s390/vx: add support functions for in-kernel FPU use
[linux-2.6/btrfs-unstable.git] / mm / memcontrol.c
blob75e74408cc8f5081228288ed7bfd5d3e3ce9b4cd
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
71 #include <asm/uaccess.h>
73 #include <trace/events/vmscan.h>
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
80 #define MEM_CGROUP_RECLAIM_RETRIES 5
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
91 #else
92 #define do_swap_account 0
93 #endif
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
101 static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
104 "rss_huge",
105 "mapped_file",
106 "dirty",
107 "writeback",
108 "swap",
111 static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
118 static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET 1024
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
135 struct mem_cgroup_tree_per_zone {
136 struct rb_root rb_root;
137 spinlock_t lock;
140 struct mem_cgroup_tree_per_node {
141 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
144 struct mem_cgroup_tree {
145 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
148 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
150 /* for OOM */
151 struct mem_cgroup_eventfd_list {
152 struct list_head list;
153 struct eventfd_ctx *eventfd;
157 * cgroup_event represents events which userspace want to receive.
159 struct mem_cgroup_event {
161 * memcg which the event belongs to.
163 struct mem_cgroup *memcg;
165 * eventfd to signal userspace about the event.
167 struct eventfd_ctx *eventfd;
169 * Each of these stored in a list by the cgroup.
171 struct list_head list;
173 * register_event() callback will be used to add new userspace
174 * waiter for changes related to this event. Use eventfd_signal()
175 * on eventfd to send notification to userspace.
177 int (*register_event)(struct mem_cgroup *memcg,
178 struct eventfd_ctx *eventfd, const char *args);
180 * unregister_event() callback will be called when userspace closes
181 * the eventfd or on cgroup removing. This callback must be set,
182 * if you want provide notification functionality.
184 void (*unregister_event)(struct mem_cgroup *memcg,
185 struct eventfd_ctx *eventfd);
187 * All fields below needed to unregister event when
188 * userspace closes eventfd.
190 poll_table pt;
191 wait_queue_head_t *wqh;
192 wait_queue_t wait;
193 struct work_struct remove;
196 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
199 /* Stuffs for move charges at task migration. */
201 * Types of charges to be moved.
203 #define MOVE_ANON 0x1U
204 #define MOVE_FILE 0x2U
205 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
207 /* "mc" and its members are protected by cgroup_mutex */
208 static struct move_charge_struct {
209 spinlock_t lock; /* for from, to */
210 struct mm_struct *mm;
211 struct mem_cgroup *from;
212 struct mem_cgroup *to;
213 unsigned long flags;
214 unsigned long precharge;
215 unsigned long moved_charge;
216 unsigned long moved_swap;
217 struct task_struct *moving_task; /* a task moving charges */
218 wait_queue_head_t waitq; /* a waitq for other context */
219 } mc = {
220 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
221 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
225 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
226 * limit reclaim to prevent infinite loops, if they ever occur.
228 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
229 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
231 enum charge_type {
232 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
233 MEM_CGROUP_CHARGE_TYPE_ANON,
234 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
235 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
236 NR_CHARGE_TYPE,
239 /* for encoding cft->private value on file */
240 enum res_type {
241 _MEM,
242 _MEMSWAP,
243 _OOM_TYPE,
244 _KMEM,
245 _TCP,
248 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
249 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
250 #define MEMFILE_ATTR(val) ((val) & 0xffff)
251 /* Used for OOM nofiier */
252 #define OOM_CONTROL (0)
254 /* Some nice accessors for the vmpressure. */
255 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
257 if (!memcg)
258 memcg = root_mem_cgroup;
259 return &memcg->vmpressure;
262 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
264 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
267 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
269 return (memcg == root_mem_cgroup);
272 #ifndef CONFIG_SLOB
274 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
275 * The main reason for not using cgroup id for this:
276 * this works better in sparse environments, where we have a lot of memcgs,
277 * but only a few kmem-limited. Or also, if we have, for instance, 200
278 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
279 * 200 entry array for that.
281 * The current size of the caches array is stored in memcg_nr_cache_ids. It
282 * will double each time we have to increase it.
284 static DEFINE_IDA(memcg_cache_ida);
285 int memcg_nr_cache_ids;
287 /* Protects memcg_nr_cache_ids */
288 static DECLARE_RWSEM(memcg_cache_ids_sem);
290 void memcg_get_cache_ids(void)
292 down_read(&memcg_cache_ids_sem);
295 void memcg_put_cache_ids(void)
297 up_read(&memcg_cache_ids_sem);
301 * MIN_SIZE is different than 1, because we would like to avoid going through
302 * the alloc/free process all the time. In a small machine, 4 kmem-limited
303 * cgroups is a reasonable guess. In the future, it could be a parameter or
304 * tunable, but that is strictly not necessary.
306 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
307 * this constant directly from cgroup, but it is understandable that this is
308 * better kept as an internal representation in cgroup.c. In any case, the
309 * cgrp_id space is not getting any smaller, and we don't have to necessarily
310 * increase ours as well if it increases.
312 #define MEMCG_CACHES_MIN_SIZE 4
313 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
316 * A lot of the calls to the cache allocation functions are expected to be
317 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
318 * conditional to this static branch, we'll have to allow modules that does
319 * kmem_cache_alloc and the such to see this symbol as well
321 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
322 EXPORT_SYMBOL(memcg_kmem_enabled_key);
324 #endif /* !CONFIG_SLOB */
326 static struct mem_cgroup_per_zone *
327 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
329 int nid = zone_to_nid(zone);
330 int zid = zone_idx(zone);
332 return &memcg->nodeinfo[nid]->zoneinfo[zid];
336 * mem_cgroup_css_from_page - css of the memcg associated with a page
337 * @page: page of interest
339 * If memcg is bound to the default hierarchy, css of the memcg associated
340 * with @page is returned. The returned css remains associated with @page
341 * until it is released.
343 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
344 * is returned.
346 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
348 struct mem_cgroup *memcg;
350 memcg = page->mem_cgroup;
352 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
353 memcg = root_mem_cgroup;
355 return &memcg->css;
359 * page_cgroup_ino - return inode number of the memcg a page is charged to
360 * @page: the page
362 * Look up the closest online ancestor of the memory cgroup @page is charged to
363 * and return its inode number or 0 if @page is not charged to any cgroup. It
364 * is safe to call this function without holding a reference to @page.
366 * Note, this function is inherently racy, because there is nothing to prevent
367 * the cgroup inode from getting torn down and potentially reallocated a moment
368 * after page_cgroup_ino() returns, so it only should be used by callers that
369 * do not care (such as procfs interfaces).
371 ino_t page_cgroup_ino(struct page *page)
373 struct mem_cgroup *memcg;
374 unsigned long ino = 0;
376 rcu_read_lock();
377 memcg = READ_ONCE(page->mem_cgroup);
378 while (memcg && !(memcg->css.flags & CSS_ONLINE))
379 memcg = parent_mem_cgroup(memcg);
380 if (memcg)
381 ino = cgroup_ino(memcg->css.cgroup);
382 rcu_read_unlock();
383 return ino;
386 static struct mem_cgroup_per_zone *
387 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
389 int nid = page_to_nid(page);
390 int zid = page_zonenum(page);
392 return &memcg->nodeinfo[nid]->zoneinfo[zid];
395 static struct mem_cgroup_tree_per_zone *
396 soft_limit_tree_node_zone(int nid, int zid)
398 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
401 static struct mem_cgroup_tree_per_zone *
402 soft_limit_tree_from_page(struct page *page)
404 int nid = page_to_nid(page);
405 int zid = page_zonenum(page);
407 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
410 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
411 struct mem_cgroup_tree_per_zone *mctz,
412 unsigned long new_usage_in_excess)
414 struct rb_node **p = &mctz->rb_root.rb_node;
415 struct rb_node *parent = NULL;
416 struct mem_cgroup_per_zone *mz_node;
418 if (mz->on_tree)
419 return;
421 mz->usage_in_excess = new_usage_in_excess;
422 if (!mz->usage_in_excess)
423 return;
424 while (*p) {
425 parent = *p;
426 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
427 tree_node);
428 if (mz->usage_in_excess < mz_node->usage_in_excess)
429 p = &(*p)->rb_left;
431 * We can't avoid mem cgroups that are over their soft
432 * limit by the same amount
434 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
435 p = &(*p)->rb_right;
437 rb_link_node(&mz->tree_node, parent, p);
438 rb_insert_color(&mz->tree_node, &mctz->rb_root);
439 mz->on_tree = true;
442 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
443 struct mem_cgroup_tree_per_zone *mctz)
445 if (!mz->on_tree)
446 return;
447 rb_erase(&mz->tree_node, &mctz->rb_root);
448 mz->on_tree = false;
451 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
452 struct mem_cgroup_tree_per_zone *mctz)
454 unsigned long flags;
456 spin_lock_irqsave(&mctz->lock, flags);
457 __mem_cgroup_remove_exceeded(mz, mctz);
458 spin_unlock_irqrestore(&mctz->lock, flags);
461 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
463 unsigned long nr_pages = page_counter_read(&memcg->memory);
464 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
465 unsigned long excess = 0;
467 if (nr_pages > soft_limit)
468 excess = nr_pages - soft_limit;
470 return excess;
473 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
475 unsigned long excess;
476 struct mem_cgroup_per_zone *mz;
477 struct mem_cgroup_tree_per_zone *mctz;
479 mctz = soft_limit_tree_from_page(page);
481 * Necessary to update all ancestors when hierarchy is used.
482 * because their event counter is not touched.
484 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
485 mz = mem_cgroup_page_zoneinfo(memcg, page);
486 excess = soft_limit_excess(memcg);
488 * We have to update the tree if mz is on RB-tree or
489 * mem is over its softlimit.
491 if (excess || mz->on_tree) {
492 unsigned long flags;
494 spin_lock_irqsave(&mctz->lock, flags);
495 /* if on-tree, remove it */
496 if (mz->on_tree)
497 __mem_cgroup_remove_exceeded(mz, mctz);
499 * Insert again. mz->usage_in_excess will be updated.
500 * If excess is 0, no tree ops.
502 __mem_cgroup_insert_exceeded(mz, mctz, excess);
503 spin_unlock_irqrestore(&mctz->lock, flags);
508 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
510 struct mem_cgroup_tree_per_zone *mctz;
511 struct mem_cgroup_per_zone *mz;
512 int nid, zid;
514 for_each_node(nid) {
515 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
516 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
517 mctz = soft_limit_tree_node_zone(nid, zid);
518 mem_cgroup_remove_exceeded(mz, mctz);
523 static struct mem_cgroup_per_zone *
524 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
526 struct rb_node *rightmost = NULL;
527 struct mem_cgroup_per_zone *mz;
529 retry:
530 mz = NULL;
531 rightmost = rb_last(&mctz->rb_root);
532 if (!rightmost)
533 goto done; /* Nothing to reclaim from */
535 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
537 * Remove the node now but someone else can add it back,
538 * we will to add it back at the end of reclaim to its correct
539 * position in the tree.
541 __mem_cgroup_remove_exceeded(mz, mctz);
542 if (!soft_limit_excess(mz->memcg) ||
543 !css_tryget_online(&mz->memcg->css))
544 goto retry;
545 done:
546 return mz;
549 static struct mem_cgroup_per_zone *
550 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
552 struct mem_cgroup_per_zone *mz;
554 spin_lock_irq(&mctz->lock);
555 mz = __mem_cgroup_largest_soft_limit_node(mctz);
556 spin_unlock_irq(&mctz->lock);
557 return mz;
561 * Return page count for single (non recursive) @memcg.
563 * Implementation Note: reading percpu statistics for memcg.
565 * Both of vmstat[] and percpu_counter has threshold and do periodic
566 * synchronization to implement "quick" read. There are trade-off between
567 * reading cost and precision of value. Then, we may have a chance to implement
568 * a periodic synchronization of counter in memcg's counter.
570 * But this _read() function is used for user interface now. The user accounts
571 * memory usage by memory cgroup and he _always_ requires exact value because
572 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
573 * have to visit all online cpus and make sum. So, for now, unnecessary
574 * synchronization is not implemented. (just implemented for cpu hotplug)
576 * If there are kernel internal actions which can make use of some not-exact
577 * value, and reading all cpu value can be performance bottleneck in some
578 * common workload, threshold and synchronization as vmstat[] should be
579 * implemented.
581 static unsigned long
582 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
584 long val = 0;
585 int cpu;
587 /* Per-cpu values can be negative, use a signed accumulator */
588 for_each_possible_cpu(cpu)
589 val += per_cpu(memcg->stat->count[idx], cpu);
591 * Summing races with updates, so val may be negative. Avoid exposing
592 * transient negative values.
594 if (val < 0)
595 val = 0;
596 return val;
599 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
600 enum mem_cgroup_events_index idx)
602 unsigned long val = 0;
603 int cpu;
605 for_each_possible_cpu(cpu)
606 val += per_cpu(memcg->stat->events[idx], cpu);
607 return val;
610 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
611 struct page *page,
612 bool compound, int nr_pages)
615 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
616 * counted as CACHE even if it's on ANON LRU.
618 if (PageAnon(page))
619 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
620 nr_pages);
621 else
622 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
623 nr_pages);
625 if (compound) {
626 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
627 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
628 nr_pages);
631 /* pagein of a big page is an event. So, ignore page size */
632 if (nr_pages > 0)
633 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
634 else {
635 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
636 nr_pages = -nr_pages; /* for event */
639 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
642 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
643 int nid, unsigned int lru_mask)
645 unsigned long nr = 0;
646 int zid;
648 VM_BUG_ON((unsigned)nid >= nr_node_ids);
650 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
651 struct mem_cgroup_per_zone *mz;
652 enum lru_list lru;
654 for_each_lru(lru) {
655 if (!(BIT(lru) & lru_mask))
656 continue;
657 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
658 nr += mz->lru_size[lru];
661 return nr;
664 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
665 unsigned int lru_mask)
667 unsigned long nr = 0;
668 int nid;
670 for_each_node_state(nid, N_MEMORY)
671 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
672 return nr;
675 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
676 enum mem_cgroup_events_target target)
678 unsigned long val, next;
680 val = __this_cpu_read(memcg->stat->nr_page_events);
681 next = __this_cpu_read(memcg->stat->targets[target]);
682 /* from time_after() in jiffies.h */
683 if ((long)next - (long)val < 0) {
684 switch (target) {
685 case MEM_CGROUP_TARGET_THRESH:
686 next = val + THRESHOLDS_EVENTS_TARGET;
687 break;
688 case MEM_CGROUP_TARGET_SOFTLIMIT:
689 next = val + SOFTLIMIT_EVENTS_TARGET;
690 break;
691 case MEM_CGROUP_TARGET_NUMAINFO:
692 next = val + NUMAINFO_EVENTS_TARGET;
693 break;
694 default:
695 break;
697 __this_cpu_write(memcg->stat->targets[target], next);
698 return true;
700 return false;
704 * Check events in order.
707 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
709 /* threshold event is triggered in finer grain than soft limit */
710 if (unlikely(mem_cgroup_event_ratelimit(memcg,
711 MEM_CGROUP_TARGET_THRESH))) {
712 bool do_softlimit;
713 bool do_numainfo __maybe_unused;
715 do_softlimit = mem_cgroup_event_ratelimit(memcg,
716 MEM_CGROUP_TARGET_SOFTLIMIT);
717 #if MAX_NUMNODES > 1
718 do_numainfo = mem_cgroup_event_ratelimit(memcg,
719 MEM_CGROUP_TARGET_NUMAINFO);
720 #endif
721 mem_cgroup_threshold(memcg);
722 if (unlikely(do_softlimit))
723 mem_cgroup_update_tree(memcg, page);
724 #if MAX_NUMNODES > 1
725 if (unlikely(do_numainfo))
726 atomic_inc(&memcg->numainfo_events);
727 #endif
731 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
734 * mm_update_next_owner() may clear mm->owner to NULL
735 * if it races with swapoff, page migration, etc.
736 * So this can be called with p == NULL.
738 if (unlikely(!p))
739 return NULL;
741 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
743 EXPORT_SYMBOL(mem_cgroup_from_task);
745 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
747 struct mem_cgroup *memcg = NULL;
749 rcu_read_lock();
750 do {
752 * Page cache insertions can happen withou an
753 * actual mm context, e.g. during disk probing
754 * on boot, loopback IO, acct() writes etc.
756 if (unlikely(!mm))
757 memcg = root_mem_cgroup;
758 else {
759 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
760 if (unlikely(!memcg))
761 memcg = root_mem_cgroup;
763 } while (!css_tryget_online(&memcg->css));
764 rcu_read_unlock();
765 return memcg;
769 * mem_cgroup_iter - iterate over memory cgroup hierarchy
770 * @root: hierarchy root
771 * @prev: previously returned memcg, NULL on first invocation
772 * @reclaim: cookie for shared reclaim walks, NULL for full walks
774 * Returns references to children of the hierarchy below @root, or
775 * @root itself, or %NULL after a full round-trip.
777 * Caller must pass the return value in @prev on subsequent
778 * invocations for reference counting, or use mem_cgroup_iter_break()
779 * to cancel a hierarchy walk before the round-trip is complete.
781 * Reclaimers can specify a zone and a priority level in @reclaim to
782 * divide up the memcgs in the hierarchy among all concurrent
783 * reclaimers operating on the same zone and priority.
785 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
786 struct mem_cgroup *prev,
787 struct mem_cgroup_reclaim_cookie *reclaim)
789 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
790 struct cgroup_subsys_state *css = NULL;
791 struct mem_cgroup *memcg = NULL;
792 struct mem_cgroup *pos = NULL;
794 if (mem_cgroup_disabled())
795 return NULL;
797 if (!root)
798 root = root_mem_cgroup;
800 if (prev && !reclaim)
801 pos = prev;
803 if (!root->use_hierarchy && root != root_mem_cgroup) {
804 if (prev)
805 goto out;
806 return root;
809 rcu_read_lock();
811 if (reclaim) {
812 struct mem_cgroup_per_zone *mz;
814 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
815 iter = &mz->iter[reclaim->priority];
817 if (prev && reclaim->generation != iter->generation)
818 goto out_unlock;
820 while (1) {
821 pos = READ_ONCE(iter->position);
822 if (!pos || css_tryget(&pos->css))
823 break;
825 * css reference reached zero, so iter->position will
826 * be cleared by ->css_released. However, we should not
827 * rely on this happening soon, because ->css_released
828 * is called from a work queue, and by busy-waiting we
829 * might block it. So we clear iter->position right
830 * away.
832 (void)cmpxchg(&iter->position, pos, NULL);
836 if (pos)
837 css = &pos->css;
839 for (;;) {
840 css = css_next_descendant_pre(css, &root->css);
841 if (!css) {
843 * Reclaimers share the hierarchy walk, and a
844 * new one might jump in right at the end of
845 * the hierarchy - make sure they see at least
846 * one group and restart from the beginning.
848 if (!prev)
849 continue;
850 break;
854 * Verify the css and acquire a reference. The root
855 * is provided by the caller, so we know it's alive
856 * and kicking, and don't take an extra reference.
858 memcg = mem_cgroup_from_css(css);
860 if (css == &root->css)
861 break;
863 if (css_tryget(css))
864 break;
866 memcg = NULL;
869 if (reclaim) {
871 * The position could have already been updated by a competing
872 * thread, so check that the value hasn't changed since we read
873 * it to avoid reclaiming from the same cgroup twice.
875 (void)cmpxchg(&iter->position, pos, memcg);
877 if (pos)
878 css_put(&pos->css);
880 if (!memcg)
881 iter->generation++;
882 else if (!prev)
883 reclaim->generation = iter->generation;
886 out_unlock:
887 rcu_read_unlock();
888 out:
889 if (prev && prev != root)
890 css_put(&prev->css);
892 return memcg;
896 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
897 * @root: hierarchy root
898 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
900 void mem_cgroup_iter_break(struct mem_cgroup *root,
901 struct mem_cgroup *prev)
903 if (!root)
904 root = root_mem_cgroup;
905 if (prev && prev != root)
906 css_put(&prev->css);
909 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
911 struct mem_cgroup *memcg = dead_memcg;
912 struct mem_cgroup_reclaim_iter *iter;
913 struct mem_cgroup_per_zone *mz;
914 int nid, zid;
915 int i;
917 while ((memcg = parent_mem_cgroup(memcg))) {
918 for_each_node(nid) {
919 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
920 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
921 for (i = 0; i <= DEF_PRIORITY; i++) {
922 iter = &mz->iter[i];
923 cmpxchg(&iter->position,
924 dead_memcg, NULL);
932 * Iteration constructs for visiting all cgroups (under a tree). If
933 * loops are exited prematurely (break), mem_cgroup_iter_break() must
934 * be used for reference counting.
936 #define for_each_mem_cgroup_tree(iter, root) \
937 for (iter = mem_cgroup_iter(root, NULL, NULL); \
938 iter != NULL; \
939 iter = mem_cgroup_iter(root, iter, NULL))
941 #define for_each_mem_cgroup(iter) \
942 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
943 iter != NULL; \
944 iter = mem_cgroup_iter(NULL, iter, NULL))
947 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
948 * @zone: zone of the wanted lruvec
949 * @memcg: memcg of the wanted lruvec
951 * Returns the lru list vector holding pages for the given @zone and
952 * @mem. This can be the global zone lruvec, if the memory controller
953 * is disabled.
955 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
956 struct mem_cgroup *memcg)
958 struct mem_cgroup_per_zone *mz;
959 struct lruvec *lruvec;
961 if (mem_cgroup_disabled()) {
962 lruvec = &zone->lruvec;
963 goto out;
966 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
967 lruvec = &mz->lruvec;
968 out:
970 * Since a node can be onlined after the mem_cgroup was created,
971 * we have to be prepared to initialize lruvec->zone here;
972 * and if offlined then reonlined, we need to reinitialize it.
974 if (unlikely(lruvec->zone != zone))
975 lruvec->zone = zone;
976 return lruvec;
980 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
981 * @page: the page
982 * @zone: zone of the page
984 * This function is only safe when following the LRU page isolation
985 * and putback protocol: the LRU lock must be held, and the page must
986 * either be PageLRU() or the caller must have isolated/allocated it.
988 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
990 struct mem_cgroup_per_zone *mz;
991 struct mem_cgroup *memcg;
992 struct lruvec *lruvec;
994 if (mem_cgroup_disabled()) {
995 lruvec = &zone->lruvec;
996 goto out;
999 memcg = page->mem_cgroup;
1001 * Swapcache readahead pages are added to the LRU - and
1002 * possibly migrated - before they are charged.
1004 if (!memcg)
1005 memcg = root_mem_cgroup;
1007 mz = mem_cgroup_page_zoneinfo(memcg, page);
1008 lruvec = &mz->lruvec;
1009 out:
1011 * Since a node can be onlined after the mem_cgroup was created,
1012 * we have to be prepared to initialize lruvec->zone here;
1013 * and if offlined then reonlined, we need to reinitialize it.
1015 if (unlikely(lruvec->zone != zone))
1016 lruvec->zone = zone;
1017 return lruvec;
1021 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1022 * @lruvec: mem_cgroup per zone lru vector
1023 * @lru: index of lru list the page is sitting on
1024 * @nr_pages: positive when adding or negative when removing
1026 * This function must be called under lru_lock, just before a page is added
1027 * to or just after a page is removed from an lru list (that ordering being
1028 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1030 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1031 int nr_pages)
1033 struct mem_cgroup_per_zone *mz;
1034 unsigned long *lru_size;
1035 long size;
1036 bool empty;
1038 __update_lru_size(lruvec, lru, nr_pages);
1040 if (mem_cgroup_disabled())
1041 return;
1043 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1044 lru_size = mz->lru_size + lru;
1045 empty = list_empty(lruvec->lists + lru);
1047 if (nr_pages < 0)
1048 *lru_size += nr_pages;
1050 size = *lru_size;
1051 if (WARN_ONCE(size < 0 || empty != !size,
1052 "%s(%p, %d, %d): lru_size %ld but %sempty\n",
1053 __func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
1054 VM_BUG_ON(1);
1055 *lru_size = 0;
1058 if (nr_pages > 0)
1059 *lru_size += nr_pages;
1062 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1064 struct mem_cgroup *task_memcg;
1065 struct task_struct *p;
1066 bool ret;
1068 p = find_lock_task_mm(task);
1069 if (p) {
1070 task_memcg = get_mem_cgroup_from_mm(p->mm);
1071 task_unlock(p);
1072 } else {
1074 * All threads may have already detached their mm's, but the oom
1075 * killer still needs to detect if they have already been oom
1076 * killed to prevent needlessly killing additional tasks.
1078 rcu_read_lock();
1079 task_memcg = mem_cgroup_from_task(task);
1080 css_get(&task_memcg->css);
1081 rcu_read_unlock();
1083 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1084 css_put(&task_memcg->css);
1085 return ret;
1089 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1090 * @memcg: the memory cgroup
1092 * Returns the maximum amount of memory @mem can be charged with, in
1093 * pages.
1095 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1097 unsigned long margin = 0;
1098 unsigned long count;
1099 unsigned long limit;
1101 count = page_counter_read(&memcg->memory);
1102 limit = READ_ONCE(memcg->memory.limit);
1103 if (count < limit)
1104 margin = limit - count;
1106 if (do_memsw_account()) {
1107 count = page_counter_read(&memcg->memsw);
1108 limit = READ_ONCE(memcg->memsw.limit);
1109 if (count <= limit)
1110 margin = min(margin, limit - count);
1111 else
1112 margin = 0;
1115 return margin;
1119 * A routine for checking "mem" is under move_account() or not.
1121 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1122 * moving cgroups. This is for waiting at high-memory pressure
1123 * caused by "move".
1125 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1127 struct mem_cgroup *from;
1128 struct mem_cgroup *to;
1129 bool ret = false;
1131 * Unlike task_move routines, we access mc.to, mc.from not under
1132 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1134 spin_lock(&mc.lock);
1135 from = mc.from;
1136 to = mc.to;
1137 if (!from)
1138 goto unlock;
1140 ret = mem_cgroup_is_descendant(from, memcg) ||
1141 mem_cgroup_is_descendant(to, memcg);
1142 unlock:
1143 spin_unlock(&mc.lock);
1144 return ret;
1147 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1149 if (mc.moving_task && current != mc.moving_task) {
1150 if (mem_cgroup_under_move(memcg)) {
1151 DEFINE_WAIT(wait);
1152 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1153 /* moving charge context might have finished. */
1154 if (mc.moving_task)
1155 schedule();
1156 finish_wait(&mc.waitq, &wait);
1157 return true;
1160 return false;
1163 #define K(x) ((x) << (PAGE_SHIFT-10))
1165 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1166 * @memcg: The memory cgroup that went over limit
1167 * @p: Task that is going to be killed
1169 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1170 * enabled
1172 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1174 struct mem_cgroup *iter;
1175 unsigned int i;
1177 rcu_read_lock();
1179 if (p) {
1180 pr_info("Task in ");
1181 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1182 pr_cont(" killed as a result of limit of ");
1183 } else {
1184 pr_info("Memory limit reached of cgroup ");
1187 pr_cont_cgroup_path(memcg->css.cgroup);
1188 pr_cont("\n");
1190 rcu_read_unlock();
1192 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1193 K((u64)page_counter_read(&memcg->memory)),
1194 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1195 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1196 K((u64)page_counter_read(&memcg->memsw)),
1197 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1198 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1199 K((u64)page_counter_read(&memcg->kmem)),
1200 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1202 for_each_mem_cgroup_tree(iter, memcg) {
1203 pr_info("Memory cgroup stats for ");
1204 pr_cont_cgroup_path(iter->css.cgroup);
1205 pr_cont(":");
1207 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1208 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1209 continue;
1210 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1211 K(mem_cgroup_read_stat(iter, i)));
1214 for (i = 0; i < NR_LRU_LISTS; i++)
1215 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1216 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1218 pr_cont("\n");
1223 * This function returns the number of memcg under hierarchy tree. Returns
1224 * 1(self count) if no children.
1226 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1228 int num = 0;
1229 struct mem_cgroup *iter;
1231 for_each_mem_cgroup_tree(iter, memcg)
1232 num++;
1233 return num;
1237 * Return the memory (and swap, if configured) limit for a memcg.
1239 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1241 unsigned long limit;
1243 limit = memcg->memory.limit;
1244 if (mem_cgroup_swappiness(memcg)) {
1245 unsigned long memsw_limit;
1246 unsigned long swap_limit;
1248 memsw_limit = memcg->memsw.limit;
1249 swap_limit = memcg->swap.limit;
1250 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1251 limit = min(limit + swap_limit, memsw_limit);
1253 return limit;
1256 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1257 int order)
1259 struct oom_control oc = {
1260 .zonelist = NULL,
1261 .nodemask = NULL,
1262 .gfp_mask = gfp_mask,
1263 .order = order,
1265 struct mem_cgroup *iter;
1266 unsigned long chosen_points = 0;
1267 unsigned long totalpages;
1268 unsigned int points = 0;
1269 struct task_struct *chosen = NULL;
1271 mutex_lock(&oom_lock);
1274 * If current has a pending SIGKILL or is exiting, then automatically
1275 * select it. The goal is to allow it to allocate so that it may
1276 * quickly exit and free its memory.
1278 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1279 mark_oom_victim(current);
1280 try_oom_reaper(current);
1281 goto unlock;
1284 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1285 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1286 for_each_mem_cgroup_tree(iter, memcg) {
1287 struct css_task_iter it;
1288 struct task_struct *task;
1290 css_task_iter_start(&iter->css, &it);
1291 while ((task = css_task_iter_next(&it))) {
1292 switch (oom_scan_process_thread(&oc, task, totalpages)) {
1293 case OOM_SCAN_SELECT:
1294 if (chosen)
1295 put_task_struct(chosen);
1296 chosen = task;
1297 chosen_points = ULONG_MAX;
1298 get_task_struct(chosen);
1299 /* fall through */
1300 case OOM_SCAN_CONTINUE:
1301 continue;
1302 case OOM_SCAN_ABORT:
1303 css_task_iter_end(&it);
1304 mem_cgroup_iter_break(memcg, iter);
1305 if (chosen)
1306 put_task_struct(chosen);
1307 /* Set a dummy value to return "true". */
1308 chosen = (void *) 1;
1309 goto unlock;
1310 case OOM_SCAN_OK:
1311 break;
1313 points = oom_badness(task, memcg, NULL, totalpages);
1314 if (!points || points < chosen_points)
1315 continue;
1316 /* Prefer thread group leaders for display purposes */
1317 if (points == chosen_points &&
1318 thread_group_leader(chosen))
1319 continue;
1321 if (chosen)
1322 put_task_struct(chosen);
1323 chosen = task;
1324 chosen_points = points;
1325 get_task_struct(chosen);
1327 css_task_iter_end(&it);
1330 if (chosen) {
1331 points = chosen_points * 1000 / totalpages;
1332 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1333 "Memory cgroup out of memory");
1335 unlock:
1336 mutex_unlock(&oom_lock);
1337 return chosen;
1340 #if MAX_NUMNODES > 1
1343 * test_mem_cgroup_node_reclaimable
1344 * @memcg: the target memcg
1345 * @nid: the node ID to be checked.
1346 * @noswap : specify true here if the user wants flle only information.
1348 * This function returns whether the specified memcg contains any
1349 * reclaimable pages on a node. Returns true if there are any reclaimable
1350 * pages in the node.
1352 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1353 int nid, bool noswap)
1355 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1356 return true;
1357 if (noswap || !total_swap_pages)
1358 return false;
1359 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1360 return true;
1361 return false;
1366 * Always updating the nodemask is not very good - even if we have an empty
1367 * list or the wrong list here, we can start from some node and traverse all
1368 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1371 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1373 int nid;
1375 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1376 * pagein/pageout changes since the last update.
1378 if (!atomic_read(&memcg->numainfo_events))
1379 return;
1380 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1381 return;
1383 /* make a nodemask where this memcg uses memory from */
1384 memcg->scan_nodes = node_states[N_MEMORY];
1386 for_each_node_mask(nid, node_states[N_MEMORY]) {
1388 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1389 node_clear(nid, memcg->scan_nodes);
1392 atomic_set(&memcg->numainfo_events, 0);
1393 atomic_set(&memcg->numainfo_updating, 0);
1397 * Selecting a node where we start reclaim from. Because what we need is just
1398 * reducing usage counter, start from anywhere is O,K. Considering
1399 * memory reclaim from current node, there are pros. and cons.
1401 * Freeing memory from current node means freeing memory from a node which
1402 * we'll use or we've used. So, it may make LRU bad. And if several threads
1403 * hit limits, it will see a contention on a node. But freeing from remote
1404 * node means more costs for memory reclaim because of memory latency.
1406 * Now, we use round-robin. Better algorithm is welcomed.
1408 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1410 int node;
1412 mem_cgroup_may_update_nodemask(memcg);
1413 node = memcg->last_scanned_node;
1415 node = next_node_in(node, memcg->scan_nodes);
1417 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1418 * last time it really checked all the LRUs due to rate limiting.
1419 * Fallback to the current node in that case for simplicity.
1421 if (unlikely(node == MAX_NUMNODES))
1422 node = numa_node_id();
1424 memcg->last_scanned_node = node;
1425 return node;
1427 #else
1428 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1430 return 0;
1432 #endif
1434 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1435 struct zone *zone,
1436 gfp_t gfp_mask,
1437 unsigned long *total_scanned)
1439 struct mem_cgroup *victim = NULL;
1440 int total = 0;
1441 int loop = 0;
1442 unsigned long excess;
1443 unsigned long nr_scanned;
1444 struct mem_cgroup_reclaim_cookie reclaim = {
1445 .zone = zone,
1446 .priority = 0,
1449 excess = soft_limit_excess(root_memcg);
1451 while (1) {
1452 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1453 if (!victim) {
1454 loop++;
1455 if (loop >= 2) {
1457 * If we have not been able to reclaim
1458 * anything, it might because there are
1459 * no reclaimable pages under this hierarchy
1461 if (!total)
1462 break;
1464 * We want to do more targeted reclaim.
1465 * excess >> 2 is not to excessive so as to
1466 * reclaim too much, nor too less that we keep
1467 * coming back to reclaim from this cgroup
1469 if (total >= (excess >> 2) ||
1470 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1471 break;
1473 continue;
1475 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1476 zone, &nr_scanned);
1477 *total_scanned += nr_scanned;
1478 if (!soft_limit_excess(root_memcg))
1479 break;
1481 mem_cgroup_iter_break(root_memcg, victim);
1482 return total;
1485 #ifdef CONFIG_LOCKDEP
1486 static struct lockdep_map memcg_oom_lock_dep_map = {
1487 .name = "memcg_oom_lock",
1489 #endif
1491 static DEFINE_SPINLOCK(memcg_oom_lock);
1494 * Check OOM-Killer is already running under our hierarchy.
1495 * If someone is running, return false.
1497 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1499 struct mem_cgroup *iter, *failed = NULL;
1501 spin_lock(&memcg_oom_lock);
1503 for_each_mem_cgroup_tree(iter, memcg) {
1504 if (iter->oom_lock) {
1506 * this subtree of our hierarchy is already locked
1507 * so we cannot give a lock.
1509 failed = iter;
1510 mem_cgroup_iter_break(memcg, iter);
1511 break;
1512 } else
1513 iter->oom_lock = true;
1516 if (failed) {
1518 * OK, we failed to lock the whole subtree so we have
1519 * to clean up what we set up to the failing subtree
1521 for_each_mem_cgroup_tree(iter, memcg) {
1522 if (iter == failed) {
1523 mem_cgroup_iter_break(memcg, iter);
1524 break;
1526 iter->oom_lock = false;
1528 } else
1529 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1531 spin_unlock(&memcg_oom_lock);
1533 return !failed;
1536 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1538 struct mem_cgroup *iter;
1540 spin_lock(&memcg_oom_lock);
1541 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1542 for_each_mem_cgroup_tree(iter, memcg)
1543 iter->oom_lock = false;
1544 spin_unlock(&memcg_oom_lock);
1547 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1549 struct mem_cgroup *iter;
1551 spin_lock(&memcg_oom_lock);
1552 for_each_mem_cgroup_tree(iter, memcg)
1553 iter->under_oom++;
1554 spin_unlock(&memcg_oom_lock);
1557 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1559 struct mem_cgroup *iter;
1562 * When a new child is created while the hierarchy is under oom,
1563 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1565 spin_lock(&memcg_oom_lock);
1566 for_each_mem_cgroup_tree(iter, memcg)
1567 if (iter->under_oom > 0)
1568 iter->under_oom--;
1569 spin_unlock(&memcg_oom_lock);
1572 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1574 struct oom_wait_info {
1575 struct mem_cgroup *memcg;
1576 wait_queue_t wait;
1579 static int memcg_oom_wake_function(wait_queue_t *wait,
1580 unsigned mode, int sync, void *arg)
1582 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1583 struct mem_cgroup *oom_wait_memcg;
1584 struct oom_wait_info *oom_wait_info;
1586 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1587 oom_wait_memcg = oom_wait_info->memcg;
1589 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1590 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1591 return 0;
1592 return autoremove_wake_function(wait, mode, sync, arg);
1595 static void memcg_oom_recover(struct mem_cgroup *memcg)
1598 * For the following lockless ->under_oom test, the only required
1599 * guarantee is that it must see the state asserted by an OOM when
1600 * this function is called as a result of userland actions
1601 * triggered by the notification of the OOM. This is trivially
1602 * achieved by invoking mem_cgroup_mark_under_oom() before
1603 * triggering notification.
1605 if (memcg && memcg->under_oom)
1606 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1609 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1611 if (!current->memcg_may_oom)
1612 return;
1614 * We are in the middle of the charge context here, so we
1615 * don't want to block when potentially sitting on a callstack
1616 * that holds all kinds of filesystem and mm locks.
1618 * Also, the caller may handle a failed allocation gracefully
1619 * (like optional page cache readahead) and so an OOM killer
1620 * invocation might not even be necessary.
1622 * That's why we don't do anything here except remember the
1623 * OOM context and then deal with it at the end of the page
1624 * fault when the stack is unwound, the locks are released,
1625 * and when we know whether the fault was overall successful.
1627 css_get(&memcg->css);
1628 current->memcg_in_oom = memcg;
1629 current->memcg_oom_gfp_mask = mask;
1630 current->memcg_oom_order = order;
1634 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1635 * @handle: actually kill/wait or just clean up the OOM state
1637 * This has to be called at the end of a page fault if the memcg OOM
1638 * handler was enabled.
1640 * Memcg supports userspace OOM handling where failed allocations must
1641 * sleep on a waitqueue until the userspace task resolves the
1642 * situation. Sleeping directly in the charge context with all kinds
1643 * of locks held is not a good idea, instead we remember an OOM state
1644 * in the task and mem_cgroup_oom_synchronize() has to be called at
1645 * the end of the page fault to complete the OOM handling.
1647 * Returns %true if an ongoing memcg OOM situation was detected and
1648 * completed, %false otherwise.
1650 bool mem_cgroup_oom_synchronize(bool handle)
1652 struct mem_cgroup *memcg = current->memcg_in_oom;
1653 struct oom_wait_info owait;
1654 bool locked;
1656 /* OOM is global, do not handle */
1657 if (!memcg)
1658 return false;
1660 if (!handle || oom_killer_disabled)
1661 goto cleanup;
1663 owait.memcg = memcg;
1664 owait.wait.flags = 0;
1665 owait.wait.func = memcg_oom_wake_function;
1666 owait.wait.private = current;
1667 INIT_LIST_HEAD(&owait.wait.task_list);
1669 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1670 mem_cgroup_mark_under_oom(memcg);
1672 locked = mem_cgroup_oom_trylock(memcg);
1674 if (locked)
1675 mem_cgroup_oom_notify(memcg);
1677 if (locked && !memcg->oom_kill_disable) {
1678 mem_cgroup_unmark_under_oom(memcg);
1679 finish_wait(&memcg_oom_waitq, &owait.wait);
1680 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1681 current->memcg_oom_order);
1682 } else {
1683 schedule();
1684 mem_cgroup_unmark_under_oom(memcg);
1685 finish_wait(&memcg_oom_waitq, &owait.wait);
1688 if (locked) {
1689 mem_cgroup_oom_unlock(memcg);
1691 * There is no guarantee that an OOM-lock contender
1692 * sees the wakeups triggered by the OOM kill
1693 * uncharges. Wake any sleepers explicitely.
1695 memcg_oom_recover(memcg);
1697 cleanup:
1698 current->memcg_in_oom = NULL;
1699 css_put(&memcg->css);
1700 return true;
1704 * lock_page_memcg - lock a page->mem_cgroup binding
1705 * @page: the page
1707 * This function protects unlocked LRU pages from being moved to
1708 * another cgroup and stabilizes their page->mem_cgroup binding.
1710 void lock_page_memcg(struct page *page)
1712 struct mem_cgroup *memcg;
1713 unsigned long flags;
1716 * The RCU lock is held throughout the transaction. The fast
1717 * path can get away without acquiring the memcg->move_lock
1718 * because page moving starts with an RCU grace period.
1720 rcu_read_lock();
1722 if (mem_cgroup_disabled())
1723 return;
1724 again:
1725 memcg = page->mem_cgroup;
1726 if (unlikely(!memcg))
1727 return;
1729 if (atomic_read(&memcg->moving_account) <= 0)
1730 return;
1732 spin_lock_irqsave(&memcg->move_lock, flags);
1733 if (memcg != page->mem_cgroup) {
1734 spin_unlock_irqrestore(&memcg->move_lock, flags);
1735 goto again;
1739 * When charge migration first begins, we can have locked and
1740 * unlocked page stat updates happening concurrently. Track
1741 * the task who has the lock for unlock_page_memcg().
1743 memcg->move_lock_task = current;
1744 memcg->move_lock_flags = flags;
1746 return;
1748 EXPORT_SYMBOL(lock_page_memcg);
1751 * unlock_page_memcg - unlock a page->mem_cgroup binding
1752 * @page: the page
1754 void unlock_page_memcg(struct page *page)
1756 struct mem_cgroup *memcg = page->mem_cgroup;
1758 if (memcg && memcg->move_lock_task == current) {
1759 unsigned long flags = memcg->move_lock_flags;
1761 memcg->move_lock_task = NULL;
1762 memcg->move_lock_flags = 0;
1764 spin_unlock_irqrestore(&memcg->move_lock, flags);
1767 rcu_read_unlock();
1769 EXPORT_SYMBOL(unlock_page_memcg);
1772 * size of first charge trial. "32" comes from vmscan.c's magic value.
1773 * TODO: maybe necessary to use big numbers in big irons.
1775 #define CHARGE_BATCH 32U
1776 struct memcg_stock_pcp {
1777 struct mem_cgroup *cached; /* this never be root cgroup */
1778 unsigned int nr_pages;
1779 struct work_struct work;
1780 unsigned long flags;
1781 #define FLUSHING_CACHED_CHARGE 0
1783 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1784 static DEFINE_MUTEX(percpu_charge_mutex);
1787 * consume_stock: Try to consume stocked charge on this cpu.
1788 * @memcg: memcg to consume from.
1789 * @nr_pages: how many pages to charge.
1791 * The charges will only happen if @memcg matches the current cpu's memcg
1792 * stock, and at least @nr_pages are available in that stock. Failure to
1793 * service an allocation will refill the stock.
1795 * returns true if successful, false otherwise.
1797 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1799 struct memcg_stock_pcp *stock;
1800 bool ret = false;
1802 if (nr_pages > CHARGE_BATCH)
1803 return ret;
1805 stock = &get_cpu_var(memcg_stock);
1806 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1807 stock->nr_pages -= nr_pages;
1808 ret = true;
1810 put_cpu_var(memcg_stock);
1811 return ret;
1815 * Returns stocks cached in percpu and reset cached information.
1817 static void drain_stock(struct memcg_stock_pcp *stock)
1819 struct mem_cgroup *old = stock->cached;
1821 if (stock->nr_pages) {
1822 page_counter_uncharge(&old->memory, stock->nr_pages);
1823 if (do_memsw_account())
1824 page_counter_uncharge(&old->memsw, stock->nr_pages);
1825 css_put_many(&old->css, stock->nr_pages);
1826 stock->nr_pages = 0;
1828 stock->cached = NULL;
1832 * This must be called under preempt disabled or must be called by
1833 * a thread which is pinned to local cpu.
1835 static void drain_local_stock(struct work_struct *dummy)
1837 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1838 drain_stock(stock);
1839 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1843 * Cache charges(val) to local per_cpu area.
1844 * This will be consumed by consume_stock() function, later.
1846 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1848 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1850 if (stock->cached != memcg) { /* reset if necessary */
1851 drain_stock(stock);
1852 stock->cached = memcg;
1854 stock->nr_pages += nr_pages;
1855 put_cpu_var(memcg_stock);
1859 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1860 * of the hierarchy under it.
1862 static void drain_all_stock(struct mem_cgroup *root_memcg)
1864 int cpu, curcpu;
1866 /* If someone's already draining, avoid adding running more workers. */
1867 if (!mutex_trylock(&percpu_charge_mutex))
1868 return;
1869 /* Notify other cpus that system-wide "drain" is running */
1870 get_online_cpus();
1871 curcpu = get_cpu();
1872 for_each_online_cpu(cpu) {
1873 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1874 struct mem_cgroup *memcg;
1876 memcg = stock->cached;
1877 if (!memcg || !stock->nr_pages)
1878 continue;
1879 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1880 continue;
1881 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1882 if (cpu == curcpu)
1883 drain_local_stock(&stock->work);
1884 else
1885 schedule_work_on(cpu, &stock->work);
1888 put_cpu();
1889 put_online_cpus();
1890 mutex_unlock(&percpu_charge_mutex);
1893 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1894 unsigned long action,
1895 void *hcpu)
1897 int cpu = (unsigned long)hcpu;
1898 struct memcg_stock_pcp *stock;
1900 if (action == CPU_ONLINE)
1901 return NOTIFY_OK;
1903 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1904 return NOTIFY_OK;
1906 stock = &per_cpu(memcg_stock, cpu);
1907 drain_stock(stock);
1908 return NOTIFY_OK;
1911 static void reclaim_high(struct mem_cgroup *memcg,
1912 unsigned int nr_pages,
1913 gfp_t gfp_mask)
1915 do {
1916 if (page_counter_read(&memcg->memory) <= memcg->high)
1917 continue;
1918 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1919 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1920 } while ((memcg = parent_mem_cgroup(memcg)));
1923 static void high_work_func(struct work_struct *work)
1925 struct mem_cgroup *memcg;
1927 memcg = container_of(work, struct mem_cgroup, high_work);
1928 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1932 * Scheduled by try_charge() to be executed from the userland return path
1933 * and reclaims memory over the high limit.
1935 void mem_cgroup_handle_over_high(void)
1937 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1938 struct mem_cgroup *memcg;
1940 if (likely(!nr_pages))
1941 return;
1943 memcg = get_mem_cgroup_from_mm(current->mm);
1944 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1945 css_put(&memcg->css);
1946 current->memcg_nr_pages_over_high = 0;
1949 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1950 unsigned int nr_pages)
1952 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1953 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1954 struct mem_cgroup *mem_over_limit;
1955 struct page_counter *counter;
1956 unsigned long nr_reclaimed;
1957 bool may_swap = true;
1958 bool drained = false;
1960 if (mem_cgroup_is_root(memcg))
1961 return 0;
1962 retry:
1963 if (consume_stock(memcg, nr_pages))
1964 return 0;
1966 if (!do_memsw_account() ||
1967 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1968 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1969 goto done_restock;
1970 if (do_memsw_account())
1971 page_counter_uncharge(&memcg->memsw, batch);
1972 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1973 } else {
1974 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1975 may_swap = false;
1978 if (batch > nr_pages) {
1979 batch = nr_pages;
1980 goto retry;
1984 * Unlike in global OOM situations, memcg is not in a physical
1985 * memory shortage. Allow dying and OOM-killed tasks to
1986 * bypass the last charges so that they can exit quickly and
1987 * free their memory.
1989 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1990 fatal_signal_pending(current) ||
1991 current->flags & PF_EXITING))
1992 goto force;
1994 if (unlikely(task_in_memcg_oom(current)))
1995 goto nomem;
1997 if (!gfpflags_allow_blocking(gfp_mask))
1998 goto nomem;
2000 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2002 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2003 gfp_mask, may_swap);
2005 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2006 goto retry;
2008 if (!drained) {
2009 drain_all_stock(mem_over_limit);
2010 drained = true;
2011 goto retry;
2014 if (gfp_mask & __GFP_NORETRY)
2015 goto nomem;
2017 * Even though the limit is exceeded at this point, reclaim
2018 * may have been able to free some pages. Retry the charge
2019 * before killing the task.
2021 * Only for regular pages, though: huge pages are rather
2022 * unlikely to succeed so close to the limit, and we fall back
2023 * to regular pages anyway in case of failure.
2025 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2026 goto retry;
2028 * At task move, charge accounts can be doubly counted. So, it's
2029 * better to wait until the end of task_move if something is going on.
2031 if (mem_cgroup_wait_acct_move(mem_over_limit))
2032 goto retry;
2034 if (nr_retries--)
2035 goto retry;
2037 if (gfp_mask & __GFP_NOFAIL)
2038 goto force;
2040 if (fatal_signal_pending(current))
2041 goto force;
2043 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2045 mem_cgroup_oom(mem_over_limit, gfp_mask,
2046 get_order(nr_pages * PAGE_SIZE));
2047 nomem:
2048 if (!(gfp_mask & __GFP_NOFAIL))
2049 return -ENOMEM;
2050 force:
2052 * The allocation either can't fail or will lead to more memory
2053 * being freed very soon. Allow memory usage go over the limit
2054 * temporarily by force charging it.
2056 page_counter_charge(&memcg->memory, nr_pages);
2057 if (do_memsw_account())
2058 page_counter_charge(&memcg->memsw, nr_pages);
2059 css_get_many(&memcg->css, nr_pages);
2061 return 0;
2063 done_restock:
2064 css_get_many(&memcg->css, batch);
2065 if (batch > nr_pages)
2066 refill_stock(memcg, batch - nr_pages);
2069 * If the hierarchy is above the normal consumption range, schedule
2070 * reclaim on returning to userland. We can perform reclaim here
2071 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2072 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2073 * not recorded as it most likely matches current's and won't
2074 * change in the meantime. As high limit is checked again before
2075 * reclaim, the cost of mismatch is negligible.
2077 do {
2078 if (page_counter_read(&memcg->memory) > memcg->high) {
2079 /* Don't bother a random interrupted task */
2080 if (in_interrupt()) {
2081 schedule_work(&memcg->high_work);
2082 break;
2084 current->memcg_nr_pages_over_high += batch;
2085 set_notify_resume(current);
2086 break;
2088 } while ((memcg = parent_mem_cgroup(memcg)));
2090 return 0;
2093 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2095 if (mem_cgroup_is_root(memcg))
2096 return;
2098 page_counter_uncharge(&memcg->memory, nr_pages);
2099 if (do_memsw_account())
2100 page_counter_uncharge(&memcg->memsw, nr_pages);
2102 css_put_many(&memcg->css, nr_pages);
2105 static void lock_page_lru(struct page *page, int *isolated)
2107 struct zone *zone = page_zone(page);
2109 spin_lock_irq(&zone->lru_lock);
2110 if (PageLRU(page)) {
2111 struct lruvec *lruvec;
2113 lruvec = mem_cgroup_page_lruvec(page, zone);
2114 ClearPageLRU(page);
2115 del_page_from_lru_list(page, lruvec, page_lru(page));
2116 *isolated = 1;
2117 } else
2118 *isolated = 0;
2121 static void unlock_page_lru(struct page *page, int isolated)
2123 struct zone *zone = page_zone(page);
2125 if (isolated) {
2126 struct lruvec *lruvec;
2128 lruvec = mem_cgroup_page_lruvec(page, zone);
2129 VM_BUG_ON_PAGE(PageLRU(page), page);
2130 SetPageLRU(page);
2131 add_page_to_lru_list(page, lruvec, page_lru(page));
2133 spin_unlock_irq(&zone->lru_lock);
2136 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2137 bool lrucare)
2139 int isolated;
2141 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2144 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2145 * may already be on some other mem_cgroup's LRU. Take care of it.
2147 if (lrucare)
2148 lock_page_lru(page, &isolated);
2151 * Nobody should be changing or seriously looking at
2152 * page->mem_cgroup at this point:
2154 * - the page is uncharged
2156 * - the page is off-LRU
2158 * - an anonymous fault has exclusive page access, except for
2159 * a locked page table
2161 * - a page cache insertion, a swapin fault, or a migration
2162 * have the page locked
2164 page->mem_cgroup = memcg;
2166 if (lrucare)
2167 unlock_page_lru(page, isolated);
2170 #ifndef CONFIG_SLOB
2171 static int memcg_alloc_cache_id(void)
2173 int id, size;
2174 int err;
2176 id = ida_simple_get(&memcg_cache_ida,
2177 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2178 if (id < 0)
2179 return id;
2181 if (id < memcg_nr_cache_ids)
2182 return id;
2185 * There's no space for the new id in memcg_caches arrays,
2186 * so we have to grow them.
2188 down_write(&memcg_cache_ids_sem);
2190 size = 2 * (id + 1);
2191 if (size < MEMCG_CACHES_MIN_SIZE)
2192 size = MEMCG_CACHES_MIN_SIZE;
2193 else if (size > MEMCG_CACHES_MAX_SIZE)
2194 size = MEMCG_CACHES_MAX_SIZE;
2196 err = memcg_update_all_caches(size);
2197 if (!err)
2198 err = memcg_update_all_list_lrus(size);
2199 if (!err)
2200 memcg_nr_cache_ids = size;
2202 up_write(&memcg_cache_ids_sem);
2204 if (err) {
2205 ida_simple_remove(&memcg_cache_ida, id);
2206 return err;
2208 return id;
2211 static void memcg_free_cache_id(int id)
2213 ida_simple_remove(&memcg_cache_ida, id);
2216 struct memcg_kmem_cache_create_work {
2217 struct mem_cgroup *memcg;
2218 struct kmem_cache *cachep;
2219 struct work_struct work;
2222 static void memcg_kmem_cache_create_func(struct work_struct *w)
2224 struct memcg_kmem_cache_create_work *cw =
2225 container_of(w, struct memcg_kmem_cache_create_work, work);
2226 struct mem_cgroup *memcg = cw->memcg;
2227 struct kmem_cache *cachep = cw->cachep;
2229 memcg_create_kmem_cache(memcg, cachep);
2231 css_put(&memcg->css);
2232 kfree(cw);
2236 * Enqueue the creation of a per-memcg kmem_cache.
2238 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2239 struct kmem_cache *cachep)
2241 struct memcg_kmem_cache_create_work *cw;
2243 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2244 if (!cw)
2245 return;
2247 css_get(&memcg->css);
2249 cw->memcg = memcg;
2250 cw->cachep = cachep;
2251 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2253 schedule_work(&cw->work);
2256 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2257 struct kmem_cache *cachep)
2260 * We need to stop accounting when we kmalloc, because if the
2261 * corresponding kmalloc cache is not yet created, the first allocation
2262 * in __memcg_schedule_kmem_cache_create will recurse.
2264 * However, it is better to enclose the whole function. Depending on
2265 * the debugging options enabled, INIT_WORK(), for instance, can
2266 * trigger an allocation. This too, will make us recurse. Because at
2267 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2268 * the safest choice is to do it like this, wrapping the whole function.
2270 current->memcg_kmem_skip_account = 1;
2271 __memcg_schedule_kmem_cache_create(memcg, cachep);
2272 current->memcg_kmem_skip_account = 0;
2276 * Return the kmem_cache we're supposed to use for a slab allocation.
2277 * We try to use the current memcg's version of the cache.
2279 * If the cache does not exist yet, if we are the first user of it,
2280 * we either create it immediately, if possible, or create it asynchronously
2281 * in a workqueue.
2282 * In the latter case, we will let the current allocation go through with
2283 * the original cache.
2285 * Can't be called in interrupt context or from kernel threads.
2286 * This function needs to be called with rcu_read_lock() held.
2288 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2290 struct mem_cgroup *memcg;
2291 struct kmem_cache *memcg_cachep;
2292 int kmemcg_id;
2294 VM_BUG_ON(!is_root_cache(cachep));
2296 if (cachep->flags & SLAB_ACCOUNT)
2297 gfp |= __GFP_ACCOUNT;
2299 if (!(gfp & __GFP_ACCOUNT))
2300 return cachep;
2302 if (current->memcg_kmem_skip_account)
2303 return cachep;
2305 memcg = get_mem_cgroup_from_mm(current->mm);
2306 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2307 if (kmemcg_id < 0)
2308 goto out;
2310 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2311 if (likely(memcg_cachep))
2312 return memcg_cachep;
2315 * If we are in a safe context (can wait, and not in interrupt
2316 * context), we could be be predictable and return right away.
2317 * This would guarantee that the allocation being performed
2318 * already belongs in the new cache.
2320 * However, there are some clashes that can arrive from locking.
2321 * For instance, because we acquire the slab_mutex while doing
2322 * memcg_create_kmem_cache, this means no further allocation
2323 * could happen with the slab_mutex held. So it's better to
2324 * defer everything.
2326 memcg_schedule_kmem_cache_create(memcg, cachep);
2327 out:
2328 css_put(&memcg->css);
2329 return cachep;
2332 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2334 if (!is_root_cache(cachep))
2335 css_put(&cachep->memcg_params.memcg->css);
2338 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2339 struct mem_cgroup *memcg)
2341 unsigned int nr_pages = 1 << order;
2342 struct page_counter *counter;
2343 int ret;
2345 ret = try_charge(memcg, gfp, nr_pages);
2346 if (ret)
2347 return ret;
2349 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2350 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2351 cancel_charge(memcg, nr_pages);
2352 return -ENOMEM;
2355 page->mem_cgroup = memcg;
2357 return 0;
2360 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2362 struct mem_cgroup *memcg;
2363 int ret = 0;
2365 memcg = get_mem_cgroup_from_mm(current->mm);
2366 if (!mem_cgroup_is_root(memcg))
2367 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2368 css_put(&memcg->css);
2369 return ret;
2372 void __memcg_kmem_uncharge(struct page *page, int order)
2374 struct mem_cgroup *memcg = page->mem_cgroup;
2375 unsigned int nr_pages = 1 << order;
2377 if (!memcg)
2378 return;
2380 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2382 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2383 page_counter_uncharge(&memcg->kmem, nr_pages);
2385 page_counter_uncharge(&memcg->memory, nr_pages);
2386 if (do_memsw_account())
2387 page_counter_uncharge(&memcg->memsw, nr_pages);
2389 page->mem_cgroup = NULL;
2390 css_put_many(&memcg->css, nr_pages);
2392 #endif /* !CONFIG_SLOB */
2394 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2397 * Because tail pages are not marked as "used", set it. We're under
2398 * zone->lru_lock and migration entries setup in all page mappings.
2400 void mem_cgroup_split_huge_fixup(struct page *head)
2402 int i;
2404 if (mem_cgroup_disabled())
2405 return;
2407 for (i = 1; i < HPAGE_PMD_NR; i++)
2408 head[i].mem_cgroup = head->mem_cgroup;
2410 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2411 HPAGE_PMD_NR);
2413 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2415 #ifdef CONFIG_MEMCG_SWAP
2416 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2417 bool charge)
2419 int val = (charge) ? 1 : -1;
2420 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2424 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2425 * @entry: swap entry to be moved
2426 * @from: mem_cgroup which the entry is moved from
2427 * @to: mem_cgroup which the entry is moved to
2429 * It succeeds only when the swap_cgroup's record for this entry is the same
2430 * as the mem_cgroup's id of @from.
2432 * Returns 0 on success, -EINVAL on failure.
2434 * The caller must have charged to @to, IOW, called page_counter_charge() about
2435 * both res and memsw, and called css_get().
2437 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2438 struct mem_cgroup *from, struct mem_cgroup *to)
2440 unsigned short old_id, new_id;
2442 old_id = mem_cgroup_id(from);
2443 new_id = mem_cgroup_id(to);
2445 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2446 mem_cgroup_swap_statistics(from, false);
2447 mem_cgroup_swap_statistics(to, true);
2448 return 0;
2450 return -EINVAL;
2452 #else
2453 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2454 struct mem_cgroup *from, struct mem_cgroup *to)
2456 return -EINVAL;
2458 #endif
2460 static DEFINE_MUTEX(memcg_limit_mutex);
2462 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2463 unsigned long limit)
2465 unsigned long curusage;
2466 unsigned long oldusage;
2467 bool enlarge = false;
2468 int retry_count;
2469 int ret;
2472 * For keeping hierarchical_reclaim simple, how long we should retry
2473 * is depends on callers. We set our retry-count to be function
2474 * of # of children which we should visit in this loop.
2476 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2477 mem_cgroup_count_children(memcg);
2479 oldusage = page_counter_read(&memcg->memory);
2481 do {
2482 if (signal_pending(current)) {
2483 ret = -EINTR;
2484 break;
2487 mutex_lock(&memcg_limit_mutex);
2488 if (limit > memcg->memsw.limit) {
2489 mutex_unlock(&memcg_limit_mutex);
2490 ret = -EINVAL;
2491 break;
2493 if (limit > memcg->memory.limit)
2494 enlarge = true;
2495 ret = page_counter_limit(&memcg->memory, limit);
2496 mutex_unlock(&memcg_limit_mutex);
2498 if (!ret)
2499 break;
2501 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2503 curusage = page_counter_read(&memcg->memory);
2504 /* Usage is reduced ? */
2505 if (curusage >= oldusage)
2506 retry_count--;
2507 else
2508 oldusage = curusage;
2509 } while (retry_count);
2511 if (!ret && enlarge)
2512 memcg_oom_recover(memcg);
2514 return ret;
2517 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2518 unsigned long limit)
2520 unsigned long curusage;
2521 unsigned long oldusage;
2522 bool enlarge = false;
2523 int retry_count;
2524 int ret;
2526 /* see mem_cgroup_resize_res_limit */
2527 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2528 mem_cgroup_count_children(memcg);
2530 oldusage = page_counter_read(&memcg->memsw);
2532 do {
2533 if (signal_pending(current)) {
2534 ret = -EINTR;
2535 break;
2538 mutex_lock(&memcg_limit_mutex);
2539 if (limit < memcg->memory.limit) {
2540 mutex_unlock(&memcg_limit_mutex);
2541 ret = -EINVAL;
2542 break;
2544 if (limit > memcg->memsw.limit)
2545 enlarge = true;
2546 ret = page_counter_limit(&memcg->memsw, limit);
2547 mutex_unlock(&memcg_limit_mutex);
2549 if (!ret)
2550 break;
2552 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2554 curusage = page_counter_read(&memcg->memsw);
2555 /* Usage is reduced ? */
2556 if (curusage >= oldusage)
2557 retry_count--;
2558 else
2559 oldusage = curusage;
2560 } while (retry_count);
2562 if (!ret && enlarge)
2563 memcg_oom_recover(memcg);
2565 return ret;
2568 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2569 gfp_t gfp_mask,
2570 unsigned long *total_scanned)
2572 unsigned long nr_reclaimed = 0;
2573 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2574 unsigned long reclaimed;
2575 int loop = 0;
2576 struct mem_cgroup_tree_per_zone *mctz;
2577 unsigned long excess;
2578 unsigned long nr_scanned;
2580 if (order > 0)
2581 return 0;
2583 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2585 * This loop can run a while, specially if mem_cgroup's continuously
2586 * keep exceeding their soft limit and putting the system under
2587 * pressure
2589 do {
2590 if (next_mz)
2591 mz = next_mz;
2592 else
2593 mz = mem_cgroup_largest_soft_limit_node(mctz);
2594 if (!mz)
2595 break;
2597 nr_scanned = 0;
2598 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2599 gfp_mask, &nr_scanned);
2600 nr_reclaimed += reclaimed;
2601 *total_scanned += nr_scanned;
2602 spin_lock_irq(&mctz->lock);
2603 __mem_cgroup_remove_exceeded(mz, mctz);
2606 * If we failed to reclaim anything from this memory cgroup
2607 * it is time to move on to the next cgroup
2609 next_mz = NULL;
2610 if (!reclaimed)
2611 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2613 excess = soft_limit_excess(mz->memcg);
2615 * One school of thought says that we should not add
2616 * back the node to the tree if reclaim returns 0.
2617 * But our reclaim could return 0, simply because due
2618 * to priority we are exposing a smaller subset of
2619 * memory to reclaim from. Consider this as a longer
2620 * term TODO.
2622 /* If excess == 0, no tree ops */
2623 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2624 spin_unlock_irq(&mctz->lock);
2625 css_put(&mz->memcg->css);
2626 loop++;
2628 * Could not reclaim anything and there are no more
2629 * mem cgroups to try or we seem to be looping without
2630 * reclaiming anything.
2632 if (!nr_reclaimed &&
2633 (next_mz == NULL ||
2634 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2635 break;
2636 } while (!nr_reclaimed);
2637 if (next_mz)
2638 css_put(&next_mz->memcg->css);
2639 return nr_reclaimed;
2643 * Test whether @memcg has children, dead or alive. Note that this
2644 * function doesn't care whether @memcg has use_hierarchy enabled and
2645 * returns %true if there are child csses according to the cgroup
2646 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2648 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2650 bool ret;
2652 rcu_read_lock();
2653 ret = css_next_child(NULL, &memcg->css);
2654 rcu_read_unlock();
2655 return ret;
2659 * Reclaims as many pages from the given memcg as possible.
2661 * Caller is responsible for holding css reference for memcg.
2663 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2665 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2667 /* we call try-to-free pages for make this cgroup empty */
2668 lru_add_drain_all();
2669 /* try to free all pages in this cgroup */
2670 while (nr_retries && page_counter_read(&memcg->memory)) {
2671 int progress;
2673 if (signal_pending(current))
2674 return -EINTR;
2676 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2677 GFP_KERNEL, true);
2678 if (!progress) {
2679 nr_retries--;
2680 /* maybe some writeback is necessary */
2681 congestion_wait(BLK_RW_ASYNC, HZ/10);
2686 return 0;
2689 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2690 char *buf, size_t nbytes,
2691 loff_t off)
2693 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2695 if (mem_cgroup_is_root(memcg))
2696 return -EINVAL;
2697 return mem_cgroup_force_empty(memcg) ?: nbytes;
2700 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2701 struct cftype *cft)
2703 return mem_cgroup_from_css(css)->use_hierarchy;
2706 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2707 struct cftype *cft, u64 val)
2709 int retval = 0;
2710 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2711 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2713 if (memcg->use_hierarchy == val)
2714 return 0;
2717 * If parent's use_hierarchy is set, we can't make any modifications
2718 * in the child subtrees. If it is unset, then the change can
2719 * occur, provided the current cgroup has no children.
2721 * For the root cgroup, parent_mem is NULL, we allow value to be
2722 * set if there are no children.
2724 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2725 (val == 1 || val == 0)) {
2726 if (!memcg_has_children(memcg))
2727 memcg->use_hierarchy = val;
2728 else
2729 retval = -EBUSY;
2730 } else
2731 retval = -EINVAL;
2733 return retval;
2736 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2738 struct mem_cgroup *iter;
2739 int i;
2741 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2743 for_each_mem_cgroup_tree(iter, memcg) {
2744 for (i = 0; i < MEMCG_NR_STAT; i++)
2745 stat[i] += mem_cgroup_read_stat(iter, i);
2749 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2751 struct mem_cgroup *iter;
2752 int i;
2754 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2756 for_each_mem_cgroup_tree(iter, memcg) {
2757 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2758 events[i] += mem_cgroup_read_events(iter, i);
2762 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2764 unsigned long val = 0;
2766 if (mem_cgroup_is_root(memcg)) {
2767 struct mem_cgroup *iter;
2769 for_each_mem_cgroup_tree(iter, memcg) {
2770 val += mem_cgroup_read_stat(iter,
2771 MEM_CGROUP_STAT_CACHE);
2772 val += mem_cgroup_read_stat(iter,
2773 MEM_CGROUP_STAT_RSS);
2774 if (swap)
2775 val += mem_cgroup_read_stat(iter,
2776 MEM_CGROUP_STAT_SWAP);
2778 } else {
2779 if (!swap)
2780 val = page_counter_read(&memcg->memory);
2781 else
2782 val = page_counter_read(&memcg->memsw);
2784 return val;
2787 enum {
2788 RES_USAGE,
2789 RES_LIMIT,
2790 RES_MAX_USAGE,
2791 RES_FAILCNT,
2792 RES_SOFT_LIMIT,
2795 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2796 struct cftype *cft)
2798 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2799 struct page_counter *counter;
2801 switch (MEMFILE_TYPE(cft->private)) {
2802 case _MEM:
2803 counter = &memcg->memory;
2804 break;
2805 case _MEMSWAP:
2806 counter = &memcg->memsw;
2807 break;
2808 case _KMEM:
2809 counter = &memcg->kmem;
2810 break;
2811 case _TCP:
2812 counter = &memcg->tcpmem;
2813 break;
2814 default:
2815 BUG();
2818 switch (MEMFILE_ATTR(cft->private)) {
2819 case RES_USAGE:
2820 if (counter == &memcg->memory)
2821 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2822 if (counter == &memcg->memsw)
2823 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2824 return (u64)page_counter_read(counter) * PAGE_SIZE;
2825 case RES_LIMIT:
2826 return (u64)counter->limit * PAGE_SIZE;
2827 case RES_MAX_USAGE:
2828 return (u64)counter->watermark * PAGE_SIZE;
2829 case RES_FAILCNT:
2830 return counter->failcnt;
2831 case RES_SOFT_LIMIT:
2832 return (u64)memcg->soft_limit * PAGE_SIZE;
2833 default:
2834 BUG();
2838 #ifndef CONFIG_SLOB
2839 static int memcg_online_kmem(struct mem_cgroup *memcg)
2841 int memcg_id;
2843 if (cgroup_memory_nokmem)
2844 return 0;
2846 BUG_ON(memcg->kmemcg_id >= 0);
2847 BUG_ON(memcg->kmem_state);
2849 memcg_id = memcg_alloc_cache_id();
2850 if (memcg_id < 0)
2851 return memcg_id;
2853 static_branch_inc(&memcg_kmem_enabled_key);
2855 * A memory cgroup is considered kmem-online as soon as it gets
2856 * kmemcg_id. Setting the id after enabling static branching will
2857 * guarantee no one starts accounting before all call sites are
2858 * patched.
2860 memcg->kmemcg_id = memcg_id;
2861 memcg->kmem_state = KMEM_ONLINE;
2863 return 0;
2866 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2868 struct cgroup_subsys_state *css;
2869 struct mem_cgroup *parent, *child;
2870 int kmemcg_id;
2872 if (memcg->kmem_state != KMEM_ONLINE)
2873 return;
2875 * Clear the online state before clearing memcg_caches array
2876 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2877 * guarantees that no cache will be created for this cgroup
2878 * after we are done (see memcg_create_kmem_cache()).
2880 memcg->kmem_state = KMEM_ALLOCATED;
2882 memcg_deactivate_kmem_caches(memcg);
2884 kmemcg_id = memcg->kmemcg_id;
2885 BUG_ON(kmemcg_id < 0);
2887 parent = parent_mem_cgroup(memcg);
2888 if (!parent)
2889 parent = root_mem_cgroup;
2892 * Change kmemcg_id of this cgroup and all its descendants to the
2893 * parent's id, and then move all entries from this cgroup's list_lrus
2894 * to ones of the parent. After we have finished, all list_lrus
2895 * corresponding to this cgroup are guaranteed to remain empty. The
2896 * ordering is imposed by list_lru_node->lock taken by
2897 * memcg_drain_all_list_lrus().
2899 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2900 css_for_each_descendant_pre(css, &memcg->css) {
2901 child = mem_cgroup_from_css(css);
2902 BUG_ON(child->kmemcg_id != kmemcg_id);
2903 child->kmemcg_id = parent->kmemcg_id;
2904 if (!memcg->use_hierarchy)
2905 break;
2907 rcu_read_unlock();
2909 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2911 memcg_free_cache_id(kmemcg_id);
2914 static void memcg_free_kmem(struct mem_cgroup *memcg)
2916 /* css_alloc() failed, offlining didn't happen */
2917 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2918 memcg_offline_kmem(memcg);
2920 if (memcg->kmem_state == KMEM_ALLOCATED) {
2921 memcg_destroy_kmem_caches(memcg);
2922 static_branch_dec(&memcg_kmem_enabled_key);
2923 WARN_ON(page_counter_read(&memcg->kmem));
2926 #else
2927 static int memcg_online_kmem(struct mem_cgroup *memcg)
2929 return 0;
2931 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2934 static void memcg_free_kmem(struct mem_cgroup *memcg)
2937 #endif /* !CONFIG_SLOB */
2939 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2940 unsigned long limit)
2942 int ret;
2944 mutex_lock(&memcg_limit_mutex);
2945 ret = page_counter_limit(&memcg->kmem, limit);
2946 mutex_unlock(&memcg_limit_mutex);
2947 return ret;
2950 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2952 int ret;
2954 mutex_lock(&memcg_limit_mutex);
2956 ret = page_counter_limit(&memcg->tcpmem, limit);
2957 if (ret)
2958 goto out;
2960 if (!memcg->tcpmem_active) {
2962 * The active flag needs to be written after the static_key
2963 * update. This is what guarantees that the socket activation
2964 * function is the last one to run. See sock_update_memcg() for
2965 * details, and note that we don't mark any socket as belonging
2966 * to this memcg until that flag is up.
2968 * We need to do this, because static_keys will span multiple
2969 * sites, but we can't control their order. If we mark a socket
2970 * as accounted, but the accounting functions are not patched in
2971 * yet, we'll lose accounting.
2973 * We never race with the readers in sock_update_memcg(),
2974 * because when this value change, the code to process it is not
2975 * patched in yet.
2977 static_branch_inc(&memcg_sockets_enabled_key);
2978 memcg->tcpmem_active = true;
2980 out:
2981 mutex_unlock(&memcg_limit_mutex);
2982 return ret;
2986 * The user of this function is...
2987 * RES_LIMIT.
2989 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2990 char *buf, size_t nbytes, loff_t off)
2992 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2993 unsigned long nr_pages;
2994 int ret;
2996 buf = strstrip(buf);
2997 ret = page_counter_memparse(buf, "-1", &nr_pages);
2998 if (ret)
2999 return ret;
3001 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3002 case RES_LIMIT:
3003 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3004 ret = -EINVAL;
3005 break;
3007 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3008 case _MEM:
3009 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3010 break;
3011 case _MEMSWAP:
3012 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3013 break;
3014 case _KMEM:
3015 ret = memcg_update_kmem_limit(memcg, nr_pages);
3016 break;
3017 case _TCP:
3018 ret = memcg_update_tcp_limit(memcg, nr_pages);
3019 break;
3021 break;
3022 case RES_SOFT_LIMIT:
3023 memcg->soft_limit = nr_pages;
3024 ret = 0;
3025 break;
3027 return ret ?: nbytes;
3030 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3031 size_t nbytes, loff_t off)
3033 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3034 struct page_counter *counter;
3036 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3037 case _MEM:
3038 counter = &memcg->memory;
3039 break;
3040 case _MEMSWAP:
3041 counter = &memcg->memsw;
3042 break;
3043 case _KMEM:
3044 counter = &memcg->kmem;
3045 break;
3046 case _TCP:
3047 counter = &memcg->tcpmem;
3048 break;
3049 default:
3050 BUG();
3053 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3054 case RES_MAX_USAGE:
3055 page_counter_reset_watermark(counter);
3056 break;
3057 case RES_FAILCNT:
3058 counter->failcnt = 0;
3059 break;
3060 default:
3061 BUG();
3064 return nbytes;
3067 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3068 struct cftype *cft)
3070 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3073 #ifdef CONFIG_MMU
3074 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3075 struct cftype *cft, u64 val)
3077 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3079 if (val & ~MOVE_MASK)
3080 return -EINVAL;
3083 * No kind of locking is needed in here, because ->can_attach() will
3084 * check this value once in the beginning of the process, and then carry
3085 * on with stale data. This means that changes to this value will only
3086 * affect task migrations starting after the change.
3088 memcg->move_charge_at_immigrate = val;
3089 return 0;
3091 #else
3092 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3093 struct cftype *cft, u64 val)
3095 return -ENOSYS;
3097 #endif
3099 #ifdef CONFIG_NUMA
3100 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3102 struct numa_stat {
3103 const char *name;
3104 unsigned int lru_mask;
3107 static const struct numa_stat stats[] = {
3108 { "total", LRU_ALL },
3109 { "file", LRU_ALL_FILE },
3110 { "anon", LRU_ALL_ANON },
3111 { "unevictable", BIT(LRU_UNEVICTABLE) },
3113 const struct numa_stat *stat;
3114 int nid;
3115 unsigned long nr;
3116 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3118 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3119 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3120 seq_printf(m, "%s=%lu", stat->name, nr);
3121 for_each_node_state(nid, N_MEMORY) {
3122 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3123 stat->lru_mask);
3124 seq_printf(m, " N%d=%lu", nid, nr);
3126 seq_putc(m, '\n');
3129 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3130 struct mem_cgroup *iter;
3132 nr = 0;
3133 for_each_mem_cgroup_tree(iter, memcg)
3134 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3135 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3136 for_each_node_state(nid, N_MEMORY) {
3137 nr = 0;
3138 for_each_mem_cgroup_tree(iter, memcg)
3139 nr += mem_cgroup_node_nr_lru_pages(
3140 iter, nid, stat->lru_mask);
3141 seq_printf(m, " N%d=%lu", nid, nr);
3143 seq_putc(m, '\n');
3146 return 0;
3148 #endif /* CONFIG_NUMA */
3150 static int memcg_stat_show(struct seq_file *m, void *v)
3152 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3153 unsigned long memory, memsw;
3154 struct mem_cgroup *mi;
3155 unsigned int i;
3157 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3158 MEM_CGROUP_STAT_NSTATS);
3159 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3160 MEM_CGROUP_EVENTS_NSTATS);
3161 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3163 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3164 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3165 continue;
3166 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3167 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3170 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3171 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3172 mem_cgroup_read_events(memcg, i));
3174 for (i = 0; i < NR_LRU_LISTS; i++)
3175 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3176 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3178 /* Hierarchical information */
3179 memory = memsw = PAGE_COUNTER_MAX;
3180 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3181 memory = min(memory, mi->memory.limit);
3182 memsw = min(memsw, mi->memsw.limit);
3184 seq_printf(m, "hierarchical_memory_limit %llu\n",
3185 (u64)memory * PAGE_SIZE);
3186 if (do_memsw_account())
3187 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3188 (u64)memsw * PAGE_SIZE);
3190 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3191 unsigned long long val = 0;
3193 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3194 continue;
3195 for_each_mem_cgroup_tree(mi, memcg)
3196 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3197 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3200 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3201 unsigned long long val = 0;
3203 for_each_mem_cgroup_tree(mi, memcg)
3204 val += mem_cgroup_read_events(mi, i);
3205 seq_printf(m, "total_%s %llu\n",
3206 mem_cgroup_events_names[i], val);
3209 for (i = 0; i < NR_LRU_LISTS; i++) {
3210 unsigned long long val = 0;
3212 for_each_mem_cgroup_tree(mi, memcg)
3213 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3214 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3217 #ifdef CONFIG_DEBUG_VM
3219 int nid, zid;
3220 struct mem_cgroup_per_zone *mz;
3221 struct zone_reclaim_stat *rstat;
3222 unsigned long recent_rotated[2] = {0, 0};
3223 unsigned long recent_scanned[2] = {0, 0};
3225 for_each_online_node(nid)
3226 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3227 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3228 rstat = &mz->lruvec.reclaim_stat;
3230 recent_rotated[0] += rstat->recent_rotated[0];
3231 recent_rotated[1] += rstat->recent_rotated[1];
3232 recent_scanned[0] += rstat->recent_scanned[0];
3233 recent_scanned[1] += rstat->recent_scanned[1];
3235 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3236 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3237 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3238 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3240 #endif
3242 return 0;
3245 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3246 struct cftype *cft)
3248 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3250 return mem_cgroup_swappiness(memcg);
3253 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3254 struct cftype *cft, u64 val)
3256 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3258 if (val > 100)
3259 return -EINVAL;
3261 if (css->parent)
3262 memcg->swappiness = val;
3263 else
3264 vm_swappiness = val;
3266 return 0;
3269 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3271 struct mem_cgroup_threshold_ary *t;
3272 unsigned long usage;
3273 int i;
3275 rcu_read_lock();
3276 if (!swap)
3277 t = rcu_dereference(memcg->thresholds.primary);
3278 else
3279 t = rcu_dereference(memcg->memsw_thresholds.primary);
3281 if (!t)
3282 goto unlock;
3284 usage = mem_cgroup_usage(memcg, swap);
3287 * current_threshold points to threshold just below or equal to usage.
3288 * If it's not true, a threshold was crossed after last
3289 * call of __mem_cgroup_threshold().
3291 i = t->current_threshold;
3294 * Iterate backward over array of thresholds starting from
3295 * current_threshold and check if a threshold is crossed.
3296 * If none of thresholds below usage is crossed, we read
3297 * only one element of the array here.
3299 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3300 eventfd_signal(t->entries[i].eventfd, 1);
3302 /* i = current_threshold + 1 */
3303 i++;
3306 * Iterate forward over array of thresholds starting from
3307 * current_threshold+1 and check if a threshold is crossed.
3308 * If none of thresholds above usage is crossed, we read
3309 * only one element of the array here.
3311 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3312 eventfd_signal(t->entries[i].eventfd, 1);
3314 /* Update current_threshold */
3315 t->current_threshold = i - 1;
3316 unlock:
3317 rcu_read_unlock();
3320 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3322 while (memcg) {
3323 __mem_cgroup_threshold(memcg, false);
3324 if (do_memsw_account())
3325 __mem_cgroup_threshold(memcg, true);
3327 memcg = parent_mem_cgroup(memcg);
3331 static int compare_thresholds(const void *a, const void *b)
3333 const struct mem_cgroup_threshold *_a = a;
3334 const struct mem_cgroup_threshold *_b = b;
3336 if (_a->threshold > _b->threshold)
3337 return 1;
3339 if (_a->threshold < _b->threshold)
3340 return -1;
3342 return 0;
3345 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3347 struct mem_cgroup_eventfd_list *ev;
3349 spin_lock(&memcg_oom_lock);
3351 list_for_each_entry(ev, &memcg->oom_notify, list)
3352 eventfd_signal(ev->eventfd, 1);
3354 spin_unlock(&memcg_oom_lock);
3355 return 0;
3358 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3360 struct mem_cgroup *iter;
3362 for_each_mem_cgroup_tree(iter, memcg)
3363 mem_cgroup_oom_notify_cb(iter);
3366 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3367 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3369 struct mem_cgroup_thresholds *thresholds;
3370 struct mem_cgroup_threshold_ary *new;
3371 unsigned long threshold;
3372 unsigned long usage;
3373 int i, size, ret;
3375 ret = page_counter_memparse(args, "-1", &threshold);
3376 if (ret)
3377 return ret;
3379 mutex_lock(&memcg->thresholds_lock);
3381 if (type == _MEM) {
3382 thresholds = &memcg->thresholds;
3383 usage = mem_cgroup_usage(memcg, false);
3384 } else if (type == _MEMSWAP) {
3385 thresholds = &memcg->memsw_thresholds;
3386 usage = mem_cgroup_usage(memcg, true);
3387 } else
3388 BUG();
3390 /* Check if a threshold crossed before adding a new one */
3391 if (thresholds->primary)
3392 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3394 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3396 /* Allocate memory for new array of thresholds */
3397 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3398 GFP_KERNEL);
3399 if (!new) {
3400 ret = -ENOMEM;
3401 goto unlock;
3403 new->size = size;
3405 /* Copy thresholds (if any) to new array */
3406 if (thresholds->primary) {
3407 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3408 sizeof(struct mem_cgroup_threshold));
3411 /* Add new threshold */
3412 new->entries[size - 1].eventfd = eventfd;
3413 new->entries[size - 1].threshold = threshold;
3415 /* Sort thresholds. Registering of new threshold isn't time-critical */
3416 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3417 compare_thresholds, NULL);
3419 /* Find current threshold */
3420 new->current_threshold = -1;
3421 for (i = 0; i < size; i++) {
3422 if (new->entries[i].threshold <= usage) {
3424 * new->current_threshold will not be used until
3425 * rcu_assign_pointer(), so it's safe to increment
3426 * it here.
3428 ++new->current_threshold;
3429 } else
3430 break;
3433 /* Free old spare buffer and save old primary buffer as spare */
3434 kfree(thresholds->spare);
3435 thresholds->spare = thresholds->primary;
3437 rcu_assign_pointer(thresholds->primary, new);
3439 /* To be sure that nobody uses thresholds */
3440 synchronize_rcu();
3442 unlock:
3443 mutex_unlock(&memcg->thresholds_lock);
3445 return ret;
3448 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3449 struct eventfd_ctx *eventfd, const char *args)
3451 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3454 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3455 struct eventfd_ctx *eventfd, const char *args)
3457 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3460 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3461 struct eventfd_ctx *eventfd, enum res_type type)
3463 struct mem_cgroup_thresholds *thresholds;
3464 struct mem_cgroup_threshold_ary *new;
3465 unsigned long usage;
3466 int i, j, size;
3468 mutex_lock(&memcg->thresholds_lock);
3470 if (type == _MEM) {
3471 thresholds = &memcg->thresholds;
3472 usage = mem_cgroup_usage(memcg, false);
3473 } else if (type == _MEMSWAP) {
3474 thresholds = &memcg->memsw_thresholds;
3475 usage = mem_cgroup_usage(memcg, true);
3476 } else
3477 BUG();
3479 if (!thresholds->primary)
3480 goto unlock;
3482 /* Check if a threshold crossed before removing */
3483 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3485 /* Calculate new number of threshold */
3486 size = 0;
3487 for (i = 0; i < thresholds->primary->size; i++) {
3488 if (thresholds->primary->entries[i].eventfd != eventfd)
3489 size++;
3492 new = thresholds->spare;
3494 /* Set thresholds array to NULL if we don't have thresholds */
3495 if (!size) {
3496 kfree(new);
3497 new = NULL;
3498 goto swap_buffers;
3501 new->size = size;
3503 /* Copy thresholds and find current threshold */
3504 new->current_threshold = -1;
3505 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3506 if (thresholds->primary->entries[i].eventfd == eventfd)
3507 continue;
3509 new->entries[j] = thresholds->primary->entries[i];
3510 if (new->entries[j].threshold <= usage) {
3512 * new->current_threshold will not be used
3513 * until rcu_assign_pointer(), so it's safe to increment
3514 * it here.
3516 ++new->current_threshold;
3518 j++;
3521 swap_buffers:
3522 /* Swap primary and spare array */
3523 thresholds->spare = thresholds->primary;
3525 rcu_assign_pointer(thresholds->primary, new);
3527 /* To be sure that nobody uses thresholds */
3528 synchronize_rcu();
3530 /* If all events are unregistered, free the spare array */
3531 if (!new) {
3532 kfree(thresholds->spare);
3533 thresholds->spare = NULL;
3535 unlock:
3536 mutex_unlock(&memcg->thresholds_lock);
3539 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3540 struct eventfd_ctx *eventfd)
3542 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3545 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3546 struct eventfd_ctx *eventfd)
3548 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3551 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3552 struct eventfd_ctx *eventfd, const char *args)
3554 struct mem_cgroup_eventfd_list *event;
3556 event = kmalloc(sizeof(*event), GFP_KERNEL);
3557 if (!event)
3558 return -ENOMEM;
3560 spin_lock(&memcg_oom_lock);
3562 event->eventfd = eventfd;
3563 list_add(&event->list, &memcg->oom_notify);
3565 /* already in OOM ? */
3566 if (memcg->under_oom)
3567 eventfd_signal(eventfd, 1);
3568 spin_unlock(&memcg_oom_lock);
3570 return 0;
3573 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3574 struct eventfd_ctx *eventfd)
3576 struct mem_cgroup_eventfd_list *ev, *tmp;
3578 spin_lock(&memcg_oom_lock);
3580 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3581 if (ev->eventfd == eventfd) {
3582 list_del(&ev->list);
3583 kfree(ev);
3587 spin_unlock(&memcg_oom_lock);
3590 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3592 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3594 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3595 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3596 return 0;
3599 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3600 struct cftype *cft, u64 val)
3602 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3604 /* cannot set to root cgroup and only 0 and 1 are allowed */
3605 if (!css->parent || !((val == 0) || (val == 1)))
3606 return -EINVAL;
3608 memcg->oom_kill_disable = val;
3609 if (!val)
3610 memcg_oom_recover(memcg);
3612 return 0;
3615 #ifdef CONFIG_CGROUP_WRITEBACK
3617 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3619 return &memcg->cgwb_list;
3622 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3624 return wb_domain_init(&memcg->cgwb_domain, gfp);
3627 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3629 wb_domain_exit(&memcg->cgwb_domain);
3632 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3634 wb_domain_size_changed(&memcg->cgwb_domain);
3637 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3639 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3641 if (!memcg->css.parent)
3642 return NULL;
3644 return &memcg->cgwb_domain;
3648 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3649 * @wb: bdi_writeback in question
3650 * @pfilepages: out parameter for number of file pages
3651 * @pheadroom: out parameter for number of allocatable pages according to memcg
3652 * @pdirty: out parameter for number of dirty pages
3653 * @pwriteback: out parameter for number of pages under writeback
3655 * Determine the numbers of file, headroom, dirty, and writeback pages in
3656 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3657 * is a bit more involved.
3659 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3660 * headroom is calculated as the lowest headroom of itself and the
3661 * ancestors. Note that this doesn't consider the actual amount of
3662 * available memory in the system. The caller should further cap
3663 * *@pheadroom accordingly.
3665 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3666 unsigned long *pheadroom, unsigned long *pdirty,
3667 unsigned long *pwriteback)
3669 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3670 struct mem_cgroup *parent;
3672 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3674 /* this should eventually include NR_UNSTABLE_NFS */
3675 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3676 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3677 (1 << LRU_ACTIVE_FILE));
3678 *pheadroom = PAGE_COUNTER_MAX;
3680 while ((parent = parent_mem_cgroup(memcg))) {
3681 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3682 unsigned long used = page_counter_read(&memcg->memory);
3684 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3685 memcg = parent;
3689 #else /* CONFIG_CGROUP_WRITEBACK */
3691 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3693 return 0;
3696 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3700 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3704 #endif /* CONFIG_CGROUP_WRITEBACK */
3707 * DO NOT USE IN NEW FILES.
3709 * "cgroup.event_control" implementation.
3711 * This is way over-engineered. It tries to support fully configurable
3712 * events for each user. Such level of flexibility is completely
3713 * unnecessary especially in the light of the planned unified hierarchy.
3715 * Please deprecate this and replace with something simpler if at all
3716 * possible.
3720 * Unregister event and free resources.
3722 * Gets called from workqueue.
3724 static void memcg_event_remove(struct work_struct *work)
3726 struct mem_cgroup_event *event =
3727 container_of(work, struct mem_cgroup_event, remove);
3728 struct mem_cgroup *memcg = event->memcg;
3730 remove_wait_queue(event->wqh, &event->wait);
3732 event->unregister_event(memcg, event->eventfd);
3734 /* Notify userspace the event is going away. */
3735 eventfd_signal(event->eventfd, 1);
3737 eventfd_ctx_put(event->eventfd);
3738 kfree(event);
3739 css_put(&memcg->css);
3743 * Gets called on POLLHUP on eventfd when user closes it.
3745 * Called with wqh->lock held and interrupts disabled.
3747 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3748 int sync, void *key)
3750 struct mem_cgroup_event *event =
3751 container_of(wait, struct mem_cgroup_event, wait);
3752 struct mem_cgroup *memcg = event->memcg;
3753 unsigned long flags = (unsigned long)key;
3755 if (flags & POLLHUP) {
3757 * If the event has been detached at cgroup removal, we
3758 * can simply return knowing the other side will cleanup
3759 * for us.
3761 * We can't race against event freeing since the other
3762 * side will require wqh->lock via remove_wait_queue(),
3763 * which we hold.
3765 spin_lock(&memcg->event_list_lock);
3766 if (!list_empty(&event->list)) {
3767 list_del_init(&event->list);
3769 * We are in atomic context, but cgroup_event_remove()
3770 * may sleep, so we have to call it in workqueue.
3772 schedule_work(&event->remove);
3774 spin_unlock(&memcg->event_list_lock);
3777 return 0;
3780 static void memcg_event_ptable_queue_proc(struct file *file,
3781 wait_queue_head_t *wqh, poll_table *pt)
3783 struct mem_cgroup_event *event =
3784 container_of(pt, struct mem_cgroup_event, pt);
3786 event->wqh = wqh;
3787 add_wait_queue(wqh, &event->wait);
3791 * DO NOT USE IN NEW FILES.
3793 * Parse input and register new cgroup event handler.
3795 * Input must be in format '<event_fd> <control_fd> <args>'.
3796 * Interpretation of args is defined by control file implementation.
3798 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3799 char *buf, size_t nbytes, loff_t off)
3801 struct cgroup_subsys_state *css = of_css(of);
3802 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3803 struct mem_cgroup_event *event;
3804 struct cgroup_subsys_state *cfile_css;
3805 unsigned int efd, cfd;
3806 struct fd efile;
3807 struct fd cfile;
3808 const char *name;
3809 char *endp;
3810 int ret;
3812 buf = strstrip(buf);
3814 efd = simple_strtoul(buf, &endp, 10);
3815 if (*endp != ' ')
3816 return -EINVAL;
3817 buf = endp + 1;
3819 cfd = simple_strtoul(buf, &endp, 10);
3820 if ((*endp != ' ') && (*endp != '\0'))
3821 return -EINVAL;
3822 buf = endp + 1;
3824 event = kzalloc(sizeof(*event), GFP_KERNEL);
3825 if (!event)
3826 return -ENOMEM;
3828 event->memcg = memcg;
3829 INIT_LIST_HEAD(&event->list);
3830 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3831 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3832 INIT_WORK(&event->remove, memcg_event_remove);
3834 efile = fdget(efd);
3835 if (!efile.file) {
3836 ret = -EBADF;
3837 goto out_kfree;
3840 event->eventfd = eventfd_ctx_fileget(efile.file);
3841 if (IS_ERR(event->eventfd)) {
3842 ret = PTR_ERR(event->eventfd);
3843 goto out_put_efile;
3846 cfile = fdget(cfd);
3847 if (!cfile.file) {
3848 ret = -EBADF;
3849 goto out_put_eventfd;
3852 /* the process need read permission on control file */
3853 /* AV: shouldn't we check that it's been opened for read instead? */
3854 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3855 if (ret < 0)
3856 goto out_put_cfile;
3859 * Determine the event callbacks and set them in @event. This used
3860 * to be done via struct cftype but cgroup core no longer knows
3861 * about these events. The following is crude but the whole thing
3862 * is for compatibility anyway.
3864 * DO NOT ADD NEW FILES.
3866 name = cfile.file->f_path.dentry->d_name.name;
3868 if (!strcmp(name, "memory.usage_in_bytes")) {
3869 event->register_event = mem_cgroup_usage_register_event;
3870 event->unregister_event = mem_cgroup_usage_unregister_event;
3871 } else if (!strcmp(name, "memory.oom_control")) {
3872 event->register_event = mem_cgroup_oom_register_event;
3873 event->unregister_event = mem_cgroup_oom_unregister_event;
3874 } else if (!strcmp(name, "memory.pressure_level")) {
3875 event->register_event = vmpressure_register_event;
3876 event->unregister_event = vmpressure_unregister_event;
3877 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3878 event->register_event = memsw_cgroup_usage_register_event;
3879 event->unregister_event = memsw_cgroup_usage_unregister_event;
3880 } else {
3881 ret = -EINVAL;
3882 goto out_put_cfile;
3886 * Verify @cfile should belong to @css. Also, remaining events are
3887 * automatically removed on cgroup destruction but the removal is
3888 * asynchronous, so take an extra ref on @css.
3890 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3891 &memory_cgrp_subsys);
3892 ret = -EINVAL;
3893 if (IS_ERR(cfile_css))
3894 goto out_put_cfile;
3895 if (cfile_css != css) {
3896 css_put(cfile_css);
3897 goto out_put_cfile;
3900 ret = event->register_event(memcg, event->eventfd, buf);
3901 if (ret)
3902 goto out_put_css;
3904 efile.file->f_op->poll(efile.file, &event->pt);
3906 spin_lock(&memcg->event_list_lock);
3907 list_add(&event->list, &memcg->event_list);
3908 spin_unlock(&memcg->event_list_lock);
3910 fdput(cfile);
3911 fdput(efile);
3913 return nbytes;
3915 out_put_css:
3916 css_put(css);
3917 out_put_cfile:
3918 fdput(cfile);
3919 out_put_eventfd:
3920 eventfd_ctx_put(event->eventfd);
3921 out_put_efile:
3922 fdput(efile);
3923 out_kfree:
3924 kfree(event);
3926 return ret;
3929 static struct cftype mem_cgroup_legacy_files[] = {
3931 .name = "usage_in_bytes",
3932 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3933 .read_u64 = mem_cgroup_read_u64,
3936 .name = "max_usage_in_bytes",
3937 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3938 .write = mem_cgroup_reset,
3939 .read_u64 = mem_cgroup_read_u64,
3942 .name = "limit_in_bytes",
3943 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3944 .write = mem_cgroup_write,
3945 .read_u64 = mem_cgroup_read_u64,
3948 .name = "soft_limit_in_bytes",
3949 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3950 .write = mem_cgroup_write,
3951 .read_u64 = mem_cgroup_read_u64,
3954 .name = "failcnt",
3955 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3956 .write = mem_cgroup_reset,
3957 .read_u64 = mem_cgroup_read_u64,
3960 .name = "stat",
3961 .seq_show = memcg_stat_show,
3964 .name = "force_empty",
3965 .write = mem_cgroup_force_empty_write,
3968 .name = "use_hierarchy",
3969 .write_u64 = mem_cgroup_hierarchy_write,
3970 .read_u64 = mem_cgroup_hierarchy_read,
3973 .name = "cgroup.event_control", /* XXX: for compat */
3974 .write = memcg_write_event_control,
3975 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3978 .name = "swappiness",
3979 .read_u64 = mem_cgroup_swappiness_read,
3980 .write_u64 = mem_cgroup_swappiness_write,
3983 .name = "move_charge_at_immigrate",
3984 .read_u64 = mem_cgroup_move_charge_read,
3985 .write_u64 = mem_cgroup_move_charge_write,
3988 .name = "oom_control",
3989 .seq_show = mem_cgroup_oom_control_read,
3990 .write_u64 = mem_cgroup_oom_control_write,
3991 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3994 .name = "pressure_level",
3996 #ifdef CONFIG_NUMA
3998 .name = "numa_stat",
3999 .seq_show = memcg_numa_stat_show,
4001 #endif
4003 .name = "kmem.limit_in_bytes",
4004 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4005 .write = mem_cgroup_write,
4006 .read_u64 = mem_cgroup_read_u64,
4009 .name = "kmem.usage_in_bytes",
4010 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4011 .read_u64 = mem_cgroup_read_u64,
4014 .name = "kmem.failcnt",
4015 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4016 .write = mem_cgroup_reset,
4017 .read_u64 = mem_cgroup_read_u64,
4020 .name = "kmem.max_usage_in_bytes",
4021 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4022 .write = mem_cgroup_reset,
4023 .read_u64 = mem_cgroup_read_u64,
4025 #ifdef CONFIG_SLABINFO
4027 .name = "kmem.slabinfo",
4028 .seq_start = slab_start,
4029 .seq_next = slab_next,
4030 .seq_stop = slab_stop,
4031 .seq_show = memcg_slab_show,
4033 #endif
4035 .name = "kmem.tcp.limit_in_bytes",
4036 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4037 .write = mem_cgroup_write,
4038 .read_u64 = mem_cgroup_read_u64,
4041 .name = "kmem.tcp.usage_in_bytes",
4042 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4043 .read_u64 = mem_cgroup_read_u64,
4046 .name = "kmem.tcp.failcnt",
4047 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4048 .write = mem_cgroup_reset,
4049 .read_u64 = mem_cgroup_read_u64,
4052 .name = "kmem.tcp.max_usage_in_bytes",
4053 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4054 .write = mem_cgroup_reset,
4055 .read_u64 = mem_cgroup_read_u64,
4057 { }, /* terminate */
4060 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4062 struct mem_cgroup_per_node *pn;
4063 struct mem_cgroup_per_zone *mz;
4064 int zone, tmp = node;
4066 * This routine is called against possible nodes.
4067 * But it's BUG to call kmalloc() against offline node.
4069 * TODO: this routine can waste much memory for nodes which will
4070 * never be onlined. It's better to use memory hotplug callback
4071 * function.
4073 if (!node_state(node, N_NORMAL_MEMORY))
4074 tmp = -1;
4075 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4076 if (!pn)
4077 return 1;
4079 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4080 mz = &pn->zoneinfo[zone];
4081 lruvec_init(&mz->lruvec);
4082 mz->usage_in_excess = 0;
4083 mz->on_tree = false;
4084 mz->memcg = memcg;
4086 memcg->nodeinfo[node] = pn;
4087 return 0;
4090 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4092 kfree(memcg->nodeinfo[node]);
4095 static void mem_cgroup_free(struct mem_cgroup *memcg)
4097 int node;
4099 memcg_wb_domain_exit(memcg);
4100 for_each_node(node)
4101 free_mem_cgroup_per_zone_info(memcg, node);
4102 free_percpu(memcg->stat);
4103 kfree(memcg);
4106 static struct mem_cgroup *mem_cgroup_alloc(void)
4108 struct mem_cgroup *memcg;
4109 size_t size;
4110 int node;
4112 size = sizeof(struct mem_cgroup);
4113 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4115 memcg = kzalloc(size, GFP_KERNEL);
4116 if (!memcg)
4117 return NULL;
4119 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4120 if (!memcg->stat)
4121 goto fail;
4123 for_each_node(node)
4124 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4125 goto fail;
4127 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4128 goto fail;
4130 INIT_WORK(&memcg->high_work, high_work_func);
4131 memcg->last_scanned_node = MAX_NUMNODES;
4132 INIT_LIST_HEAD(&memcg->oom_notify);
4133 mutex_init(&memcg->thresholds_lock);
4134 spin_lock_init(&memcg->move_lock);
4135 vmpressure_init(&memcg->vmpressure);
4136 INIT_LIST_HEAD(&memcg->event_list);
4137 spin_lock_init(&memcg->event_list_lock);
4138 memcg->socket_pressure = jiffies;
4139 #ifndef CONFIG_SLOB
4140 memcg->kmemcg_id = -1;
4141 #endif
4142 #ifdef CONFIG_CGROUP_WRITEBACK
4143 INIT_LIST_HEAD(&memcg->cgwb_list);
4144 #endif
4145 return memcg;
4146 fail:
4147 mem_cgroup_free(memcg);
4148 return NULL;
4151 static struct cgroup_subsys_state * __ref
4152 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4154 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4155 struct mem_cgroup *memcg;
4156 long error = -ENOMEM;
4158 memcg = mem_cgroup_alloc();
4159 if (!memcg)
4160 return ERR_PTR(error);
4162 memcg->high = PAGE_COUNTER_MAX;
4163 memcg->soft_limit = PAGE_COUNTER_MAX;
4164 if (parent) {
4165 memcg->swappiness = mem_cgroup_swappiness(parent);
4166 memcg->oom_kill_disable = parent->oom_kill_disable;
4168 if (parent && parent->use_hierarchy) {
4169 memcg->use_hierarchy = true;
4170 page_counter_init(&memcg->memory, &parent->memory);
4171 page_counter_init(&memcg->swap, &parent->swap);
4172 page_counter_init(&memcg->memsw, &parent->memsw);
4173 page_counter_init(&memcg->kmem, &parent->kmem);
4174 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4175 } else {
4176 page_counter_init(&memcg->memory, NULL);
4177 page_counter_init(&memcg->swap, NULL);
4178 page_counter_init(&memcg->memsw, NULL);
4179 page_counter_init(&memcg->kmem, NULL);
4180 page_counter_init(&memcg->tcpmem, NULL);
4182 * Deeper hierachy with use_hierarchy == false doesn't make
4183 * much sense so let cgroup subsystem know about this
4184 * unfortunate state in our controller.
4186 if (parent != root_mem_cgroup)
4187 memory_cgrp_subsys.broken_hierarchy = true;
4190 /* The following stuff does not apply to the root */
4191 if (!parent) {
4192 root_mem_cgroup = memcg;
4193 return &memcg->css;
4196 error = memcg_online_kmem(memcg);
4197 if (error)
4198 goto fail;
4200 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4201 static_branch_inc(&memcg_sockets_enabled_key);
4203 return &memcg->css;
4204 fail:
4205 mem_cgroup_free(memcg);
4206 return NULL;
4209 static int
4210 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4212 if (css->id > MEM_CGROUP_ID_MAX)
4213 return -ENOSPC;
4215 return 0;
4218 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4220 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4221 struct mem_cgroup_event *event, *tmp;
4224 * Unregister events and notify userspace.
4225 * Notify userspace about cgroup removing only after rmdir of cgroup
4226 * directory to avoid race between userspace and kernelspace.
4228 spin_lock(&memcg->event_list_lock);
4229 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4230 list_del_init(&event->list);
4231 schedule_work(&event->remove);
4233 spin_unlock(&memcg->event_list_lock);
4235 memcg_offline_kmem(memcg);
4236 wb_memcg_offline(memcg);
4239 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4241 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4243 invalidate_reclaim_iterators(memcg);
4246 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4248 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4250 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4251 static_branch_dec(&memcg_sockets_enabled_key);
4253 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4254 static_branch_dec(&memcg_sockets_enabled_key);
4256 vmpressure_cleanup(&memcg->vmpressure);
4257 cancel_work_sync(&memcg->high_work);
4258 mem_cgroup_remove_from_trees(memcg);
4259 memcg_free_kmem(memcg);
4260 mem_cgroup_free(memcg);
4264 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4265 * @css: the target css
4267 * Reset the states of the mem_cgroup associated with @css. This is
4268 * invoked when the userland requests disabling on the default hierarchy
4269 * but the memcg is pinned through dependency. The memcg should stop
4270 * applying policies and should revert to the vanilla state as it may be
4271 * made visible again.
4273 * The current implementation only resets the essential configurations.
4274 * This needs to be expanded to cover all the visible parts.
4276 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4278 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4280 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4281 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4282 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4283 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4284 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4285 memcg->low = 0;
4286 memcg->high = PAGE_COUNTER_MAX;
4287 memcg->soft_limit = PAGE_COUNTER_MAX;
4288 memcg_wb_domain_size_changed(memcg);
4291 #ifdef CONFIG_MMU
4292 /* Handlers for move charge at task migration. */
4293 static int mem_cgroup_do_precharge(unsigned long count)
4295 int ret;
4297 /* Try a single bulk charge without reclaim first, kswapd may wake */
4298 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4299 if (!ret) {
4300 mc.precharge += count;
4301 return ret;
4304 /* Try charges one by one with reclaim */
4305 while (count--) {
4306 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4307 if (ret)
4308 return ret;
4309 mc.precharge++;
4310 cond_resched();
4312 return 0;
4315 union mc_target {
4316 struct page *page;
4317 swp_entry_t ent;
4320 enum mc_target_type {
4321 MC_TARGET_NONE = 0,
4322 MC_TARGET_PAGE,
4323 MC_TARGET_SWAP,
4326 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4327 unsigned long addr, pte_t ptent)
4329 struct page *page = vm_normal_page(vma, addr, ptent);
4331 if (!page || !page_mapped(page))
4332 return NULL;
4333 if (PageAnon(page)) {
4334 if (!(mc.flags & MOVE_ANON))
4335 return NULL;
4336 } else {
4337 if (!(mc.flags & MOVE_FILE))
4338 return NULL;
4340 if (!get_page_unless_zero(page))
4341 return NULL;
4343 return page;
4346 #ifdef CONFIG_SWAP
4347 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4348 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4350 struct page *page = NULL;
4351 swp_entry_t ent = pte_to_swp_entry(ptent);
4353 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4354 return NULL;
4356 * Because lookup_swap_cache() updates some statistics counter,
4357 * we call find_get_page() with swapper_space directly.
4359 page = find_get_page(swap_address_space(ent), ent.val);
4360 if (do_memsw_account())
4361 entry->val = ent.val;
4363 return page;
4365 #else
4366 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4367 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4369 return NULL;
4371 #endif
4373 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4374 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4376 struct page *page = NULL;
4377 struct address_space *mapping;
4378 pgoff_t pgoff;
4380 if (!vma->vm_file) /* anonymous vma */
4381 return NULL;
4382 if (!(mc.flags & MOVE_FILE))
4383 return NULL;
4385 mapping = vma->vm_file->f_mapping;
4386 pgoff = linear_page_index(vma, addr);
4388 /* page is moved even if it's not RSS of this task(page-faulted). */
4389 #ifdef CONFIG_SWAP
4390 /* shmem/tmpfs may report page out on swap: account for that too. */
4391 if (shmem_mapping(mapping)) {
4392 page = find_get_entry(mapping, pgoff);
4393 if (radix_tree_exceptional_entry(page)) {
4394 swp_entry_t swp = radix_to_swp_entry(page);
4395 if (do_memsw_account())
4396 *entry = swp;
4397 page = find_get_page(swap_address_space(swp), swp.val);
4399 } else
4400 page = find_get_page(mapping, pgoff);
4401 #else
4402 page = find_get_page(mapping, pgoff);
4403 #endif
4404 return page;
4408 * mem_cgroup_move_account - move account of the page
4409 * @page: the page
4410 * @nr_pages: number of regular pages (>1 for huge pages)
4411 * @from: mem_cgroup which the page is moved from.
4412 * @to: mem_cgroup which the page is moved to. @from != @to.
4414 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4416 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4417 * from old cgroup.
4419 static int mem_cgroup_move_account(struct page *page,
4420 bool compound,
4421 struct mem_cgroup *from,
4422 struct mem_cgroup *to)
4424 unsigned long flags;
4425 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4426 int ret;
4427 bool anon;
4429 VM_BUG_ON(from == to);
4430 VM_BUG_ON_PAGE(PageLRU(page), page);
4431 VM_BUG_ON(compound && !PageTransHuge(page));
4434 * Prevent mem_cgroup_migrate() from looking at
4435 * page->mem_cgroup of its source page while we change it.
4437 ret = -EBUSY;
4438 if (!trylock_page(page))
4439 goto out;
4441 ret = -EINVAL;
4442 if (page->mem_cgroup != from)
4443 goto out_unlock;
4445 anon = PageAnon(page);
4447 spin_lock_irqsave(&from->move_lock, flags);
4449 if (!anon && page_mapped(page)) {
4450 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4451 nr_pages);
4452 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4453 nr_pages);
4457 * move_lock grabbed above and caller set from->moving_account, so
4458 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4459 * So mapping should be stable for dirty pages.
4461 if (!anon && PageDirty(page)) {
4462 struct address_space *mapping = page_mapping(page);
4464 if (mapping_cap_account_dirty(mapping)) {
4465 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4466 nr_pages);
4467 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4468 nr_pages);
4472 if (PageWriteback(page)) {
4473 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4474 nr_pages);
4475 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4476 nr_pages);
4480 * It is safe to change page->mem_cgroup here because the page
4481 * is referenced, charged, and isolated - we can't race with
4482 * uncharging, charging, migration, or LRU putback.
4485 /* caller should have done css_get */
4486 page->mem_cgroup = to;
4487 spin_unlock_irqrestore(&from->move_lock, flags);
4489 ret = 0;
4491 local_irq_disable();
4492 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4493 memcg_check_events(to, page);
4494 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4495 memcg_check_events(from, page);
4496 local_irq_enable();
4497 out_unlock:
4498 unlock_page(page);
4499 out:
4500 return ret;
4504 * get_mctgt_type - get target type of moving charge
4505 * @vma: the vma the pte to be checked belongs
4506 * @addr: the address corresponding to the pte to be checked
4507 * @ptent: the pte to be checked
4508 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4510 * Returns
4511 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4512 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4513 * move charge. if @target is not NULL, the page is stored in target->page
4514 * with extra refcnt got(Callers should handle it).
4515 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4516 * target for charge migration. if @target is not NULL, the entry is stored
4517 * in target->ent.
4519 * Called with pte lock held.
4522 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4523 unsigned long addr, pte_t ptent, union mc_target *target)
4525 struct page *page = NULL;
4526 enum mc_target_type ret = MC_TARGET_NONE;
4527 swp_entry_t ent = { .val = 0 };
4529 if (pte_present(ptent))
4530 page = mc_handle_present_pte(vma, addr, ptent);
4531 else if (is_swap_pte(ptent))
4532 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4533 else if (pte_none(ptent))
4534 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4536 if (!page && !ent.val)
4537 return ret;
4538 if (page) {
4540 * Do only loose check w/o serialization.
4541 * mem_cgroup_move_account() checks the page is valid or
4542 * not under LRU exclusion.
4544 if (page->mem_cgroup == mc.from) {
4545 ret = MC_TARGET_PAGE;
4546 if (target)
4547 target->page = page;
4549 if (!ret || !target)
4550 put_page(page);
4552 /* There is a swap entry and a page doesn't exist or isn't charged */
4553 if (ent.val && !ret &&
4554 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4555 ret = MC_TARGET_SWAP;
4556 if (target)
4557 target->ent = ent;
4559 return ret;
4562 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4564 * We don't consider swapping or file mapped pages because THP does not
4565 * support them for now.
4566 * Caller should make sure that pmd_trans_huge(pmd) is true.
4568 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4569 unsigned long addr, pmd_t pmd, union mc_target *target)
4571 struct page *page = NULL;
4572 enum mc_target_type ret = MC_TARGET_NONE;
4574 page = pmd_page(pmd);
4575 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4576 if (!(mc.flags & MOVE_ANON))
4577 return ret;
4578 if (page->mem_cgroup == mc.from) {
4579 ret = MC_TARGET_PAGE;
4580 if (target) {
4581 get_page(page);
4582 target->page = page;
4585 return ret;
4587 #else
4588 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4589 unsigned long addr, pmd_t pmd, union mc_target *target)
4591 return MC_TARGET_NONE;
4593 #endif
4595 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4596 unsigned long addr, unsigned long end,
4597 struct mm_walk *walk)
4599 struct vm_area_struct *vma = walk->vma;
4600 pte_t *pte;
4601 spinlock_t *ptl;
4603 ptl = pmd_trans_huge_lock(pmd, vma);
4604 if (ptl) {
4605 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4606 mc.precharge += HPAGE_PMD_NR;
4607 spin_unlock(ptl);
4608 return 0;
4611 if (pmd_trans_unstable(pmd))
4612 return 0;
4613 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4614 for (; addr != end; pte++, addr += PAGE_SIZE)
4615 if (get_mctgt_type(vma, addr, *pte, NULL))
4616 mc.precharge++; /* increment precharge temporarily */
4617 pte_unmap_unlock(pte - 1, ptl);
4618 cond_resched();
4620 return 0;
4623 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4625 unsigned long precharge;
4627 struct mm_walk mem_cgroup_count_precharge_walk = {
4628 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4629 .mm = mm,
4631 down_read(&mm->mmap_sem);
4632 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4633 up_read(&mm->mmap_sem);
4635 precharge = mc.precharge;
4636 mc.precharge = 0;
4638 return precharge;
4641 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4643 unsigned long precharge = mem_cgroup_count_precharge(mm);
4645 VM_BUG_ON(mc.moving_task);
4646 mc.moving_task = current;
4647 return mem_cgroup_do_precharge(precharge);
4650 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4651 static void __mem_cgroup_clear_mc(void)
4653 struct mem_cgroup *from = mc.from;
4654 struct mem_cgroup *to = mc.to;
4656 /* we must uncharge all the leftover precharges from mc.to */
4657 if (mc.precharge) {
4658 cancel_charge(mc.to, mc.precharge);
4659 mc.precharge = 0;
4662 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4663 * we must uncharge here.
4665 if (mc.moved_charge) {
4666 cancel_charge(mc.from, mc.moved_charge);
4667 mc.moved_charge = 0;
4669 /* we must fixup refcnts and charges */
4670 if (mc.moved_swap) {
4671 /* uncharge swap account from the old cgroup */
4672 if (!mem_cgroup_is_root(mc.from))
4673 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4676 * we charged both to->memory and to->memsw, so we
4677 * should uncharge to->memory.
4679 if (!mem_cgroup_is_root(mc.to))
4680 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4682 css_put_many(&mc.from->css, mc.moved_swap);
4684 /* we've already done css_get(mc.to) */
4685 mc.moved_swap = 0;
4687 memcg_oom_recover(from);
4688 memcg_oom_recover(to);
4689 wake_up_all(&mc.waitq);
4692 static void mem_cgroup_clear_mc(void)
4694 struct mm_struct *mm = mc.mm;
4697 * we must clear moving_task before waking up waiters at the end of
4698 * task migration.
4700 mc.moving_task = NULL;
4701 __mem_cgroup_clear_mc();
4702 spin_lock(&mc.lock);
4703 mc.from = NULL;
4704 mc.to = NULL;
4705 mc.mm = NULL;
4706 spin_unlock(&mc.lock);
4708 mmput(mm);
4711 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4713 struct cgroup_subsys_state *css;
4714 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4715 struct mem_cgroup *from;
4716 struct task_struct *leader, *p;
4717 struct mm_struct *mm;
4718 unsigned long move_flags;
4719 int ret = 0;
4721 /* charge immigration isn't supported on the default hierarchy */
4722 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4723 return 0;
4726 * Multi-process migrations only happen on the default hierarchy
4727 * where charge immigration is not used. Perform charge
4728 * immigration if @tset contains a leader and whine if there are
4729 * multiple.
4731 p = NULL;
4732 cgroup_taskset_for_each_leader(leader, css, tset) {
4733 WARN_ON_ONCE(p);
4734 p = leader;
4735 memcg = mem_cgroup_from_css(css);
4737 if (!p)
4738 return 0;
4741 * We are now commited to this value whatever it is. Changes in this
4742 * tunable will only affect upcoming migrations, not the current one.
4743 * So we need to save it, and keep it going.
4745 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4746 if (!move_flags)
4747 return 0;
4749 from = mem_cgroup_from_task(p);
4751 VM_BUG_ON(from == memcg);
4753 mm = get_task_mm(p);
4754 if (!mm)
4755 return 0;
4756 /* We move charges only when we move a owner of the mm */
4757 if (mm->owner == p) {
4758 VM_BUG_ON(mc.from);
4759 VM_BUG_ON(mc.to);
4760 VM_BUG_ON(mc.precharge);
4761 VM_BUG_ON(mc.moved_charge);
4762 VM_BUG_ON(mc.moved_swap);
4764 spin_lock(&mc.lock);
4765 mc.mm = mm;
4766 mc.from = from;
4767 mc.to = memcg;
4768 mc.flags = move_flags;
4769 spin_unlock(&mc.lock);
4770 /* We set mc.moving_task later */
4772 ret = mem_cgroup_precharge_mc(mm);
4773 if (ret)
4774 mem_cgroup_clear_mc();
4775 } else {
4776 mmput(mm);
4778 return ret;
4781 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4783 if (mc.to)
4784 mem_cgroup_clear_mc();
4787 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4788 unsigned long addr, unsigned long end,
4789 struct mm_walk *walk)
4791 int ret = 0;
4792 struct vm_area_struct *vma = walk->vma;
4793 pte_t *pte;
4794 spinlock_t *ptl;
4795 enum mc_target_type target_type;
4796 union mc_target target;
4797 struct page *page;
4799 ptl = pmd_trans_huge_lock(pmd, vma);
4800 if (ptl) {
4801 if (mc.precharge < HPAGE_PMD_NR) {
4802 spin_unlock(ptl);
4803 return 0;
4805 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4806 if (target_type == MC_TARGET_PAGE) {
4807 page = target.page;
4808 if (!isolate_lru_page(page)) {
4809 if (!mem_cgroup_move_account(page, true,
4810 mc.from, mc.to)) {
4811 mc.precharge -= HPAGE_PMD_NR;
4812 mc.moved_charge += HPAGE_PMD_NR;
4814 putback_lru_page(page);
4816 put_page(page);
4818 spin_unlock(ptl);
4819 return 0;
4822 if (pmd_trans_unstable(pmd))
4823 return 0;
4824 retry:
4825 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4826 for (; addr != end; addr += PAGE_SIZE) {
4827 pte_t ptent = *(pte++);
4828 swp_entry_t ent;
4830 if (!mc.precharge)
4831 break;
4833 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4834 case MC_TARGET_PAGE:
4835 page = target.page;
4837 * We can have a part of the split pmd here. Moving it
4838 * can be done but it would be too convoluted so simply
4839 * ignore such a partial THP and keep it in original
4840 * memcg. There should be somebody mapping the head.
4842 if (PageTransCompound(page))
4843 goto put;
4844 if (isolate_lru_page(page))
4845 goto put;
4846 if (!mem_cgroup_move_account(page, false,
4847 mc.from, mc.to)) {
4848 mc.precharge--;
4849 /* we uncharge from mc.from later. */
4850 mc.moved_charge++;
4852 putback_lru_page(page);
4853 put: /* get_mctgt_type() gets the page */
4854 put_page(page);
4855 break;
4856 case MC_TARGET_SWAP:
4857 ent = target.ent;
4858 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4859 mc.precharge--;
4860 /* we fixup refcnts and charges later. */
4861 mc.moved_swap++;
4863 break;
4864 default:
4865 break;
4868 pte_unmap_unlock(pte - 1, ptl);
4869 cond_resched();
4871 if (addr != end) {
4873 * We have consumed all precharges we got in can_attach().
4874 * We try charge one by one, but don't do any additional
4875 * charges to mc.to if we have failed in charge once in attach()
4876 * phase.
4878 ret = mem_cgroup_do_precharge(1);
4879 if (!ret)
4880 goto retry;
4883 return ret;
4886 static void mem_cgroup_move_charge(void)
4888 struct mm_walk mem_cgroup_move_charge_walk = {
4889 .pmd_entry = mem_cgroup_move_charge_pte_range,
4890 .mm = mc.mm,
4893 lru_add_drain_all();
4895 * Signal lock_page_memcg() to take the memcg's move_lock
4896 * while we're moving its pages to another memcg. Then wait
4897 * for already started RCU-only updates to finish.
4899 atomic_inc(&mc.from->moving_account);
4900 synchronize_rcu();
4901 retry:
4902 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4904 * Someone who are holding the mmap_sem might be waiting in
4905 * waitq. So we cancel all extra charges, wake up all waiters,
4906 * and retry. Because we cancel precharges, we might not be able
4907 * to move enough charges, but moving charge is a best-effort
4908 * feature anyway, so it wouldn't be a big problem.
4910 __mem_cgroup_clear_mc();
4911 cond_resched();
4912 goto retry;
4915 * When we have consumed all precharges and failed in doing
4916 * additional charge, the page walk just aborts.
4918 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4919 up_read(&mc.mm->mmap_sem);
4920 atomic_dec(&mc.from->moving_account);
4923 static void mem_cgroup_move_task(void)
4925 if (mc.to) {
4926 mem_cgroup_move_charge();
4927 mem_cgroup_clear_mc();
4930 #else /* !CONFIG_MMU */
4931 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4933 return 0;
4935 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4938 static void mem_cgroup_move_task(void)
4941 #endif
4944 * Cgroup retains root cgroups across [un]mount cycles making it necessary
4945 * to verify whether we're attached to the default hierarchy on each mount
4946 * attempt.
4948 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4951 * use_hierarchy is forced on the default hierarchy. cgroup core
4952 * guarantees that @root doesn't have any children, so turning it
4953 * on for the root memcg is enough.
4955 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4956 root_mem_cgroup->use_hierarchy = true;
4957 else
4958 root_mem_cgroup->use_hierarchy = false;
4961 static u64 memory_current_read(struct cgroup_subsys_state *css,
4962 struct cftype *cft)
4964 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4966 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4969 static int memory_low_show(struct seq_file *m, void *v)
4971 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4972 unsigned long low = READ_ONCE(memcg->low);
4974 if (low == PAGE_COUNTER_MAX)
4975 seq_puts(m, "max\n");
4976 else
4977 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
4979 return 0;
4982 static ssize_t memory_low_write(struct kernfs_open_file *of,
4983 char *buf, size_t nbytes, loff_t off)
4985 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4986 unsigned long low;
4987 int err;
4989 buf = strstrip(buf);
4990 err = page_counter_memparse(buf, "max", &low);
4991 if (err)
4992 return err;
4994 memcg->low = low;
4996 return nbytes;
4999 static int memory_high_show(struct seq_file *m, void *v)
5001 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5002 unsigned long high = READ_ONCE(memcg->high);
5004 if (high == PAGE_COUNTER_MAX)
5005 seq_puts(m, "max\n");
5006 else
5007 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5009 return 0;
5012 static ssize_t memory_high_write(struct kernfs_open_file *of,
5013 char *buf, size_t nbytes, loff_t off)
5015 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5016 unsigned long nr_pages;
5017 unsigned long high;
5018 int err;
5020 buf = strstrip(buf);
5021 err = page_counter_memparse(buf, "max", &high);
5022 if (err)
5023 return err;
5025 memcg->high = high;
5027 nr_pages = page_counter_read(&memcg->memory);
5028 if (nr_pages > high)
5029 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5030 GFP_KERNEL, true);
5032 memcg_wb_domain_size_changed(memcg);
5033 return nbytes;
5036 static int memory_max_show(struct seq_file *m, void *v)
5038 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5039 unsigned long max = READ_ONCE(memcg->memory.limit);
5041 if (max == PAGE_COUNTER_MAX)
5042 seq_puts(m, "max\n");
5043 else
5044 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5046 return 0;
5049 static ssize_t memory_max_write(struct kernfs_open_file *of,
5050 char *buf, size_t nbytes, loff_t off)
5052 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5053 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5054 bool drained = false;
5055 unsigned long max;
5056 int err;
5058 buf = strstrip(buf);
5059 err = page_counter_memparse(buf, "max", &max);
5060 if (err)
5061 return err;
5063 xchg(&memcg->memory.limit, max);
5065 for (;;) {
5066 unsigned long nr_pages = page_counter_read(&memcg->memory);
5068 if (nr_pages <= max)
5069 break;
5071 if (signal_pending(current)) {
5072 err = -EINTR;
5073 break;
5076 if (!drained) {
5077 drain_all_stock(memcg);
5078 drained = true;
5079 continue;
5082 if (nr_reclaims) {
5083 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5084 GFP_KERNEL, true))
5085 nr_reclaims--;
5086 continue;
5089 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5090 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5091 break;
5094 memcg_wb_domain_size_changed(memcg);
5095 return nbytes;
5098 static int memory_events_show(struct seq_file *m, void *v)
5100 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5102 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5103 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5104 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5105 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5107 return 0;
5110 static int memory_stat_show(struct seq_file *m, void *v)
5112 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5113 unsigned long stat[MEMCG_NR_STAT];
5114 unsigned long events[MEMCG_NR_EVENTS];
5115 int i;
5118 * Provide statistics on the state of the memory subsystem as
5119 * well as cumulative event counters that show past behavior.
5121 * This list is ordered following a combination of these gradients:
5122 * 1) generic big picture -> specifics and details
5123 * 2) reflecting userspace activity -> reflecting kernel heuristics
5125 * Current memory state:
5128 tree_stat(memcg, stat);
5129 tree_events(memcg, events);
5131 seq_printf(m, "anon %llu\n",
5132 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5133 seq_printf(m, "file %llu\n",
5134 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5135 seq_printf(m, "kernel_stack %llu\n",
5136 (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
5137 seq_printf(m, "slab %llu\n",
5138 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5139 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5140 seq_printf(m, "sock %llu\n",
5141 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5143 seq_printf(m, "file_mapped %llu\n",
5144 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5145 seq_printf(m, "file_dirty %llu\n",
5146 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5147 seq_printf(m, "file_writeback %llu\n",
5148 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5150 for (i = 0; i < NR_LRU_LISTS; i++) {
5151 struct mem_cgroup *mi;
5152 unsigned long val = 0;
5154 for_each_mem_cgroup_tree(mi, memcg)
5155 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5156 seq_printf(m, "%s %llu\n",
5157 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5160 seq_printf(m, "slab_reclaimable %llu\n",
5161 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5162 seq_printf(m, "slab_unreclaimable %llu\n",
5163 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5165 /* Accumulated memory events */
5167 seq_printf(m, "pgfault %lu\n",
5168 events[MEM_CGROUP_EVENTS_PGFAULT]);
5169 seq_printf(m, "pgmajfault %lu\n",
5170 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5172 return 0;
5175 static struct cftype memory_files[] = {
5177 .name = "current",
5178 .flags = CFTYPE_NOT_ON_ROOT,
5179 .read_u64 = memory_current_read,
5182 .name = "low",
5183 .flags = CFTYPE_NOT_ON_ROOT,
5184 .seq_show = memory_low_show,
5185 .write = memory_low_write,
5188 .name = "high",
5189 .flags = CFTYPE_NOT_ON_ROOT,
5190 .seq_show = memory_high_show,
5191 .write = memory_high_write,
5194 .name = "max",
5195 .flags = CFTYPE_NOT_ON_ROOT,
5196 .seq_show = memory_max_show,
5197 .write = memory_max_write,
5200 .name = "events",
5201 .flags = CFTYPE_NOT_ON_ROOT,
5202 .file_offset = offsetof(struct mem_cgroup, events_file),
5203 .seq_show = memory_events_show,
5206 .name = "stat",
5207 .flags = CFTYPE_NOT_ON_ROOT,
5208 .seq_show = memory_stat_show,
5210 { } /* terminate */
5213 struct cgroup_subsys memory_cgrp_subsys = {
5214 .css_alloc = mem_cgroup_css_alloc,
5215 .css_online = mem_cgroup_css_online,
5216 .css_offline = mem_cgroup_css_offline,
5217 .css_released = mem_cgroup_css_released,
5218 .css_free = mem_cgroup_css_free,
5219 .css_reset = mem_cgroup_css_reset,
5220 .can_attach = mem_cgroup_can_attach,
5221 .cancel_attach = mem_cgroup_cancel_attach,
5222 .post_attach = mem_cgroup_move_task,
5223 .bind = mem_cgroup_bind,
5224 .dfl_cftypes = memory_files,
5225 .legacy_cftypes = mem_cgroup_legacy_files,
5226 .early_init = 0,
5230 * mem_cgroup_low - check if memory consumption is below the normal range
5231 * @root: the highest ancestor to consider
5232 * @memcg: the memory cgroup to check
5234 * Returns %true if memory consumption of @memcg, and that of all
5235 * configurable ancestors up to @root, is below the normal range.
5237 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5239 if (mem_cgroup_disabled())
5240 return false;
5243 * The toplevel group doesn't have a configurable range, so
5244 * it's never low when looked at directly, and it is not
5245 * considered an ancestor when assessing the hierarchy.
5248 if (memcg == root_mem_cgroup)
5249 return false;
5251 if (page_counter_read(&memcg->memory) >= memcg->low)
5252 return false;
5254 while (memcg != root) {
5255 memcg = parent_mem_cgroup(memcg);
5257 if (memcg == root_mem_cgroup)
5258 break;
5260 if (page_counter_read(&memcg->memory) >= memcg->low)
5261 return false;
5263 return true;
5267 * mem_cgroup_try_charge - try charging a page
5268 * @page: page to charge
5269 * @mm: mm context of the victim
5270 * @gfp_mask: reclaim mode
5271 * @memcgp: charged memcg return
5273 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5274 * pages according to @gfp_mask if necessary.
5276 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5277 * Otherwise, an error code is returned.
5279 * After page->mapping has been set up, the caller must finalize the
5280 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5281 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5283 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5284 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5285 bool compound)
5287 struct mem_cgroup *memcg = NULL;
5288 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5289 int ret = 0;
5291 if (mem_cgroup_disabled())
5292 goto out;
5294 if (PageSwapCache(page)) {
5296 * Every swap fault against a single page tries to charge the
5297 * page, bail as early as possible. shmem_unuse() encounters
5298 * already charged pages, too. The USED bit is protected by
5299 * the page lock, which serializes swap cache removal, which
5300 * in turn serializes uncharging.
5302 VM_BUG_ON_PAGE(!PageLocked(page), page);
5303 if (page->mem_cgroup)
5304 goto out;
5306 if (do_swap_account) {
5307 swp_entry_t ent = { .val = page_private(page), };
5308 unsigned short id = lookup_swap_cgroup_id(ent);
5310 rcu_read_lock();
5311 memcg = mem_cgroup_from_id(id);
5312 if (memcg && !css_tryget_online(&memcg->css))
5313 memcg = NULL;
5314 rcu_read_unlock();
5318 if (!memcg)
5319 memcg = get_mem_cgroup_from_mm(mm);
5321 ret = try_charge(memcg, gfp_mask, nr_pages);
5323 css_put(&memcg->css);
5324 out:
5325 *memcgp = memcg;
5326 return ret;
5330 * mem_cgroup_commit_charge - commit a page charge
5331 * @page: page to charge
5332 * @memcg: memcg to charge the page to
5333 * @lrucare: page might be on LRU already
5335 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5336 * after page->mapping has been set up. This must happen atomically
5337 * as part of the page instantiation, i.e. under the page table lock
5338 * for anonymous pages, under the page lock for page and swap cache.
5340 * In addition, the page must not be on the LRU during the commit, to
5341 * prevent racing with task migration. If it might be, use @lrucare.
5343 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5345 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5346 bool lrucare, bool compound)
5348 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5350 VM_BUG_ON_PAGE(!page->mapping, page);
5351 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5353 if (mem_cgroup_disabled())
5354 return;
5356 * Swap faults will attempt to charge the same page multiple
5357 * times. But reuse_swap_page() might have removed the page
5358 * from swapcache already, so we can't check PageSwapCache().
5360 if (!memcg)
5361 return;
5363 commit_charge(page, memcg, lrucare);
5365 local_irq_disable();
5366 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5367 memcg_check_events(memcg, page);
5368 local_irq_enable();
5370 if (do_memsw_account() && PageSwapCache(page)) {
5371 swp_entry_t entry = { .val = page_private(page) };
5373 * The swap entry might not get freed for a long time,
5374 * let's not wait for it. The page already received a
5375 * memory+swap charge, drop the swap entry duplicate.
5377 mem_cgroup_uncharge_swap(entry);
5382 * mem_cgroup_cancel_charge - cancel a page charge
5383 * @page: page to charge
5384 * @memcg: memcg to charge the page to
5386 * Cancel a charge transaction started by mem_cgroup_try_charge().
5388 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5389 bool compound)
5391 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5393 if (mem_cgroup_disabled())
5394 return;
5396 * Swap faults will attempt to charge the same page multiple
5397 * times. But reuse_swap_page() might have removed the page
5398 * from swapcache already, so we can't check PageSwapCache().
5400 if (!memcg)
5401 return;
5403 cancel_charge(memcg, nr_pages);
5406 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5407 unsigned long nr_anon, unsigned long nr_file,
5408 unsigned long nr_huge, struct page *dummy_page)
5410 unsigned long nr_pages = nr_anon + nr_file;
5411 unsigned long flags;
5413 if (!mem_cgroup_is_root(memcg)) {
5414 page_counter_uncharge(&memcg->memory, nr_pages);
5415 if (do_memsw_account())
5416 page_counter_uncharge(&memcg->memsw, nr_pages);
5417 memcg_oom_recover(memcg);
5420 local_irq_save(flags);
5421 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5422 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5423 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5424 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5425 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5426 memcg_check_events(memcg, dummy_page);
5427 local_irq_restore(flags);
5429 if (!mem_cgroup_is_root(memcg))
5430 css_put_many(&memcg->css, nr_pages);
5433 static void uncharge_list(struct list_head *page_list)
5435 struct mem_cgroup *memcg = NULL;
5436 unsigned long nr_anon = 0;
5437 unsigned long nr_file = 0;
5438 unsigned long nr_huge = 0;
5439 unsigned long pgpgout = 0;
5440 struct list_head *next;
5441 struct page *page;
5444 * Note that the list can be a single page->lru; hence the
5445 * do-while loop instead of a simple list_for_each_entry().
5447 next = page_list->next;
5448 do {
5449 unsigned int nr_pages = 1;
5451 page = list_entry(next, struct page, lru);
5452 next = page->lru.next;
5454 VM_BUG_ON_PAGE(PageLRU(page), page);
5455 VM_BUG_ON_PAGE(page_count(page), page);
5457 if (!page->mem_cgroup)
5458 continue;
5461 * Nobody should be changing or seriously looking at
5462 * page->mem_cgroup at this point, we have fully
5463 * exclusive access to the page.
5466 if (memcg != page->mem_cgroup) {
5467 if (memcg) {
5468 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5469 nr_huge, page);
5470 pgpgout = nr_anon = nr_file = nr_huge = 0;
5472 memcg = page->mem_cgroup;
5475 if (PageTransHuge(page)) {
5476 nr_pages <<= compound_order(page);
5477 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5478 nr_huge += nr_pages;
5481 if (PageAnon(page))
5482 nr_anon += nr_pages;
5483 else
5484 nr_file += nr_pages;
5486 page->mem_cgroup = NULL;
5488 pgpgout++;
5489 } while (next != page_list);
5491 if (memcg)
5492 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5493 nr_huge, page);
5497 * mem_cgroup_uncharge - uncharge a page
5498 * @page: page to uncharge
5500 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5501 * mem_cgroup_commit_charge().
5503 void mem_cgroup_uncharge(struct page *page)
5505 if (mem_cgroup_disabled())
5506 return;
5508 /* Don't touch page->lru of any random page, pre-check: */
5509 if (!page->mem_cgroup)
5510 return;
5512 INIT_LIST_HEAD(&page->lru);
5513 uncharge_list(&page->lru);
5517 * mem_cgroup_uncharge_list - uncharge a list of page
5518 * @page_list: list of pages to uncharge
5520 * Uncharge a list of pages previously charged with
5521 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5523 void mem_cgroup_uncharge_list(struct list_head *page_list)
5525 if (mem_cgroup_disabled())
5526 return;
5528 if (!list_empty(page_list))
5529 uncharge_list(page_list);
5533 * mem_cgroup_migrate - charge a page's replacement
5534 * @oldpage: currently circulating page
5535 * @newpage: replacement page
5537 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5538 * be uncharged upon free.
5540 * Both pages must be locked, @newpage->mapping must be set up.
5542 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5544 struct mem_cgroup *memcg;
5545 unsigned int nr_pages;
5546 bool compound;
5548 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5549 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5550 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5551 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5552 newpage);
5554 if (mem_cgroup_disabled())
5555 return;
5557 /* Page cache replacement: new page already charged? */
5558 if (newpage->mem_cgroup)
5559 return;
5561 /* Swapcache readahead pages can get replaced before being charged */
5562 memcg = oldpage->mem_cgroup;
5563 if (!memcg)
5564 return;
5566 /* Force-charge the new page. The old one will be freed soon */
5567 compound = PageTransHuge(newpage);
5568 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5570 page_counter_charge(&memcg->memory, nr_pages);
5571 if (do_memsw_account())
5572 page_counter_charge(&memcg->memsw, nr_pages);
5573 css_get_many(&memcg->css, nr_pages);
5575 commit_charge(newpage, memcg, false);
5577 local_irq_disable();
5578 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5579 memcg_check_events(memcg, newpage);
5580 local_irq_enable();
5583 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5584 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5586 void sock_update_memcg(struct sock *sk)
5588 struct mem_cgroup *memcg;
5590 /* Socket cloning can throw us here with sk_cgrp already
5591 * filled. It won't however, necessarily happen from
5592 * process context. So the test for root memcg given
5593 * the current task's memcg won't help us in this case.
5595 * Respecting the original socket's memcg is a better
5596 * decision in this case.
5598 if (sk->sk_memcg) {
5599 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5600 css_get(&sk->sk_memcg->css);
5601 return;
5604 rcu_read_lock();
5605 memcg = mem_cgroup_from_task(current);
5606 if (memcg == root_mem_cgroup)
5607 goto out;
5608 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5609 goto out;
5610 if (css_tryget_online(&memcg->css))
5611 sk->sk_memcg = memcg;
5612 out:
5613 rcu_read_unlock();
5615 EXPORT_SYMBOL(sock_update_memcg);
5617 void sock_release_memcg(struct sock *sk)
5619 WARN_ON(!sk->sk_memcg);
5620 css_put(&sk->sk_memcg->css);
5624 * mem_cgroup_charge_skmem - charge socket memory
5625 * @memcg: memcg to charge
5626 * @nr_pages: number of pages to charge
5628 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5629 * @memcg's configured limit, %false if the charge had to be forced.
5631 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5633 gfp_t gfp_mask = GFP_KERNEL;
5635 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5636 struct page_counter *fail;
5638 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5639 memcg->tcpmem_pressure = 0;
5640 return true;
5642 page_counter_charge(&memcg->tcpmem, nr_pages);
5643 memcg->tcpmem_pressure = 1;
5644 return false;
5647 /* Don't block in the packet receive path */
5648 if (in_softirq())
5649 gfp_mask = GFP_NOWAIT;
5651 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5653 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5654 return true;
5656 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5657 return false;
5661 * mem_cgroup_uncharge_skmem - uncharge socket memory
5662 * @memcg - memcg to uncharge
5663 * @nr_pages - number of pages to uncharge
5665 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5667 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5668 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5669 return;
5672 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5674 page_counter_uncharge(&memcg->memory, nr_pages);
5675 css_put_many(&memcg->css, nr_pages);
5678 static int __init cgroup_memory(char *s)
5680 char *token;
5682 while ((token = strsep(&s, ",")) != NULL) {
5683 if (!*token)
5684 continue;
5685 if (!strcmp(token, "nosocket"))
5686 cgroup_memory_nosocket = true;
5687 if (!strcmp(token, "nokmem"))
5688 cgroup_memory_nokmem = true;
5690 return 0;
5692 __setup("cgroup.memory=", cgroup_memory);
5695 * subsys_initcall() for memory controller.
5697 * Some parts like hotcpu_notifier() have to be initialized from this context
5698 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5699 * everything that doesn't depend on a specific mem_cgroup structure should
5700 * be initialized from here.
5702 static int __init mem_cgroup_init(void)
5704 int cpu, node;
5706 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5708 for_each_possible_cpu(cpu)
5709 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5710 drain_local_stock);
5712 for_each_node(node) {
5713 struct mem_cgroup_tree_per_node *rtpn;
5714 int zone;
5716 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5717 node_online(node) ? node : NUMA_NO_NODE);
5719 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5720 struct mem_cgroup_tree_per_zone *rtpz;
5722 rtpz = &rtpn->rb_tree_per_zone[zone];
5723 rtpz->rb_root = RB_ROOT;
5724 spin_lock_init(&rtpz->lock);
5726 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5729 return 0;
5731 subsys_initcall(mem_cgroup_init);
5733 #ifdef CONFIG_MEMCG_SWAP
5735 * mem_cgroup_swapout - transfer a memsw charge to swap
5736 * @page: page whose memsw charge to transfer
5737 * @entry: swap entry to move the charge to
5739 * Transfer the memsw charge of @page to @entry.
5741 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5743 struct mem_cgroup *memcg;
5744 unsigned short oldid;
5746 VM_BUG_ON_PAGE(PageLRU(page), page);
5747 VM_BUG_ON_PAGE(page_count(page), page);
5749 if (!do_memsw_account())
5750 return;
5752 memcg = page->mem_cgroup;
5754 /* Readahead page, never charged */
5755 if (!memcg)
5756 return;
5758 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5759 VM_BUG_ON_PAGE(oldid, page);
5760 mem_cgroup_swap_statistics(memcg, true);
5762 page->mem_cgroup = NULL;
5764 if (!mem_cgroup_is_root(memcg))
5765 page_counter_uncharge(&memcg->memory, 1);
5768 * Interrupts should be disabled here because the caller holds the
5769 * mapping->tree_lock lock which is taken with interrupts-off. It is
5770 * important here to have the interrupts disabled because it is the
5771 * only synchronisation we have for udpating the per-CPU variables.
5773 VM_BUG_ON(!irqs_disabled());
5774 mem_cgroup_charge_statistics(memcg, page, false, -1);
5775 memcg_check_events(memcg, page);
5779 * mem_cgroup_try_charge_swap - try charging a swap entry
5780 * @page: page being added to swap
5781 * @entry: swap entry to charge
5783 * Try to charge @entry to the memcg that @page belongs to.
5785 * Returns 0 on success, -ENOMEM on failure.
5787 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5789 struct mem_cgroup *memcg;
5790 struct page_counter *counter;
5791 unsigned short oldid;
5793 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5794 return 0;
5796 memcg = page->mem_cgroup;
5798 /* Readahead page, never charged */
5799 if (!memcg)
5800 return 0;
5802 if (!mem_cgroup_is_root(memcg) &&
5803 !page_counter_try_charge(&memcg->swap, 1, &counter))
5804 return -ENOMEM;
5806 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5807 VM_BUG_ON_PAGE(oldid, page);
5808 mem_cgroup_swap_statistics(memcg, true);
5810 css_get(&memcg->css);
5811 return 0;
5815 * mem_cgroup_uncharge_swap - uncharge a swap entry
5816 * @entry: swap entry to uncharge
5818 * Drop the swap charge associated with @entry.
5820 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5822 struct mem_cgroup *memcg;
5823 unsigned short id;
5825 if (!do_swap_account)
5826 return;
5828 id = swap_cgroup_record(entry, 0);
5829 rcu_read_lock();
5830 memcg = mem_cgroup_from_id(id);
5831 if (memcg) {
5832 if (!mem_cgroup_is_root(memcg)) {
5833 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5834 page_counter_uncharge(&memcg->swap, 1);
5835 else
5836 page_counter_uncharge(&memcg->memsw, 1);
5838 mem_cgroup_swap_statistics(memcg, false);
5839 css_put(&memcg->css);
5841 rcu_read_unlock();
5844 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5846 long nr_swap_pages = get_nr_swap_pages();
5848 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5849 return nr_swap_pages;
5850 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5851 nr_swap_pages = min_t(long, nr_swap_pages,
5852 READ_ONCE(memcg->swap.limit) -
5853 page_counter_read(&memcg->swap));
5854 return nr_swap_pages;
5857 bool mem_cgroup_swap_full(struct page *page)
5859 struct mem_cgroup *memcg;
5861 VM_BUG_ON_PAGE(!PageLocked(page), page);
5863 if (vm_swap_full())
5864 return true;
5865 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5866 return false;
5868 memcg = page->mem_cgroup;
5869 if (!memcg)
5870 return false;
5872 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5873 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5874 return true;
5876 return false;
5879 /* for remember boot option*/
5880 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5881 static int really_do_swap_account __initdata = 1;
5882 #else
5883 static int really_do_swap_account __initdata;
5884 #endif
5886 static int __init enable_swap_account(char *s)
5888 if (!strcmp(s, "1"))
5889 really_do_swap_account = 1;
5890 else if (!strcmp(s, "0"))
5891 really_do_swap_account = 0;
5892 return 1;
5894 __setup("swapaccount=", enable_swap_account);
5896 static u64 swap_current_read(struct cgroup_subsys_state *css,
5897 struct cftype *cft)
5899 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5901 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5904 static int swap_max_show(struct seq_file *m, void *v)
5906 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5907 unsigned long max = READ_ONCE(memcg->swap.limit);
5909 if (max == PAGE_COUNTER_MAX)
5910 seq_puts(m, "max\n");
5911 else
5912 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5914 return 0;
5917 static ssize_t swap_max_write(struct kernfs_open_file *of,
5918 char *buf, size_t nbytes, loff_t off)
5920 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5921 unsigned long max;
5922 int err;
5924 buf = strstrip(buf);
5925 err = page_counter_memparse(buf, "max", &max);
5926 if (err)
5927 return err;
5929 mutex_lock(&memcg_limit_mutex);
5930 err = page_counter_limit(&memcg->swap, max);
5931 mutex_unlock(&memcg_limit_mutex);
5932 if (err)
5933 return err;
5935 return nbytes;
5938 static struct cftype swap_files[] = {
5940 .name = "swap.current",
5941 .flags = CFTYPE_NOT_ON_ROOT,
5942 .read_u64 = swap_current_read,
5945 .name = "swap.max",
5946 .flags = CFTYPE_NOT_ON_ROOT,
5947 .seq_show = swap_max_show,
5948 .write = swap_max_write,
5950 { } /* terminate */
5953 static struct cftype memsw_cgroup_files[] = {
5955 .name = "memsw.usage_in_bytes",
5956 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5957 .read_u64 = mem_cgroup_read_u64,
5960 .name = "memsw.max_usage_in_bytes",
5961 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5962 .write = mem_cgroup_reset,
5963 .read_u64 = mem_cgroup_read_u64,
5966 .name = "memsw.limit_in_bytes",
5967 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5968 .write = mem_cgroup_write,
5969 .read_u64 = mem_cgroup_read_u64,
5972 .name = "memsw.failcnt",
5973 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5974 .write = mem_cgroup_reset,
5975 .read_u64 = mem_cgroup_read_u64,
5977 { }, /* terminate */
5980 static int __init mem_cgroup_swap_init(void)
5982 if (!mem_cgroup_disabled() && really_do_swap_account) {
5983 do_swap_account = 1;
5984 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
5985 swap_files));
5986 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5987 memsw_cgroup_files));
5989 return 0;
5991 subsys_initcall(mem_cgroup_swap_init);
5993 #endif /* CONFIG_MEMCG_SWAP */