netfilter: xt_hashlimit: alloc hashtable with right size
[linux-2.6/btrfs-unstable.git] / kernel / fork.c
blob4e5345c073443f6242951e2d4d62f6f095aef64c
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/sched/stat.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rtmutex.h>
25 #include <linux/init.h>
26 #include <linux/unistd.h>
27 #include <linux/module.h>
28 #include <linux/vmalloc.h>
29 #include <linux/completion.h>
30 #include <linux/personality.h>
31 #include <linux/mempolicy.h>
32 #include <linux/sem.h>
33 #include <linux/file.h>
34 #include <linux/fdtable.h>
35 #include <linux/iocontext.h>
36 #include <linux/key.h>
37 #include <linux/binfmts.h>
38 #include <linux/mman.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/fs.h>
41 #include <linux/mm.h>
42 #include <linux/vmacache.h>
43 #include <linux/nsproxy.h>
44 #include <linux/capability.h>
45 #include <linux/cpu.h>
46 #include <linux/cgroup.h>
47 #include <linux/security.h>
48 #include <linux/hugetlb.h>
49 #include <linux/seccomp.h>
50 #include <linux/swap.h>
51 #include <linux/syscalls.h>
52 #include <linux/jiffies.h>
53 #include <linux/futex.h>
54 #include <linux/compat.h>
55 #include <linux/kthread.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/rcupdate.h>
58 #include <linux/ptrace.h>
59 #include <linux/mount.h>
60 #include <linux/audit.h>
61 #include <linux/memcontrol.h>
62 #include <linux/ftrace.h>
63 #include <linux/proc_fs.h>
64 #include <linux/profile.h>
65 #include <linux/rmap.h>
66 #include <linux/ksm.h>
67 #include <linux/acct.h>
68 #include <linux/userfaultfd_k.h>
69 #include <linux/tsacct_kern.h>
70 #include <linux/cn_proc.h>
71 #include <linux/freezer.h>
72 #include <linux/delayacct.h>
73 #include <linux/taskstats_kern.h>
74 #include <linux/random.h>
75 #include <linux/tty.h>
76 #include <linux/blkdev.h>
77 #include <linux/fs_struct.h>
78 #include <linux/magic.h>
79 #include <linux/perf_event.h>
80 #include <linux/posix-timers.h>
81 #include <linux/user-return-notifier.h>
82 #include <linux/oom.h>
83 #include <linux/khugepaged.h>
84 #include <linux/signalfd.h>
85 #include <linux/uprobes.h>
86 #include <linux/aio.h>
87 #include <linux/compiler.h>
88 #include <linux/sysctl.h>
89 #include <linux/kcov.h>
90 #include <linux/livepatch.h>
91 #include <linux/thread_info.h>
93 #include <asm/pgtable.h>
94 #include <asm/pgalloc.h>
95 #include <linux/uaccess.h>
96 #include <asm/mmu_context.h>
97 #include <asm/cacheflush.h>
98 #include <asm/tlbflush.h>
100 #include <trace/events/sched.h>
102 #define CREATE_TRACE_POINTS
103 #include <trace/events/task.h>
106 * Minimum number of threads to boot the kernel
108 #define MIN_THREADS 20
111 * Maximum number of threads
113 #define MAX_THREADS FUTEX_TID_MASK
116 * Protected counters by write_lock_irq(&tasklist_lock)
118 unsigned long total_forks; /* Handle normal Linux uptimes. */
119 int nr_threads; /* The idle threads do not count.. */
121 int max_threads; /* tunable limit on nr_threads */
123 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
125 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
127 #ifdef CONFIG_PROVE_RCU
128 int lockdep_tasklist_lock_is_held(void)
130 return lockdep_is_held(&tasklist_lock);
132 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
133 #endif /* #ifdef CONFIG_PROVE_RCU */
135 int nr_processes(void)
137 int cpu;
138 int total = 0;
140 for_each_possible_cpu(cpu)
141 total += per_cpu(process_counts, cpu);
143 return total;
146 void __weak arch_release_task_struct(struct task_struct *tsk)
150 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
151 static struct kmem_cache *task_struct_cachep;
153 static inline struct task_struct *alloc_task_struct_node(int node)
155 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
158 static inline void free_task_struct(struct task_struct *tsk)
160 kmem_cache_free(task_struct_cachep, tsk);
162 #endif
164 void __weak arch_release_thread_stack(unsigned long *stack)
168 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
171 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
172 * kmemcache based allocator.
174 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
176 #ifdef CONFIG_VMAP_STACK
178 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
179 * flush. Try to minimize the number of calls by caching stacks.
181 #define NR_CACHED_STACKS 2
182 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
184 static int free_vm_stack_cache(unsigned int cpu)
186 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
187 int i;
189 for (i = 0; i < NR_CACHED_STACKS; i++) {
190 struct vm_struct *vm_stack = cached_vm_stacks[i];
192 if (!vm_stack)
193 continue;
195 vfree(vm_stack->addr);
196 cached_vm_stacks[i] = NULL;
199 return 0;
201 #endif
203 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
205 #ifdef CONFIG_VMAP_STACK
206 void *stack;
207 int i;
209 for (i = 0; i < NR_CACHED_STACKS; i++) {
210 struct vm_struct *s;
212 s = this_cpu_xchg(cached_stacks[i], NULL);
214 if (!s)
215 continue;
217 tsk->stack_vm_area = s;
218 return s->addr;
221 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
222 VMALLOC_START, VMALLOC_END,
223 THREADINFO_GFP,
224 PAGE_KERNEL,
225 0, node, __builtin_return_address(0));
228 * We can't call find_vm_area() in interrupt context, and
229 * free_thread_stack() can be called in interrupt context,
230 * so cache the vm_struct.
232 if (stack)
233 tsk->stack_vm_area = find_vm_area(stack);
234 return stack;
235 #else
236 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
237 THREAD_SIZE_ORDER);
239 return page ? page_address(page) : NULL;
240 #endif
243 static inline void free_thread_stack(struct task_struct *tsk)
245 #ifdef CONFIG_VMAP_STACK
246 if (task_stack_vm_area(tsk)) {
247 int i;
249 for (i = 0; i < NR_CACHED_STACKS; i++) {
250 if (this_cpu_cmpxchg(cached_stacks[i],
251 NULL, tsk->stack_vm_area) != NULL)
252 continue;
254 return;
257 vfree_atomic(tsk->stack);
258 return;
260 #endif
262 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
264 # else
265 static struct kmem_cache *thread_stack_cache;
267 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
268 int node)
270 return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
273 static void free_thread_stack(struct task_struct *tsk)
275 kmem_cache_free(thread_stack_cache, tsk->stack);
278 void thread_stack_cache_init(void)
280 thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
281 THREAD_SIZE, 0, NULL);
282 BUG_ON(thread_stack_cache == NULL);
284 # endif
285 #endif
287 /* SLAB cache for signal_struct structures (tsk->signal) */
288 static struct kmem_cache *signal_cachep;
290 /* SLAB cache for sighand_struct structures (tsk->sighand) */
291 struct kmem_cache *sighand_cachep;
293 /* SLAB cache for files_struct structures (tsk->files) */
294 struct kmem_cache *files_cachep;
296 /* SLAB cache for fs_struct structures (tsk->fs) */
297 struct kmem_cache *fs_cachep;
299 /* SLAB cache for vm_area_struct structures */
300 struct kmem_cache *vm_area_cachep;
302 /* SLAB cache for mm_struct structures (tsk->mm) */
303 static struct kmem_cache *mm_cachep;
305 static void account_kernel_stack(struct task_struct *tsk, int account)
307 void *stack = task_stack_page(tsk);
308 struct vm_struct *vm = task_stack_vm_area(tsk);
310 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
312 if (vm) {
313 int i;
315 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
317 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
318 mod_zone_page_state(page_zone(vm->pages[i]),
319 NR_KERNEL_STACK_KB,
320 PAGE_SIZE / 1024 * account);
323 /* All stack pages belong to the same memcg. */
324 mod_memcg_page_state(vm->pages[0], MEMCG_KERNEL_STACK_KB,
325 account * (THREAD_SIZE / 1024));
326 } else {
328 * All stack pages are in the same zone and belong to the
329 * same memcg.
331 struct page *first_page = virt_to_page(stack);
333 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
334 THREAD_SIZE / 1024 * account);
336 mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
337 account * (THREAD_SIZE / 1024));
341 static void release_task_stack(struct task_struct *tsk)
343 if (WARN_ON(tsk->state != TASK_DEAD))
344 return; /* Better to leak the stack than to free prematurely */
346 account_kernel_stack(tsk, -1);
347 arch_release_thread_stack(tsk->stack);
348 free_thread_stack(tsk);
349 tsk->stack = NULL;
350 #ifdef CONFIG_VMAP_STACK
351 tsk->stack_vm_area = NULL;
352 #endif
355 #ifdef CONFIG_THREAD_INFO_IN_TASK
356 void put_task_stack(struct task_struct *tsk)
358 if (atomic_dec_and_test(&tsk->stack_refcount))
359 release_task_stack(tsk);
361 #endif
363 void free_task(struct task_struct *tsk)
365 #ifndef CONFIG_THREAD_INFO_IN_TASK
367 * The task is finally done with both the stack and thread_info,
368 * so free both.
370 release_task_stack(tsk);
371 #else
373 * If the task had a separate stack allocation, it should be gone
374 * by now.
376 WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
377 #endif
378 rt_mutex_debug_task_free(tsk);
379 ftrace_graph_exit_task(tsk);
380 put_seccomp_filter(tsk);
381 arch_release_task_struct(tsk);
382 if (tsk->flags & PF_KTHREAD)
383 free_kthread_struct(tsk);
384 free_task_struct(tsk);
386 EXPORT_SYMBOL(free_task);
388 static inline void free_signal_struct(struct signal_struct *sig)
390 taskstats_tgid_free(sig);
391 sched_autogroup_exit(sig);
393 * __mmdrop is not safe to call from softirq context on x86 due to
394 * pgd_dtor so postpone it to the async context
396 if (sig->oom_mm)
397 mmdrop_async(sig->oom_mm);
398 kmem_cache_free(signal_cachep, sig);
401 static inline void put_signal_struct(struct signal_struct *sig)
403 if (atomic_dec_and_test(&sig->sigcnt))
404 free_signal_struct(sig);
407 void __put_task_struct(struct task_struct *tsk)
409 WARN_ON(!tsk->exit_state);
410 WARN_ON(atomic_read(&tsk->usage));
411 WARN_ON(tsk == current);
413 cgroup_free(tsk);
414 task_numa_free(tsk);
415 security_task_free(tsk);
416 exit_creds(tsk);
417 delayacct_tsk_free(tsk);
418 put_signal_struct(tsk->signal);
420 if (!profile_handoff_task(tsk))
421 free_task(tsk);
423 EXPORT_SYMBOL_GPL(__put_task_struct);
425 void __init __weak arch_task_cache_init(void) { }
428 * set_max_threads
430 static void set_max_threads(unsigned int max_threads_suggested)
432 u64 threads;
435 * The number of threads shall be limited such that the thread
436 * structures may only consume a small part of the available memory.
438 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
439 threads = MAX_THREADS;
440 else
441 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
442 (u64) THREAD_SIZE * 8UL);
444 if (threads > max_threads_suggested)
445 threads = max_threads_suggested;
447 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
450 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
451 /* Initialized by the architecture: */
452 int arch_task_struct_size __read_mostly;
453 #endif
455 void __init fork_init(void)
457 int i;
458 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
459 #ifndef ARCH_MIN_TASKALIGN
460 #define ARCH_MIN_TASKALIGN 0
461 #endif
462 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
464 /* create a slab on which task_structs can be allocated */
465 task_struct_cachep = kmem_cache_create("task_struct",
466 arch_task_struct_size, align,
467 SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
468 #endif
470 /* do the arch specific task caches init */
471 arch_task_cache_init();
473 set_max_threads(MAX_THREADS);
475 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
476 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
477 init_task.signal->rlim[RLIMIT_SIGPENDING] =
478 init_task.signal->rlim[RLIMIT_NPROC];
480 for (i = 0; i < UCOUNT_COUNTS; i++) {
481 init_user_ns.ucount_max[i] = max_threads/2;
484 #ifdef CONFIG_VMAP_STACK
485 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
486 NULL, free_vm_stack_cache);
487 #endif
489 lockdep_init_task(&init_task);
492 int __weak arch_dup_task_struct(struct task_struct *dst,
493 struct task_struct *src)
495 *dst = *src;
496 return 0;
499 void set_task_stack_end_magic(struct task_struct *tsk)
501 unsigned long *stackend;
503 stackend = end_of_stack(tsk);
504 *stackend = STACK_END_MAGIC; /* for overflow detection */
507 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
509 struct task_struct *tsk;
510 unsigned long *stack;
511 struct vm_struct *stack_vm_area;
512 int err;
514 if (node == NUMA_NO_NODE)
515 node = tsk_fork_get_node(orig);
516 tsk = alloc_task_struct_node(node);
517 if (!tsk)
518 return NULL;
520 stack = alloc_thread_stack_node(tsk, node);
521 if (!stack)
522 goto free_tsk;
524 stack_vm_area = task_stack_vm_area(tsk);
526 err = arch_dup_task_struct(tsk, orig);
529 * arch_dup_task_struct() clobbers the stack-related fields. Make
530 * sure they're properly initialized before using any stack-related
531 * functions again.
533 tsk->stack = stack;
534 #ifdef CONFIG_VMAP_STACK
535 tsk->stack_vm_area = stack_vm_area;
536 #endif
537 #ifdef CONFIG_THREAD_INFO_IN_TASK
538 atomic_set(&tsk->stack_refcount, 1);
539 #endif
541 if (err)
542 goto free_stack;
544 #ifdef CONFIG_SECCOMP
546 * We must handle setting up seccomp filters once we're under
547 * the sighand lock in case orig has changed between now and
548 * then. Until then, filter must be NULL to avoid messing up
549 * the usage counts on the error path calling free_task.
551 tsk->seccomp.filter = NULL;
552 #endif
554 setup_thread_stack(tsk, orig);
555 clear_user_return_notifier(tsk);
556 clear_tsk_need_resched(tsk);
557 set_task_stack_end_magic(tsk);
559 #ifdef CONFIG_CC_STACKPROTECTOR
560 tsk->stack_canary = get_random_canary();
561 #endif
564 * One for us, one for whoever does the "release_task()" (usually
565 * parent)
567 atomic_set(&tsk->usage, 2);
568 #ifdef CONFIG_BLK_DEV_IO_TRACE
569 tsk->btrace_seq = 0;
570 #endif
571 tsk->splice_pipe = NULL;
572 tsk->task_frag.page = NULL;
573 tsk->wake_q.next = NULL;
575 account_kernel_stack(tsk, 1);
577 kcov_task_init(tsk);
579 #ifdef CONFIG_FAULT_INJECTION
580 tsk->fail_nth = 0;
581 #endif
583 return tsk;
585 free_stack:
586 free_thread_stack(tsk);
587 free_tsk:
588 free_task_struct(tsk);
589 return NULL;
592 #ifdef CONFIG_MMU
593 static __latent_entropy int dup_mmap(struct mm_struct *mm,
594 struct mm_struct *oldmm)
596 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
597 struct rb_node **rb_link, *rb_parent;
598 int retval;
599 unsigned long charge;
600 LIST_HEAD(uf);
602 uprobe_start_dup_mmap();
603 if (down_write_killable(&oldmm->mmap_sem)) {
604 retval = -EINTR;
605 goto fail_uprobe_end;
607 flush_cache_dup_mm(oldmm);
608 uprobe_dup_mmap(oldmm, mm);
610 * Not linked in yet - no deadlock potential:
612 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
614 /* No ordering required: file already has been exposed. */
615 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
617 mm->total_vm = oldmm->total_vm;
618 mm->data_vm = oldmm->data_vm;
619 mm->exec_vm = oldmm->exec_vm;
620 mm->stack_vm = oldmm->stack_vm;
622 rb_link = &mm->mm_rb.rb_node;
623 rb_parent = NULL;
624 pprev = &mm->mmap;
625 retval = ksm_fork(mm, oldmm);
626 if (retval)
627 goto out;
628 retval = khugepaged_fork(mm, oldmm);
629 if (retval)
630 goto out;
632 prev = NULL;
633 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
634 struct file *file;
636 if (mpnt->vm_flags & VM_DONTCOPY) {
637 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
638 continue;
640 charge = 0;
641 if (mpnt->vm_flags & VM_ACCOUNT) {
642 unsigned long len = vma_pages(mpnt);
644 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
645 goto fail_nomem;
646 charge = len;
648 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
649 if (!tmp)
650 goto fail_nomem;
651 *tmp = *mpnt;
652 INIT_LIST_HEAD(&tmp->anon_vma_chain);
653 retval = vma_dup_policy(mpnt, tmp);
654 if (retval)
655 goto fail_nomem_policy;
656 tmp->vm_mm = mm;
657 retval = dup_userfaultfd(tmp, &uf);
658 if (retval)
659 goto fail_nomem_anon_vma_fork;
660 if (anon_vma_fork(tmp, mpnt))
661 goto fail_nomem_anon_vma_fork;
662 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
663 tmp->vm_next = tmp->vm_prev = NULL;
664 file = tmp->vm_file;
665 if (file) {
666 struct inode *inode = file_inode(file);
667 struct address_space *mapping = file->f_mapping;
669 get_file(file);
670 if (tmp->vm_flags & VM_DENYWRITE)
671 atomic_dec(&inode->i_writecount);
672 i_mmap_lock_write(mapping);
673 if (tmp->vm_flags & VM_SHARED)
674 atomic_inc(&mapping->i_mmap_writable);
675 flush_dcache_mmap_lock(mapping);
676 /* insert tmp into the share list, just after mpnt */
677 vma_interval_tree_insert_after(tmp, mpnt,
678 &mapping->i_mmap);
679 flush_dcache_mmap_unlock(mapping);
680 i_mmap_unlock_write(mapping);
684 * Clear hugetlb-related page reserves for children. This only
685 * affects MAP_PRIVATE mappings. Faults generated by the child
686 * are not guaranteed to succeed, even if read-only
688 if (is_vm_hugetlb_page(tmp))
689 reset_vma_resv_huge_pages(tmp);
692 * Link in the new vma and copy the page table entries.
694 *pprev = tmp;
695 pprev = &tmp->vm_next;
696 tmp->vm_prev = prev;
697 prev = tmp;
699 __vma_link_rb(mm, tmp, rb_link, rb_parent);
700 rb_link = &tmp->vm_rb.rb_right;
701 rb_parent = &tmp->vm_rb;
703 mm->map_count++;
704 retval = copy_page_range(mm, oldmm, mpnt);
706 if (tmp->vm_ops && tmp->vm_ops->open)
707 tmp->vm_ops->open(tmp);
709 if (retval)
710 goto out;
712 /* a new mm has just been created */
713 arch_dup_mmap(oldmm, mm);
714 retval = 0;
715 out:
716 up_write(&mm->mmap_sem);
717 flush_tlb_mm(oldmm);
718 up_write(&oldmm->mmap_sem);
719 dup_userfaultfd_complete(&uf);
720 fail_uprobe_end:
721 uprobe_end_dup_mmap();
722 return retval;
723 fail_nomem_anon_vma_fork:
724 mpol_put(vma_policy(tmp));
725 fail_nomem_policy:
726 kmem_cache_free(vm_area_cachep, tmp);
727 fail_nomem:
728 retval = -ENOMEM;
729 vm_unacct_memory(charge);
730 goto out;
733 static inline int mm_alloc_pgd(struct mm_struct *mm)
735 mm->pgd = pgd_alloc(mm);
736 if (unlikely(!mm->pgd))
737 return -ENOMEM;
738 return 0;
741 static inline void mm_free_pgd(struct mm_struct *mm)
743 pgd_free(mm, mm->pgd);
745 #else
746 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
748 down_write(&oldmm->mmap_sem);
749 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
750 up_write(&oldmm->mmap_sem);
751 return 0;
753 #define mm_alloc_pgd(mm) (0)
754 #define mm_free_pgd(mm)
755 #endif /* CONFIG_MMU */
757 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
759 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
760 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
762 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
764 static int __init coredump_filter_setup(char *s)
766 default_dump_filter =
767 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
768 MMF_DUMP_FILTER_MASK;
769 return 1;
772 __setup("coredump_filter=", coredump_filter_setup);
774 #include <linux/init_task.h>
776 static void mm_init_aio(struct mm_struct *mm)
778 #ifdef CONFIG_AIO
779 spin_lock_init(&mm->ioctx_lock);
780 mm->ioctx_table = NULL;
781 #endif
784 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
786 #ifdef CONFIG_MEMCG
787 mm->owner = p;
788 #endif
791 static void mm_init_uprobes_state(struct mm_struct *mm)
793 #ifdef CONFIG_UPROBES
794 mm->uprobes_state.xol_area = NULL;
795 #endif
798 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
799 struct user_namespace *user_ns)
801 mm->mmap = NULL;
802 mm->mm_rb = RB_ROOT;
803 mm->vmacache_seqnum = 0;
804 atomic_set(&mm->mm_users, 1);
805 atomic_set(&mm->mm_count, 1);
806 init_rwsem(&mm->mmap_sem);
807 INIT_LIST_HEAD(&mm->mmlist);
808 mm->core_state = NULL;
809 atomic_long_set(&mm->nr_ptes, 0);
810 mm_nr_pmds_init(mm);
811 mm->map_count = 0;
812 mm->locked_vm = 0;
813 mm->pinned_vm = 0;
814 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
815 spin_lock_init(&mm->page_table_lock);
816 mm_init_cpumask(mm);
817 mm_init_aio(mm);
818 mm_init_owner(mm, p);
819 RCU_INIT_POINTER(mm->exe_file, NULL);
820 mmu_notifier_mm_init(mm);
821 init_tlb_flush_pending(mm);
822 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
823 mm->pmd_huge_pte = NULL;
824 #endif
825 mm_init_uprobes_state(mm);
827 if (current->mm) {
828 mm->flags = current->mm->flags & MMF_INIT_MASK;
829 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
830 } else {
831 mm->flags = default_dump_filter;
832 mm->def_flags = 0;
835 if (mm_alloc_pgd(mm))
836 goto fail_nopgd;
838 if (init_new_context(p, mm))
839 goto fail_nocontext;
841 mm->user_ns = get_user_ns(user_ns);
842 return mm;
844 fail_nocontext:
845 mm_free_pgd(mm);
846 fail_nopgd:
847 free_mm(mm);
848 return NULL;
851 static void check_mm(struct mm_struct *mm)
853 int i;
855 for (i = 0; i < NR_MM_COUNTERS; i++) {
856 long x = atomic_long_read(&mm->rss_stat.count[i]);
858 if (unlikely(x))
859 printk(KERN_ALERT "BUG: Bad rss-counter state "
860 "mm:%p idx:%d val:%ld\n", mm, i, x);
863 if (atomic_long_read(&mm->nr_ptes))
864 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
865 atomic_long_read(&mm->nr_ptes));
866 if (mm_nr_pmds(mm))
867 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
868 mm_nr_pmds(mm));
870 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
871 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
872 #endif
876 * Allocate and initialize an mm_struct.
878 struct mm_struct *mm_alloc(void)
880 struct mm_struct *mm;
882 mm = allocate_mm();
883 if (!mm)
884 return NULL;
886 memset(mm, 0, sizeof(*mm));
887 return mm_init(mm, current, current_user_ns());
891 * Called when the last reference to the mm
892 * is dropped: either by a lazy thread or by
893 * mmput. Free the page directory and the mm.
895 void __mmdrop(struct mm_struct *mm)
897 BUG_ON(mm == &init_mm);
898 mm_free_pgd(mm);
899 destroy_context(mm);
900 mmu_notifier_mm_destroy(mm);
901 check_mm(mm);
902 put_user_ns(mm->user_ns);
903 free_mm(mm);
905 EXPORT_SYMBOL_GPL(__mmdrop);
907 static inline void __mmput(struct mm_struct *mm)
909 VM_BUG_ON(atomic_read(&mm->mm_users));
911 uprobe_clear_state(mm);
912 exit_aio(mm);
913 ksm_exit(mm);
914 khugepaged_exit(mm); /* must run before exit_mmap */
915 exit_mmap(mm);
916 mm_put_huge_zero_page(mm);
917 set_mm_exe_file(mm, NULL);
918 if (!list_empty(&mm->mmlist)) {
919 spin_lock(&mmlist_lock);
920 list_del(&mm->mmlist);
921 spin_unlock(&mmlist_lock);
923 if (mm->binfmt)
924 module_put(mm->binfmt->module);
925 set_bit(MMF_OOM_SKIP, &mm->flags);
926 mmdrop(mm);
930 * Decrement the use count and release all resources for an mm.
932 void mmput(struct mm_struct *mm)
934 might_sleep();
936 if (atomic_dec_and_test(&mm->mm_users))
937 __mmput(mm);
939 EXPORT_SYMBOL_GPL(mmput);
941 #ifdef CONFIG_MMU
942 static void mmput_async_fn(struct work_struct *work)
944 struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
945 __mmput(mm);
948 void mmput_async(struct mm_struct *mm)
950 if (atomic_dec_and_test(&mm->mm_users)) {
951 INIT_WORK(&mm->async_put_work, mmput_async_fn);
952 schedule_work(&mm->async_put_work);
955 #endif
958 * set_mm_exe_file - change a reference to the mm's executable file
960 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
962 * Main users are mmput() and sys_execve(). Callers prevent concurrent
963 * invocations: in mmput() nobody alive left, in execve task is single
964 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
965 * mm->exe_file, but does so without using set_mm_exe_file() in order
966 * to do avoid the need for any locks.
968 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
970 struct file *old_exe_file;
973 * It is safe to dereference the exe_file without RCU as
974 * this function is only called if nobody else can access
975 * this mm -- see comment above for justification.
977 old_exe_file = rcu_dereference_raw(mm->exe_file);
979 if (new_exe_file)
980 get_file(new_exe_file);
981 rcu_assign_pointer(mm->exe_file, new_exe_file);
982 if (old_exe_file)
983 fput(old_exe_file);
987 * get_mm_exe_file - acquire a reference to the mm's executable file
989 * Returns %NULL if mm has no associated executable file.
990 * User must release file via fput().
992 struct file *get_mm_exe_file(struct mm_struct *mm)
994 struct file *exe_file;
996 rcu_read_lock();
997 exe_file = rcu_dereference(mm->exe_file);
998 if (exe_file && !get_file_rcu(exe_file))
999 exe_file = NULL;
1000 rcu_read_unlock();
1001 return exe_file;
1003 EXPORT_SYMBOL(get_mm_exe_file);
1006 * get_task_exe_file - acquire a reference to the task's executable file
1008 * Returns %NULL if task's mm (if any) has no associated executable file or
1009 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1010 * User must release file via fput().
1012 struct file *get_task_exe_file(struct task_struct *task)
1014 struct file *exe_file = NULL;
1015 struct mm_struct *mm;
1017 task_lock(task);
1018 mm = task->mm;
1019 if (mm) {
1020 if (!(task->flags & PF_KTHREAD))
1021 exe_file = get_mm_exe_file(mm);
1023 task_unlock(task);
1024 return exe_file;
1026 EXPORT_SYMBOL(get_task_exe_file);
1029 * get_task_mm - acquire a reference to the task's mm
1031 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1032 * this kernel workthread has transiently adopted a user mm with use_mm,
1033 * to do its AIO) is not set and if so returns a reference to it, after
1034 * bumping up the use count. User must release the mm via mmput()
1035 * after use. Typically used by /proc and ptrace.
1037 struct mm_struct *get_task_mm(struct task_struct *task)
1039 struct mm_struct *mm;
1041 task_lock(task);
1042 mm = task->mm;
1043 if (mm) {
1044 if (task->flags & PF_KTHREAD)
1045 mm = NULL;
1046 else
1047 mmget(mm);
1049 task_unlock(task);
1050 return mm;
1052 EXPORT_SYMBOL_GPL(get_task_mm);
1054 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1056 struct mm_struct *mm;
1057 int err;
1059 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
1060 if (err)
1061 return ERR_PTR(err);
1063 mm = get_task_mm(task);
1064 if (mm && mm != current->mm &&
1065 !ptrace_may_access(task, mode)) {
1066 mmput(mm);
1067 mm = ERR_PTR(-EACCES);
1069 mutex_unlock(&task->signal->cred_guard_mutex);
1071 return mm;
1074 static void complete_vfork_done(struct task_struct *tsk)
1076 struct completion *vfork;
1078 task_lock(tsk);
1079 vfork = tsk->vfork_done;
1080 if (likely(vfork)) {
1081 tsk->vfork_done = NULL;
1082 complete(vfork);
1084 task_unlock(tsk);
1087 static int wait_for_vfork_done(struct task_struct *child,
1088 struct completion *vfork)
1090 int killed;
1092 freezer_do_not_count();
1093 killed = wait_for_completion_killable(vfork);
1094 freezer_count();
1096 if (killed) {
1097 task_lock(child);
1098 child->vfork_done = NULL;
1099 task_unlock(child);
1102 put_task_struct(child);
1103 return killed;
1106 /* Please note the differences between mmput and mm_release.
1107 * mmput is called whenever we stop holding onto a mm_struct,
1108 * error success whatever.
1110 * mm_release is called after a mm_struct has been removed
1111 * from the current process.
1113 * This difference is important for error handling, when we
1114 * only half set up a mm_struct for a new process and need to restore
1115 * the old one. Because we mmput the new mm_struct before
1116 * restoring the old one. . .
1117 * Eric Biederman 10 January 1998
1119 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1121 /* Get rid of any futexes when releasing the mm */
1122 #ifdef CONFIG_FUTEX
1123 if (unlikely(tsk->robust_list)) {
1124 exit_robust_list(tsk);
1125 tsk->robust_list = NULL;
1127 #ifdef CONFIG_COMPAT
1128 if (unlikely(tsk->compat_robust_list)) {
1129 compat_exit_robust_list(tsk);
1130 tsk->compat_robust_list = NULL;
1132 #endif
1133 if (unlikely(!list_empty(&tsk->pi_state_list)))
1134 exit_pi_state_list(tsk);
1135 #endif
1137 uprobe_free_utask(tsk);
1139 /* Get rid of any cached register state */
1140 deactivate_mm(tsk, mm);
1143 * Signal userspace if we're not exiting with a core dump
1144 * because we want to leave the value intact for debugging
1145 * purposes.
1147 if (tsk->clear_child_tid) {
1148 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1149 atomic_read(&mm->mm_users) > 1) {
1151 * We don't check the error code - if userspace has
1152 * not set up a proper pointer then tough luck.
1154 put_user(0, tsk->clear_child_tid);
1155 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1156 1, NULL, NULL, 0);
1158 tsk->clear_child_tid = NULL;
1162 * All done, finally we can wake up parent and return this mm to him.
1163 * Also kthread_stop() uses this completion for synchronization.
1165 if (tsk->vfork_done)
1166 complete_vfork_done(tsk);
1170 * Allocate a new mm structure and copy contents from the
1171 * mm structure of the passed in task structure.
1173 static struct mm_struct *dup_mm(struct task_struct *tsk)
1175 struct mm_struct *mm, *oldmm = current->mm;
1176 int err;
1178 mm = allocate_mm();
1179 if (!mm)
1180 goto fail_nomem;
1182 memcpy(mm, oldmm, sizeof(*mm));
1184 if (!mm_init(mm, tsk, mm->user_ns))
1185 goto fail_nomem;
1187 err = dup_mmap(mm, oldmm);
1188 if (err)
1189 goto free_pt;
1191 mm->hiwater_rss = get_mm_rss(mm);
1192 mm->hiwater_vm = mm->total_vm;
1194 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1195 goto free_pt;
1197 return mm;
1199 free_pt:
1200 /* don't put binfmt in mmput, we haven't got module yet */
1201 mm->binfmt = NULL;
1202 mmput(mm);
1204 fail_nomem:
1205 return NULL;
1208 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1210 struct mm_struct *mm, *oldmm;
1211 int retval;
1213 tsk->min_flt = tsk->maj_flt = 0;
1214 tsk->nvcsw = tsk->nivcsw = 0;
1215 #ifdef CONFIG_DETECT_HUNG_TASK
1216 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1217 #endif
1219 tsk->mm = NULL;
1220 tsk->active_mm = NULL;
1223 * Are we cloning a kernel thread?
1225 * We need to steal a active VM for that..
1227 oldmm = current->mm;
1228 if (!oldmm)
1229 return 0;
1231 /* initialize the new vmacache entries */
1232 vmacache_flush(tsk);
1234 if (clone_flags & CLONE_VM) {
1235 mmget(oldmm);
1236 mm = oldmm;
1237 goto good_mm;
1240 retval = -ENOMEM;
1241 mm = dup_mm(tsk);
1242 if (!mm)
1243 goto fail_nomem;
1245 good_mm:
1246 tsk->mm = mm;
1247 tsk->active_mm = mm;
1248 return 0;
1250 fail_nomem:
1251 return retval;
1254 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1256 struct fs_struct *fs = current->fs;
1257 if (clone_flags & CLONE_FS) {
1258 /* tsk->fs is already what we want */
1259 spin_lock(&fs->lock);
1260 if (fs->in_exec) {
1261 spin_unlock(&fs->lock);
1262 return -EAGAIN;
1264 fs->users++;
1265 spin_unlock(&fs->lock);
1266 return 0;
1268 tsk->fs = copy_fs_struct(fs);
1269 if (!tsk->fs)
1270 return -ENOMEM;
1271 return 0;
1274 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1276 struct files_struct *oldf, *newf;
1277 int error = 0;
1280 * A background process may not have any files ...
1282 oldf = current->files;
1283 if (!oldf)
1284 goto out;
1286 if (clone_flags & CLONE_FILES) {
1287 atomic_inc(&oldf->count);
1288 goto out;
1291 newf = dup_fd(oldf, &error);
1292 if (!newf)
1293 goto out;
1295 tsk->files = newf;
1296 error = 0;
1297 out:
1298 return error;
1301 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1303 #ifdef CONFIG_BLOCK
1304 struct io_context *ioc = current->io_context;
1305 struct io_context *new_ioc;
1307 if (!ioc)
1308 return 0;
1310 * Share io context with parent, if CLONE_IO is set
1312 if (clone_flags & CLONE_IO) {
1313 ioc_task_link(ioc);
1314 tsk->io_context = ioc;
1315 } else if (ioprio_valid(ioc->ioprio)) {
1316 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1317 if (unlikely(!new_ioc))
1318 return -ENOMEM;
1320 new_ioc->ioprio = ioc->ioprio;
1321 put_io_context(new_ioc);
1323 #endif
1324 return 0;
1327 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1329 struct sighand_struct *sig;
1331 if (clone_flags & CLONE_SIGHAND) {
1332 atomic_inc(&current->sighand->count);
1333 return 0;
1335 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1336 rcu_assign_pointer(tsk->sighand, sig);
1337 if (!sig)
1338 return -ENOMEM;
1340 atomic_set(&sig->count, 1);
1341 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1342 return 0;
1345 void __cleanup_sighand(struct sighand_struct *sighand)
1347 if (atomic_dec_and_test(&sighand->count)) {
1348 signalfd_cleanup(sighand);
1350 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1351 * without an RCU grace period, see __lock_task_sighand().
1353 kmem_cache_free(sighand_cachep, sighand);
1357 #ifdef CONFIG_POSIX_TIMERS
1359 * Initialize POSIX timer handling for a thread group.
1361 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1363 unsigned long cpu_limit;
1365 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1366 if (cpu_limit != RLIM_INFINITY) {
1367 sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1368 sig->cputimer.running = true;
1371 /* The timer lists. */
1372 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1373 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1374 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1376 #else
1377 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1378 #endif
1380 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1382 struct signal_struct *sig;
1384 if (clone_flags & CLONE_THREAD)
1385 return 0;
1387 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1388 tsk->signal = sig;
1389 if (!sig)
1390 return -ENOMEM;
1392 sig->nr_threads = 1;
1393 atomic_set(&sig->live, 1);
1394 atomic_set(&sig->sigcnt, 1);
1396 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1397 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1398 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1400 init_waitqueue_head(&sig->wait_chldexit);
1401 sig->curr_target = tsk;
1402 init_sigpending(&sig->shared_pending);
1403 seqlock_init(&sig->stats_lock);
1404 prev_cputime_init(&sig->prev_cputime);
1406 #ifdef CONFIG_POSIX_TIMERS
1407 INIT_LIST_HEAD(&sig->posix_timers);
1408 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1409 sig->real_timer.function = it_real_fn;
1410 #endif
1412 task_lock(current->group_leader);
1413 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1414 task_unlock(current->group_leader);
1416 posix_cpu_timers_init_group(sig);
1418 tty_audit_fork(sig);
1419 sched_autogroup_fork(sig);
1421 sig->oom_score_adj = current->signal->oom_score_adj;
1422 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1424 mutex_init(&sig->cred_guard_mutex);
1426 return 0;
1429 static void copy_seccomp(struct task_struct *p)
1431 #ifdef CONFIG_SECCOMP
1433 * Must be called with sighand->lock held, which is common to
1434 * all threads in the group. Holding cred_guard_mutex is not
1435 * needed because this new task is not yet running and cannot
1436 * be racing exec.
1438 assert_spin_locked(&current->sighand->siglock);
1440 /* Ref-count the new filter user, and assign it. */
1441 get_seccomp_filter(current);
1442 p->seccomp = current->seccomp;
1445 * Explicitly enable no_new_privs here in case it got set
1446 * between the task_struct being duplicated and holding the
1447 * sighand lock. The seccomp state and nnp must be in sync.
1449 if (task_no_new_privs(current))
1450 task_set_no_new_privs(p);
1453 * If the parent gained a seccomp mode after copying thread
1454 * flags and between before we held the sighand lock, we have
1455 * to manually enable the seccomp thread flag here.
1457 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1458 set_tsk_thread_flag(p, TIF_SECCOMP);
1459 #endif
1462 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1464 current->clear_child_tid = tidptr;
1466 return task_pid_vnr(current);
1469 static void rt_mutex_init_task(struct task_struct *p)
1471 raw_spin_lock_init(&p->pi_lock);
1472 #ifdef CONFIG_RT_MUTEXES
1473 p->pi_waiters = RB_ROOT;
1474 p->pi_waiters_leftmost = NULL;
1475 p->pi_top_task = NULL;
1476 p->pi_blocked_on = NULL;
1477 #endif
1480 #ifdef CONFIG_POSIX_TIMERS
1482 * Initialize POSIX timer handling for a single task.
1484 static void posix_cpu_timers_init(struct task_struct *tsk)
1486 tsk->cputime_expires.prof_exp = 0;
1487 tsk->cputime_expires.virt_exp = 0;
1488 tsk->cputime_expires.sched_exp = 0;
1489 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1490 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1491 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1493 #else
1494 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1495 #endif
1497 static inline void
1498 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1500 task->pids[type].pid = pid;
1503 static inline void rcu_copy_process(struct task_struct *p)
1505 #ifdef CONFIG_PREEMPT_RCU
1506 p->rcu_read_lock_nesting = 0;
1507 p->rcu_read_unlock_special.s = 0;
1508 p->rcu_blocked_node = NULL;
1509 INIT_LIST_HEAD(&p->rcu_node_entry);
1510 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1511 #ifdef CONFIG_TASKS_RCU
1512 p->rcu_tasks_holdout = false;
1513 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1514 p->rcu_tasks_idle_cpu = -1;
1515 #endif /* #ifdef CONFIG_TASKS_RCU */
1519 * This creates a new process as a copy of the old one,
1520 * but does not actually start it yet.
1522 * It copies the registers, and all the appropriate
1523 * parts of the process environment (as per the clone
1524 * flags). The actual kick-off is left to the caller.
1526 static __latent_entropy struct task_struct *copy_process(
1527 unsigned long clone_flags,
1528 unsigned long stack_start,
1529 unsigned long stack_size,
1530 int __user *child_tidptr,
1531 struct pid *pid,
1532 int trace,
1533 unsigned long tls,
1534 int node)
1536 int retval;
1537 struct task_struct *p;
1539 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1540 return ERR_PTR(-EINVAL);
1542 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1543 return ERR_PTR(-EINVAL);
1546 * Thread groups must share signals as well, and detached threads
1547 * can only be started up within the thread group.
1549 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1550 return ERR_PTR(-EINVAL);
1553 * Shared signal handlers imply shared VM. By way of the above,
1554 * thread groups also imply shared VM. Blocking this case allows
1555 * for various simplifications in other code.
1557 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1558 return ERR_PTR(-EINVAL);
1561 * Siblings of global init remain as zombies on exit since they are
1562 * not reaped by their parent (swapper). To solve this and to avoid
1563 * multi-rooted process trees, prevent global and container-inits
1564 * from creating siblings.
1566 if ((clone_flags & CLONE_PARENT) &&
1567 current->signal->flags & SIGNAL_UNKILLABLE)
1568 return ERR_PTR(-EINVAL);
1571 * If the new process will be in a different pid or user namespace
1572 * do not allow it to share a thread group with the forking task.
1574 if (clone_flags & CLONE_THREAD) {
1575 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1576 (task_active_pid_ns(current) !=
1577 current->nsproxy->pid_ns_for_children))
1578 return ERR_PTR(-EINVAL);
1581 retval = security_task_create(clone_flags);
1582 if (retval)
1583 goto fork_out;
1585 retval = -ENOMEM;
1586 p = dup_task_struct(current, node);
1587 if (!p)
1588 goto fork_out;
1591 * This _must_ happen before we call free_task(), i.e. before we jump
1592 * to any of the bad_fork_* labels. This is to avoid freeing
1593 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1594 * kernel threads (PF_KTHREAD).
1596 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1598 * Clear TID on mm_release()?
1600 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1602 ftrace_graph_init_task(p);
1604 rt_mutex_init_task(p);
1606 #ifdef CONFIG_PROVE_LOCKING
1607 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1608 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1609 #endif
1610 retval = -EAGAIN;
1611 if (atomic_read(&p->real_cred->user->processes) >=
1612 task_rlimit(p, RLIMIT_NPROC)) {
1613 if (p->real_cred->user != INIT_USER &&
1614 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1615 goto bad_fork_free;
1617 current->flags &= ~PF_NPROC_EXCEEDED;
1619 retval = copy_creds(p, clone_flags);
1620 if (retval < 0)
1621 goto bad_fork_free;
1624 * If multiple threads are within copy_process(), then this check
1625 * triggers too late. This doesn't hurt, the check is only there
1626 * to stop root fork bombs.
1628 retval = -EAGAIN;
1629 if (nr_threads >= max_threads)
1630 goto bad_fork_cleanup_count;
1632 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1633 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1634 p->flags |= PF_FORKNOEXEC;
1635 INIT_LIST_HEAD(&p->children);
1636 INIT_LIST_HEAD(&p->sibling);
1637 rcu_copy_process(p);
1638 p->vfork_done = NULL;
1639 spin_lock_init(&p->alloc_lock);
1641 init_sigpending(&p->pending);
1643 p->utime = p->stime = p->gtime = 0;
1644 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1645 p->utimescaled = p->stimescaled = 0;
1646 #endif
1647 prev_cputime_init(&p->prev_cputime);
1649 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1650 seqcount_init(&p->vtime.seqcount);
1651 p->vtime.starttime = 0;
1652 p->vtime.state = VTIME_INACTIVE;
1653 #endif
1655 #if defined(SPLIT_RSS_COUNTING)
1656 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1657 #endif
1659 p->default_timer_slack_ns = current->timer_slack_ns;
1661 task_io_accounting_init(&p->ioac);
1662 acct_clear_integrals(p);
1664 posix_cpu_timers_init(p);
1666 p->start_time = ktime_get_ns();
1667 p->real_start_time = ktime_get_boot_ns();
1668 p->io_context = NULL;
1669 p->audit_context = NULL;
1670 cgroup_fork(p);
1671 #ifdef CONFIG_NUMA
1672 p->mempolicy = mpol_dup(p->mempolicy);
1673 if (IS_ERR(p->mempolicy)) {
1674 retval = PTR_ERR(p->mempolicy);
1675 p->mempolicy = NULL;
1676 goto bad_fork_cleanup_threadgroup_lock;
1678 #endif
1679 #ifdef CONFIG_CPUSETS
1680 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1681 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1682 seqcount_init(&p->mems_allowed_seq);
1683 #endif
1684 #ifdef CONFIG_TRACE_IRQFLAGS
1685 p->irq_events = 0;
1686 p->hardirqs_enabled = 0;
1687 p->hardirq_enable_ip = 0;
1688 p->hardirq_enable_event = 0;
1689 p->hardirq_disable_ip = _THIS_IP_;
1690 p->hardirq_disable_event = 0;
1691 p->softirqs_enabled = 1;
1692 p->softirq_enable_ip = _THIS_IP_;
1693 p->softirq_enable_event = 0;
1694 p->softirq_disable_ip = 0;
1695 p->softirq_disable_event = 0;
1696 p->hardirq_context = 0;
1697 p->softirq_context = 0;
1698 #endif
1700 p->pagefault_disabled = 0;
1702 #ifdef CONFIG_LOCKDEP
1703 p->lockdep_depth = 0; /* no locks held yet */
1704 p->curr_chain_key = 0;
1705 p->lockdep_recursion = 0;
1706 lockdep_init_task(p);
1707 #endif
1709 #ifdef CONFIG_DEBUG_MUTEXES
1710 p->blocked_on = NULL; /* not blocked yet */
1711 #endif
1712 #ifdef CONFIG_BCACHE
1713 p->sequential_io = 0;
1714 p->sequential_io_avg = 0;
1715 #endif
1717 /* Perform scheduler related setup. Assign this task to a CPU. */
1718 retval = sched_fork(clone_flags, p);
1719 if (retval)
1720 goto bad_fork_cleanup_policy;
1722 retval = perf_event_init_task(p);
1723 if (retval)
1724 goto bad_fork_cleanup_policy;
1725 retval = audit_alloc(p);
1726 if (retval)
1727 goto bad_fork_cleanup_perf;
1728 /* copy all the process information */
1729 shm_init_task(p);
1730 retval = security_task_alloc(p, clone_flags);
1731 if (retval)
1732 goto bad_fork_cleanup_audit;
1733 retval = copy_semundo(clone_flags, p);
1734 if (retval)
1735 goto bad_fork_cleanup_security;
1736 retval = copy_files(clone_flags, p);
1737 if (retval)
1738 goto bad_fork_cleanup_semundo;
1739 retval = copy_fs(clone_flags, p);
1740 if (retval)
1741 goto bad_fork_cleanup_files;
1742 retval = copy_sighand(clone_flags, p);
1743 if (retval)
1744 goto bad_fork_cleanup_fs;
1745 retval = copy_signal(clone_flags, p);
1746 if (retval)
1747 goto bad_fork_cleanup_sighand;
1748 retval = copy_mm(clone_flags, p);
1749 if (retval)
1750 goto bad_fork_cleanup_signal;
1751 retval = copy_namespaces(clone_flags, p);
1752 if (retval)
1753 goto bad_fork_cleanup_mm;
1754 retval = copy_io(clone_flags, p);
1755 if (retval)
1756 goto bad_fork_cleanup_namespaces;
1757 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1758 if (retval)
1759 goto bad_fork_cleanup_io;
1761 if (pid != &init_struct_pid) {
1762 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1763 if (IS_ERR(pid)) {
1764 retval = PTR_ERR(pid);
1765 goto bad_fork_cleanup_thread;
1769 #ifdef CONFIG_BLOCK
1770 p->plug = NULL;
1771 #endif
1772 #ifdef CONFIG_FUTEX
1773 p->robust_list = NULL;
1774 #ifdef CONFIG_COMPAT
1775 p->compat_robust_list = NULL;
1776 #endif
1777 INIT_LIST_HEAD(&p->pi_state_list);
1778 p->pi_state_cache = NULL;
1779 #endif
1781 * sigaltstack should be cleared when sharing the same VM
1783 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1784 sas_ss_reset(p);
1787 * Syscall tracing and stepping should be turned off in the
1788 * child regardless of CLONE_PTRACE.
1790 user_disable_single_step(p);
1791 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1792 #ifdef TIF_SYSCALL_EMU
1793 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1794 #endif
1795 clear_all_latency_tracing(p);
1797 /* ok, now we should be set up.. */
1798 p->pid = pid_nr(pid);
1799 if (clone_flags & CLONE_THREAD) {
1800 p->exit_signal = -1;
1801 p->group_leader = current->group_leader;
1802 p->tgid = current->tgid;
1803 } else {
1804 if (clone_flags & CLONE_PARENT)
1805 p->exit_signal = current->group_leader->exit_signal;
1806 else
1807 p->exit_signal = (clone_flags & CSIGNAL);
1808 p->group_leader = p;
1809 p->tgid = p->pid;
1812 p->nr_dirtied = 0;
1813 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1814 p->dirty_paused_when = 0;
1816 p->pdeath_signal = 0;
1817 INIT_LIST_HEAD(&p->thread_group);
1818 p->task_works = NULL;
1820 cgroup_threadgroup_change_begin(current);
1822 * Ensure that the cgroup subsystem policies allow the new process to be
1823 * forked. It should be noted the the new process's css_set can be changed
1824 * between here and cgroup_post_fork() if an organisation operation is in
1825 * progress.
1827 retval = cgroup_can_fork(p);
1828 if (retval)
1829 goto bad_fork_free_pid;
1832 * Make it visible to the rest of the system, but dont wake it up yet.
1833 * Need tasklist lock for parent etc handling!
1835 write_lock_irq(&tasklist_lock);
1837 /* CLONE_PARENT re-uses the old parent */
1838 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1839 p->real_parent = current->real_parent;
1840 p->parent_exec_id = current->parent_exec_id;
1841 } else {
1842 p->real_parent = current;
1843 p->parent_exec_id = current->self_exec_id;
1846 klp_copy_process(p);
1848 spin_lock(&current->sighand->siglock);
1851 * Copy seccomp details explicitly here, in case they were changed
1852 * before holding sighand lock.
1854 copy_seccomp(p);
1857 * Process group and session signals need to be delivered to just the
1858 * parent before the fork or both the parent and the child after the
1859 * fork. Restart if a signal comes in before we add the new process to
1860 * it's process group.
1861 * A fatal signal pending means that current will exit, so the new
1862 * thread can't slip out of an OOM kill (or normal SIGKILL).
1864 recalc_sigpending();
1865 if (signal_pending(current)) {
1866 retval = -ERESTARTNOINTR;
1867 goto bad_fork_cancel_cgroup;
1869 if (unlikely(!(ns_of_pid(pid)->nr_hashed & PIDNS_HASH_ADDING))) {
1870 retval = -ENOMEM;
1871 goto bad_fork_cancel_cgroup;
1874 if (likely(p->pid)) {
1875 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1877 init_task_pid(p, PIDTYPE_PID, pid);
1878 if (thread_group_leader(p)) {
1879 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1880 init_task_pid(p, PIDTYPE_SID, task_session(current));
1882 if (is_child_reaper(pid)) {
1883 ns_of_pid(pid)->child_reaper = p;
1884 p->signal->flags |= SIGNAL_UNKILLABLE;
1887 p->signal->leader_pid = pid;
1888 p->signal->tty = tty_kref_get(current->signal->tty);
1890 * Inherit has_child_subreaper flag under the same
1891 * tasklist_lock with adding child to the process tree
1892 * for propagate_has_child_subreaper optimization.
1894 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
1895 p->real_parent->signal->is_child_subreaper;
1896 list_add_tail(&p->sibling, &p->real_parent->children);
1897 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1898 attach_pid(p, PIDTYPE_PGID);
1899 attach_pid(p, PIDTYPE_SID);
1900 __this_cpu_inc(process_counts);
1901 } else {
1902 current->signal->nr_threads++;
1903 atomic_inc(&current->signal->live);
1904 atomic_inc(&current->signal->sigcnt);
1905 list_add_tail_rcu(&p->thread_group,
1906 &p->group_leader->thread_group);
1907 list_add_tail_rcu(&p->thread_node,
1908 &p->signal->thread_head);
1910 attach_pid(p, PIDTYPE_PID);
1911 nr_threads++;
1914 total_forks++;
1915 spin_unlock(&current->sighand->siglock);
1916 syscall_tracepoint_update(p);
1917 write_unlock_irq(&tasklist_lock);
1919 proc_fork_connector(p);
1920 cgroup_post_fork(p);
1921 cgroup_threadgroup_change_end(current);
1922 perf_event_fork(p);
1924 trace_task_newtask(p, clone_flags);
1925 uprobe_copy_process(p, clone_flags);
1927 return p;
1929 bad_fork_cancel_cgroup:
1930 spin_unlock(&current->sighand->siglock);
1931 write_unlock_irq(&tasklist_lock);
1932 cgroup_cancel_fork(p);
1933 bad_fork_free_pid:
1934 cgroup_threadgroup_change_end(current);
1935 if (pid != &init_struct_pid)
1936 free_pid(pid);
1937 bad_fork_cleanup_thread:
1938 exit_thread(p);
1939 bad_fork_cleanup_io:
1940 if (p->io_context)
1941 exit_io_context(p);
1942 bad_fork_cleanup_namespaces:
1943 exit_task_namespaces(p);
1944 bad_fork_cleanup_mm:
1945 if (p->mm)
1946 mmput(p->mm);
1947 bad_fork_cleanup_signal:
1948 if (!(clone_flags & CLONE_THREAD))
1949 free_signal_struct(p->signal);
1950 bad_fork_cleanup_sighand:
1951 __cleanup_sighand(p->sighand);
1952 bad_fork_cleanup_fs:
1953 exit_fs(p); /* blocking */
1954 bad_fork_cleanup_files:
1955 exit_files(p); /* blocking */
1956 bad_fork_cleanup_semundo:
1957 exit_sem(p);
1958 bad_fork_cleanup_security:
1959 security_task_free(p);
1960 bad_fork_cleanup_audit:
1961 audit_free(p);
1962 bad_fork_cleanup_perf:
1963 perf_event_free_task(p);
1964 bad_fork_cleanup_policy:
1965 lockdep_free_task(p);
1966 #ifdef CONFIG_NUMA
1967 mpol_put(p->mempolicy);
1968 bad_fork_cleanup_threadgroup_lock:
1969 #endif
1970 delayacct_tsk_free(p);
1971 bad_fork_cleanup_count:
1972 atomic_dec(&p->cred->user->processes);
1973 exit_creds(p);
1974 bad_fork_free:
1975 p->state = TASK_DEAD;
1976 put_task_stack(p);
1977 free_task(p);
1978 fork_out:
1979 return ERR_PTR(retval);
1982 static inline void init_idle_pids(struct pid_link *links)
1984 enum pid_type type;
1986 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1987 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1988 links[type].pid = &init_struct_pid;
1992 struct task_struct *fork_idle(int cpu)
1994 struct task_struct *task;
1995 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
1996 cpu_to_node(cpu));
1997 if (!IS_ERR(task)) {
1998 init_idle_pids(task->pids);
1999 init_idle(task, cpu);
2002 return task;
2006 * Ok, this is the main fork-routine.
2008 * It copies the process, and if successful kick-starts
2009 * it and waits for it to finish using the VM if required.
2011 long _do_fork(unsigned long clone_flags,
2012 unsigned long stack_start,
2013 unsigned long stack_size,
2014 int __user *parent_tidptr,
2015 int __user *child_tidptr,
2016 unsigned long tls)
2018 struct task_struct *p;
2019 int trace = 0;
2020 long nr;
2023 * Determine whether and which event to report to ptracer. When
2024 * called from kernel_thread or CLONE_UNTRACED is explicitly
2025 * requested, no event is reported; otherwise, report if the event
2026 * for the type of forking is enabled.
2028 if (!(clone_flags & CLONE_UNTRACED)) {
2029 if (clone_flags & CLONE_VFORK)
2030 trace = PTRACE_EVENT_VFORK;
2031 else if ((clone_flags & CSIGNAL) != SIGCHLD)
2032 trace = PTRACE_EVENT_CLONE;
2033 else
2034 trace = PTRACE_EVENT_FORK;
2036 if (likely(!ptrace_event_enabled(current, trace)))
2037 trace = 0;
2040 p = copy_process(clone_flags, stack_start, stack_size,
2041 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2042 add_latent_entropy();
2044 * Do this prior waking up the new thread - the thread pointer
2045 * might get invalid after that point, if the thread exits quickly.
2047 if (!IS_ERR(p)) {
2048 struct completion vfork;
2049 struct pid *pid;
2051 trace_sched_process_fork(current, p);
2053 pid = get_task_pid(p, PIDTYPE_PID);
2054 nr = pid_vnr(pid);
2056 if (clone_flags & CLONE_PARENT_SETTID)
2057 put_user(nr, parent_tidptr);
2059 if (clone_flags & CLONE_VFORK) {
2060 p->vfork_done = &vfork;
2061 init_completion(&vfork);
2062 get_task_struct(p);
2065 wake_up_new_task(p);
2067 /* forking complete and child started to run, tell ptracer */
2068 if (unlikely(trace))
2069 ptrace_event_pid(trace, pid);
2071 if (clone_flags & CLONE_VFORK) {
2072 if (!wait_for_vfork_done(p, &vfork))
2073 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2076 put_pid(pid);
2077 } else {
2078 nr = PTR_ERR(p);
2080 return nr;
2083 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2084 /* For compatibility with architectures that call do_fork directly rather than
2085 * using the syscall entry points below. */
2086 long do_fork(unsigned long clone_flags,
2087 unsigned long stack_start,
2088 unsigned long stack_size,
2089 int __user *parent_tidptr,
2090 int __user *child_tidptr)
2092 return _do_fork(clone_flags, stack_start, stack_size,
2093 parent_tidptr, child_tidptr, 0);
2095 #endif
2098 * Create a kernel thread.
2100 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2102 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2103 (unsigned long)arg, NULL, NULL, 0);
2106 #ifdef __ARCH_WANT_SYS_FORK
2107 SYSCALL_DEFINE0(fork)
2109 #ifdef CONFIG_MMU
2110 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2111 #else
2112 /* can not support in nommu mode */
2113 return -EINVAL;
2114 #endif
2116 #endif
2118 #ifdef __ARCH_WANT_SYS_VFORK
2119 SYSCALL_DEFINE0(vfork)
2121 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2122 0, NULL, NULL, 0);
2124 #endif
2126 #ifdef __ARCH_WANT_SYS_CLONE
2127 #ifdef CONFIG_CLONE_BACKWARDS
2128 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2129 int __user *, parent_tidptr,
2130 unsigned long, tls,
2131 int __user *, child_tidptr)
2132 #elif defined(CONFIG_CLONE_BACKWARDS2)
2133 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2134 int __user *, parent_tidptr,
2135 int __user *, child_tidptr,
2136 unsigned long, tls)
2137 #elif defined(CONFIG_CLONE_BACKWARDS3)
2138 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2139 int, stack_size,
2140 int __user *, parent_tidptr,
2141 int __user *, child_tidptr,
2142 unsigned long, tls)
2143 #else
2144 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2145 int __user *, parent_tidptr,
2146 int __user *, child_tidptr,
2147 unsigned long, tls)
2148 #endif
2150 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2152 #endif
2154 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2156 struct task_struct *leader, *parent, *child;
2157 int res;
2159 read_lock(&tasklist_lock);
2160 leader = top = top->group_leader;
2161 down:
2162 for_each_thread(leader, parent) {
2163 list_for_each_entry(child, &parent->children, sibling) {
2164 res = visitor(child, data);
2165 if (res) {
2166 if (res < 0)
2167 goto out;
2168 leader = child;
2169 goto down;
2176 if (leader != top) {
2177 child = leader;
2178 parent = child->real_parent;
2179 leader = parent->group_leader;
2180 goto up;
2182 out:
2183 read_unlock(&tasklist_lock);
2186 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2187 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2188 #endif
2190 static void sighand_ctor(void *data)
2192 struct sighand_struct *sighand = data;
2194 spin_lock_init(&sighand->siglock);
2195 init_waitqueue_head(&sighand->signalfd_wqh);
2198 void __init proc_caches_init(void)
2200 sighand_cachep = kmem_cache_create("sighand_cache",
2201 sizeof(struct sighand_struct), 0,
2202 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2203 SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
2204 signal_cachep = kmem_cache_create("signal_cache",
2205 sizeof(struct signal_struct), 0,
2206 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2207 NULL);
2208 files_cachep = kmem_cache_create("files_cache",
2209 sizeof(struct files_struct), 0,
2210 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2211 NULL);
2212 fs_cachep = kmem_cache_create("fs_cache",
2213 sizeof(struct fs_struct), 0,
2214 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2215 NULL);
2217 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2218 * whole struct cpumask for the OFFSTACK case. We could change
2219 * this to *only* allocate as much of it as required by the
2220 * maximum number of CPU's we can ever have. The cpumask_allocation
2221 * is at the end of the structure, exactly for that reason.
2223 mm_cachep = kmem_cache_create("mm_struct",
2224 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2225 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2226 NULL);
2227 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2228 mmap_init();
2229 nsproxy_cache_init();
2233 * Check constraints on flags passed to the unshare system call.
2235 static int check_unshare_flags(unsigned long unshare_flags)
2237 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2238 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2239 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2240 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2241 return -EINVAL;
2243 * Not implemented, but pretend it works if there is nothing
2244 * to unshare. Note that unsharing the address space or the
2245 * signal handlers also need to unshare the signal queues (aka
2246 * CLONE_THREAD).
2248 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2249 if (!thread_group_empty(current))
2250 return -EINVAL;
2252 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2253 if (atomic_read(&current->sighand->count) > 1)
2254 return -EINVAL;
2256 if (unshare_flags & CLONE_VM) {
2257 if (!current_is_single_threaded())
2258 return -EINVAL;
2261 return 0;
2265 * Unshare the filesystem structure if it is being shared
2267 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2269 struct fs_struct *fs = current->fs;
2271 if (!(unshare_flags & CLONE_FS) || !fs)
2272 return 0;
2274 /* don't need lock here; in the worst case we'll do useless copy */
2275 if (fs->users == 1)
2276 return 0;
2278 *new_fsp = copy_fs_struct(fs);
2279 if (!*new_fsp)
2280 return -ENOMEM;
2282 return 0;
2286 * Unshare file descriptor table if it is being shared
2288 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2290 struct files_struct *fd = current->files;
2291 int error = 0;
2293 if ((unshare_flags & CLONE_FILES) &&
2294 (fd && atomic_read(&fd->count) > 1)) {
2295 *new_fdp = dup_fd(fd, &error);
2296 if (!*new_fdp)
2297 return error;
2300 return 0;
2304 * unshare allows a process to 'unshare' part of the process
2305 * context which was originally shared using clone. copy_*
2306 * functions used by do_fork() cannot be used here directly
2307 * because they modify an inactive task_struct that is being
2308 * constructed. Here we are modifying the current, active,
2309 * task_struct.
2311 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2313 struct fs_struct *fs, *new_fs = NULL;
2314 struct files_struct *fd, *new_fd = NULL;
2315 struct cred *new_cred = NULL;
2316 struct nsproxy *new_nsproxy = NULL;
2317 int do_sysvsem = 0;
2318 int err;
2321 * If unsharing a user namespace must also unshare the thread group
2322 * and unshare the filesystem root and working directories.
2324 if (unshare_flags & CLONE_NEWUSER)
2325 unshare_flags |= CLONE_THREAD | CLONE_FS;
2327 * If unsharing vm, must also unshare signal handlers.
2329 if (unshare_flags & CLONE_VM)
2330 unshare_flags |= CLONE_SIGHAND;
2332 * If unsharing a signal handlers, must also unshare the signal queues.
2334 if (unshare_flags & CLONE_SIGHAND)
2335 unshare_flags |= CLONE_THREAD;
2337 * If unsharing namespace, must also unshare filesystem information.
2339 if (unshare_flags & CLONE_NEWNS)
2340 unshare_flags |= CLONE_FS;
2342 err = check_unshare_flags(unshare_flags);
2343 if (err)
2344 goto bad_unshare_out;
2346 * CLONE_NEWIPC must also detach from the undolist: after switching
2347 * to a new ipc namespace, the semaphore arrays from the old
2348 * namespace are unreachable.
2350 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2351 do_sysvsem = 1;
2352 err = unshare_fs(unshare_flags, &new_fs);
2353 if (err)
2354 goto bad_unshare_out;
2355 err = unshare_fd(unshare_flags, &new_fd);
2356 if (err)
2357 goto bad_unshare_cleanup_fs;
2358 err = unshare_userns(unshare_flags, &new_cred);
2359 if (err)
2360 goto bad_unshare_cleanup_fd;
2361 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2362 new_cred, new_fs);
2363 if (err)
2364 goto bad_unshare_cleanup_cred;
2366 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2367 if (do_sysvsem) {
2369 * CLONE_SYSVSEM is equivalent to sys_exit().
2371 exit_sem(current);
2373 if (unshare_flags & CLONE_NEWIPC) {
2374 /* Orphan segments in old ns (see sem above). */
2375 exit_shm(current);
2376 shm_init_task(current);
2379 if (new_nsproxy)
2380 switch_task_namespaces(current, new_nsproxy);
2382 task_lock(current);
2384 if (new_fs) {
2385 fs = current->fs;
2386 spin_lock(&fs->lock);
2387 current->fs = new_fs;
2388 if (--fs->users)
2389 new_fs = NULL;
2390 else
2391 new_fs = fs;
2392 spin_unlock(&fs->lock);
2395 if (new_fd) {
2396 fd = current->files;
2397 current->files = new_fd;
2398 new_fd = fd;
2401 task_unlock(current);
2403 if (new_cred) {
2404 /* Install the new user namespace */
2405 commit_creds(new_cred);
2406 new_cred = NULL;
2410 perf_event_namespaces(current);
2412 bad_unshare_cleanup_cred:
2413 if (new_cred)
2414 put_cred(new_cred);
2415 bad_unshare_cleanup_fd:
2416 if (new_fd)
2417 put_files_struct(new_fd);
2419 bad_unshare_cleanup_fs:
2420 if (new_fs)
2421 free_fs_struct(new_fs);
2423 bad_unshare_out:
2424 return err;
2428 * Helper to unshare the files of the current task.
2429 * We don't want to expose copy_files internals to
2430 * the exec layer of the kernel.
2433 int unshare_files(struct files_struct **displaced)
2435 struct task_struct *task = current;
2436 struct files_struct *copy = NULL;
2437 int error;
2439 error = unshare_fd(CLONE_FILES, &copy);
2440 if (error || !copy) {
2441 *displaced = NULL;
2442 return error;
2444 *displaced = task->files;
2445 task_lock(task);
2446 task->files = copy;
2447 task_unlock(task);
2448 return 0;
2451 int sysctl_max_threads(struct ctl_table *table, int write,
2452 void __user *buffer, size_t *lenp, loff_t *ppos)
2454 struct ctl_table t;
2455 int ret;
2456 int threads = max_threads;
2457 int min = MIN_THREADS;
2458 int max = MAX_THREADS;
2460 t = *table;
2461 t.data = &threads;
2462 t.extra1 = &min;
2463 t.extra2 = &max;
2465 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2466 if (ret || !write)
2467 return ret;
2469 set_max_threads(threads);
2471 return 0;