1932 return -EINVAL;
1933 return security_inode_getsecurity(inode, name, buffer, size,
1934 -EOPNOTSUPP);
1937 static int shmem_xattr_security_set(struct inode *inode, const char *name,
1938 const void *value, size_t size, int flags)
1940 if (strcmp(name, "") == 0)
1941 return -EINVAL;
1942 return security_inode_setsecurity(inode, name, value, size, flags);
1945 struct xattr_handler shmem_xattr_security_handler = {
1946 .prefix = XATTR_SECURITY_PREFIX,
1947 .list = shmem_xattr_security_list,
1948 .get = shmem_xattr_security_get,
1949 .set = shmem_xattr_security_set,
1952 static struct xattr_handler *shmem_xattr_handlers[] = {
1953 &shmem_xattr_acl_access_handler,
1954 &shmem_xattr_acl_default_handler,
1955 &shmem_xattr_security_handler,
1956 NULL
1958 #endif
1960 static struct dentry *shmem_get_parent(struct dentry *child)
1962 return ERR_PTR(-ESTALE);
1965 static int shmem_match(struct inode *ino, void *vfh)
1967 __u32 *fh = vfh;
1968 __u64 inum = fh[2];
1969 inum = (inum << 32) | fh[1];
1970 return ino->i_ino == inum && fh[0] == ino->i_generation;
1973 static struct dentry *shmem_get_dentry(struct super_block *sb, void *vfh)
1975 struct dentry *de = NULL;
1976 struct inode *inode;
1977 __u32 *fh = vfh;
1978 __u64 inum = fh[2];
1979 inum = (inum << 32) | fh[1];
1981 inode = ilookup5(sb, (unsigned long)(inum+fh[0]), shmem_match, vfh);
1982 if (inode) {
1983 de = d_find_alias(inode);
1984 iput(inode);
1987 return de? de: ERR_PTR(-ESTALE);
1990 static struct dentry *shmem_decode_fh(struct super_block *sb, __u32 *fh,
1991 int len, int type,
1992 int (*acceptable)(void *context, struct dentry *de),
1993 void *context)
1995 if (len < 3)
1996 return ERR_PTR(-ESTALE);
1998 return sb->s_export_op->find_exported_dentry(sb, fh, NULL, acceptable,
1999 context);
2002 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2003 int connectable)
2005 struct inode *inode = dentry->d_inode;
2007 if (*len < 3)
2008 return 255;
2010 if (hlist_unhashed(&inode->i_hash)) {
2011 /* Unfortunately insert_inode_hash is not idempotent,
2012 * so as we hash inodes here rather than at creation
2013 * time, we need a lock to ensure we only try
2014 * to do it once
2016 static DEFINE_SPINLOCK(lock);
2017 spin_lock(&lock);
2018 if (hlist_unhashed(&inode->i_hash))
2019 __insert_inode_hash(inode,
2020 inode->i_ino + inode->i_generation);
2021 spin_unlock(&lock);
2024 fh[0] = inode->i_generation;
2025 fh[1] = inode->i_ino;
2026 fh[2] = ((__u64)inode->i_ino) >> 32;
2028 *len = 3;
2029 return 1;
2032 static struct export_operations shmem_export_ops = {
2033 .get_parent = shmem_get_parent,
2034 .get_dentry = shmem_get_dentry,
2035 .encode_fh = shmem_encode_fh,
2036 .decode_fh = shmem_decode_fh,
2039 static int shmem_parse_options(char *options, int *mode, uid_t *uid,
2040 gid_t *gid, unsigned long *blocks, unsigned long *inodes,
2041 int *policy, nodemask_t *policy_nodes)
2043 char *this_char, *value, *rest;
2045 while (options != NULL) {
2046 this_char = options;
2047 for (;;) {
2049 * NUL-terminate this option: unfortunately,
2050 * mount options form a comma-separated list,
2051 * but mpol's nodelist may also contain commas.
2053 options = strchr(options, ',');
2054 if (options == NULL)
2055 break;
2056 options++;
2057 if (!isdigit(*options)) {
2058 options[-1] = '\0';
2059 break;
2062 if (!*this_char)
2063 continue;
2064 if ((value = strchr(this_char,'=')) != NULL) {
2065 *value++ = 0;
2066 } else {
2067 printk(KERN_ERR
2068 "tmpfs: No value for mount option '%s'\n",
2069 this_char);
2070 return 1;
2073 if (!strcmp(this_char,"size")) {
2074 unsigned long long size;
2075 size = memparse(value,&rest);
2076 if (*rest == '%') {
2077 size <<= PAGE_SHIFT;
2078 size *= totalram_pages;
2079 do_div(size, 100);
2080 rest++;
2082 if (*rest)
2083 goto bad_val;
2084 *blocks = size >> PAGE_CACHE_SHIFT;
2085 } else if (!strcmp(this_char,"nr_blocks")) {
2086 *blocks = memparse(value,&rest);
2087 if (*rest)
2088 goto bad_val;
2089 } else if (!strcmp(this_char,"nr_inodes")) {
2090 *inodes = memparse(value,&rest);
2091 if (*rest)
2092 goto bad_val;
2093 } else if (!strcmp(this_char,"mode")) {
2094 if (!mode)
2095 continue;
2096 *mode = simple_strtoul(value,&rest,8);
2097 if (*rest)
2098 goto bad_val;
2099 } else if (!strcmp(this_char,"uid")) {
2100 if (!uid)
2101 continue;
2102 *uid = simple_strtoul(value,&rest,0);
2103 if (*rest)
2104 goto bad_val;
2105 } else if (!strcmp(this_char,"gid")) {
2106 if (!gid)
2107 continue;
2108 *gid = simple_strtoul(value,&rest,0);
2109 if (*rest)
2110 goto bad_val;
2111 } else if (!strcmp(this_char,"mpol")) {
2112 if (shmem_parse_mpol(value,policy,policy_nodes))
2113 goto bad_val;
2114 } else {
2115 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2116 this_char);
2117 return 1;
2120 return 0;
2122 bad_val:
2123 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2124 value, this_char);
2125 return 1;
2129 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2131 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2132 unsigned long max_blocks = sbinfo->max_blocks;
2133 unsigned long max_inodes = sbinfo->max_inodes;
2134 int policy = sbinfo->policy;
2135 nodemask_t policy_nodes = sbinfo->policy_nodes;
2136 unsigned long blocks;
2137 unsigned long inodes;
2138 int error = -EINVAL;
2140 if (shmem_parse_options(data, NULL, NULL, NULL, &max_blocks,
2141 &max_inodes, &policy, &policy_nodes))
2142 return error;
2144 spin_lock(&sbinfo->stat_lock);
2145 blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2146 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2147 if (max_blocks < blocks)
2148 goto out;
2149 if (max_inodes < inodes)
2150 goto out;
2152 * Those tests also disallow limited->unlimited while any are in
2153 * use, so i_blocks will always be zero when max_blocks is zero;
2154 * but we must separately disallow unlimited->limited, because
2155 * in that case we have no record of how much is already in use.
2157 if (max_blocks && !sbinfo->max_blocks)
2158 goto out;
2159 if (max_inodes && !sbinfo->max_inodes)
2160 goto out;
2162 error = 0;
2163 sbinfo->max_blocks = max_blocks;
2164 sbinfo->free_blocks = max_blocks - blocks;
2165 sbinfo->max_inodes = max_inodes;
2166 sbinfo->free_inodes = max_inodes - inodes;
2167 sbinfo->policy = policy;
2168 sbinfo->policy_nodes = policy_nodes;
2169 out:
2170 spin_unlock(&sbinfo->stat_lock);
2171 return error;
2173 #endif
2175 static void shmem_put_super(struct super_block *sb)
2177 kfree(sb->s_fs_info);
2178 sb->s_fs_info = NULL;
2181 static int shmem_fill_super(struct super_block *sb,
2182 void *data, int silent)
2184 struct inode *inode;
2185 struct dentry *root;
2186 int mode = S_IRWXUGO | S_ISVTX;
2187 uid_t uid = current->fsuid;
2188 gid_t gid = current->fsgid;
2189 int err = -ENOMEM;
2190 struct shmem_sb_info *sbinfo;
2191 unsigned long blocks = 0;
2192 unsigned long inodes = 0;
2193 int policy = MPOL_DEFAULT;
2194 nodemask_t policy_nodes = node_online_map;
2196 #ifdef CONFIG_TMPFS
2198 * Per default we only allow half of the physical ram per
2199 * tmpfs instance, limiting inodes to one per page of lowmem;
2200 * but the internal instance is left unlimited.
2202 if (!(sb->s_flags & MS_NOUSER)) {
2203 blocks = totalram_pages / 2;
2204 inodes = totalram_pages - totalhigh_pages;
2205 if (inodes > blocks)
2206 inodes = blocks;
2207 if (shmem_parse_options(data, &mode, &uid, &gid, &blocks,
2208 &inodes, &policy, &policy_nodes))
2209 return -EINVAL;
2211 sb->s_export_op = &shmem_export_ops;
2212 #else
2213 sb->s_flags |= MS_NOUSER;
2214 #endif
2216 /* Round up to L1_CACHE_BYTES to resist false sharing */
2217 sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2218 L1_CACHE_BYTES), GFP_KERNEL);
2219 if (!sbinfo)
2220 return -ENOMEM;
2222 spin_lock_init(&sbinfo->stat_lock);
2223 sbinfo->max_blocks = blocks;
2224 sbinfo->free_blocks = blocks;
2225 sbinfo->max_inodes = inodes;
2226 sbinfo->free_inodes = inodes;
2227 sbinfo->policy = policy;
2228 sbinfo->policy_nodes = policy_nodes;
2230 sb->s_fs_info = sbinfo;
2231 sb->s_maxbytes = SHMEM_MAX_BYTES;
2232 sb->s_blocksize = PAGE_CACHE_SIZE;
2233 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2234 sb->s_magic = TMPFS_MAGIC;
2235 sb->s_op = &shmem_ops;
2236 sb->s_time_gran = 1;
2237 #ifdef CONFIG_TMPFS_POSIX_ACL
2238 sb->s_xattr = shmem_xattr_handlers;
2239 sb->s_flags |= MS_POSIXACL;
2240 #endif
2242 inode = shmem_get_inode(sb, S_IFDIR | mode, 0);
2243 if (!inode)
2244 goto failed;
2245 inode->i_uid = uid;
2246 inode->i_gid = gid;
2247 root = d_alloc_root(inode);
2248 if (!root)
2249 goto failed_iput;
2250 sb->s_root = root;
2251 return 0;
2253 failed_iput:
2254 iput(inode);
2255 failed:
2256 shmem_put_super(sb);
2257 return err;
2260 static struct kmem_cache *shmem_inode_cachep;
2262 static struct inode *shmem_alloc_inode(struct super_block *sb)
2264 struct shmem_inode_info *p;
2265 p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, SLAB_KERNEL);
2266 if (!p)
2267 return NULL;
2268 return &p->vfs_inode;
2271 static void shmem_destroy_inode(struct inode *inode)
2273 if ((inode->i_mode & S_IFMT) == S_IFREG) {
2274 /* only struct inode is valid if it's an inline symlink */
2275 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2277 shmem_acl_destroy_inode(inode);
2278 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2281 static void init_once(void *foo, struct kmem_cache *cachep,
2282 unsigned long flags)
2284 struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2286 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
2287 SLAB_CTOR_CONSTRUCTOR) {
2288 inode_init_once(&p->vfs_inode);
2289 #ifdef CONFIG_TMPFS_POSIX_ACL
2290 p->i_acl = NULL;
2291 p->i_default_acl = NULL;
2292 #endif
2296 static int init_inodecache(void)
2298 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2299 sizeof(struct shmem_inode_info),
2300 0, 0, init_once, NULL);
2301 if (shmem_inode_cachep == NULL)
2302 return -ENOMEM;
2303 return 0;
2306 static void destroy_inodecache(void)
2308 kmem_cache_destroy(shmem_inode_cachep);
2311 static const struct address_space_operations shmem_aops = {
2312 .writepage = shmem_writepage,
2313 .set_page_dirty = __set_page_dirty_nobuffers,
2314 #ifdef CONFIG_TMPFS
2315 .prepare_write = shmem_prepare_write,
2316 .commit_write = simple_commit_write,
2317 #endif
2318 .migratepage = migrate_page,
2321 static struct file_operations shmem_file_operations = {
2322 .mmap = shmem_mmap,
2323 #ifdef CONFIG_TMPFS
2324 .llseek = generic_file_llseek,
2325 .read = shmem_file_read,
2326 .write = shmem_file_write,
2327 .fsync = simple_sync_file,
2328 .sendfile = shmem_file_sendfile,
2329 #endif
2332 static struct inode_operations shmem_inode_operations = {
2333 .truncate = shmem_truncate,
2334 .setattr = shmem_notify_change,
2335 .truncate_range = shmem_truncate_range,
2336 #ifdef CONFIG_TMPFS_POSIX_ACL
2337 .setxattr = generic_setxattr,
2338 .getxattr = generic_getxattr,
2339 .listxattr = generic_listxattr,
2340 .removexattr = generic_removexattr,
2341 .permission = shmem_permission,
2342 #endif
2346 static struct inode_operations shmem_dir_inode_operations = {
2347 #ifdef CONFIG_TMPFS
2348 .create = shmem_create,
2349 .lookup = simple_lookup,
2350 .link = shmem_link,
2351 .unlink = shmem_unlink,
2352 .symlink = shmem_symlink,
2353 .mkdir = shmem_mkdir,
2354 .rmdir = shmem_rmdir,
2355 .mknod = shmem_mknod,
2356 .rename = shmem_rename,
2357 #endif
2358 #ifdef CONFIG_TMPFS_POSIX_ACL
2359 .setattr = shmem_notify_change,
2360 .setxattr = generic_setxattr,
2361 .getxattr = generic_getxattr,
2362 .listxattr = generic_listxattr,
2363 .removexattr = generic_removexattr,
2364 .permission = shmem_permission,
2365 #endif
2368 static struct inode_operations shmem_special_inode_operations = {
2369 #ifdef CONFIG_TMPFS_POSIX_ACL
2370 .setattr = shmem_notify_change,
2371 .setxattr = generic_setxattr,
2372 .getxattr = generic_getxattr,
2373 .listxattr = generic_listxattr,
2374 .removexattr = generic_removexattr,
2375 .permission = shmem_permission,
2376 #endif
2379 static struct super_operations shmem_ops = {
2380 .alloc_inode = shmem_alloc_inode,
2381 .destroy_inode = shmem_destroy_inode,
2382 #ifdef CONFIG_TMPFS
2383 .statfs = shmem_statfs,
2384 .remount_fs = shmem_remount_fs,
2385 #endif
2386 .delete_inode = shmem_delete_inode,
2387 .drop_inode = generic_delete_inode,
2388 .put_super = shmem_put_super,
2391 static struct vm_operations_struct shmem_vm_ops = {
2392 .nopage = shmem_nopage,
2393 .populate = shmem_populate,
2394 #ifdef CONFIG_NUMA
2395 .set_policy = shmem_set_policy,
2396 .get_policy = shmem_get_policy,
2397 #endif
2401 static int shmem_get_sb(struct file_system_type *fs_type,
2402 int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2404 return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2407 static struct file_system_type tmpfs_fs_type = {
2408 .owner = THIS_MODULE,
2409 .name = "tmpfs",
2410 .get_sb = shmem_get_sb,
2411 .kill_sb = kill_litter_super,
2413 static struct vfsmount *shm_mnt;
2415 static int __init init_tmpfs(void)
2417 int error;
2419 error = init_inodecache();
2420 if (error)
2421 goto out3;
2423 error = register_filesystem(&tmpfs_fs_type);
2424 if (error) {
2425 printk(KERN_ERR "Could not register tmpfs\n");
2426 goto out2;
2429 shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2430 tmpfs_fs_type.name, NULL);
2431 if (IS_ERR(shm_mnt)) {
2432 error = PTR_ERR(shm_mnt);
2433 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2434 goto out1;
2436 return 0;
2438 out1:
2439 unregister_filesystem(&tmpfs_fs_type);
2440 out2:
2441 destroy_inodecache();
2442 out3:
2443 shm_mnt = ERR_PTR(error);
2444 return error;
2446 module_init(init_tmpfs)
2449 * shmem_file_setup - get an unlinked file living in tmpfs
2451 * @name: name for dentry (to be seen in /proc/<pid>/maps
2452 * @size: size to be set for the file
2455 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2457 int error;
2458 struct file *file;
2459 struct inode *inode;
2460 struct dentry *dentry, *root;
2461 struct qstr this;
2463 if (IS_ERR(shm_mnt))
2464 return (void *)shm_mnt;
2466 if (size < 0 || size > SHMEM_MAX_BYTES)
2467 return ERR_PTR(-EINVAL);
2469 if (shmem_acct_size(flags, size))
2470 return ERR_PTR(-ENOMEM);
2472 error = -ENOMEM;
2473 this.name = name;
2474 this.len = strlen(name);
2475 this.hash = 0; /* will go */
2476 root = shm_mnt->mnt_root;
2477 dentry = d_alloc(root, &this);
2478 if (!dentry)
2479 goto put_memory;
2481 error = -ENFILE;
2482 file = get_empty_filp();
2483 if (!file)
2484 goto put_dentry;
2486 error = -ENOSPC;
2487 inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2488 if (!inode)
2489 goto close_file;
2491 SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2492 d_instantiate(dentry, inode);
2493 inode->i_size = size;
2494 inode->i_nlink = 0; /* It is unlinked */
2495 file->f_vfsmnt = mntget(shm_mnt);
2496 file->f_dentry = dentry;
2497 file->f_mapping = inode->i_mapping;
2498 file->f_op = &shmem_file_operations;
2499 file->f_mode = FMODE_WRITE | FMODE_READ;
2500 return file;
2502 close_file:
2503 put_filp(file);
2504 put_dentry:
2505 dput(dentry);
2506 put_memory:
2507 shmem_unacct_size(flags, size);
2508 return ERR_PTR(error);
2512 * shmem_zero_setup - setup a shared anonymous mapping
2514 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2516 int shmem_zero_setup(struct vm_area_struct *vma)
2518 struct file *file;
2519 loff_t size = vma->vm_end - vma->vm_start;
2521 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2522 if (IS_ERR(file))
2523 return PTR_ERR(file);
2525 if (vma->vm_file)
2526 fput(vma->vm_file);
2527 vma->vm_file = file;
2528 vma->vm_ops = &shmem_vm_ops;
2529 return 0;