s390/vx: add support functions for in-kernel FPU use
[linux-2.6/btrfs-unstable.git] / mm / hugetlb.c
blob388c2bb9b55cff8e8b89cac1947bf87ef1c83cd7
1 /*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25 #include <linux/jhash.h>
27 #include <asm/page.h>
28 #include <asm/pgtable.h>
29 #include <asm/tlb.h>
31 #include <linux/io.h>
32 #include <linux/hugetlb.h>
33 #include <linux/hugetlb_cgroup.h>
34 #include <linux/node.h>
35 #include "internal.h"
37 int hugepages_treat_as_movable;
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
43 * Minimum page order among possible hugepage sizes, set to a proper value
44 * at boot time.
46 static unsigned int minimum_order __read_mostly = UINT_MAX;
48 __initdata LIST_HEAD(huge_boot_pages);
50 /* for command line parsing */
51 static struct hstate * __initdata parsed_hstate;
52 static unsigned long __initdata default_hstate_max_huge_pages;
53 static unsigned long __initdata default_hstate_size;
54 static bool __initdata parsed_valid_hugepagesz = true;
57 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58 * free_huge_pages, and surplus_huge_pages.
60 DEFINE_SPINLOCK(hugetlb_lock);
63 * Serializes faults on the same logical page. This is used to
64 * prevent spurious OOMs when the hugepage pool is fully utilized.
66 static int num_fault_mutexes;
67 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
69 /* Forward declaration */
70 static int hugetlb_acct_memory(struct hstate *h, long delta);
72 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
74 bool free = (spool->count == 0) && (spool->used_hpages == 0);
76 spin_unlock(&spool->lock);
78 /* If no pages are used, and no other handles to the subpool
79 * remain, give up any reservations mased on minimum size and
80 * free the subpool */
81 if (free) {
82 if (spool->min_hpages != -1)
83 hugetlb_acct_memory(spool->hstate,
84 -spool->min_hpages);
85 kfree(spool);
89 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90 long min_hpages)
92 struct hugepage_subpool *spool;
94 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95 if (!spool)
96 return NULL;
98 spin_lock_init(&spool->lock);
99 spool->count = 1;
100 spool->max_hpages = max_hpages;
101 spool->hstate = h;
102 spool->min_hpages = min_hpages;
104 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105 kfree(spool);
106 return NULL;
108 spool->rsv_hpages = min_hpages;
110 return spool;
113 void hugepage_put_subpool(struct hugepage_subpool *spool)
115 spin_lock(&spool->lock);
116 BUG_ON(!spool->count);
117 spool->count--;
118 unlock_or_release_subpool(spool);
122 * Subpool accounting for allocating and reserving pages.
123 * Return -ENOMEM if there are not enough resources to satisfy the
124 * the request. Otherwise, return the number of pages by which the
125 * global pools must be adjusted (upward). The returned value may
126 * only be different than the passed value (delta) in the case where
127 * a subpool minimum size must be manitained.
129 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130 long delta)
132 long ret = delta;
134 if (!spool)
135 return ret;
137 spin_lock(&spool->lock);
139 if (spool->max_hpages != -1) { /* maximum size accounting */
140 if ((spool->used_hpages + delta) <= spool->max_hpages)
141 spool->used_hpages += delta;
142 else {
143 ret = -ENOMEM;
144 goto unlock_ret;
148 /* minimum size accounting */
149 if (spool->min_hpages != -1 && spool->rsv_hpages) {
150 if (delta > spool->rsv_hpages) {
152 * Asking for more reserves than those already taken on
153 * behalf of subpool. Return difference.
155 ret = delta - spool->rsv_hpages;
156 spool->rsv_hpages = 0;
157 } else {
158 ret = 0; /* reserves already accounted for */
159 spool->rsv_hpages -= delta;
163 unlock_ret:
164 spin_unlock(&spool->lock);
165 return ret;
169 * Subpool accounting for freeing and unreserving pages.
170 * Return the number of global page reservations that must be dropped.
171 * The return value may only be different than the passed value (delta)
172 * in the case where a subpool minimum size must be maintained.
174 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
175 long delta)
177 long ret = delta;
179 if (!spool)
180 return delta;
182 spin_lock(&spool->lock);
184 if (spool->max_hpages != -1) /* maximum size accounting */
185 spool->used_hpages -= delta;
187 /* minimum size accounting */
188 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
189 if (spool->rsv_hpages + delta <= spool->min_hpages)
190 ret = 0;
191 else
192 ret = spool->rsv_hpages + delta - spool->min_hpages;
194 spool->rsv_hpages += delta;
195 if (spool->rsv_hpages > spool->min_hpages)
196 spool->rsv_hpages = spool->min_hpages;
200 * If hugetlbfs_put_super couldn't free spool due to an outstanding
201 * quota reference, free it now.
203 unlock_or_release_subpool(spool);
205 return ret;
208 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
210 return HUGETLBFS_SB(inode->i_sb)->spool;
213 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
215 return subpool_inode(file_inode(vma->vm_file));
219 * Region tracking -- allows tracking of reservations and instantiated pages
220 * across the pages in a mapping.
222 * The region data structures are embedded into a resv_map and protected
223 * by a resv_map's lock. The set of regions within the resv_map represent
224 * reservations for huge pages, or huge pages that have already been
225 * instantiated within the map. The from and to elements are huge page
226 * indicies into the associated mapping. from indicates the starting index
227 * of the region. to represents the first index past the end of the region.
229 * For example, a file region structure with from == 0 and to == 4 represents
230 * four huge pages in a mapping. It is important to note that the to element
231 * represents the first element past the end of the region. This is used in
232 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
234 * Interval notation of the form [from, to) will be used to indicate that
235 * the endpoint from is inclusive and to is exclusive.
237 struct file_region {
238 struct list_head link;
239 long from;
240 long to;
244 * Add the huge page range represented by [f, t) to the reserve
245 * map. In the normal case, existing regions will be expanded
246 * to accommodate the specified range. Sufficient regions should
247 * exist for expansion due to the previous call to region_chg
248 * with the same range. However, it is possible that region_del
249 * could have been called after region_chg and modifed the map
250 * in such a way that no region exists to be expanded. In this
251 * case, pull a region descriptor from the cache associated with
252 * the map and use that for the new range.
254 * Return the number of new huge pages added to the map. This
255 * number is greater than or equal to zero.
257 static long region_add(struct resv_map *resv, long f, long t)
259 struct list_head *head = &resv->regions;
260 struct file_region *rg, *nrg, *trg;
261 long add = 0;
263 spin_lock(&resv->lock);
264 /* Locate the region we are either in or before. */
265 list_for_each_entry(rg, head, link)
266 if (f <= rg->to)
267 break;
270 * If no region exists which can be expanded to include the
271 * specified range, the list must have been modified by an
272 * interleving call to region_del(). Pull a region descriptor
273 * from the cache and use it for this range.
275 if (&rg->link == head || t < rg->from) {
276 VM_BUG_ON(resv->region_cache_count <= 0);
278 resv->region_cache_count--;
279 nrg = list_first_entry(&resv->region_cache, struct file_region,
280 link);
281 list_del(&nrg->link);
283 nrg->from = f;
284 nrg->to = t;
285 list_add(&nrg->link, rg->link.prev);
287 add += t - f;
288 goto out_locked;
291 /* Round our left edge to the current segment if it encloses us. */
292 if (f > rg->from)
293 f = rg->from;
295 /* Check for and consume any regions we now overlap with. */
296 nrg = rg;
297 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
298 if (&rg->link == head)
299 break;
300 if (rg->from > t)
301 break;
303 /* If this area reaches higher then extend our area to
304 * include it completely. If this is not the first area
305 * which we intend to reuse, free it. */
306 if (rg->to > t)
307 t = rg->to;
308 if (rg != nrg) {
309 /* Decrement return value by the deleted range.
310 * Another range will span this area so that by
311 * end of routine add will be >= zero
313 add -= (rg->to - rg->from);
314 list_del(&rg->link);
315 kfree(rg);
319 add += (nrg->from - f); /* Added to beginning of region */
320 nrg->from = f;
321 add += t - nrg->to; /* Added to end of region */
322 nrg->to = t;
324 out_locked:
325 resv->adds_in_progress--;
326 spin_unlock(&resv->lock);
327 VM_BUG_ON(add < 0);
328 return add;
332 * Examine the existing reserve map and determine how many
333 * huge pages in the specified range [f, t) are NOT currently
334 * represented. This routine is called before a subsequent
335 * call to region_add that will actually modify the reserve
336 * map to add the specified range [f, t). region_chg does
337 * not change the number of huge pages represented by the
338 * map. However, if the existing regions in the map can not
339 * be expanded to represent the new range, a new file_region
340 * structure is added to the map as a placeholder. This is
341 * so that the subsequent region_add call will have all the
342 * regions it needs and will not fail.
344 * Upon entry, region_chg will also examine the cache of region descriptors
345 * associated with the map. If there are not enough descriptors cached, one
346 * will be allocated for the in progress add operation.
348 * Returns the number of huge pages that need to be added to the existing
349 * reservation map for the range [f, t). This number is greater or equal to
350 * zero. -ENOMEM is returned if a new file_region structure or cache entry
351 * is needed and can not be allocated.
353 static long region_chg(struct resv_map *resv, long f, long t)
355 struct list_head *head = &resv->regions;
356 struct file_region *rg, *nrg = NULL;
357 long chg = 0;
359 retry:
360 spin_lock(&resv->lock);
361 retry_locked:
362 resv->adds_in_progress++;
365 * Check for sufficient descriptors in the cache to accommodate
366 * the number of in progress add operations.
368 if (resv->adds_in_progress > resv->region_cache_count) {
369 struct file_region *trg;
371 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
372 /* Must drop lock to allocate a new descriptor. */
373 resv->adds_in_progress--;
374 spin_unlock(&resv->lock);
376 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
377 if (!trg) {
378 kfree(nrg);
379 return -ENOMEM;
382 spin_lock(&resv->lock);
383 list_add(&trg->link, &resv->region_cache);
384 resv->region_cache_count++;
385 goto retry_locked;
388 /* Locate the region we are before or in. */
389 list_for_each_entry(rg, head, link)
390 if (f <= rg->to)
391 break;
393 /* If we are below the current region then a new region is required.
394 * Subtle, allocate a new region at the position but make it zero
395 * size such that we can guarantee to record the reservation. */
396 if (&rg->link == head || t < rg->from) {
397 if (!nrg) {
398 resv->adds_in_progress--;
399 spin_unlock(&resv->lock);
400 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
401 if (!nrg)
402 return -ENOMEM;
404 nrg->from = f;
405 nrg->to = f;
406 INIT_LIST_HEAD(&nrg->link);
407 goto retry;
410 list_add(&nrg->link, rg->link.prev);
411 chg = t - f;
412 goto out_nrg;
415 /* Round our left edge to the current segment if it encloses us. */
416 if (f > rg->from)
417 f = rg->from;
418 chg = t - f;
420 /* Check for and consume any regions we now overlap with. */
421 list_for_each_entry(rg, rg->link.prev, link) {
422 if (&rg->link == head)
423 break;
424 if (rg->from > t)
425 goto out;
427 /* We overlap with this area, if it extends further than
428 * us then we must extend ourselves. Account for its
429 * existing reservation. */
430 if (rg->to > t) {
431 chg += rg->to - t;
432 t = rg->to;
434 chg -= rg->to - rg->from;
437 out:
438 spin_unlock(&resv->lock);
439 /* We already know we raced and no longer need the new region */
440 kfree(nrg);
441 return chg;
442 out_nrg:
443 spin_unlock(&resv->lock);
444 return chg;
448 * Abort the in progress add operation. The adds_in_progress field
449 * of the resv_map keeps track of the operations in progress between
450 * calls to region_chg and region_add. Operations are sometimes
451 * aborted after the call to region_chg. In such cases, region_abort
452 * is called to decrement the adds_in_progress counter.
454 * NOTE: The range arguments [f, t) are not needed or used in this
455 * routine. They are kept to make reading the calling code easier as
456 * arguments will match the associated region_chg call.
458 static void region_abort(struct resv_map *resv, long f, long t)
460 spin_lock(&resv->lock);
461 VM_BUG_ON(!resv->region_cache_count);
462 resv->adds_in_progress--;
463 spin_unlock(&resv->lock);
467 * Delete the specified range [f, t) from the reserve map. If the
468 * t parameter is LONG_MAX, this indicates that ALL regions after f
469 * should be deleted. Locate the regions which intersect [f, t)
470 * and either trim, delete or split the existing regions.
472 * Returns the number of huge pages deleted from the reserve map.
473 * In the normal case, the return value is zero or more. In the
474 * case where a region must be split, a new region descriptor must
475 * be allocated. If the allocation fails, -ENOMEM will be returned.
476 * NOTE: If the parameter t == LONG_MAX, then we will never split
477 * a region and possibly return -ENOMEM. Callers specifying
478 * t == LONG_MAX do not need to check for -ENOMEM error.
480 static long region_del(struct resv_map *resv, long f, long t)
482 struct list_head *head = &resv->regions;
483 struct file_region *rg, *trg;
484 struct file_region *nrg = NULL;
485 long del = 0;
487 retry:
488 spin_lock(&resv->lock);
489 list_for_each_entry_safe(rg, trg, head, link) {
491 * Skip regions before the range to be deleted. file_region
492 * ranges are normally of the form [from, to). However, there
493 * may be a "placeholder" entry in the map which is of the form
494 * (from, to) with from == to. Check for placeholder entries
495 * at the beginning of the range to be deleted.
497 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
498 continue;
500 if (rg->from >= t)
501 break;
503 if (f > rg->from && t < rg->to) { /* Must split region */
505 * Check for an entry in the cache before dropping
506 * lock and attempting allocation.
508 if (!nrg &&
509 resv->region_cache_count > resv->adds_in_progress) {
510 nrg = list_first_entry(&resv->region_cache,
511 struct file_region,
512 link);
513 list_del(&nrg->link);
514 resv->region_cache_count--;
517 if (!nrg) {
518 spin_unlock(&resv->lock);
519 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
520 if (!nrg)
521 return -ENOMEM;
522 goto retry;
525 del += t - f;
527 /* New entry for end of split region */
528 nrg->from = t;
529 nrg->to = rg->to;
530 INIT_LIST_HEAD(&nrg->link);
532 /* Original entry is trimmed */
533 rg->to = f;
535 list_add(&nrg->link, &rg->link);
536 nrg = NULL;
537 break;
540 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
541 del += rg->to - rg->from;
542 list_del(&rg->link);
543 kfree(rg);
544 continue;
547 if (f <= rg->from) { /* Trim beginning of region */
548 del += t - rg->from;
549 rg->from = t;
550 } else { /* Trim end of region */
551 del += rg->to - f;
552 rg->to = f;
556 spin_unlock(&resv->lock);
557 kfree(nrg);
558 return del;
562 * A rare out of memory error was encountered which prevented removal of
563 * the reserve map region for a page. The huge page itself was free'ed
564 * and removed from the page cache. This routine will adjust the subpool
565 * usage count, and the global reserve count if needed. By incrementing
566 * these counts, the reserve map entry which could not be deleted will
567 * appear as a "reserved" entry instead of simply dangling with incorrect
568 * counts.
570 void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
572 struct hugepage_subpool *spool = subpool_inode(inode);
573 long rsv_adjust;
575 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
576 if (restore_reserve && rsv_adjust) {
577 struct hstate *h = hstate_inode(inode);
579 hugetlb_acct_memory(h, 1);
584 * Count and return the number of huge pages in the reserve map
585 * that intersect with the range [f, t).
587 static long region_count(struct resv_map *resv, long f, long t)
589 struct list_head *head = &resv->regions;
590 struct file_region *rg;
591 long chg = 0;
593 spin_lock(&resv->lock);
594 /* Locate each segment we overlap with, and count that overlap. */
595 list_for_each_entry(rg, head, link) {
596 long seg_from;
597 long seg_to;
599 if (rg->to <= f)
600 continue;
601 if (rg->from >= t)
602 break;
604 seg_from = max(rg->from, f);
605 seg_to = min(rg->to, t);
607 chg += seg_to - seg_from;
609 spin_unlock(&resv->lock);
611 return chg;
615 * Convert the address within this vma to the page offset within
616 * the mapping, in pagecache page units; huge pages here.
618 static pgoff_t vma_hugecache_offset(struct hstate *h,
619 struct vm_area_struct *vma, unsigned long address)
621 return ((address - vma->vm_start) >> huge_page_shift(h)) +
622 (vma->vm_pgoff >> huge_page_order(h));
625 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
626 unsigned long address)
628 return vma_hugecache_offset(hstate_vma(vma), vma, address);
630 EXPORT_SYMBOL_GPL(linear_hugepage_index);
633 * Return the size of the pages allocated when backing a VMA. In the majority
634 * cases this will be same size as used by the page table entries.
636 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
638 struct hstate *hstate;
640 if (!is_vm_hugetlb_page(vma))
641 return PAGE_SIZE;
643 hstate = hstate_vma(vma);
645 return 1UL << huge_page_shift(hstate);
647 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
650 * Return the page size being used by the MMU to back a VMA. In the majority
651 * of cases, the page size used by the kernel matches the MMU size. On
652 * architectures where it differs, an architecture-specific version of this
653 * function is required.
655 #ifndef vma_mmu_pagesize
656 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
658 return vma_kernel_pagesize(vma);
660 #endif
663 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
664 * bits of the reservation map pointer, which are always clear due to
665 * alignment.
667 #define HPAGE_RESV_OWNER (1UL << 0)
668 #define HPAGE_RESV_UNMAPPED (1UL << 1)
669 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
672 * These helpers are used to track how many pages are reserved for
673 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
674 * is guaranteed to have their future faults succeed.
676 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
677 * the reserve counters are updated with the hugetlb_lock held. It is safe
678 * to reset the VMA at fork() time as it is not in use yet and there is no
679 * chance of the global counters getting corrupted as a result of the values.
681 * The private mapping reservation is represented in a subtly different
682 * manner to a shared mapping. A shared mapping has a region map associated
683 * with the underlying file, this region map represents the backing file
684 * pages which have ever had a reservation assigned which this persists even
685 * after the page is instantiated. A private mapping has a region map
686 * associated with the original mmap which is attached to all VMAs which
687 * reference it, this region map represents those offsets which have consumed
688 * reservation ie. where pages have been instantiated.
690 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
692 return (unsigned long)vma->vm_private_data;
695 static void set_vma_private_data(struct vm_area_struct *vma,
696 unsigned long value)
698 vma->vm_private_data = (void *)value;
701 struct resv_map *resv_map_alloc(void)
703 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
704 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
706 if (!resv_map || !rg) {
707 kfree(resv_map);
708 kfree(rg);
709 return NULL;
712 kref_init(&resv_map->refs);
713 spin_lock_init(&resv_map->lock);
714 INIT_LIST_HEAD(&resv_map->regions);
716 resv_map->adds_in_progress = 0;
718 INIT_LIST_HEAD(&resv_map->region_cache);
719 list_add(&rg->link, &resv_map->region_cache);
720 resv_map->region_cache_count = 1;
722 return resv_map;
725 void resv_map_release(struct kref *ref)
727 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
728 struct list_head *head = &resv_map->region_cache;
729 struct file_region *rg, *trg;
731 /* Clear out any active regions before we release the map. */
732 region_del(resv_map, 0, LONG_MAX);
734 /* ... and any entries left in the cache */
735 list_for_each_entry_safe(rg, trg, head, link) {
736 list_del(&rg->link);
737 kfree(rg);
740 VM_BUG_ON(resv_map->adds_in_progress);
742 kfree(resv_map);
745 static inline struct resv_map *inode_resv_map(struct inode *inode)
747 return inode->i_mapping->private_data;
750 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
752 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
753 if (vma->vm_flags & VM_MAYSHARE) {
754 struct address_space *mapping = vma->vm_file->f_mapping;
755 struct inode *inode = mapping->host;
757 return inode_resv_map(inode);
759 } else {
760 return (struct resv_map *)(get_vma_private_data(vma) &
761 ~HPAGE_RESV_MASK);
765 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
767 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
768 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
770 set_vma_private_data(vma, (get_vma_private_data(vma) &
771 HPAGE_RESV_MASK) | (unsigned long)map);
774 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
776 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
777 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
779 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
782 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
784 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
786 return (get_vma_private_data(vma) & flag) != 0;
789 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
790 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
792 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
793 if (!(vma->vm_flags & VM_MAYSHARE))
794 vma->vm_private_data = (void *)0;
797 /* Returns true if the VMA has associated reserve pages */
798 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
800 if (vma->vm_flags & VM_NORESERVE) {
802 * This address is already reserved by other process(chg == 0),
803 * so, we should decrement reserved count. Without decrementing,
804 * reserve count remains after releasing inode, because this
805 * allocated page will go into page cache and is regarded as
806 * coming from reserved pool in releasing step. Currently, we
807 * don't have any other solution to deal with this situation
808 * properly, so add work-around here.
810 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
811 return true;
812 else
813 return false;
816 /* Shared mappings always use reserves */
817 if (vma->vm_flags & VM_MAYSHARE) {
819 * We know VM_NORESERVE is not set. Therefore, there SHOULD
820 * be a region map for all pages. The only situation where
821 * there is no region map is if a hole was punched via
822 * fallocate. In this case, there really are no reverves to
823 * use. This situation is indicated if chg != 0.
825 if (chg)
826 return false;
827 else
828 return true;
832 * Only the process that called mmap() has reserves for
833 * private mappings.
835 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
837 * Like the shared case above, a hole punch or truncate
838 * could have been performed on the private mapping.
839 * Examine the value of chg to determine if reserves
840 * actually exist or were previously consumed.
841 * Very Subtle - The value of chg comes from a previous
842 * call to vma_needs_reserves(). The reserve map for
843 * private mappings has different (opposite) semantics
844 * than that of shared mappings. vma_needs_reserves()
845 * has already taken this difference in semantics into
846 * account. Therefore, the meaning of chg is the same
847 * as in the shared case above. Code could easily be
848 * combined, but keeping it separate draws attention to
849 * subtle differences.
851 if (chg)
852 return false;
853 else
854 return true;
857 return false;
860 static void enqueue_huge_page(struct hstate *h, struct page *page)
862 int nid = page_to_nid(page);
863 list_move(&page->lru, &h->hugepage_freelists[nid]);
864 h->free_huge_pages++;
865 h->free_huge_pages_node[nid]++;
868 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
870 struct page *page;
872 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
873 if (!is_migrate_isolate_page(page))
874 break;
876 * if 'non-isolated free hugepage' not found on the list,
877 * the allocation fails.
879 if (&h->hugepage_freelists[nid] == &page->lru)
880 return NULL;
881 list_move(&page->lru, &h->hugepage_activelist);
882 set_page_refcounted(page);
883 h->free_huge_pages--;
884 h->free_huge_pages_node[nid]--;
885 return page;
888 /* Movability of hugepages depends on migration support. */
889 static inline gfp_t htlb_alloc_mask(struct hstate *h)
891 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
892 return GFP_HIGHUSER_MOVABLE;
893 else
894 return GFP_HIGHUSER;
897 static struct page *dequeue_huge_page_vma(struct hstate *h,
898 struct vm_area_struct *vma,
899 unsigned long address, int avoid_reserve,
900 long chg)
902 struct page *page = NULL;
903 struct mempolicy *mpol;
904 nodemask_t *nodemask;
905 struct zonelist *zonelist;
906 struct zone *zone;
907 struct zoneref *z;
908 unsigned int cpuset_mems_cookie;
911 * A child process with MAP_PRIVATE mappings created by their parent
912 * have no page reserves. This check ensures that reservations are
913 * not "stolen". The child may still get SIGKILLed
915 if (!vma_has_reserves(vma, chg) &&
916 h->free_huge_pages - h->resv_huge_pages == 0)
917 goto err;
919 /* If reserves cannot be used, ensure enough pages are in the pool */
920 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
921 goto err;
923 retry_cpuset:
924 cpuset_mems_cookie = read_mems_allowed_begin();
925 zonelist = huge_zonelist(vma, address,
926 htlb_alloc_mask(h), &mpol, &nodemask);
928 for_each_zone_zonelist_nodemask(zone, z, zonelist,
929 MAX_NR_ZONES - 1, nodemask) {
930 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
931 page = dequeue_huge_page_node(h, zone_to_nid(zone));
932 if (page) {
933 if (avoid_reserve)
934 break;
935 if (!vma_has_reserves(vma, chg))
936 break;
938 SetPagePrivate(page);
939 h->resv_huge_pages--;
940 break;
945 mpol_cond_put(mpol);
946 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
947 goto retry_cpuset;
948 return page;
950 err:
951 return NULL;
955 * common helper functions for hstate_next_node_to_{alloc|free}.
956 * We may have allocated or freed a huge page based on a different
957 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
958 * be outside of *nodes_allowed. Ensure that we use an allowed
959 * node for alloc or free.
961 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
963 nid = next_node_in(nid, *nodes_allowed);
964 VM_BUG_ON(nid >= MAX_NUMNODES);
966 return nid;
969 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
971 if (!node_isset(nid, *nodes_allowed))
972 nid = next_node_allowed(nid, nodes_allowed);
973 return nid;
977 * returns the previously saved node ["this node"] from which to
978 * allocate a persistent huge page for the pool and advance the
979 * next node from which to allocate, handling wrap at end of node
980 * mask.
982 static int hstate_next_node_to_alloc(struct hstate *h,
983 nodemask_t *nodes_allowed)
985 int nid;
987 VM_BUG_ON(!nodes_allowed);
989 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
990 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
992 return nid;
996 * helper for free_pool_huge_page() - return the previously saved
997 * node ["this node"] from which to free a huge page. Advance the
998 * next node id whether or not we find a free huge page to free so
999 * that the next attempt to free addresses the next node.
1001 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1003 int nid;
1005 VM_BUG_ON(!nodes_allowed);
1007 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1008 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1010 return nid;
1013 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1014 for (nr_nodes = nodes_weight(*mask); \
1015 nr_nodes > 0 && \
1016 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1017 nr_nodes--)
1019 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1020 for (nr_nodes = nodes_weight(*mask); \
1021 nr_nodes > 0 && \
1022 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1023 nr_nodes--)
1025 #if defined(CONFIG_X86_64) && ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA))
1026 static void destroy_compound_gigantic_page(struct page *page,
1027 unsigned int order)
1029 int i;
1030 int nr_pages = 1 << order;
1031 struct page *p = page + 1;
1033 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1034 clear_compound_head(p);
1035 set_page_refcounted(p);
1038 set_compound_order(page, 0);
1039 __ClearPageHead(page);
1042 static void free_gigantic_page(struct page *page, unsigned int order)
1044 free_contig_range(page_to_pfn(page), 1 << order);
1047 static int __alloc_gigantic_page(unsigned long start_pfn,
1048 unsigned long nr_pages)
1050 unsigned long end_pfn = start_pfn + nr_pages;
1051 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1054 static bool pfn_range_valid_gigantic(struct zone *z,
1055 unsigned long start_pfn, unsigned long nr_pages)
1057 unsigned long i, end_pfn = start_pfn + nr_pages;
1058 struct page *page;
1060 for (i = start_pfn; i < end_pfn; i++) {
1061 if (!pfn_valid(i))
1062 return false;
1064 page = pfn_to_page(i);
1066 if (page_zone(page) != z)
1067 return false;
1069 if (PageReserved(page))
1070 return false;
1072 if (page_count(page) > 0)
1073 return false;
1075 if (PageHuge(page))
1076 return false;
1079 return true;
1082 static bool zone_spans_last_pfn(const struct zone *zone,
1083 unsigned long start_pfn, unsigned long nr_pages)
1085 unsigned long last_pfn = start_pfn + nr_pages - 1;
1086 return zone_spans_pfn(zone, last_pfn);
1089 static struct page *alloc_gigantic_page(int nid, unsigned int order)
1091 unsigned long nr_pages = 1 << order;
1092 unsigned long ret, pfn, flags;
1093 struct zone *z;
1095 z = NODE_DATA(nid)->node_zones;
1096 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1097 spin_lock_irqsave(&z->lock, flags);
1099 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1100 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1101 if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
1103 * We release the zone lock here because
1104 * alloc_contig_range() will also lock the zone
1105 * at some point. If there's an allocation
1106 * spinning on this lock, it may win the race
1107 * and cause alloc_contig_range() to fail...
1109 spin_unlock_irqrestore(&z->lock, flags);
1110 ret = __alloc_gigantic_page(pfn, nr_pages);
1111 if (!ret)
1112 return pfn_to_page(pfn);
1113 spin_lock_irqsave(&z->lock, flags);
1115 pfn += nr_pages;
1118 spin_unlock_irqrestore(&z->lock, flags);
1121 return NULL;
1124 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1125 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1127 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1129 struct page *page;
1131 page = alloc_gigantic_page(nid, huge_page_order(h));
1132 if (page) {
1133 prep_compound_gigantic_page(page, huge_page_order(h));
1134 prep_new_huge_page(h, page, nid);
1137 return page;
1140 static int alloc_fresh_gigantic_page(struct hstate *h,
1141 nodemask_t *nodes_allowed)
1143 struct page *page = NULL;
1144 int nr_nodes, node;
1146 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1147 page = alloc_fresh_gigantic_page_node(h, node);
1148 if (page)
1149 return 1;
1152 return 0;
1155 static inline bool gigantic_page_supported(void) { return true; }
1156 #else
1157 static inline bool gigantic_page_supported(void) { return false; }
1158 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1159 static inline void destroy_compound_gigantic_page(struct page *page,
1160 unsigned int order) { }
1161 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1162 nodemask_t *nodes_allowed) { return 0; }
1163 #endif
1165 static void update_and_free_page(struct hstate *h, struct page *page)
1167 int i;
1169 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1170 return;
1172 h->nr_huge_pages--;
1173 h->nr_huge_pages_node[page_to_nid(page)]--;
1174 for (i = 0; i < pages_per_huge_page(h); i++) {
1175 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1176 1 << PG_referenced | 1 << PG_dirty |
1177 1 << PG_active | 1 << PG_private |
1178 1 << PG_writeback);
1180 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1181 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1182 set_page_refcounted(page);
1183 if (hstate_is_gigantic(h)) {
1184 destroy_compound_gigantic_page(page, huge_page_order(h));
1185 free_gigantic_page(page, huge_page_order(h));
1186 } else {
1187 __free_pages(page, huge_page_order(h));
1191 struct hstate *size_to_hstate(unsigned long size)
1193 struct hstate *h;
1195 for_each_hstate(h) {
1196 if (huge_page_size(h) == size)
1197 return h;
1199 return NULL;
1203 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1204 * to hstate->hugepage_activelist.)
1206 * This function can be called for tail pages, but never returns true for them.
1208 bool page_huge_active(struct page *page)
1210 VM_BUG_ON_PAGE(!PageHuge(page), page);
1211 return PageHead(page) && PagePrivate(&page[1]);
1214 /* never called for tail page */
1215 static void set_page_huge_active(struct page *page)
1217 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1218 SetPagePrivate(&page[1]);
1221 static void clear_page_huge_active(struct page *page)
1223 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1224 ClearPagePrivate(&page[1]);
1227 void free_huge_page(struct page *page)
1230 * Can't pass hstate in here because it is called from the
1231 * compound page destructor.
1233 struct hstate *h = page_hstate(page);
1234 int nid = page_to_nid(page);
1235 struct hugepage_subpool *spool =
1236 (struct hugepage_subpool *)page_private(page);
1237 bool restore_reserve;
1239 set_page_private(page, 0);
1240 page->mapping = NULL;
1241 VM_BUG_ON_PAGE(page_count(page), page);
1242 VM_BUG_ON_PAGE(page_mapcount(page), page);
1243 restore_reserve = PagePrivate(page);
1244 ClearPagePrivate(page);
1247 * A return code of zero implies that the subpool will be under its
1248 * minimum size if the reservation is not restored after page is free.
1249 * Therefore, force restore_reserve operation.
1251 if (hugepage_subpool_put_pages(spool, 1) == 0)
1252 restore_reserve = true;
1254 spin_lock(&hugetlb_lock);
1255 clear_page_huge_active(page);
1256 hugetlb_cgroup_uncharge_page(hstate_index(h),
1257 pages_per_huge_page(h), page);
1258 if (restore_reserve)
1259 h->resv_huge_pages++;
1261 if (h->surplus_huge_pages_node[nid]) {
1262 /* remove the page from active list */
1263 list_del(&page->lru);
1264 update_and_free_page(h, page);
1265 h->surplus_huge_pages--;
1266 h->surplus_huge_pages_node[nid]--;
1267 } else {
1268 arch_clear_hugepage_flags(page);
1269 enqueue_huge_page(h, page);
1271 spin_unlock(&hugetlb_lock);
1274 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1276 INIT_LIST_HEAD(&page->lru);
1277 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1278 spin_lock(&hugetlb_lock);
1279 set_hugetlb_cgroup(page, NULL);
1280 h->nr_huge_pages++;
1281 h->nr_huge_pages_node[nid]++;
1282 spin_unlock(&hugetlb_lock);
1283 put_page(page); /* free it into the hugepage allocator */
1286 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1288 int i;
1289 int nr_pages = 1 << order;
1290 struct page *p = page + 1;
1292 /* we rely on prep_new_huge_page to set the destructor */
1293 set_compound_order(page, order);
1294 __ClearPageReserved(page);
1295 __SetPageHead(page);
1296 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1298 * For gigantic hugepages allocated through bootmem at
1299 * boot, it's safer to be consistent with the not-gigantic
1300 * hugepages and clear the PG_reserved bit from all tail pages
1301 * too. Otherwse drivers using get_user_pages() to access tail
1302 * pages may get the reference counting wrong if they see
1303 * PG_reserved set on a tail page (despite the head page not
1304 * having PG_reserved set). Enforcing this consistency between
1305 * head and tail pages allows drivers to optimize away a check
1306 * on the head page when they need know if put_page() is needed
1307 * after get_user_pages().
1309 __ClearPageReserved(p);
1310 set_page_count(p, 0);
1311 set_compound_head(p, page);
1313 atomic_set(compound_mapcount_ptr(page), -1);
1317 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1318 * transparent huge pages. See the PageTransHuge() documentation for more
1319 * details.
1321 int PageHuge(struct page *page)
1323 if (!PageCompound(page))
1324 return 0;
1326 page = compound_head(page);
1327 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1329 EXPORT_SYMBOL_GPL(PageHuge);
1332 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1333 * normal or transparent huge pages.
1335 int PageHeadHuge(struct page *page_head)
1337 if (!PageHead(page_head))
1338 return 0;
1340 return get_compound_page_dtor(page_head) == free_huge_page;
1343 pgoff_t __basepage_index(struct page *page)
1345 struct page *page_head = compound_head(page);
1346 pgoff_t index = page_index(page_head);
1347 unsigned long compound_idx;
1349 if (!PageHuge(page_head))
1350 return page_index(page);
1352 if (compound_order(page_head) >= MAX_ORDER)
1353 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1354 else
1355 compound_idx = page - page_head;
1357 return (index << compound_order(page_head)) + compound_idx;
1360 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1362 struct page *page;
1364 page = __alloc_pages_node(nid,
1365 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1366 __GFP_REPEAT|__GFP_NOWARN,
1367 huge_page_order(h));
1368 if (page) {
1369 prep_new_huge_page(h, page, nid);
1372 return page;
1375 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1377 struct page *page;
1378 int nr_nodes, node;
1379 int ret = 0;
1381 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1382 page = alloc_fresh_huge_page_node(h, node);
1383 if (page) {
1384 ret = 1;
1385 break;
1389 if (ret)
1390 count_vm_event(HTLB_BUDDY_PGALLOC);
1391 else
1392 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1394 return ret;
1398 * Free huge page from pool from next node to free.
1399 * Attempt to keep persistent huge pages more or less
1400 * balanced over allowed nodes.
1401 * Called with hugetlb_lock locked.
1403 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1404 bool acct_surplus)
1406 int nr_nodes, node;
1407 int ret = 0;
1409 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1411 * If we're returning unused surplus pages, only examine
1412 * nodes with surplus pages.
1414 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1415 !list_empty(&h->hugepage_freelists[node])) {
1416 struct page *page =
1417 list_entry(h->hugepage_freelists[node].next,
1418 struct page, lru);
1419 list_del(&page->lru);
1420 h->free_huge_pages--;
1421 h->free_huge_pages_node[node]--;
1422 if (acct_surplus) {
1423 h->surplus_huge_pages--;
1424 h->surplus_huge_pages_node[node]--;
1426 update_and_free_page(h, page);
1427 ret = 1;
1428 break;
1432 return ret;
1436 * Dissolve a given free hugepage into free buddy pages. This function does
1437 * nothing for in-use (including surplus) hugepages.
1439 static void dissolve_free_huge_page(struct page *page)
1441 spin_lock(&hugetlb_lock);
1442 if (PageHuge(page) && !page_count(page)) {
1443 struct hstate *h = page_hstate(page);
1444 int nid = page_to_nid(page);
1445 list_del(&page->lru);
1446 h->free_huge_pages--;
1447 h->free_huge_pages_node[nid]--;
1448 update_and_free_page(h, page);
1450 spin_unlock(&hugetlb_lock);
1454 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1455 * make specified memory blocks removable from the system.
1456 * Note that start_pfn should aligned with (minimum) hugepage size.
1458 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1460 unsigned long pfn;
1462 if (!hugepages_supported())
1463 return;
1465 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
1466 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1467 dissolve_free_huge_page(pfn_to_page(pfn));
1471 * There are 3 ways this can get called:
1472 * 1. With vma+addr: we use the VMA's memory policy
1473 * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge
1474 * page from any node, and let the buddy allocator itself figure
1475 * it out.
1476 * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page
1477 * strictly from 'nid'
1479 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1480 struct vm_area_struct *vma, unsigned long addr, int nid)
1482 int order = huge_page_order(h);
1483 gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1484 unsigned int cpuset_mems_cookie;
1487 * We need a VMA to get a memory policy. If we do not
1488 * have one, we use the 'nid' argument.
1490 * The mempolicy stuff below has some non-inlined bits
1491 * and calls ->vm_ops. That makes it hard to optimize at
1492 * compile-time, even when NUMA is off and it does
1493 * nothing. This helps the compiler optimize it out.
1495 if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1497 * If a specific node is requested, make sure to
1498 * get memory from there, but only when a node
1499 * is explicitly specified.
1501 if (nid != NUMA_NO_NODE)
1502 gfp |= __GFP_THISNODE;
1504 * Make sure to call something that can handle
1505 * nid=NUMA_NO_NODE
1507 return alloc_pages_node(nid, gfp, order);
1511 * OK, so we have a VMA. Fetch the mempolicy and try to
1512 * allocate a huge page with it. We will only reach this
1513 * when CONFIG_NUMA=y.
1515 do {
1516 struct page *page;
1517 struct mempolicy *mpol;
1518 struct zonelist *zl;
1519 nodemask_t *nodemask;
1521 cpuset_mems_cookie = read_mems_allowed_begin();
1522 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1523 mpol_cond_put(mpol);
1524 page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1525 if (page)
1526 return page;
1527 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1529 return NULL;
1533 * There are two ways to allocate a huge page:
1534 * 1. When you have a VMA and an address (like a fault)
1535 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1537 * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in
1538 * this case which signifies that the allocation should be done with
1539 * respect for the VMA's memory policy.
1541 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1542 * implies that memory policies will not be taken in to account.
1544 static struct page *__alloc_buddy_huge_page(struct hstate *h,
1545 struct vm_area_struct *vma, unsigned long addr, int nid)
1547 struct page *page;
1548 unsigned int r_nid;
1550 if (hstate_is_gigantic(h))
1551 return NULL;
1554 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1555 * This makes sure the caller is picking _one_ of the modes with which
1556 * we can call this function, not both.
1558 if (vma || (addr != -1)) {
1559 VM_WARN_ON_ONCE(addr == -1);
1560 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1563 * Assume we will successfully allocate the surplus page to
1564 * prevent racing processes from causing the surplus to exceed
1565 * overcommit
1567 * This however introduces a different race, where a process B
1568 * tries to grow the static hugepage pool while alloc_pages() is
1569 * called by process A. B will only examine the per-node
1570 * counters in determining if surplus huge pages can be
1571 * converted to normal huge pages in adjust_pool_surplus(). A
1572 * won't be able to increment the per-node counter, until the
1573 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1574 * no more huge pages can be converted from surplus to normal
1575 * state (and doesn't try to convert again). Thus, we have a
1576 * case where a surplus huge page exists, the pool is grown, and
1577 * the surplus huge page still exists after, even though it
1578 * should just have been converted to a normal huge page. This
1579 * does not leak memory, though, as the hugepage will be freed
1580 * once it is out of use. It also does not allow the counters to
1581 * go out of whack in adjust_pool_surplus() as we don't modify
1582 * the node values until we've gotten the hugepage and only the
1583 * per-node value is checked there.
1585 spin_lock(&hugetlb_lock);
1586 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1587 spin_unlock(&hugetlb_lock);
1588 return NULL;
1589 } else {
1590 h->nr_huge_pages++;
1591 h->surplus_huge_pages++;
1593 spin_unlock(&hugetlb_lock);
1595 page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1597 spin_lock(&hugetlb_lock);
1598 if (page) {
1599 INIT_LIST_HEAD(&page->lru);
1600 r_nid = page_to_nid(page);
1601 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1602 set_hugetlb_cgroup(page, NULL);
1604 * We incremented the global counters already
1606 h->nr_huge_pages_node[r_nid]++;
1607 h->surplus_huge_pages_node[r_nid]++;
1608 __count_vm_event(HTLB_BUDDY_PGALLOC);
1609 } else {
1610 h->nr_huge_pages--;
1611 h->surplus_huge_pages--;
1612 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1614 spin_unlock(&hugetlb_lock);
1616 return page;
1620 * Allocate a huge page from 'nid'. Note, 'nid' may be
1621 * NUMA_NO_NODE, which means that it may be allocated
1622 * anywhere.
1624 static
1625 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1627 unsigned long addr = -1;
1629 return __alloc_buddy_huge_page(h, NULL, addr, nid);
1633 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1635 static
1636 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1637 struct vm_area_struct *vma, unsigned long addr)
1639 return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1643 * This allocation function is useful in the context where vma is irrelevant.
1644 * E.g. soft-offlining uses this function because it only cares physical
1645 * address of error page.
1647 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1649 struct page *page = NULL;
1651 spin_lock(&hugetlb_lock);
1652 if (h->free_huge_pages - h->resv_huge_pages > 0)
1653 page = dequeue_huge_page_node(h, nid);
1654 spin_unlock(&hugetlb_lock);
1656 if (!page)
1657 page = __alloc_buddy_huge_page_no_mpol(h, nid);
1659 return page;
1663 * Increase the hugetlb pool such that it can accommodate a reservation
1664 * of size 'delta'.
1666 static int gather_surplus_pages(struct hstate *h, int delta)
1668 struct list_head surplus_list;
1669 struct page *page, *tmp;
1670 int ret, i;
1671 int needed, allocated;
1672 bool alloc_ok = true;
1674 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1675 if (needed <= 0) {
1676 h->resv_huge_pages += delta;
1677 return 0;
1680 allocated = 0;
1681 INIT_LIST_HEAD(&surplus_list);
1683 ret = -ENOMEM;
1684 retry:
1685 spin_unlock(&hugetlb_lock);
1686 for (i = 0; i < needed; i++) {
1687 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1688 if (!page) {
1689 alloc_ok = false;
1690 break;
1692 list_add(&page->lru, &surplus_list);
1694 allocated += i;
1697 * After retaking hugetlb_lock, we need to recalculate 'needed'
1698 * because either resv_huge_pages or free_huge_pages may have changed.
1700 spin_lock(&hugetlb_lock);
1701 needed = (h->resv_huge_pages + delta) -
1702 (h->free_huge_pages + allocated);
1703 if (needed > 0) {
1704 if (alloc_ok)
1705 goto retry;
1707 * We were not able to allocate enough pages to
1708 * satisfy the entire reservation so we free what
1709 * we've allocated so far.
1711 goto free;
1714 * The surplus_list now contains _at_least_ the number of extra pages
1715 * needed to accommodate the reservation. Add the appropriate number
1716 * of pages to the hugetlb pool and free the extras back to the buddy
1717 * allocator. Commit the entire reservation here to prevent another
1718 * process from stealing the pages as they are added to the pool but
1719 * before they are reserved.
1721 needed += allocated;
1722 h->resv_huge_pages += delta;
1723 ret = 0;
1725 /* Free the needed pages to the hugetlb pool */
1726 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1727 if ((--needed) < 0)
1728 break;
1730 * This page is now managed by the hugetlb allocator and has
1731 * no users -- drop the buddy allocator's reference.
1733 put_page_testzero(page);
1734 VM_BUG_ON_PAGE(page_count(page), page);
1735 enqueue_huge_page(h, page);
1737 free:
1738 spin_unlock(&hugetlb_lock);
1740 /* Free unnecessary surplus pages to the buddy allocator */
1741 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1742 put_page(page);
1743 spin_lock(&hugetlb_lock);
1745 return ret;
1749 * When releasing a hugetlb pool reservation, any surplus pages that were
1750 * allocated to satisfy the reservation must be explicitly freed if they were
1751 * never used.
1752 * Called with hugetlb_lock held.
1754 static void return_unused_surplus_pages(struct hstate *h,
1755 unsigned long unused_resv_pages)
1757 unsigned long nr_pages;
1759 /* Uncommit the reservation */
1760 h->resv_huge_pages -= unused_resv_pages;
1762 /* Cannot return gigantic pages currently */
1763 if (hstate_is_gigantic(h))
1764 return;
1766 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1769 * We want to release as many surplus pages as possible, spread
1770 * evenly across all nodes with memory. Iterate across these nodes
1771 * until we can no longer free unreserved surplus pages. This occurs
1772 * when the nodes with surplus pages have no free pages.
1773 * free_pool_huge_page() will balance the the freed pages across the
1774 * on-line nodes with memory and will handle the hstate accounting.
1776 while (nr_pages--) {
1777 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1778 break;
1779 cond_resched_lock(&hugetlb_lock);
1785 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1786 * are used by the huge page allocation routines to manage reservations.
1788 * vma_needs_reservation is called to determine if the huge page at addr
1789 * within the vma has an associated reservation. If a reservation is
1790 * needed, the value 1 is returned. The caller is then responsible for
1791 * managing the global reservation and subpool usage counts. After
1792 * the huge page has been allocated, vma_commit_reservation is called
1793 * to add the page to the reservation map. If the page allocation fails,
1794 * the reservation must be ended instead of committed. vma_end_reservation
1795 * is called in such cases.
1797 * In the normal case, vma_commit_reservation returns the same value
1798 * as the preceding vma_needs_reservation call. The only time this
1799 * is not the case is if a reserve map was changed between calls. It
1800 * is the responsibility of the caller to notice the difference and
1801 * take appropriate action.
1803 enum vma_resv_mode {
1804 VMA_NEEDS_RESV,
1805 VMA_COMMIT_RESV,
1806 VMA_END_RESV,
1808 static long __vma_reservation_common(struct hstate *h,
1809 struct vm_area_struct *vma, unsigned long addr,
1810 enum vma_resv_mode mode)
1812 struct resv_map *resv;
1813 pgoff_t idx;
1814 long ret;
1816 resv = vma_resv_map(vma);
1817 if (!resv)
1818 return 1;
1820 idx = vma_hugecache_offset(h, vma, addr);
1821 switch (mode) {
1822 case VMA_NEEDS_RESV:
1823 ret = region_chg(resv, idx, idx + 1);
1824 break;
1825 case VMA_COMMIT_RESV:
1826 ret = region_add(resv, idx, idx + 1);
1827 break;
1828 case VMA_END_RESV:
1829 region_abort(resv, idx, idx + 1);
1830 ret = 0;
1831 break;
1832 default:
1833 BUG();
1836 if (vma->vm_flags & VM_MAYSHARE)
1837 return ret;
1838 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1840 * In most cases, reserves always exist for private mappings.
1841 * However, a file associated with mapping could have been
1842 * hole punched or truncated after reserves were consumed.
1843 * As subsequent fault on such a range will not use reserves.
1844 * Subtle - The reserve map for private mappings has the
1845 * opposite meaning than that of shared mappings. If NO
1846 * entry is in the reserve map, it means a reservation exists.
1847 * If an entry exists in the reserve map, it means the
1848 * reservation has already been consumed. As a result, the
1849 * return value of this routine is the opposite of the
1850 * value returned from reserve map manipulation routines above.
1852 if (ret)
1853 return 0;
1854 else
1855 return 1;
1857 else
1858 return ret < 0 ? ret : 0;
1861 static long vma_needs_reservation(struct hstate *h,
1862 struct vm_area_struct *vma, unsigned long addr)
1864 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1867 static long vma_commit_reservation(struct hstate *h,
1868 struct vm_area_struct *vma, unsigned long addr)
1870 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1873 static void vma_end_reservation(struct hstate *h,
1874 struct vm_area_struct *vma, unsigned long addr)
1876 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1879 struct page *alloc_huge_page(struct vm_area_struct *vma,
1880 unsigned long addr, int avoid_reserve)
1882 struct hugepage_subpool *spool = subpool_vma(vma);
1883 struct hstate *h = hstate_vma(vma);
1884 struct page *page;
1885 long map_chg, map_commit;
1886 long gbl_chg;
1887 int ret, idx;
1888 struct hugetlb_cgroup *h_cg;
1890 idx = hstate_index(h);
1892 * Examine the region/reserve map to determine if the process
1893 * has a reservation for the page to be allocated. A return
1894 * code of zero indicates a reservation exists (no change).
1896 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1897 if (map_chg < 0)
1898 return ERR_PTR(-ENOMEM);
1901 * Processes that did not create the mapping will have no
1902 * reserves as indicated by the region/reserve map. Check
1903 * that the allocation will not exceed the subpool limit.
1904 * Allocations for MAP_NORESERVE mappings also need to be
1905 * checked against any subpool limit.
1907 if (map_chg || avoid_reserve) {
1908 gbl_chg = hugepage_subpool_get_pages(spool, 1);
1909 if (gbl_chg < 0) {
1910 vma_end_reservation(h, vma, addr);
1911 return ERR_PTR(-ENOSPC);
1915 * Even though there was no reservation in the region/reserve
1916 * map, there could be reservations associated with the
1917 * subpool that can be used. This would be indicated if the
1918 * return value of hugepage_subpool_get_pages() is zero.
1919 * However, if avoid_reserve is specified we still avoid even
1920 * the subpool reservations.
1922 if (avoid_reserve)
1923 gbl_chg = 1;
1926 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1927 if (ret)
1928 goto out_subpool_put;
1930 spin_lock(&hugetlb_lock);
1932 * glb_chg is passed to indicate whether or not a page must be taken
1933 * from the global free pool (global change). gbl_chg == 0 indicates
1934 * a reservation exists for the allocation.
1936 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1937 if (!page) {
1938 spin_unlock(&hugetlb_lock);
1939 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
1940 if (!page)
1941 goto out_uncharge_cgroup;
1942 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
1943 SetPagePrivate(page);
1944 h->resv_huge_pages--;
1946 spin_lock(&hugetlb_lock);
1947 list_move(&page->lru, &h->hugepage_activelist);
1948 /* Fall through */
1950 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1951 spin_unlock(&hugetlb_lock);
1953 set_page_private(page, (unsigned long)spool);
1955 map_commit = vma_commit_reservation(h, vma, addr);
1956 if (unlikely(map_chg > map_commit)) {
1958 * The page was added to the reservation map between
1959 * vma_needs_reservation and vma_commit_reservation.
1960 * This indicates a race with hugetlb_reserve_pages.
1961 * Adjust for the subpool count incremented above AND
1962 * in hugetlb_reserve_pages for the same page. Also,
1963 * the reservation count added in hugetlb_reserve_pages
1964 * no longer applies.
1966 long rsv_adjust;
1968 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1969 hugetlb_acct_memory(h, -rsv_adjust);
1971 return page;
1973 out_uncharge_cgroup:
1974 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1975 out_subpool_put:
1976 if (map_chg || avoid_reserve)
1977 hugepage_subpool_put_pages(spool, 1);
1978 vma_end_reservation(h, vma, addr);
1979 return ERR_PTR(-ENOSPC);
1983 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1984 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1985 * where no ERR_VALUE is expected to be returned.
1987 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1988 unsigned long addr, int avoid_reserve)
1990 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1991 if (IS_ERR(page))
1992 page = NULL;
1993 return page;
1996 int __weak alloc_bootmem_huge_page(struct hstate *h)
1998 struct huge_bootmem_page *m;
1999 int nr_nodes, node;
2001 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2002 void *addr;
2004 addr = memblock_virt_alloc_try_nid_nopanic(
2005 huge_page_size(h), huge_page_size(h),
2006 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2007 if (addr) {
2009 * Use the beginning of the huge page to store the
2010 * huge_bootmem_page struct (until gather_bootmem
2011 * puts them into the mem_map).
2013 m = addr;
2014 goto found;
2017 return 0;
2019 found:
2020 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2021 /* Put them into a private list first because mem_map is not up yet */
2022 list_add(&m->list, &huge_boot_pages);
2023 m->hstate = h;
2024 return 1;
2027 static void __init prep_compound_huge_page(struct page *page,
2028 unsigned int order)
2030 if (unlikely(order > (MAX_ORDER - 1)))
2031 prep_compound_gigantic_page(page, order);
2032 else
2033 prep_compound_page(page, order);
2036 /* Put bootmem huge pages into the standard lists after mem_map is up */
2037 static void __init gather_bootmem_prealloc(void)
2039 struct huge_bootmem_page *m;
2041 list_for_each_entry(m, &huge_boot_pages, list) {
2042 struct hstate *h = m->hstate;
2043 struct page *page;
2045 #ifdef CONFIG_HIGHMEM
2046 page = pfn_to_page(m->phys >> PAGE_SHIFT);
2047 memblock_free_late(__pa(m),
2048 sizeof(struct huge_bootmem_page));
2049 #else
2050 page = virt_to_page(m);
2051 #endif
2052 WARN_ON(page_count(page) != 1);
2053 prep_compound_huge_page(page, h->order);
2054 WARN_ON(PageReserved(page));
2055 prep_new_huge_page(h, page, page_to_nid(page));
2057 * If we had gigantic hugepages allocated at boot time, we need
2058 * to restore the 'stolen' pages to totalram_pages in order to
2059 * fix confusing memory reports from free(1) and another
2060 * side-effects, like CommitLimit going negative.
2062 if (hstate_is_gigantic(h))
2063 adjust_managed_page_count(page, 1 << h->order);
2067 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2069 unsigned long i;
2071 for (i = 0; i < h->max_huge_pages; ++i) {
2072 if (hstate_is_gigantic(h)) {
2073 if (!alloc_bootmem_huge_page(h))
2074 break;
2075 } else if (!alloc_fresh_huge_page(h,
2076 &node_states[N_MEMORY]))
2077 break;
2079 h->max_huge_pages = i;
2082 static void __init hugetlb_init_hstates(void)
2084 struct hstate *h;
2086 for_each_hstate(h) {
2087 if (minimum_order > huge_page_order(h))
2088 minimum_order = huge_page_order(h);
2090 /* oversize hugepages were init'ed in early boot */
2091 if (!hstate_is_gigantic(h))
2092 hugetlb_hstate_alloc_pages(h);
2094 VM_BUG_ON(minimum_order == UINT_MAX);
2097 static char * __init memfmt(char *buf, unsigned long n)
2099 if (n >= (1UL << 30))
2100 sprintf(buf, "%lu GB", n >> 30);
2101 else if (n >= (1UL << 20))
2102 sprintf(buf, "%lu MB", n >> 20);
2103 else
2104 sprintf(buf, "%lu KB", n >> 10);
2105 return buf;
2108 static void __init report_hugepages(void)
2110 struct hstate *h;
2112 for_each_hstate(h) {
2113 char buf[32];
2114 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2115 memfmt(buf, huge_page_size(h)),
2116 h->free_huge_pages);
2120 #ifdef CONFIG_HIGHMEM
2121 static void try_to_free_low(struct hstate *h, unsigned long count,
2122 nodemask_t *nodes_allowed)
2124 int i;
2126 if (hstate_is_gigantic(h))
2127 return;
2129 for_each_node_mask(i, *nodes_allowed) {
2130 struct page *page, *next;
2131 struct list_head *freel = &h->hugepage_freelists[i];
2132 list_for_each_entry_safe(page, next, freel, lru) {
2133 if (count >= h->nr_huge_pages)
2134 return;
2135 if (PageHighMem(page))
2136 continue;
2137 list_del(&page->lru);
2138 update_and_free_page(h, page);
2139 h->free_huge_pages--;
2140 h->free_huge_pages_node[page_to_nid(page)]--;
2144 #else
2145 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2146 nodemask_t *nodes_allowed)
2149 #endif
2152 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2153 * balanced by operating on them in a round-robin fashion.
2154 * Returns 1 if an adjustment was made.
2156 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2157 int delta)
2159 int nr_nodes, node;
2161 VM_BUG_ON(delta != -1 && delta != 1);
2163 if (delta < 0) {
2164 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2165 if (h->surplus_huge_pages_node[node])
2166 goto found;
2168 } else {
2169 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2170 if (h->surplus_huge_pages_node[node] <
2171 h->nr_huge_pages_node[node])
2172 goto found;
2175 return 0;
2177 found:
2178 h->surplus_huge_pages += delta;
2179 h->surplus_huge_pages_node[node] += delta;
2180 return 1;
2183 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2184 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2185 nodemask_t *nodes_allowed)
2187 unsigned long min_count, ret;
2189 if (hstate_is_gigantic(h) && !gigantic_page_supported())
2190 return h->max_huge_pages;
2193 * Increase the pool size
2194 * First take pages out of surplus state. Then make up the
2195 * remaining difference by allocating fresh huge pages.
2197 * We might race with __alloc_buddy_huge_page() here and be unable
2198 * to convert a surplus huge page to a normal huge page. That is
2199 * not critical, though, it just means the overall size of the
2200 * pool might be one hugepage larger than it needs to be, but
2201 * within all the constraints specified by the sysctls.
2203 spin_lock(&hugetlb_lock);
2204 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2205 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2206 break;
2209 while (count > persistent_huge_pages(h)) {
2211 * If this allocation races such that we no longer need the
2212 * page, free_huge_page will handle it by freeing the page
2213 * and reducing the surplus.
2215 spin_unlock(&hugetlb_lock);
2216 if (hstate_is_gigantic(h))
2217 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2218 else
2219 ret = alloc_fresh_huge_page(h, nodes_allowed);
2220 spin_lock(&hugetlb_lock);
2221 if (!ret)
2222 goto out;
2224 /* Bail for signals. Probably ctrl-c from user */
2225 if (signal_pending(current))
2226 goto out;
2230 * Decrease the pool size
2231 * First return free pages to the buddy allocator (being careful
2232 * to keep enough around to satisfy reservations). Then place
2233 * pages into surplus state as needed so the pool will shrink
2234 * to the desired size as pages become free.
2236 * By placing pages into the surplus state independent of the
2237 * overcommit value, we are allowing the surplus pool size to
2238 * exceed overcommit. There are few sane options here. Since
2239 * __alloc_buddy_huge_page() is checking the global counter,
2240 * though, we'll note that we're not allowed to exceed surplus
2241 * and won't grow the pool anywhere else. Not until one of the
2242 * sysctls are changed, or the surplus pages go out of use.
2244 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2245 min_count = max(count, min_count);
2246 try_to_free_low(h, min_count, nodes_allowed);
2247 while (min_count < persistent_huge_pages(h)) {
2248 if (!free_pool_huge_page(h, nodes_allowed, 0))
2249 break;
2250 cond_resched_lock(&hugetlb_lock);
2252 while (count < persistent_huge_pages(h)) {
2253 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2254 break;
2256 out:
2257 ret = persistent_huge_pages(h);
2258 spin_unlock(&hugetlb_lock);
2259 return ret;
2262 #define HSTATE_ATTR_RO(_name) \
2263 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2265 #define HSTATE_ATTR(_name) \
2266 static struct kobj_attribute _name##_attr = \
2267 __ATTR(_name, 0644, _name##_show, _name##_store)
2269 static struct kobject *hugepages_kobj;
2270 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2272 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2274 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2276 int i;
2278 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2279 if (hstate_kobjs[i] == kobj) {
2280 if (nidp)
2281 *nidp = NUMA_NO_NODE;
2282 return &hstates[i];
2285 return kobj_to_node_hstate(kobj, nidp);
2288 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2289 struct kobj_attribute *attr, char *buf)
2291 struct hstate *h;
2292 unsigned long nr_huge_pages;
2293 int nid;
2295 h = kobj_to_hstate(kobj, &nid);
2296 if (nid == NUMA_NO_NODE)
2297 nr_huge_pages = h->nr_huge_pages;
2298 else
2299 nr_huge_pages = h->nr_huge_pages_node[nid];
2301 return sprintf(buf, "%lu\n", nr_huge_pages);
2304 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2305 struct hstate *h, int nid,
2306 unsigned long count, size_t len)
2308 int err;
2309 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2311 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2312 err = -EINVAL;
2313 goto out;
2316 if (nid == NUMA_NO_NODE) {
2318 * global hstate attribute
2320 if (!(obey_mempolicy &&
2321 init_nodemask_of_mempolicy(nodes_allowed))) {
2322 NODEMASK_FREE(nodes_allowed);
2323 nodes_allowed = &node_states[N_MEMORY];
2325 } else if (nodes_allowed) {
2327 * per node hstate attribute: adjust count to global,
2328 * but restrict alloc/free to the specified node.
2330 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2331 init_nodemask_of_node(nodes_allowed, nid);
2332 } else
2333 nodes_allowed = &node_states[N_MEMORY];
2335 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2337 if (nodes_allowed != &node_states[N_MEMORY])
2338 NODEMASK_FREE(nodes_allowed);
2340 return len;
2341 out:
2342 NODEMASK_FREE(nodes_allowed);
2343 return err;
2346 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2347 struct kobject *kobj, const char *buf,
2348 size_t len)
2350 struct hstate *h;
2351 unsigned long count;
2352 int nid;
2353 int err;
2355 err = kstrtoul(buf, 10, &count);
2356 if (err)
2357 return err;
2359 h = kobj_to_hstate(kobj, &nid);
2360 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2363 static ssize_t nr_hugepages_show(struct kobject *kobj,
2364 struct kobj_attribute *attr, char *buf)
2366 return nr_hugepages_show_common(kobj, attr, buf);
2369 static ssize_t nr_hugepages_store(struct kobject *kobj,
2370 struct kobj_attribute *attr, const char *buf, size_t len)
2372 return nr_hugepages_store_common(false, kobj, buf, len);
2374 HSTATE_ATTR(nr_hugepages);
2376 #ifdef CONFIG_NUMA
2379 * hstate attribute for optionally mempolicy-based constraint on persistent
2380 * huge page alloc/free.
2382 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2383 struct kobj_attribute *attr, char *buf)
2385 return nr_hugepages_show_common(kobj, attr, buf);
2388 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2389 struct kobj_attribute *attr, const char *buf, size_t len)
2391 return nr_hugepages_store_common(true, kobj, buf, len);
2393 HSTATE_ATTR(nr_hugepages_mempolicy);
2394 #endif
2397 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2398 struct kobj_attribute *attr, char *buf)
2400 struct hstate *h = kobj_to_hstate(kobj, NULL);
2401 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2404 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2405 struct kobj_attribute *attr, const char *buf, size_t count)
2407 int err;
2408 unsigned long input;
2409 struct hstate *h = kobj_to_hstate(kobj, NULL);
2411 if (hstate_is_gigantic(h))
2412 return -EINVAL;
2414 err = kstrtoul(buf, 10, &input);
2415 if (err)
2416 return err;
2418 spin_lock(&hugetlb_lock);
2419 h->nr_overcommit_huge_pages = input;
2420 spin_unlock(&hugetlb_lock);
2422 return count;
2424 HSTATE_ATTR(nr_overcommit_hugepages);
2426 static ssize_t free_hugepages_show(struct kobject *kobj,
2427 struct kobj_attribute *attr, char *buf)
2429 struct hstate *h;
2430 unsigned long free_huge_pages;
2431 int nid;
2433 h = kobj_to_hstate(kobj, &nid);
2434 if (nid == NUMA_NO_NODE)
2435 free_huge_pages = h->free_huge_pages;
2436 else
2437 free_huge_pages = h->free_huge_pages_node[nid];
2439 return sprintf(buf, "%lu\n", free_huge_pages);
2441 HSTATE_ATTR_RO(free_hugepages);
2443 static ssize_t resv_hugepages_show(struct kobject *kobj,
2444 struct kobj_attribute *attr, char *buf)
2446 struct hstate *h = kobj_to_hstate(kobj, NULL);
2447 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2449 HSTATE_ATTR_RO(resv_hugepages);
2451 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2452 struct kobj_attribute *attr, char *buf)
2454 struct hstate *h;
2455 unsigned long surplus_huge_pages;
2456 int nid;
2458 h = kobj_to_hstate(kobj, &nid);
2459 if (nid == NUMA_NO_NODE)
2460 surplus_huge_pages = h->surplus_huge_pages;
2461 else
2462 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2464 return sprintf(buf, "%lu\n", surplus_huge_pages);
2466 HSTATE_ATTR_RO(surplus_hugepages);
2468 static struct attribute *hstate_attrs[] = {
2469 &nr_hugepages_attr.attr,
2470 &nr_overcommit_hugepages_attr.attr,
2471 &free_hugepages_attr.attr,
2472 &resv_hugepages_attr.attr,
2473 &surplus_hugepages_attr.attr,
2474 #ifdef CONFIG_NUMA
2475 &nr_hugepages_mempolicy_attr.attr,
2476 #endif
2477 NULL,
2480 static struct attribute_group hstate_attr_group = {
2481 .attrs = hstate_attrs,
2484 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2485 struct kobject **hstate_kobjs,
2486 struct attribute_group *hstate_attr_group)
2488 int retval;
2489 int hi = hstate_index(h);
2491 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2492 if (!hstate_kobjs[hi])
2493 return -ENOMEM;
2495 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2496 if (retval)
2497 kobject_put(hstate_kobjs[hi]);
2499 return retval;
2502 static void __init hugetlb_sysfs_init(void)
2504 struct hstate *h;
2505 int err;
2507 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2508 if (!hugepages_kobj)
2509 return;
2511 for_each_hstate(h) {
2512 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2513 hstate_kobjs, &hstate_attr_group);
2514 if (err)
2515 pr_err("Hugetlb: Unable to add hstate %s", h->name);
2519 #ifdef CONFIG_NUMA
2522 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2523 * with node devices in node_devices[] using a parallel array. The array
2524 * index of a node device or _hstate == node id.
2525 * This is here to avoid any static dependency of the node device driver, in
2526 * the base kernel, on the hugetlb module.
2528 struct node_hstate {
2529 struct kobject *hugepages_kobj;
2530 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2532 static struct node_hstate node_hstates[MAX_NUMNODES];
2535 * A subset of global hstate attributes for node devices
2537 static struct attribute *per_node_hstate_attrs[] = {
2538 &nr_hugepages_attr.attr,
2539 &free_hugepages_attr.attr,
2540 &surplus_hugepages_attr.attr,
2541 NULL,
2544 static struct attribute_group per_node_hstate_attr_group = {
2545 .attrs = per_node_hstate_attrs,
2549 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2550 * Returns node id via non-NULL nidp.
2552 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2554 int nid;
2556 for (nid = 0; nid < nr_node_ids; nid++) {
2557 struct node_hstate *nhs = &node_hstates[nid];
2558 int i;
2559 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2560 if (nhs->hstate_kobjs[i] == kobj) {
2561 if (nidp)
2562 *nidp = nid;
2563 return &hstates[i];
2567 BUG();
2568 return NULL;
2572 * Unregister hstate attributes from a single node device.
2573 * No-op if no hstate attributes attached.
2575 static void hugetlb_unregister_node(struct node *node)
2577 struct hstate *h;
2578 struct node_hstate *nhs = &node_hstates[node->dev.id];
2580 if (!nhs->hugepages_kobj)
2581 return; /* no hstate attributes */
2583 for_each_hstate(h) {
2584 int idx = hstate_index(h);
2585 if (nhs->hstate_kobjs[idx]) {
2586 kobject_put(nhs->hstate_kobjs[idx]);
2587 nhs->hstate_kobjs[idx] = NULL;
2591 kobject_put(nhs->hugepages_kobj);
2592 nhs->hugepages_kobj = NULL;
2597 * Register hstate attributes for a single node device.
2598 * No-op if attributes already registered.
2600 static void hugetlb_register_node(struct node *node)
2602 struct hstate *h;
2603 struct node_hstate *nhs = &node_hstates[node->dev.id];
2604 int err;
2606 if (nhs->hugepages_kobj)
2607 return; /* already allocated */
2609 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2610 &node->dev.kobj);
2611 if (!nhs->hugepages_kobj)
2612 return;
2614 for_each_hstate(h) {
2615 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2616 nhs->hstate_kobjs,
2617 &per_node_hstate_attr_group);
2618 if (err) {
2619 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2620 h->name, node->dev.id);
2621 hugetlb_unregister_node(node);
2622 break;
2628 * hugetlb init time: register hstate attributes for all registered node
2629 * devices of nodes that have memory. All on-line nodes should have
2630 * registered their associated device by this time.
2632 static void __init hugetlb_register_all_nodes(void)
2634 int nid;
2636 for_each_node_state(nid, N_MEMORY) {
2637 struct node *node = node_devices[nid];
2638 if (node->dev.id == nid)
2639 hugetlb_register_node(node);
2643 * Let the node device driver know we're here so it can
2644 * [un]register hstate attributes on node hotplug.
2646 register_hugetlbfs_with_node(hugetlb_register_node,
2647 hugetlb_unregister_node);
2649 #else /* !CONFIG_NUMA */
2651 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2653 BUG();
2654 if (nidp)
2655 *nidp = -1;
2656 return NULL;
2659 static void hugetlb_register_all_nodes(void) { }
2661 #endif
2663 static int __init hugetlb_init(void)
2665 int i;
2667 if (!hugepages_supported())
2668 return 0;
2670 if (!size_to_hstate(default_hstate_size)) {
2671 default_hstate_size = HPAGE_SIZE;
2672 if (!size_to_hstate(default_hstate_size))
2673 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2675 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2676 if (default_hstate_max_huge_pages) {
2677 if (!default_hstate.max_huge_pages)
2678 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2681 hugetlb_init_hstates();
2682 gather_bootmem_prealloc();
2683 report_hugepages();
2685 hugetlb_sysfs_init();
2686 hugetlb_register_all_nodes();
2687 hugetlb_cgroup_file_init();
2689 #ifdef CONFIG_SMP
2690 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2691 #else
2692 num_fault_mutexes = 1;
2693 #endif
2694 hugetlb_fault_mutex_table =
2695 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2696 BUG_ON(!hugetlb_fault_mutex_table);
2698 for (i = 0; i < num_fault_mutexes; i++)
2699 mutex_init(&hugetlb_fault_mutex_table[i]);
2700 return 0;
2702 subsys_initcall(hugetlb_init);
2704 /* Should be called on processing a hugepagesz=... option */
2705 void __init hugetlb_bad_size(void)
2707 parsed_valid_hugepagesz = false;
2710 void __init hugetlb_add_hstate(unsigned int order)
2712 struct hstate *h;
2713 unsigned long i;
2715 if (size_to_hstate(PAGE_SIZE << order)) {
2716 pr_warn("hugepagesz= specified twice, ignoring\n");
2717 return;
2719 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2720 BUG_ON(order == 0);
2721 h = &hstates[hugetlb_max_hstate++];
2722 h->order = order;
2723 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2724 h->nr_huge_pages = 0;
2725 h->free_huge_pages = 0;
2726 for (i = 0; i < MAX_NUMNODES; ++i)
2727 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2728 INIT_LIST_HEAD(&h->hugepage_activelist);
2729 h->next_nid_to_alloc = first_memory_node;
2730 h->next_nid_to_free = first_memory_node;
2731 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2732 huge_page_size(h)/1024);
2734 parsed_hstate = h;
2737 static int __init hugetlb_nrpages_setup(char *s)
2739 unsigned long *mhp;
2740 static unsigned long *last_mhp;
2742 if (!parsed_valid_hugepagesz) {
2743 pr_warn("hugepages = %s preceded by "
2744 "an unsupported hugepagesz, ignoring\n", s);
2745 parsed_valid_hugepagesz = true;
2746 return 1;
2749 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2750 * so this hugepages= parameter goes to the "default hstate".
2752 else if (!hugetlb_max_hstate)
2753 mhp = &default_hstate_max_huge_pages;
2754 else
2755 mhp = &parsed_hstate->max_huge_pages;
2757 if (mhp == last_mhp) {
2758 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2759 return 1;
2762 if (sscanf(s, "%lu", mhp) <= 0)
2763 *mhp = 0;
2766 * Global state is always initialized later in hugetlb_init.
2767 * But we need to allocate >= MAX_ORDER hstates here early to still
2768 * use the bootmem allocator.
2770 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2771 hugetlb_hstate_alloc_pages(parsed_hstate);
2773 last_mhp = mhp;
2775 return 1;
2777 __setup("hugepages=", hugetlb_nrpages_setup);
2779 static int __init hugetlb_default_setup(char *s)
2781 default_hstate_size = memparse(s, &s);
2782 return 1;
2784 __setup("default_hugepagesz=", hugetlb_default_setup);
2786 static unsigned int cpuset_mems_nr(unsigned int *array)
2788 int node;
2789 unsigned int nr = 0;
2791 for_each_node_mask(node, cpuset_current_mems_allowed)
2792 nr += array[node];
2794 return nr;
2797 #ifdef CONFIG_SYSCTL
2798 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2799 struct ctl_table *table, int write,
2800 void __user *buffer, size_t *length, loff_t *ppos)
2802 struct hstate *h = &default_hstate;
2803 unsigned long tmp = h->max_huge_pages;
2804 int ret;
2806 if (!hugepages_supported())
2807 return -EOPNOTSUPP;
2809 table->data = &tmp;
2810 table->maxlen = sizeof(unsigned long);
2811 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2812 if (ret)
2813 goto out;
2815 if (write)
2816 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2817 NUMA_NO_NODE, tmp, *length);
2818 out:
2819 return ret;
2822 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2823 void __user *buffer, size_t *length, loff_t *ppos)
2826 return hugetlb_sysctl_handler_common(false, table, write,
2827 buffer, length, ppos);
2830 #ifdef CONFIG_NUMA
2831 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2832 void __user *buffer, size_t *length, loff_t *ppos)
2834 return hugetlb_sysctl_handler_common(true, table, write,
2835 buffer, length, ppos);
2837 #endif /* CONFIG_NUMA */
2839 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2840 void __user *buffer,
2841 size_t *length, loff_t *ppos)
2843 struct hstate *h = &default_hstate;
2844 unsigned long tmp;
2845 int ret;
2847 if (!hugepages_supported())
2848 return -EOPNOTSUPP;
2850 tmp = h->nr_overcommit_huge_pages;
2852 if (write && hstate_is_gigantic(h))
2853 return -EINVAL;
2855 table->data = &tmp;
2856 table->maxlen = sizeof(unsigned long);
2857 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2858 if (ret)
2859 goto out;
2861 if (write) {
2862 spin_lock(&hugetlb_lock);
2863 h->nr_overcommit_huge_pages = tmp;
2864 spin_unlock(&hugetlb_lock);
2866 out:
2867 return ret;
2870 #endif /* CONFIG_SYSCTL */
2872 void hugetlb_report_meminfo(struct seq_file *m)
2874 struct hstate *h = &default_hstate;
2875 if (!hugepages_supported())
2876 return;
2877 seq_printf(m,
2878 "HugePages_Total: %5lu\n"
2879 "HugePages_Free: %5lu\n"
2880 "HugePages_Rsvd: %5lu\n"
2881 "HugePages_Surp: %5lu\n"
2882 "Hugepagesize: %8lu kB\n",
2883 h->nr_huge_pages,
2884 h->free_huge_pages,
2885 h->resv_huge_pages,
2886 h->surplus_huge_pages,
2887 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2890 int hugetlb_report_node_meminfo(int nid, char *buf)
2892 struct hstate *h = &default_hstate;
2893 if (!hugepages_supported())
2894 return 0;
2895 return sprintf(buf,
2896 "Node %d HugePages_Total: %5u\n"
2897 "Node %d HugePages_Free: %5u\n"
2898 "Node %d HugePages_Surp: %5u\n",
2899 nid, h->nr_huge_pages_node[nid],
2900 nid, h->free_huge_pages_node[nid],
2901 nid, h->surplus_huge_pages_node[nid]);
2904 void hugetlb_show_meminfo(void)
2906 struct hstate *h;
2907 int nid;
2909 if (!hugepages_supported())
2910 return;
2912 for_each_node_state(nid, N_MEMORY)
2913 for_each_hstate(h)
2914 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2915 nid,
2916 h->nr_huge_pages_node[nid],
2917 h->free_huge_pages_node[nid],
2918 h->surplus_huge_pages_node[nid],
2919 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2922 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
2924 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
2925 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
2928 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2929 unsigned long hugetlb_total_pages(void)
2931 struct hstate *h;
2932 unsigned long nr_total_pages = 0;
2934 for_each_hstate(h)
2935 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2936 return nr_total_pages;
2939 static int hugetlb_acct_memory(struct hstate *h, long delta)
2941 int ret = -ENOMEM;
2943 spin_lock(&hugetlb_lock);
2945 * When cpuset is configured, it breaks the strict hugetlb page
2946 * reservation as the accounting is done on a global variable. Such
2947 * reservation is completely rubbish in the presence of cpuset because
2948 * the reservation is not checked against page availability for the
2949 * current cpuset. Application can still potentially OOM'ed by kernel
2950 * with lack of free htlb page in cpuset that the task is in.
2951 * Attempt to enforce strict accounting with cpuset is almost
2952 * impossible (or too ugly) because cpuset is too fluid that
2953 * task or memory node can be dynamically moved between cpusets.
2955 * The change of semantics for shared hugetlb mapping with cpuset is
2956 * undesirable. However, in order to preserve some of the semantics,
2957 * we fall back to check against current free page availability as
2958 * a best attempt and hopefully to minimize the impact of changing
2959 * semantics that cpuset has.
2961 if (delta > 0) {
2962 if (gather_surplus_pages(h, delta) < 0)
2963 goto out;
2965 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2966 return_unused_surplus_pages(h, delta);
2967 goto out;
2971 ret = 0;
2972 if (delta < 0)
2973 return_unused_surplus_pages(h, (unsigned long) -delta);
2975 out:
2976 spin_unlock(&hugetlb_lock);
2977 return ret;
2980 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2982 struct resv_map *resv = vma_resv_map(vma);
2985 * This new VMA should share its siblings reservation map if present.
2986 * The VMA will only ever have a valid reservation map pointer where
2987 * it is being copied for another still existing VMA. As that VMA
2988 * has a reference to the reservation map it cannot disappear until
2989 * after this open call completes. It is therefore safe to take a
2990 * new reference here without additional locking.
2992 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2993 kref_get(&resv->refs);
2996 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2998 struct hstate *h = hstate_vma(vma);
2999 struct resv_map *resv = vma_resv_map(vma);
3000 struct hugepage_subpool *spool = subpool_vma(vma);
3001 unsigned long reserve, start, end;
3002 long gbl_reserve;
3004 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3005 return;
3007 start = vma_hugecache_offset(h, vma, vma->vm_start);
3008 end = vma_hugecache_offset(h, vma, vma->vm_end);
3010 reserve = (end - start) - region_count(resv, start, end);
3012 kref_put(&resv->refs, resv_map_release);
3014 if (reserve) {
3016 * Decrement reserve counts. The global reserve count may be
3017 * adjusted if the subpool has a minimum size.
3019 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3020 hugetlb_acct_memory(h, -gbl_reserve);
3025 * We cannot handle pagefaults against hugetlb pages at all. They cause
3026 * handle_mm_fault() to try to instantiate regular-sized pages in the
3027 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3028 * this far.
3030 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3032 BUG();
3033 return 0;
3036 const struct vm_operations_struct hugetlb_vm_ops = {
3037 .fault = hugetlb_vm_op_fault,
3038 .open = hugetlb_vm_op_open,
3039 .close = hugetlb_vm_op_close,
3042 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3043 int writable)
3045 pte_t entry;
3047 if (writable) {
3048 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3049 vma->vm_page_prot)));
3050 } else {
3051 entry = huge_pte_wrprotect(mk_huge_pte(page,
3052 vma->vm_page_prot));
3054 entry = pte_mkyoung(entry);
3055 entry = pte_mkhuge(entry);
3056 entry = arch_make_huge_pte(entry, vma, page, writable);
3058 return entry;
3061 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3062 unsigned long address, pte_t *ptep)
3064 pte_t entry;
3066 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3067 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3068 update_mmu_cache(vma, address, ptep);
3071 static int is_hugetlb_entry_migration(pte_t pte)
3073 swp_entry_t swp;
3075 if (huge_pte_none(pte) || pte_present(pte))
3076 return 0;
3077 swp = pte_to_swp_entry(pte);
3078 if (non_swap_entry(swp) && is_migration_entry(swp))
3079 return 1;
3080 else
3081 return 0;
3084 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3086 swp_entry_t swp;
3088 if (huge_pte_none(pte) || pte_present(pte))
3089 return 0;
3090 swp = pte_to_swp_entry(pte);
3091 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3092 return 1;
3093 else
3094 return 0;
3097 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3098 struct vm_area_struct *vma)
3100 pte_t *src_pte, *dst_pte, entry;
3101 struct page *ptepage;
3102 unsigned long addr;
3103 int cow;
3104 struct hstate *h = hstate_vma(vma);
3105 unsigned long sz = huge_page_size(h);
3106 unsigned long mmun_start; /* For mmu_notifiers */
3107 unsigned long mmun_end; /* For mmu_notifiers */
3108 int ret = 0;
3110 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3112 mmun_start = vma->vm_start;
3113 mmun_end = vma->vm_end;
3114 if (cow)
3115 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3117 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3118 spinlock_t *src_ptl, *dst_ptl;
3119 src_pte = huge_pte_offset(src, addr);
3120 if (!src_pte)
3121 continue;
3122 dst_pte = huge_pte_alloc(dst, addr, sz);
3123 if (!dst_pte) {
3124 ret = -ENOMEM;
3125 break;
3128 /* If the pagetables are shared don't copy or take references */
3129 if (dst_pte == src_pte)
3130 continue;
3132 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3133 src_ptl = huge_pte_lockptr(h, src, src_pte);
3134 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3135 entry = huge_ptep_get(src_pte);
3136 if (huge_pte_none(entry)) { /* skip none entry */
3138 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3139 is_hugetlb_entry_hwpoisoned(entry))) {
3140 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3142 if (is_write_migration_entry(swp_entry) && cow) {
3144 * COW mappings require pages in both
3145 * parent and child to be set to read.
3147 make_migration_entry_read(&swp_entry);
3148 entry = swp_entry_to_pte(swp_entry);
3149 set_huge_pte_at(src, addr, src_pte, entry);
3151 set_huge_pte_at(dst, addr, dst_pte, entry);
3152 } else {
3153 if (cow) {
3154 huge_ptep_set_wrprotect(src, addr, src_pte);
3155 mmu_notifier_invalidate_range(src, mmun_start,
3156 mmun_end);
3158 entry = huge_ptep_get(src_pte);
3159 ptepage = pte_page(entry);
3160 get_page(ptepage);
3161 page_dup_rmap(ptepage, true);
3162 set_huge_pte_at(dst, addr, dst_pte, entry);
3163 hugetlb_count_add(pages_per_huge_page(h), dst);
3165 spin_unlock(src_ptl);
3166 spin_unlock(dst_ptl);
3169 if (cow)
3170 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3172 return ret;
3175 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3176 unsigned long start, unsigned long end,
3177 struct page *ref_page)
3179 int force_flush = 0;
3180 struct mm_struct *mm = vma->vm_mm;
3181 unsigned long address;
3182 pte_t *ptep;
3183 pte_t pte;
3184 spinlock_t *ptl;
3185 struct page *page;
3186 struct hstate *h = hstate_vma(vma);
3187 unsigned long sz = huge_page_size(h);
3188 const unsigned long mmun_start = start; /* For mmu_notifiers */
3189 const unsigned long mmun_end = end; /* For mmu_notifiers */
3191 WARN_ON(!is_vm_hugetlb_page(vma));
3192 BUG_ON(start & ~huge_page_mask(h));
3193 BUG_ON(end & ~huge_page_mask(h));
3195 tlb_start_vma(tlb, vma);
3196 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3197 address = start;
3198 again:
3199 for (; address < end; address += sz) {
3200 ptep = huge_pte_offset(mm, address);
3201 if (!ptep)
3202 continue;
3204 ptl = huge_pte_lock(h, mm, ptep);
3205 if (huge_pmd_unshare(mm, &address, ptep))
3206 goto unlock;
3208 pte = huge_ptep_get(ptep);
3209 if (huge_pte_none(pte))
3210 goto unlock;
3213 * Migrating hugepage or HWPoisoned hugepage is already
3214 * unmapped and its refcount is dropped, so just clear pte here.
3216 if (unlikely(!pte_present(pte))) {
3217 huge_pte_clear(mm, address, ptep);
3218 goto unlock;
3221 page = pte_page(pte);
3223 * If a reference page is supplied, it is because a specific
3224 * page is being unmapped, not a range. Ensure the page we
3225 * are about to unmap is the actual page of interest.
3227 if (ref_page) {
3228 if (page != ref_page)
3229 goto unlock;
3232 * Mark the VMA as having unmapped its page so that
3233 * future faults in this VMA will fail rather than
3234 * looking like data was lost
3236 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3239 pte = huge_ptep_get_and_clear(mm, address, ptep);
3240 tlb_remove_tlb_entry(tlb, ptep, address);
3241 if (huge_pte_dirty(pte))
3242 set_page_dirty(page);
3244 hugetlb_count_sub(pages_per_huge_page(h), mm);
3245 page_remove_rmap(page, true);
3246 force_flush = !__tlb_remove_page(tlb, page);
3247 if (force_flush) {
3248 address += sz;
3249 spin_unlock(ptl);
3250 break;
3252 /* Bail out after unmapping reference page if supplied */
3253 if (ref_page) {
3254 spin_unlock(ptl);
3255 break;
3257 unlock:
3258 spin_unlock(ptl);
3261 * mmu_gather ran out of room to batch pages, we break out of
3262 * the PTE lock to avoid doing the potential expensive TLB invalidate
3263 * and page-free while holding it.
3265 if (force_flush) {
3266 force_flush = 0;
3267 tlb_flush_mmu(tlb);
3268 if (address < end && !ref_page)
3269 goto again;
3271 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3272 tlb_end_vma(tlb, vma);
3275 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3276 struct vm_area_struct *vma, unsigned long start,
3277 unsigned long end, struct page *ref_page)
3279 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3282 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3283 * test will fail on a vma being torn down, and not grab a page table
3284 * on its way out. We're lucky that the flag has such an appropriate
3285 * name, and can in fact be safely cleared here. We could clear it
3286 * before the __unmap_hugepage_range above, but all that's necessary
3287 * is to clear it before releasing the i_mmap_rwsem. This works
3288 * because in the context this is called, the VMA is about to be
3289 * destroyed and the i_mmap_rwsem is held.
3291 vma->vm_flags &= ~VM_MAYSHARE;
3294 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3295 unsigned long end, struct page *ref_page)
3297 struct mm_struct *mm;
3298 struct mmu_gather tlb;
3300 mm = vma->vm_mm;
3302 tlb_gather_mmu(&tlb, mm, start, end);
3303 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3304 tlb_finish_mmu(&tlb, start, end);
3308 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3309 * mappping it owns the reserve page for. The intention is to unmap the page
3310 * from other VMAs and let the children be SIGKILLed if they are faulting the
3311 * same region.
3313 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3314 struct page *page, unsigned long address)
3316 struct hstate *h = hstate_vma(vma);
3317 struct vm_area_struct *iter_vma;
3318 struct address_space *mapping;
3319 pgoff_t pgoff;
3322 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3323 * from page cache lookup which is in HPAGE_SIZE units.
3325 address = address & huge_page_mask(h);
3326 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3327 vma->vm_pgoff;
3328 mapping = file_inode(vma->vm_file)->i_mapping;
3331 * Take the mapping lock for the duration of the table walk. As
3332 * this mapping should be shared between all the VMAs,
3333 * __unmap_hugepage_range() is called as the lock is already held
3335 i_mmap_lock_write(mapping);
3336 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3337 /* Do not unmap the current VMA */
3338 if (iter_vma == vma)
3339 continue;
3342 * Shared VMAs have their own reserves and do not affect
3343 * MAP_PRIVATE accounting but it is possible that a shared
3344 * VMA is using the same page so check and skip such VMAs.
3346 if (iter_vma->vm_flags & VM_MAYSHARE)
3347 continue;
3350 * Unmap the page from other VMAs without their own reserves.
3351 * They get marked to be SIGKILLed if they fault in these
3352 * areas. This is because a future no-page fault on this VMA
3353 * could insert a zeroed page instead of the data existing
3354 * from the time of fork. This would look like data corruption
3356 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3357 unmap_hugepage_range(iter_vma, address,
3358 address + huge_page_size(h), page);
3360 i_mmap_unlock_write(mapping);
3364 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3365 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3366 * cannot race with other handlers or page migration.
3367 * Keep the pte_same checks anyway to make transition from the mutex easier.
3369 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3370 unsigned long address, pte_t *ptep, pte_t pte,
3371 struct page *pagecache_page, spinlock_t *ptl)
3373 struct hstate *h = hstate_vma(vma);
3374 struct page *old_page, *new_page;
3375 int ret = 0, outside_reserve = 0;
3376 unsigned long mmun_start; /* For mmu_notifiers */
3377 unsigned long mmun_end; /* For mmu_notifiers */
3379 old_page = pte_page(pte);
3381 retry_avoidcopy:
3382 /* If no-one else is actually using this page, avoid the copy
3383 * and just make the page writable */
3384 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3385 page_move_anon_rmap(old_page, vma, address);
3386 set_huge_ptep_writable(vma, address, ptep);
3387 return 0;
3391 * If the process that created a MAP_PRIVATE mapping is about to
3392 * perform a COW due to a shared page count, attempt to satisfy
3393 * the allocation without using the existing reserves. The pagecache
3394 * page is used to determine if the reserve at this address was
3395 * consumed or not. If reserves were used, a partial faulted mapping
3396 * at the time of fork() could consume its reserves on COW instead
3397 * of the full address range.
3399 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3400 old_page != pagecache_page)
3401 outside_reserve = 1;
3403 get_page(old_page);
3406 * Drop page table lock as buddy allocator may be called. It will
3407 * be acquired again before returning to the caller, as expected.
3409 spin_unlock(ptl);
3410 new_page = alloc_huge_page(vma, address, outside_reserve);
3412 if (IS_ERR(new_page)) {
3414 * If a process owning a MAP_PRIVATE mapping fails to COW,
3415 * it is due to references held by a child and an insufficient
3416 * huge page pool. To guarantee the original mappers
3417 * reliability, unmap the page from child processes. The child
3418 * may get SIGKILLed if it later faults.
3420 if (outside_reserve) {
3421 put_page(old_page);
3422 BUG_ON(huge_pte_none(pte));
3423 unmap_ref_private(mm, vma, old_page, address);
3424 BUG_ON(huge_pte_none(pte));
3425 spin_lock(ptl);
3426 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3427 if (likely(ptep &&
3428 pte_same(huge_ptep_get(ptep), pte)))
3429 goto retry_avoidcopy;
3431 * race occurs while re-acquiring page table
3432 * lock, and our job is done.
3434 return 0;
3437 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3438 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3439 goto out_release_old;
3443 * When the original hugepage is shared one, it does not have
3444 * anon_vma prepared.
3446 if (unlikely(anon_vma_prepare(vma))) {
3447 ret = VM_FAULT_OOM;
3448 goto out_release_all;
3451 copy_user_huge_page(new_page, old_page, address, vma,
3452 pages_per_huge_page(h));
3453 __SetPageUptodate(new_page);
3454 set_page_huge_active(new_page);
3456 mmun_start = address & huge_page_mask(h);
3457 mmun_end = mmun_start + huge_page_size(h);
3458 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3461 * Retake the page table lock to check for racing updates
3462 * before the page tables are altered
3464 spin_lock(ptl);
3465 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3466 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3467 ClearPagePrivate(new_page);
3469 /* Break COW */
3470 huge_ptep_clear_flush(vma, address, ptep);
3471 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3472 set_huge_pte_at(mm, address, ptep,
3473 make_huge_pte(vma, new_page, 1));
3474 page_remove_rmap(old_page, true);
3475 hugepage_add_new_anon_rmap(new_page, vma, address);
3476 /* Make the old page be freed below */
3477 new_page = old_page;
3479 spin_unlock(ptl);
3480 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3481 out_release_all:
3482 put_page(new_page);
3483 out_release_old:
3484 put_page(old_page);
3486 spin_lock(ptl); /* Caller expects lock to be held */
3487 return ret;
3490 /* Return the pagecache page at a given address within a VMA */
3491 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3492 struct vm_area_struct *vma, unsigned long address)
3494 struct address_space *mapping;
3495 pgoff_t idx;
3497 mapping = vma->vm_file->f_mapping;
3498 idx = vma_hugecache_offset(h, vma, address);
3500 return find_lock_page(mapping, idx);
3504 * Return whether there is a pagecache page to back given address within VMA.
3505 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3507 static bool hugetlbfs_pagecache_present(struct hstate *h,
3508 struct vm_area_struct *vma, unsigned long address)
3510 struct address_space *mapping;
3511 pgoff_t idx;
3512 struct page *page;
3514 mapping = vma->vm_file->f_mapping;
3515 idx = vma_hugecache_offset(h, vma, address);
3517 page = find_get_page(mapping, idx);
3518 if (page)
3519 put_page(page);
3520 return page != NULL;
3523 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3524 pgoff_t idx)
3526 struct inode *inode = mapping->host;
3527 struct hstate *h = hstate_inode(inode);
3528 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3530 if (err)
3531 return err;
3532 ClearPagePrivate(page);
3534 spin_lock(&inode->i_lock);
3535 inode->i_blocks += blocks_per_huge_page(h);
3536 spin_unlock(&inode->i_lock);
3537 return 0;
3540 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3541 struct address_space *mapping, pgoff_t idx,
3542 unsigned long address, pte_t *ptep, unsigned int flags)
3544 struct hstate *h = hstate_vma(vma);
3545 int ret = VM_FAULT_SIGBUS;
3546 int anon_rmap = 0;
3547 unsigned long size;
3548 struct page *page;
3549 pte_t new_pte;
3550 spinlock_t *ptl;
3553 * Currently, we are forced to kill the process in the event the
3554 * original mapper has unmapped pages from the child due to a failed
3555 * COW. Warn that such a situation has occurred as it may not be obvious
3557 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3558 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3559 current->pid);
3560 return ret;
3564 * Use page lock to guard against racing truncation
3565 * before we get page_table_lock.
3567 retry:
3568 page = find_lock_page(mapping, idx);
3569 if (!page) {
3570 size = i_size_read(mapping->host) >> huge_page_shift(h);
3571 if (idx >= size)
3572 goto out;
3573 page = alloc_huge_page(vma, address, 0);
3574 if (IS_ERR(page)) {
3575 ret = PTR_ERR(page);
3576 if (ret == -ENOMEM)
3577 ret = VM_FAULT_OOM;
3578 else
3579 ret = VM_FAULT_SIGBUS;
3580 goto out;
3582 clear_huge_page(page, address, pages_per_huge_page(h));
3583 __SetPageUptodate(page);
3584 set_page_huge_active(page);
3586 if (vma->vm_flags & VM_MAYSHARE) {
3587 int err = huge_add_to_page_cache(page, mapping, idx);
3588 if (err) {
3589 put_page(page);
3590 if (err == -EEXIST)
3591 goto retry;
3592 goto out;
3594 } else {
3595 lock_page(page);
3596 if (unlikely(anon_vma_prepare(vma))) {
3597 ret = VM_FAULT_OOM;
3598 goto backout_unlocked;
3600 anon_rmap = 1;
3602 } else {
3604 * If memory error occurs between mmap() and fault, some process
3605 * don't have hwpoisoned swap entry for errored virtual address.
3606 * So we need to block hugepage fault by PG_hwpoison bit check.
3608 if (unlikely(PageHWPoison(page))) {
3609 ret = VM_FAULT_HWPOISON |
3610 VM_FAULT_SET_HINDEX(hstate_index(h));
3611 goto backout_unlocked;
3616 * If we are going to COW a private mapping later, we examine the
3617 * pending reservations for this page now. This will ensure that
3618 * any allocations necessary to record that reservation occur outside
3619 * the spinlock.
3621 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3622 if (vma_needs_reservation(h, vma, address) < 0) {
3623 ret = VM_FAULT_OOM;
3624 goto backout_unlocked;
3626 /* Just decrements count, does not deallocate */
3627 vma_end_reservation(h, vma, address);
3630 ptl = huge_pte_lockptr(h, mm, ptep);
3631 spin_lock(ptl);
3632 size = i_size_read(mapping->host) >> huge_page_shift(h);
3633 if (idx >= size)
3634 goto backout;
3636 ret = 0;
3637 if (!huge_pte_none(huge_ptep_get(ptep)))
3638 goto backout;
3640 if (anon_rmap) {
3641 ClearPagePrivate(page);
3642 hugepage_add_new_anon_rmap(page, vma, address);
3643 } else
3644 page_dup_rmap(page, true);
3645 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3646 && (vma->vm_flags & VM_SHARED)));
3647 set_huge_pte_at(mm, address, ptep, new_pte);
3649 hugetlb_count_add(pages_per_huge_page(h), mm);
3650 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3651 /* Optimization, do the COW without a second fault */
3652 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3655 spin_unlock(ptl);
3656 unlock_page(page);
3657 out:
3658 return ret;
3660 backout:
3661 spin_unlock(ptl);
3662 backout_unlocked:
3663 unlock_page(page);
3664 put_page(page);
3665 goto out;
3668 #ifdef CONFIG_SMP
3669 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3670 struct vm_area_struct *vma,
3671 struct address_space *mapping,
3672 pgoff_t idx, unsigned long address)
3674 unsigned long key[2];
3675 u32 hash;
3677 if (vma->vm_flags & VM_SHARED) {
3678 key[0] = (unsigned long) mapping;
3679 key[1] = idx;
3680 } else {
3681 key[0] = (unsigned long) mm;
3682 key[1] = address >> huge_page_shift(h);
3685 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3687 return hash & (num_fault_mutexes - 1);
3689 #else
3691 * For uniprocesor systems we always use a single mutex, so just
3692 * return 0 and avoid the hashing overhead.
3694 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3695 struct vm_area_struct *vma,
3696 struct address_space *mapping,
3697 pgoff_t idx, unsigned long address)
3699 return 0;
3701 #endif
3703 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3704 unsigned long address, unsigned int flags)
3706 pte_t *ptep, entry;
3707 spinlock_t *ptl;
3708 int ret;
3709 u32 hash;
3710 pgoff_t idx;
3711 struct page *page = NULL;
3712 struct page *pagecache_page = NULL;
3713 struct hstate *h = hstate_vma(vma);
3714 struct address_space *mapping;
3715 int need_wait_lock = 0;
3717 address &= huge_page_mask(h);
3719 ptep = huge_pte_offset(mm, address);
3720 if (ptep) {
3721 entry = huge_ptep_get(ptep);
3722 if (unlikely(is_hugetlb_entry_migration(entry))) {
3723 migration_entry_wait_huge(vma, mm, ptep);
3724 return 0;
3725 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3726 return VM_FAULT_HWPOISON_LARGE |
3727 VM_FAULT_SET_HINDEX(hstate_index(h));
3728 } else {
3729 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3730 if (!ptep)
3731 return VM_FAULT_OOM;
3734 mapping = vma->vm_file->f_mapping;
3735 idx = vma_hugecache_offset(h, vma, address);
3738 * Serialize hugepage allocation and instantiation, so that we don't
3739 * get spurious allocation failures if two CPUs race to instantiate
3740 * the same page in the page cache.
3742 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3743 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3745 entry = huge_ptep_get(ptep);
3746 if (huge_pte_none(entry)) {
3747 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3748 goto out_mutex;
3751 ret = 0;
3754 * entry could be a migration/hwpoison entry at this point, so this
3755 * check prevents the kernel from going below assuming that we have
3756 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3757 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3758 * handle it.
3760 if (!pte_present(entry))
3761 goto out_mutex;
3764 * If we are going to COW the mapping later, we examine the pending
3765 * reservations for this page now. This will ensure that any
3766 * allocations necessary to record that reservation occur outside the
3767 * spinlock. For private mappings, we also lookup the pagecache
3768 * page now as it is used to determine if a reservation has been
3769 * consumed.
3771 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3772 if (vma_needs_reservation(h, vma, address) < 0) {
3773 ret = VM_FAULT_OOM;
3774 goto out_mutex;
3776 /* Just decrements count, does not deallocate */
3777 vma_end_reservation(h, vma, address);
3779 if (!(vma->vm_flags & VM_MAYSHARE))
3780 pagecache_page = hugetlbfs_pagecache_page(h,
3781 vma, address);
3784 ptl = huge_pte_lock(h, mm, ptep);
3786 /* Check for a racing update before calling hugetlb_cow */
3787 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3788 goto out_ptl;
3791 * hugetlb_cow() requires page locks of pte_page(entry) and
3792 * pagecache_page, so here we need take the former one
3793 * when page != pagecache_page or !pagecache_page.
3795 page = pte_page(entry);
3796 if (page != pagecache_page)
3797 if (!trylock_page(page)) {
3798 need_wait_lock = 1;
3799 goto out_ptl;
3802 get_page(page);
3804 if (flags & FAULT_FLAG_WRITE) {
3805 if (!huge_pte_write(entry)) {
3806 ret = hugetlb_cow(mm, vma, address, ptep, entry,
3807 pagecache_page, ptl);
3808 goto out_put_page;
3810 entry = huge_pte_mkdirty(entry);
3812 entry = pte_mkyoung(entry);
3813 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3814 flags & FAULT_FLAG_WRITE))
3815 update_mmu_cache(vma, address, ptep);
3816 out_put_page:
3817 if (page != pagecache_page)
3818 unlock_page(page);
3819 put_page(page);
3820 out_ptl:
3821 spin_unlock(ptl);
3823 if (pagecache_page) {
3824 unlock_page(pagecache_page);
3825 put_page(pagecache_page);
3827 out_mutex:
3828 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3830 * Generally it's safe to hold refcount during waiting page lock. But
3831 * here we just wait to defer the next page fault to avoid busy loop and
3832 * the page is not used after unlocked before returning from the current
3833 * page fault. So we are safe from accessing freed page, even if we wait
3834 * here without taking refcount.
3836 if (need_wait_lock)
3837 wait_on_page_locked(page);
3838 return ret;
3841 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3842 struct page **pages, struct vm_area_struct **vmas,
3843 unsigned long *position, unsigned long *nr_pages,
3844 long i, unsigned int flags)
3846 unsigned long pfn_offset;
3847 unsigned long vaddr = *position;
3848 unsigned long remainder = *nr_pages;
3849 struct hstate *h = hstate_vma(vma);
3851 while (vaddr < vma->vm_end && remainder) {
3852 pte_t *pte;
3853 spinlock_t *ptl = NULL;
3854 int absent;
3855 struct page *page;
3858 * If we have a pending SIGKILL, don't keep faulting pages and
3859 * potentially allocating memory.
3861 if (unlikely(fatal_signal_pending(current))) {
3862 remainder = 0;
3863 break;
3867 * Some archs (sparc64, sh*) have multiple pte_ts to
3868 * each hugepage. We have to make sure we get the
3869 * first, for the page indexing below to work.
3871 * Note that page table lock is not held when pte is null.
3873 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3874 if (pte)
3875 ptl = huge_pte_lock(h, mm, pte);
3876 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3879 * When coredumping, it suits get_dump_page if we just return
3880 * an error where there's an empty slot with no huge pagecache
3881 * to back it. This way, we avoid allocating a hugepage, and
3882 * the sparse dumpfile avoids allocating disk blocks, but its
3883 * huge holes still show up with zeroes where they need to be.
3885 if (absent && (flags & FOLL_DUMP) &&
3886 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3887 if (pte)
3888 spin_unlock(ptl);
3889 remainder = 0;
3890 break;
3894 * We need call hugetlb_fault for both hugepages under migration
3895 * (in which case hugetlb_fault waits for the migration,) and
3896 * hwpoisoned hugepages (in which case we need to prevent the
3897 * caller from accessing to them.) In order to do this, we use
3898 * here is_swap_pte instead of is_hugetlb_entry_migration and
3899 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3900 * both cases, and because we can't follow correct pages
3901 * directly from any kind of swap entries.
3903 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3904 ((flags & FOLL_WRITE) &&
3905 !huge_pte_write(huge_ptep_get(pte)))) {
3906 int ret;
3908 if (pte)
3909 spin_unlock(ptl);
3910 ret = hugetlb_fault(mm, vma, vaddr,
3911 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3912 if (!(ret & VM_FAULT_ERROR))
3913 continue;
3915 remainder = 0;
3916 break;
3919 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3920 page = pte_page(huge_ptep_get(pte));
3921 same_page:
3922 if (pages) {
3923 pages[i] = mem_map_offset(page, pfn_offset);
3924 get_page(pages[i]);
3927 if (vmas)
3928 vmas[i] = vma;
3930 vaddr += PAGE_SIZE;
3931 ++pfn_offset;
3932 --remainder;
3933 ++i;
3934 if (vaddr < vma->vm_end && remainder &&
3935 pfn_offset < pages_per_huge_page(h)) {
3937 * We use pfn_offset to avoid touching the pageframes
3938 * of this compound page.
3940 goto same_page;
3942 spin_unlock(ptl);
3944 *nr_pages = remainder;
3945 *position = vaddr;
3947 return i ? i : -EFAULT;
3950 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3951 unsigned long address, unsigned long end, pgprot_t newprot)
3953 struct mm_struct *mm = vma->vm_mm;
3954 unsigned long start = address;
3955 pte_t *ptep;
3956 pte_t pte;
3957 struct hstate *h = hstate_vma(vma);
3958 unsigned long pages = 0;
3960 BUG_ON(address >= end);
3961 flush_cache_range(vma, address, end);
3963 mmu_notifier_invalidate_range_start(mm, start, end);
3964 i_mmap_lock_write(vma->vm_file->f_mapping);
3965 for (; address < end; address += huge_page_size(h)) {
3966 spinlock_t *ptl;
3967 ptep = huge_pte_offset(mm, address);
3968 if (!ptep)
3969 continue;
3970 ptl = huge_pte_lock(h, mm, ptep);
3971 if (huge_pmd_unshare(mm, &address, ptep)) {
3972 pages++;
3973 spin_unlock(ptl);
3974 continue;
3976 pte = huge_ptep_get(ptep);
3977 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3978 spin_unlock(ptl);
3979 continue;
3981 if (unlikely(is_hugetlb_entry_migration(pte))) {
3982 swp_entry_t entry = pte_to_swp_entry(pte);
3984 if (is_write_migration_entry(entry)) {
3985 pte_t newpte;
3987 make_migration_entry_read(&entry);
3988 newpte = swp_entry_to_pte(entry);
3989 set_huge_pte_at(mm, address, ptep, newpte);
3990 pages++;
3992 spin_unlock(ptl);
3993 continue;
3995 if (!huge_pte_none(pte)) {
3996 pte = huge_ptep_get_and_clear(mm, address, ptep);
3997 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3998 pte = arch_make_huge_pte(pte, vma, NULL, 0);
3999 set_huge_pte_at(mm, address, ptep, pte);
4000 pages++;
4002 spin_unlock(ptl);
4005 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4006 * may have cleared our pud entry and done put_page on the page table:
4007 * once we release i_mmap_rwsem, another task can do the final put_page
4008 * and that page table be reused and filled with junk.
4010 flush_tlb_range(vma, start, end);
4011 mmu_notifier_invalidate_range(mm, start, end);
4012 i_mmap_unlock_write(vma->vm_file->f_mapping);
4013 mmu_notifier_invalidate_range_end(mm, start, end);
4015 return pages << h->order;
4018 int hugetlb_reserve_pages(struct inode *inode,
4019 long from, long to,
4020 struct vm_area_struct *vma,
4021 vm_flags_t vm_flags)
4023 long ret, chg;
4024 struct hstate *h = hstate_inode(inode);
4025 struct hugepage_subpool *spool = subpool_inode(inode);
4026 struct resv_map *resv_map;
4027 long gbl_reserve;
4030 * Only apply hugepage reservation if asked. At fault time, an
4031 * attempt will be made for VM_NORESERVE to allocate a page
4032 * without using reserves
4034 if (vm_flags & VM_NORESERVE)
4035 return 0;
4038 * Shared mappings base their reservation on the number of pages that
4039 * are already allocated on behalf of the file. Private mappings need
4040 * to reserve the full area even if read-only as mprotect() may be
4041 * called to make the mapping read-write. Assume !vma is a shm mapping
4043 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4044 resv_map = inode_resv_map(inode);
4046 chg = region_chg(resv_map, from, to);
4048 } else {
4049 resv_map = resv_map_alloc();
4050 if (!resv_map)
4051 return -ENOMEM;
4053 chg = to - from;
4055 set_vma_resv_map(vma, resv_map);
4056 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4059 if (chg < 0) {
4060 ret = chg;
4061 goto out_err;
4065 * There must be enough pages in the subpool for the mapping. If
4066 * the subpool has a minimum size, there may be some global
4067 * reservations already in place (gbl_reserve).
4069 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4070 if (gbl_reserve < 0) {
4071 ret = -ENOSPC;
4072 goto out_err;
4076 * Check enough hugepages are available for the reservation.
4077 * Hand the pages back to the subpool if there are not
4079 ret = hugetlb_acct_memory(h, gbl_reserve);
4080 if (ret < 0) {
4081 /* put back original number of pages, chg */
4082 (void)hugepage_subpool_put_pages(spool, chg);
4083 goto out_err;
4087 * Account for the reservations made. Shared mappings record regions
4088 * that have reservations as they are shared by multiple VMAs.
4089 * When the last VMA disappears, the region map says how much
4090 * the reservation was and the page cache tells how much of
4091 * the reservation was consumed. Private mappings are per-VMA and
4092 * only the consumed reservations are tracked. When the VMA
4093 * disappears, the original reservation is the VMA size and the
4094 * consumed reservations are stored in the map. Hence, nothing
4095 * else has to be done for private mappings here
4097 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4098 long add = region_add(resv_map, from, to);
4100 if (unlikely(chg > add)) {
4102 * pages in this range were added to the reserve
4103 * map between region_chg and region_add. This
4104 * indicates a race with alloc_huge_page. Adjust
4105 * the subpool and reserve counts modified above
4106 * based on the difference.
4108 long rsv_adjust;
4110 rsv_adjust = hugepage_subpool_put_pages(spool,
4111 chg - add);
4112 hugetlb_acct_memory(h, -rsv_adjust);
4115 return 0;
4116 out_err:
4117 if (!vma || vma->vm_flags & VM_MAYSHARE)
4118 region_abort(resv_map, from, to);
4119 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4120 kref_put(&resv_map->refs, resv_map_release);
4121 return ret;
4124 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4125 long freed)
4127 struct hstate *h = hstate_inode(inode);
4128 struct resv_map *resv_map = inode_resv_map(inode);
4129 long chg = 0;
4130 struct hugepage_subpool *spool = subpool_inode(inode);
4131 long gbl_reserve;
4133 if (resv_map) {
4134 chg = region_del(resv_map, start, end);
4136 * region_del() can fail in the rare case where a region
4137 * must be split and another region descriptor can not be
4138 * allocated. If end == LONG_MAX, it will not fail.
4140 if (chg < 0)
4141 return chg;
4144 spin_lock(&inode->i_lock);
4145 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4146 spin_unlock(&inode->i_lock);
4149 * If the subpool has a minimum size, the number of global
4150 * reservations to be released may be adjusted.
4152 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4153 hugetlb_acct_memory(h, -gbl_reserve);
4155 return 0;
4158 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4159 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4160 struct vm_area_struct *vma,
4161 unsigned long addr, pgoff_t idx)
4163 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4164 svma->vm_start;
4165 unsigned long sbase = saddr & PUD_MASK;
4166 unsigned long s_end = sbase + PUD_SIZE;
4168 /* Allow segments to share if only one is marked locked */
4169 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4170 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4173 * match the virtual addresses, permission and the alignment of the
4174 * page table page.
4176 if (pmd_index(addr) != pmd_index(saddr) ||
4177 vm_flags != svm_flags ||
4178 sbase < svma->vm_start || svma->vm_end < s_end)
4179 return 0;
4181 return saddr;
4184 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4186 unsigned long base = addr & PUD_MASK;
4187 unsigned long end = base + PUD_SIZE;
4190 * check on proper vm_flags and page table alignment
4192 if (vma->vm_flags & VM_MAYSHARE &&
4193 vma->vm_start <= base && end <= vma->vm_end)
4194 return true;
4195 return false;
4199 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4200 * and returns the corresponding pte. While this is not necessary for the
4201 * !shared pmd case because we can allocate the pmd later as well, it makes the
4202 * code much cleaner. pmd allocation is essential for the shared case because
4203 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4204 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4205 * bad pmd for sharing.
4207 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4209 struct vm_area_struct *vma = find_vma(mm, addr);
4210 struct address_space *mapping = vma->vm_file->f_mapping;
4211 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4212 vma->vm_pgoff;
4213 struct vm_area_struct *svma;
4214 unsigned long saddr;
4215 pte_t *spte = NULL;
4216 pte_t *pte;
4217 spinlock_t *ptl;
4219 if (!vma_shareable(vma, addr))
4220 return (pte_t *)pmd_alloc(mm, pud, addr);
4222 i_mmap_lock_write(mapping);
4223 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4224 if (svma == vma)
4225 continue;
4227 saddr = page_table_shareable(svma, vma, addr, idx);
4228 if (saddr) {
4229 spte = huge_pte_offset(svma->vm_mm, saddr);
4230 if (spte) {
4231 mm_inc_nr_pmds(mm);
4232 get_page(virt_to_page(spte));
4233 break;
4238 if (!spte)
4239 goto out;
4241 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4242 spin_lock(ptl);
4243 if (pud_none(*pud)) {
4244 pud_populate(mm, pud,
4245 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4246 } else {
4247 put_page(virt_to_page(spte));
4248 mm_inc_nr_pmds(mm);
4250 spin_unlock(ptl);
4251 out:
4252 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4253 i_mmap_unlock_write(mapping);
4254 return pte;
4258 * unmap huge page backed by shared pte.
4260 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4261 * indicated by page_count > 1, unmap is achieved by clearing pud and
4262 * decrementing the ref count. If count == 1, the pte page is not shared.
4264 * called with page table lock held.
4266 * returns: 1 successfully unmapped a shared pte page
4267 * 0 the underlying pte page is not shared, or it is the last user
4269 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4271 pgd_t *pgd = pgd_offset(mm, *addr);
4272 pud_t *pud = pud_offset(pgd, *addr);
4274 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4275 if (page_count(virt_to_page(ptep)) == 1)
4276 return 0;
4278 pud_clear(pud);
4279 put_page(virt_to_page(ptep));
4280 mm_dec_nr_pmds(mm);
4281 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4282 return 1;
4284 #define want_pmd_share() (1)
4285 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4286 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4288 return NULL;
4291 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4293 return 0;
4295 #define want_pmd_share() (0)
4296 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4298 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4299 pte_t *huge_pte_alloc(struct mm_struct *mm,
4300 unsigned long addr, unsigned long sz)
4302 pgd_t *pgd;
4303 pud_t *pud;
4304 pte_t *pte = NULL;
4306 pgd = pgd_offset(mm, addr);
4307 pud = pud_alloc(mm, pgd, addr);
4308 if (pud) {
4309 if (sz == PUD_SIZE) {
4310 pte = (pte_t *)pud;
4311 } else {
4312 BUG_ON(sz != PMD_SIZE);
4313 if (want_pmd_share() && pud_none(*pud))
4314 pte = huge_pmd_share(mm, addr, pud);
4315 else
4316 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4319 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
4321 return pte;
4324 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4326 pgd_t *pgd;
4327 pud_t *pud;
4328 pmd_t *pmd = NULL;
4330 pgd = pgd_offset(mm, addr);
4331 if (pgd_present(*pgd)) {
4332 pud = pud_offset(pgd, addr);
4333 if (pud_present(*pud)) {
4334 if (pud_huge(*pud))
4335 return (pte_t *)pud;
4336 pmd = pmd_offset(pud, addr);
4339 return (pte_t *) pmd;
4342 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4345 * These functions are overwritable if your architecture needs its own
4346 * behavior.
4348 struct page * __weak
4349 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4350 int write)
4352 return ERR_PTR(-EINVAL);
4355 struct page * __weak
4356 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4357 pmd_t *pmd, int flags)
4359 struct page *page = NULL;
4360 spinlock_t *ptl;
4361 retry:
4362 ptl = pmd_lockptr(mm, pmd);
4363 spin_lock(ptl);
4365 * make sure that the address range covered by this pmd is not
4366 * unmapped from other threads.
4368 if (!pmd_huge(*pmd))
4369 goto out;
4370 if (pmd_present(*pmd)) {
4371 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4372 if (flags & FOLL_GET)
4373 get_page(page);
4374 } else {
4375 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4376 spin_unlock(ptl);
4377 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4378 goto retry;
4381 * hwpoisoned entry is treated as no_page_table in
4382 * follow_page_mask().
4385 out:
4386 spin_unlock(ptl);
4387 return page;
4390 struct page * __weak
4391 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4392 pud_t *pud, int flags)
4394 if (flags & FOLL_GET)
4395 return NULL;
4397 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4400 #ifdef CONFIG_MEMORY_FAILURE
4403 * This function is called from memory failure code.
4404 * Assume the caller holds page lock of the head page.
4406 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4408 struct hstate *h = page_hstate(hpage);
4409 int nid = page_to_nid(hpage);
4410 int ret = -EBUSY;
4412 spin_lock(&hugetlb_lock);
4414 * Just checking !page_huge_active is not enough, because that could be
4415 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4417 if (!page_huge_active(hpage) && !page_count(hpage)) {
4419 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4420 * but dangling hpage->lru can trigger list-debug warnings
4421 * (this happens when we call unpoison_memory() on it),
4422 * so let it point to itself with list_del_init().
4424 list_del_init(&hpage->lru);
4425 set_page_refcounted(hpage);
4426 h->free_huge_pages--;
4427 h->free_huge_pages_node[nid]--;
4428 ret = 0;
4430 spin_unlock(&hugetlb_lock);
4431 return ret;
4433 #endif
4435 bool isolate_huge_page(struct page *page, struct list_head *list)
4437 bool ret = true;
4439 VM_BUG_ON_PAGE(!PageHead(page), page);
4440 spin_lock(&hugetlb_lock);
4441 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4442 ret = false;
4443 goto unlock;
4445 clear_page_huge_active(page);
4446 list_move_tail(&page->lru, list);
4447 unlock:
4448 spin_unlock(&hugetlb_lock);
4449 return ret;
4452 void putback_active_hugepage(struct page *page)
4454 VM_BUG_ON_PAGE(!PageHead(page), page);
4455 spin_lock(&hugetlb_lock);
4456 set_page_huge_active(page);
4457 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4458 spin_unlock(&hugetlb_lock);
4459 put_page(page);