btrfs: reada, cleanup remove unneeded variable in __readahead_hook
[linux-2.6/btrfs-unstable.git] / fs / btrfs / reada.c
blob84a5beb48d46b0edd78f297ed6622fbc69948706
1 /*
2 * Copyright (C) 2011 STRATO. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/rbtree.h>
24 #include <linux/slab.h>
25 #include <linux/workqueue.h>
26 #include "ctree.h"
27 #include "volumes.h"
28 #include "disk-io.h"
29 #include "transaction.h"
30 #include "dev-replace.h"
32 #undef DEBUG
35 * This is the implementation for the generic read ahead framework.
37 * To trigger a readahead, btrfs_reada_add must be called. It will start
38 * a read ahead for the given range [start, end) on tree root. The returned
39 * handle can either be used to wait on the readahead to finish
40 * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
42 * The read ahead works as follows:
43 * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
44 * reada_start_machine will then search for extents to prefetch and trigger
45 * some reads. When a read finishes for a node, all contained node/leaf
46 * pointers that lie in the given range will also be enqueued. The reads will
47 * be triggered in sequential order, thus giving a big win over a naive
48 * enumeration. It will also make use of multi-device layouts. Each disk
49 * will have its on read pointer and all disks will by utilized in parallel.
50 * Also will no two disks read both sides of a mirror simultaneously, as this
51 * would waste seeking capacity. Instead both disks will read different parts
52 * of the filesystem.
53 * Any number of readaheads can be started in parallel. The read order will be
54 * determined globally, i.e. 2 parallel readaheads will normally finish faster
55 * than the 2 started one after another.
58 #define MAX_IN_FLIGHT 6
60 struct reada_extctl {
61 struct list_head list;
62 struct reada_control *rc;
63 u64 generation;
66 struct reada_extent {
67 u64 logical;
68 struct btrfs_key top;
69 int err;
70 struct list_head extctl;
71 int refcnt;
72 spinlock_t lock;
73 struct reada_zone *zones[BTRFS_MAX_MIRRORS];
74 int nzones;
75 int scheduled;
78 struct reada_zone {
79 u64 start;
80 u64 end;
81 u64 elems;
82 struct list_head list;
83 spinlock_t lock;
84 int locked;
85 struct btrfs_device *device;
86 struct btrfs_device *devs[BTRFS_MAX_MIRRORS]; /* full list, incl
87 * self */
88 int ndevs;
89 struct kref refcnt;
92 struct reada_machine_work {
93 struct btrfs_work work;
94 struct btrfs_fs_info *fs_info;
97 static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
98 static void reada_control_release(struct kref *kref);
99 static void reada_zone_release(struct kref *kref);
100 static void reada_start_machine(struct btrfs_fs_info *fs_info);
101 static void __reada_start_machine(struct btrfs_fs_info *fs_info);
103 static int reada_add_block(struct reada_control *rc, u64 logical,
104 struct btrfs_key *top, u64 generation);
106 /* recurses */
107 /* in case of err, eb might be NULL */
108 static void __readahead_hook(struct btrfs_fs_info *fs_info,
109 struct reada_extent *re, struct extent_buffer *eb,
110 u64 start, int err)
112 int nritems;
113 int i;
114 u64 bytenr;
115 u64 generation;
116 struct list_head list;
118 spin_lock(&re->lock);
120 * just take the full list from the extent. afterwards we
121 * don't need the lock anymore
123 list_replace_init(&re->extctl, &list);
124 re->scheduled = 0;
125 spin_unlock(&re->lock);
128 * this is the error case, the extent buffer has not been
129 * read correctly. We won't access anything from it and
130 * just cleanup our data structures. Effectively this will
131 * cut the branch below this node from read ahead.
133 if (err)
134 goto cleanup;
137 * FIXME: currently we just set nritems to 0 if this is a leaf,
138 * effectively ignoring the content. In a next step we could
139 * trigger more readahead depending from the content, e.g.
140 * fetch the checksums for the extents in the leaf.
142 if (!btrfs_header_level(eb))
143 goto cleanup;
145 nritems = btrfs_header_nritems(eb);
146 generation = btrfs_header_generation(eb);
147 for (i = 0; i < nritems; i++) {
148 struct reada_extctl *rec;
149 u64 n_gen;
150 struct btrfs_key key;
151 struct btrfs_key next_key;
153 btrfs_node_key_to_cpu(eb, &key, i);
154 if (i + 1 < nritems)
155 btrfs_node_key_to_cpu(eb, &next_key, i + 1);
156 else
157 next_key = re->top;
158 bytenr = btrfs_node_blockptr(eb, i);
159 n_gen = btrfs_node_ptr_generation(eb, i);
161 list_for_each_entry(rec, &list, list) {
162 struct reada_control *rc = rec->rc;
165 * if the generation doesn't match, just ignore this
166 * extctl. This will probably cut off a branch from
167 * prefetch. Alternatively one could start a new (sub-)
168 * prefetch for this branch, starting again from root.
169 * FIXME: move the generation check out of this loop
171 #ifdef DEBUG
172 if (rec->generation != generation) {
173 btrfs_debug(fs_info,
174 "generation mismatch for (%llu,%d,%llu) %llu != %llu",
175 key.objectid, key.type, key.offset,
176 rec->generation, generation);
178 #endif
179 if (rec->generation == generation &&
180 btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
181 btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
182 reada_add_block(rc, bytenr, &next_key, n_gen);
186 cleanup:
188 * free extctl records
190 while (!list_empty(&list)) {
191 struct reada_control *rc;
192 struct reada_extctl *rec;
194 rec = list_first_entry(&list, struct reada_extctl, list);
195 list_del(&rec->list);
196 rc = rec->rc;
197 kfree(rec);
199 kref_get(&rc->refcnt);
200 if (atomic_dec_and_test(&rc->elems)) {
201 kref_put(&rc->refcnt, reada_control_release);
202 wake_up(&rc->wait);
204 kref_put(&rc->refcnt, reada_control_release);
206 reada_extent_put(fs_info, re); /* one ref for each entry */
209 return;
213 * start is passed separately in case eb in NULL, which may be the case with
214 * failed I/O
216 int btree_readahead_hook(struct btrfs_fs_info *fs_info,
217 struct extent_buffer *eb, u64 start, int err)
219 int ret = 0;
220 struct reada_extent *re;
222 /* find extent */
223 spin_lock(&fs_info->reada_lock);
224 re = radix_tree_lookup(&fs_info->reada_tree,
225 start >> PAGE_SHIFT);
226 if (re)
227 re->refcnt++;
228 spin_unlock(&fs_info->reada_lock);
229 if (!re) {
230 ret = -1;
231 goto start_machine;
234 __readahead_hook(fs_info, re, eb, start, err);
235 reada_extent_put(fs_info, re); /* our ref */
237 start_machine:
238 reada_start_machine(fs_info);
239 return ret;
242 static struct reada_zone *reada_find_zone(struct btrfs_fs_info *fs_info,
243 struct btrfs_device *dev, u64 logical,
244 struct btrfs_bio *bbio)
246 int ret;
247 struct reada_zone *zone;
248 struct btrfs_block_group_cache *cache = NULL;
249 u64 start;
250 u64 end;
251 int i;
253 zone = NULL;
254 spin_lock(&fs_info->reada_lock);
255 ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
256 logical >> PAGE_SHIFT, 1);
257 if (ret == 1 && logical >= zone->start && logical <= zone->end) {
258 kref_get(&zone->refcnt);
259 spin_unlock(&fs_info->reada_lock);
260 return zone;
263 spin_unlock(&fs_info->reada_lock);
265 cache = btrfs_lookup_block_group(fs_info, logical);
266 if (!cache)
267 return NULL;
269 start = cache->key.objectid;
270 end = start + cache->key.offset - 1;
271 btrfs_put_block_group(cache);
273 zone = kzalloc(sizeof(*zone), GFP_KERNEL);
274 if (!zone)
275 return NULL;
277 zone->start = start;
278 zone->end = end;
279 INIT_LIST_HEAD(&zone->list);
280 spin_lock_init(&zone->lock);
281 zone->locked = 0;
282 kref_init(&zone->refcnt);
283 zone->elems = 0;
284 zone->device = dev; /* our device always sits at index 0 */
285 for (i = 0; i < bbio->num_stripes; ++i) {
286 /* bounds have already been checked */
287 zone->devs[i] = bbio->stripes[i].dev;
289 zone->ndevs = bbio->num_stripes;
291 spin_lock(&fs_info->reada_lock);
292 ret = radix_tree_insert(&dev->reada_zones,
293 (unsigned long)(zone->end >> PAGE_SHIFT),
294 zone);
296 if (ret == -EEXIST) {
297 kfree(zone);
298 ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
299 logical >> PAGE_SHIFT, 1);
300 if (ret == 1 && logical >= zone->start && logical <= zone->end)
301 kref_get(&zone->refcnt);
302 else
303 zone = NULL;
305 spin_unlock(&fs_info->reada_lock);
307 return zone;
310 static struct reada_extent *reada_find_extent(struct btrfs_root *root,
311 u64 logical,
312 struct btrfs_key *top)
314 int ret;
315 struct reada_extent *re = NULL;
316 struct reada_extent *re_exist = NULL;
317 struct btrfs_fs_info *fs_info = root->fs_info;
318 struct btrfs_bio *bbio = NULL;
319 struct btrfs_device *dev;
320 struct btrfs_device *prev_dev;
321 u32 blocksize;
322 u64 length;
323 int real_stripes;
324 int nzones = 0;
325 unsigned long index = logical >> PAGE_SHIFT;
326 int dev_replace_is_ongoing;
327 int have_zone = 0;
329 spin_lock(&fs_info->reada_lock);
330 re = radix_tree_lookup(&fs_info->reada_tree, index);
331 if (re)
332 re->refcnt++;
333 spin_unlock(&fs_info->reada_lock);
335 if (re)
336 return re;
338 re = kzalloc(sizeof(*re), GFP_KERNEL);
339 if (!re)
340 return NULL;
342 blocksize = root->nodesize;
343 re->logical = logical;
344 re->top = *top;
345 INIT_LIST_HEAD(&re->extctl);
346 spin_lock_init(&re->lock);
347 re->refcnt = 1;
350 * map block
352 length = blocksize;
353 ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
354 &length, &bbio, 0);
355 if (ret || !bbio || length < blocksize)
356 goto error;
358 if (bbio->num_stripes > BTRFS_MAX_MIRRORS) {
359 btrfs_err(root->fs_info,
360 "readahead: more than %d copies not supported",
361 BTRFS_MAX_MIRRORS);
362 goto error;
365 real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
366 for (nzones = 0; nzones < real_stripes; ++nzones) {
367 struct reada_zone *zone;
369 dev = bbio->stripes[nzones].dev;
371 /* cannot read ahead on missing device. */
372 if (!dev->bdev)
373 continue;
375 zone = reada_find_zone(fs_info, dev, logical, bbio);
376 if (!zone)
377 continue;
379 re->zones[re->nzones++] = zone;
380 spin_lock(&zone->lock);
381 if (!zone->elems)
382 kref_get(&zone->refcnt);
383 ++zone->elems;
384 spin_unlock(&zone->lock);
385 spin_lock(&fs_info->reada_lock);
386 kref_put(&zone->refcnt, reada_zone_release);
387 spin_unlock(&fs_info->reada_lock);
389 if (re->nzones == 0) {
390 /* not a single zone found, error and out */
391 goto error;
394 /* insert extent in reada_tree + all per-device trees, all or nothing */
395 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
396 spin_lock(&fs_info->reada_lock);
397 ret = radix_tree_insert(&fs_info->reada_tree, index, re);
398 if (ret == -EEXIST) {
399 re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
400 BUG_ON(!re_exist);
401 re_exist->refcnt++;
402 spin_unlock(&fs_info->reada_lock);
403 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
404 goto error;
406 if (ret) {
407 spin_unlock(&fs_info->reada_lock);
408 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
409 goto error;
411 prev_dev = NULL;
412 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(
413 &fs_info->dev_replace);
414 for (nzones = 0; nzones < re->nzones; ++nzones) {
415 dev = re->zones[nzones]->device;
417 if (dev == prev_dev) {
419 * in case of DUP, just add the first zone. As both
420 * are on the same device, there's nothing to gain
421 * from adding both.
422 * Also, it wouldn't work, as the tree is per device
423 * and adding would fail with EEXIST
425 continue;
427 if (!dev->bdev)
428 continue;
430 if (dev_replace_is_ongoing &&
431 dev == fs_info->dev_replace.tgtdev) {
433 * as this device is selected for reading only as
434 * a last resort, skip it for read ahead.
436 continue;
438 prev_dev = dev;
439 ret = radix_tree_insert(&dev->reada_extents, index, re);
440 if (ret) {
441 while (--nzones >= 0) {
442 dev = re->zones[nzones]->device;
443 BUG_ON(dev == NULL);
444 /* ignore whether the entry was inserted */
445 radix_tree_delete(&dev->reada_extents, index);
447 BUG_ON(fs_info == NULL);
448 radix_tree_delete(&fs_info->reada_tree, index);
449 spin_unlock(&fs_info->reada_lock);
450 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
451 goto error;
453 have_zone = 1;
455 spin_unlock(&fs_info->reada_lock);
456 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
458 if (!have_zone)
459 goto error;
461 btrfs_put_bbio(bbio);
462 return re;
464 error:
465 for (nzones = 0; nzones < re->nzones; ++nzones) {
466 struct reada_zone *zone;
468 zone = re->zones[nzones];
469 kref_get(&zone->refcnt);
470 spin_lock(&zone->lock);
471 --zone->elems;
472 if (zone->elems == 0) {
474 * no fs_info->reada_lock needed, as this can't be
475 * the last ref
477 kref_put(&zone->refcnt, reada_zone_release);
479 spin_unlock(&zone->lock);
481 spin_lock(&fs_info->reada_lock);
482 kref_put(&zone->refcnt, reada_zone_release);
483 spin_unlock(&fs_info->reada_lock);
485 btrfs_put_bbio(bbio);
486 kfree(re);
487 return re_exist;
490 static void reada_extent_put(struct btrfs_fs_info *fs_info,
491 struct reada_extent *re)
493 int i;
494 unsigned long index = re->logical >> PAGE_SHIFT;
496 spin_lock(&fs_info->reada_lock);
497 if (--re->refcnt) {
498 spin_unlock(&fs_info->reada_lock);
499 return;
502 radix_tree_delete(&fs_info->reada_tree, index);
503 for (i = 0; i < re->nzones; ++i) {
504 struct reada_zone *zone = re->zones[i];
506 radix_tree_delete(&zone->device->reada_extents, index);
509 spin_unlock(&fs_info->reada_lock);
511 for (i = 0; i < re->nzones; ++i) {
512 struct reada_zone *zone = re->zones[i];
514 kref_get(&zone->refcnt);
515 spin_lock(&zone->lock);
516 --zone->elems;
517 if (zone->elems == 0) {
518 /* no fs_info->reada_lock needed, as this can't be
519 * the last ref */
520 kref_put(&zone->refcnt, reada_zone_release);
522 spin_unlock(&zone->lock);
524 spin_lock(&fs_info->reada_lock);
525 kref_put(&zone->refcnt, reada_zone_release);
526 spin_unlock(&fs_info->reada_lock);
529 kfree(re);
532 static void reada_zone_release(struct kref *kref)
534 struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
536 radix_tree_delete(&zone->device->reada_zones,
537 zone->end >> PAGE_SHIFT);
539 kfree(zone);
542 static void reada_control_release(struct kref *kref)
544 struct reada_control *rc = container_of(kref, struct reada_control,
545 refcnt);
547 kfree(rc);
550 static int reada_add_block(struct reada_control *rc, u64 logical,
551 struct btrfs_key *top, u64 generation)
553 struct btrfs_root *root = rc->root;
554 struct reada_extent *re;
555 struct reada_extctl *rec;
557 re = reada_find_extent(root, logical, top); /* takes one ref */
558 if (!re)
559 return -1;
561 rec = kzalloc(sizeof(*rec), GFP_KERNEL);
562 if (!rec) {
563 reada_extent_put(root->fs_info, re);
564 return -ENOMEM;
567 rec->rc = rc;
568 rec->generation = generation;
569 atomic_inc(&rc->elems);
571 spin_lock(&re->lock);
572 list_add_tail(&rec->list, &re->extctl);
573 spin_unlock(&re->lock);
575 /* leave the ref on the extent */
577 return 0;
581 * called with fs_info->reada_lock held
583 static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
585 int i;
586 unsigned long index = zone->end >> PAGE_SHIFT;
588 for (i = 0; i < zone->ndevs; ++i) {
589 struct reada_zone *peer;
590 peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
591 if (peer && peer->device != zone->device)
592 peer->locked = lock;
597 * called with fs_info->reada_lock held
599 static int reada_pick_zone(struct btrfs_device *dev)
601 struct reada_zone *top_zone = NULL;
602 struct reada_zone *top_locked_zone = NULL;
603 u64 top_elems = 0;
604 u64 top_locked_elems = 0;
605 unsigned long index = 0;
606 int ret;
608 if (dev->reada_curr_zone) {
609 reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
610 kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
611 dev->reada_curr_zone = NULL;
613 /* pick the zone with the most elements */
614 while (1) {
615 struct reada_zone *zone;
617 ret = radix_tree_gang_lookup(&dev->reada_zones,
618 (void **)&zone, index, 1);
619 if (ret == 0)
620 break;
621 index = (zone->end >> PAGE_SHIFT) + 1;
622 if (zone->locked) {
623 if (zone->elems > top_locked_elems) {
624 top_locked_elems = zone->elems;
625 top_locked_zone = zone;
627 } else {
628 if (zone->elems > top_elems) {
629 top_elems = zone->elems;
630 top_zone = zone;
634 if (top_zone)
635 dev->reada_curr_zone = top_zone;
636 else if (top_locked_zone)
637 dev->reada_curr_zone = top_locked_zone;
638 else
639 return 0;
641 dev->reada_next = dev->reada_curr_zone->start;
642 kref_get(&dev->reada_curr_zone->refcnt);
643 reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
645 return 1;
648 static int reada_start_machine_dev(struct btrfs_fs_info *fs_info,
649 struct btrfs_device *dev)
651 struct reada_extent *re = NULL;
652 int mirror_num = 0;
653 struct extent_buffer *eb = NULL;
654 u64 logical;
655 int ret;
656 int i;
658 spin_lock(&fs_info->reada_lock);
659 if (dev->reada_curr_zone == NULL) {
660 ret = reada_pick_zone(dev);
661 if (!ret) {
662 spin_unlock(&fs_info->reada_lock);
663 return 0;
667 * FIXME currently we issue the reads one extent at a time. If we have
668 * a contiguous block of extents, we could also coagulate them or use
669 * plugging to speed things up
671 ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
672 dev->reada_next >> PAGE_SHIFT, 1);
673 if (ret == 0 || re->logical > dev->reada_curr_zone->end) {
674 ret = reada_pick_zone(dev);
675 if (!ret) {
676 spin_unlock(&fs_info->reada_lock);
677 return 0;
679 re = NULL;
680 ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
681 dev->reada_next >> PAGE_SHIFT, 1);
683 if (ret == 0) {
684 spin_unlock(&fs_info->reada_lock);
685 return 0;
687 dev->reada_next = re->logical + fs_info->tree_root->nodesize;
688 re->refcnt++;
690 spin_unlock(&fs_info->reada_lock);
692 spin_lock(&re->lock);
693 if (re->scheduled || list_empty(&re->extctl)) {
694 spin_unlock(&re->lock);
695 reada_extent_put(fs_info, re);
696 return 0;
698 re->scheduled = 1;
699 spin_unlock(&re->lock);
702 * find mirror num
704 for (i = 0; i < re->nzones; ++i) {
705 if (re->zones[i]->device == dev) {
706 mirror_num = i + 1;
707 break;
710 logical = re->logical;
712 atomic_inc(&dev->reada_in_flight);
713 ret = reada_tree_block_flagged(fs_info->extent_root, logical,
714 mirror_num, &eb);
715 if (ret)
716 __readahead_hook(fs_info, re, NULL, logical, ret);
717 else if (eb)
718 __readahead_hook(fs_info, re, eb, eb->start, ret);
720 if (eb)
721 free_extent_buffer(eb);
723 atomic_dec(&dev->reada_in_flight);
724 reada_extent_put(fs_info, re);
726 return 1;
730 static void reada_start_machine_worker(struct btrfs_work *work)
732 struct reada_machine_work *rmw;
733 struct btrfs_fs_info *fs_info;
734 int old_ioprio;
736 rmw = container_of(work, struct reada_machine_work, work);
737 fs_info = rmw->fs_info;
739 kfree(rmw);
741 old_ioprio = IOPRIO_PRIO_VALUE(task_nice_ioclass(current),
742 task_nice_ioprio(current));
743 set_task_ioprio(current, BTRFS_IOPRIO_READA);
744 __reada_start_machine(fs_info);
745 set_task_ioprio(current, old_ioprio);
747 atomic_dec(&fs_info->reada_works_cnt);
750 static void __reada_start_machine(struct btrfs_fs_info *fs_info)
752 struct btrfs_device *device;
753 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
754 u64 enqueued;
755 u64 total = 0;
756 int i;
758 do {
759 enqueued = 0;
760 mutex_lock(&fs_devices->device_list_mutex);
761 list_for_each_entry(device, &fs_devices->devices, dev_list) {
762 if (atomic_read(&device->reada_in_flight) <
763 MAX_IN_FLIGHT)
764 enqueued += reada_start_machine_dev(fs_info,
765 device);
767 mutex_unlock(&fs_devices->device_list_mutex);
768 total += enqueued;
769 } while (enqueued && total < 10000);
771 if (enqueued == 0)
772 return;
775 * If everything is already in the cache, this is effectively single
776 * threaded. To a) not hold the caller for too long and b) to utilize
777 * more cores, we broke the loop above after 10000 iterations and now
778 * enqueue to workers to finish it. This will distribute the load to
779 * the cores.
781 for (i = 0; i < 2; ++i) {
782 reada_start_machine(fs_info);
783 if (atomic_read(&fs_info->reada_works_cnt) >
784 BTRFS_MAX_MIRRORS * 2)
785 break;
789 static void reada_start_machine(struct btrfs_fs_info *fs_info)
791 struct reada_machine_work *rmw;
793 rmw = kzalloc(sizeof(*rmw), GFP_KERNEL);
794 if (!rmw) {
795 /* FIXME we cannot handle this properly right now */
796 BUG();
798 btrfs_init_work(&rmw->work, btrfs_readahead_helper,
799 reada_start_machine_worker, NULL, NULL);
800 rmw->fs_info = fs_info;
802 btrfs_queue_work(fs_info->readahead_workers, &rmw->work);
803 atomic_inc(&fs_info->reada_works_cnt);
806 #ifdef DEBUG
807 static void dump_devs(struct btrfs_fs_info *fs_info, int all)
809 struct btrfs_device *device;
810 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
811 unsigned long index;
812 int ret;
813 int i;
814 int j;
815 int cnt;
817 spin_lock(&fs_info->reada_lock);
818 list_for_each_entry(device, &fs_devices->devices, dev_list) {
819 btrfs_debug(fs_info, "dev %lld has %d in flight", device->devid,
820 atomic_read(&device->reada_in_flight));
821 index = 0;
822 while (1) {
823 struct reada_zone *zone;
824 ret = radix_tree_gang_lookup(&device->reada_zones,
825 (void **)&zone, index, 1);
826 if (ret == 0)
827 break;
828 pr_debug(" zone %llu-%llu elems %llu locked %d devs",
829 zone->start, zone->end, zone->elems,
830 zone->locked);
831 for (j = 0; j < zone->ndevs; ++j) {
832 pr_cont(" %lld",
833 zone->devs[j]->devid);
835 if (device->reada_curr_zone == zone)
836 pr_cont(" curr off %llu",
837 device->reada_next - zone->start);
838 pr_cont("\n");
839 index = (zone->end >> PAGE_SHIFT) + 1;
841 cnt = 0;
842 index = 0;
843 while (all) {
844 struct reada_extent *re = NULL;
846 ret = radix_tree_gang_lookup(&device->reada_extents,
847 (void **)&re, index, 1);
848 if (ret == 0)
849 break;
850 pr_debug(" re: logical %llu size %u empty %d scheduled %d",
851 re->logical, fs_info->tree_root->nodesize,
852 list_empty(&re->extctl), re->scheduled);
854 for (i = 0; i < re->nzones; ++i) {
855 pr_cont(" zone %llu-%llu devs",
856 re->zones[i]->start,
857 re->zones[i]->end);
858 for (j = 0; j < re->zones[i]->ndevs; ++j) {
859 pr_cont(" %lld",
860 re->zones[i]->devs[j]->devid);
863 pr_cont("\n");
864 index = (re->logical >> PAGE_SHIFT) + 1;
865 if (++cnt > 15)
866 break;
870 index = 0;
871 cnt = 0;
872 while (all) {
873 struct reada_extent *re = NULL;
875 ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
876 index, 1);
877 if (ret == 0)
878 break;
879 if (!re->scheduled) {
880 index = (re->logical >> PAGE_SHIFT) + 1;
881 continue;
883 pr_debug("re: logical %llu size %u list empty %d scheduled %d",
884 re->logical, fs_info->tree_root->nodesize,
885 list_empty(&re->extctl), re->scheduled);
886 for (i = 0; i < re->nzones; ++i) {
887 pr_cont(" zone %llu-%llu devs",
888 re->zones[i]->start,
889 re->zones[i]->end);
890 for (j = 0; j < re->zones[i]->ndevs; ++j) {
891 pr_cont(" %lld",
892 re->zones[i]->devs[j]->devid);
895 pr_cont("\n");
896 index = (re->logical >> PAGE_SHIFT) + 1;
898 spin_unlock(&fs_info->reada_lock);
900 #endif
903 * interface
905 struct reada_control *btrfs_reada_add(struct btrfs_root *root,
906 struct btrfs_key *key_start, struct btrfs_key *key_end)
908 struct reada_control *rc;
909 u64 start;
910 u64 generation;
911 int ret;
912 struct extent_buffer *node;
913 static struct btrfs_key max_key = {
914 .objectid = (u64)-1,
915 .type = (u8)-1,
916 .offset = (u64)-1
919 rc = kzalloc(sizeof(*rc), GFP_KERNEL);
920 if (!rc)
921 return ERR_PTR(-ENOMEM);
923 rc->root = root;
924 rc->key_start = *key_start;
925 rc->key_end = *key_end;
926 atomic_set(&rc->elems, 0);
927 init_waitqueue_head(&rc->wait);
928 kref_init(&rc->refcnt);
929 kref_get(&rc->refcnt); /* one ref for having elements */
931 node = btrfs_root_node(root);
932 start = node->start;
933 generation = btrfs_header_generation(node);
934 free_extent_buffer(node);
936 ret = reada_add_block(rc, start, &max_key, generation);
937 if (ret) {
938 kfree(rc);
939 return ERR_PTR(ret);
942 reada_start_machine(root->fs_info);
944 return rc;
947 #ifdef DEBUG
948 int btrfs_reada_wait(void *handle)
950 struct reada_control *rc = handle;
951 struct btrfs_fs_info *fs_info = rc->root->fs_info;
953 while (atomic_read(&rc->elems)) {
954 if (!atomic_read(&fs_info->reada_works_cnt))
955 reada_start_machine(fs_info);
956 wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
957 5 * HZ);
958 dump_devs(rc->root->fs_info,
959 atomic_read(&rc->elems) < 10 ? 1 : 0);
962 dump_devs(rc->root->fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
964 kref_put(&rc->refcnt, reada_control_release);
966 return 0;
968 #else
969 int btrfs_reada_wait(void *handle)
971 struct reada_control *rc = handle;
972 struct btrfs_fs_info *fs_info = rc->root->fs_info;
974 while (atomic_read(&rc->elems)) {
975 if (!atomic_read(&fs_info->reada_works_cnt))
976 reada_start_machine(fs_info);
977 wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
978 (HZ + 9) / 10);
981 kref_put(&rc->refcnt, reada_control_release);
983 return 0;
985 #endif
987 void btrfs_reada_detach(void *handle)
989 struct reada_control *rc = handle;
991 kref_put(&rc->refcnt, reada_control_release);