net: phy: bcm7xxx: Implement EGPHY workaround for 7278
[linux-2.6/btrfs-unstable.git] / net / ipv4 / tcp_output.c
blob9a1a1494b9dd40cdf4e99c50a8d7af3096762fa5
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
37 #define pr_fmt(fmt) "TCP: " fmt
39 #include <net/tcp.h>
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
53 /* Default TSQ limit of four TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 262144;
56 /* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume. Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
62 /* By default, RFC2861 behavior. */
63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
65 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
66 int push_one, gfp_t gfp);
68 /* Account for new data that has been sent to the network. */
69 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
71 struct inet_connection_sock *icsk = inet_csk(sk);
72 struct tcp_sock *tp = tcp_sk(sk);
73 unsigned int prior_packets = tp->packets_out;
75 tcp_advance_send_head(sk, skb);
76 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
78 tp->packets_out += tcp_skb_pcount(skb);
79 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
80 tcp_rearm_rto(sk);
82 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
83 tcp_skb_pcount(skb));
86 /* SND.NXT, if window was not shrunk.
87 * If window has been shrunk, what should we make? It is not clear at all.
88 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
89 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
90 * invalid. OK, let's make this for now:
92 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
94 const struct tcp_sock *tp = tcp_sk(sk);
96 if (!before(tcp_wnd_end(tp), tp->snd_nxt))
97 return tp->snd_nxt;
98 else
99 return tcp_wnd_end(tp);
102 /* Calculate mss to advertise in SYN segment.
103 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
105 * 1. It is independent of path mtu.
106 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
107 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
108 * attached devices, because some buggy hosts are confused by
109 * large MSS.
110 * 4. We do not make 3, we advertise MSS, calculated from first
111 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
112 * This may be overridden via information stored in routing table.
113 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
114 * probably even Jumbo".
116 static __u16 tcp_advertise_mss(struct sock *sk)
118 struct tcp_sock *tp = tcp_sk(sk);
119 const struct dst_entry *dst = __sk_dst_get(sk);
120 int mss = tp->advmss;
122 if (dst) {
123 unsigned int metric = dst_metric_advmss(dst);
125 if (metric < mss) {
126 mss = metric;
127 tp->advmss = mss;
131 return (__u16)mss;
134 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
135 * This is the first part of cwnd validation mechanism.
137 void tcp_cwnd_restart(struct sock *sk, s32 delta)
139 struct tcp_sock *tp = tcp_sk(sk);
140 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
141 u32 cwnd = tp->snd_cwnd;
143 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
145 tp->snd_ssthresh = tcp_current_ssthresh(sk);
146 restart_cwnd = min(restart_cwnd, cwnd);
148 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
149 cwnd >>= 1;
150 tp->snd_cwnd = max(cwnd, restart_cwnd);
151 tp->snd_cwnd_stamp = tcp_time_stamp;
152 tp->snd_cwnd_used = 0;
155 /* Congestion state accounting after a packet has been sent. */
156 static void tcp_event_data_sent(struct tcp_sock *tp,
157 struct sock *sk)
159 struct inet_connection_sock *icsk = inet_csk(sk);
160 const u32 now = tcp_time_stamp;
162 if (tcp_packets_in_flight(tp) == 0)
163 tcp_ca_event(sk, CA_EVENT_TX_START);
165 tp->lsndtime = now;
167 /* If it is a reply for ato after last received
168 * packet, enter pingpong mode.
170 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
171 icsk->icsk_ack.pingpong = 1;
174 /* Account for an ACK we sent. */
175 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
177 tcp_dec_quickack_mode(sk, pkts);
178 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
182 u32 tcp_default_init_rwnd(u32 mss)
184 /* Initial receive window should be twice of TCP_INIT_CWND to
185 * enable proper sending of new unsent data during fast recovery
186 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
187 * limit when mss is larger than 1460.
189 u32 init_rwnd = TCP_INIT_CWND * 2;
191 if (mss > 1460)
192 init_rwnd = max((1460 * init_rwnd) / mss, 2U);
193 return init_rwnd;
196 /* Determine a window scaling and initial window to offer.
197 * Based on the assumption that the given amount of space
198 * will be offered. Store the results in the tp structure.
199 * NOTE: for smooth operation initial space offering should
200 * be a multiple of mss if possible. We assume here that mss >= 1.
201 * This MUST be enforced by all callers.
203 void tcp_select_initial_window(int __space, __u32 mss,
204 __u32 *rcv_wnd, __u32 *window_clamp,
205 int wscale_ok, __u8 *rcv_wscale,
206 __u32 init_rcv_wnd)
208 unsigned int space = (__space < 0 ? 0 : __space);
210 /* If no clamp set the clamp to the max possible scaled window */
211 if (*window_clamp == 0)
212 (*window_clamp) = (65535 << 14);
213 space = min(*window_clamp, space);
215 /* Quantize space offering to a multiple of mss if possible. */
216 if (space > mss)
217 space = (space / mss) * mss;
219 /* NOTE: offering an initial window larger than 32767
220 * will break some buggy TCP stacks. If the admin tells us
221 * it is likely we could be speaking with such a buggy stack
222 * we will truncate our initial window offering to 32K-1
223 * unless the remote has sent us a window scaling option,
224 * which we interpret as a sign the remote TCP is not
225 * misinterpreting the window field as a signed quantity.
227 if (sysctl_tcp_workaround_signed_windows)
228 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
229 else
230 (*rcv_wnd) = space;
232 (*rcv_wscale) = 0;
233 if (wscale_ok) {
234 /* Set window scaling on max possible window
235 * See RFC1323 for an explanation of the limit to 14
237 space = max_t(u32, space, sysctl_tcp_rmem[2]);
238 space = max_t(u32, space, sysctl_rmem_max);
239 space = min_t(u32, space, *window_clamp);
240 while (space > 65535 && (*rcv_wscale) < 14) {
241 space >>= 1;
242 (*rcv_wscale)++;
246 if (mss > (1 << *rcv_wscale)) {
247 if (!init_rcv_wnd) /* Use default unless specified otherwise */
248 init_rcv_wnd = tcp_default_init_rwnd(mss);
249 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
252 /* Set the clamp no higher than max representable value */
253 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
255 EXPORT_SYMBOL(tcp_select_initial_window);
257 /* Chose a new window to advertise, update state in tcp_sock for the
258 * socket, and return result with RFC1323 scaling applied. The return
259 * value can be stuffed directly into th->window for an outgoing
260 * frame.
262 static u16 tcp_select_window(struct sock *sk)
264 struct tcp_sock *tp = tcp_sk(sk);
265 u32 old_win = tp->rcv_wnd;
266 u32 cur_win = tcp_receive_window(tp);
267 u32 new_win = __tcp_select_window(sk);
269 /* Never shrink the offered window */
270 if (new_win < cur_win) {
271 /* Danger Will Robinson!
272 * Don't update rcv_wup/rcv_wnd here or else
273 * we will not be able to advertise a zero
274 * window in time. --DaveM
276 * Relax Will Robinson.
278 if (new_win == 0)
279 NET_INC_STATS(sock_net(sk),
280 LINUX_MIB_TCPWANTZEROWINDOWADV);
281 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
283 tp->rcv_wnd = new_win;
284 tp->rcv_wup = tp->rcv_nxt;
286 /* Make sure we do not exceed the maximum possible
287 * scaled window.
289 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
290 new_win = min(new_win, MAX_TCP_WINDOW);
291 else
292 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
294 /* RFC1323 scaling applied */
295 new_win >>= tp->rx_opt.rcv_wscale;
297 /* If we advertise zero window, disable fast path. */
298 if (new_win == 0) {
299 tp->pred_flags = 0;
300 if (old_win)
301 NET_INC_STATS(sock_net(sk),
302 LINUX_MIB_TCPTOZEROWINDOWADV);
303 } else if (old_win == 0) {
304 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
307 return new_win;
310 /* Packet ECN state for a SYN-ACK */
311 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
313 const struct tcp_sock *tp = tcp_sk(sk);
315 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
316 if (!(tp->ecn_flags & TCP_ECN_OK))
317 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
318 else if (tcp_ca_needs_ecn(sk))
319 INET_ECN_xmit(sk);
322 /* Packet ECN state for a SYN. */
323 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
325 struct tcp_sock *tp = tcp_sk(sk);
326 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
327 tcp_ca_needs_ecn(sk);
329 if (!use_ecn) {
330 const struct dst_entry *dst = __sk_dst_get(sk);
332 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
333 use_ecn = true;
336 tp->ecn_flags = 0;
338 if (use_ecn) {
339 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
340 tp->ecn_flags = TCP_ECN_OK;
341 if (tcp_ca_needs_ecn(sk))
342 INET_ECN_xmit(sk);
346 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
348 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
349 /* tp->ecn_flags are cleared at a later point in time when
350 * SYN ACK is ultimatively being received.
352 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
355 static void
356 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
358 if (inet_rsk(req)->ecn_ok)
359 th->ece = 1;
362 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
363 * be sent.
365 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
366 struct tcphdr *th, int tcp_header_len)
368 struct tcp_sock *tp = tcp_sk(sk);
370 if (tp->ecn_flags & TCP_ECN_OK) {
371 /* Not-retransmitted data segment: set ECT and inject CWR. */
372 if (skb->len != tcp_header_len &&
373 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
374 INET_ECN_xmit(sk);
375 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
376 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
377 th->cwr = 1;
378 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
380 } else if (!tcp_ca_needs_ecn(sk)) {
381 /* ACK or retransmitted segment: clear ECT|CE */
382 INET_ECN_dontxmit(sk);
384 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
385 th->ece = 1;
389 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
390 * auto increment end seqno.
392 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
394 skb->ip_summed = CHECKSUM_PARTIAL;
395 skb->csum = 0;
397 TCP_SKB_CB(skb)->tcp_flags = flags;
398 TCP_SKB_CB(skb)->sacked = 0;
400 tcp_skb_pcount_set(skb, 1);
402 TCP_SKB_CB(skb)->seq = seq;
403 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
404 seq++;
405 TCP_SKB_CB(skb)->end_seq = seq;
408 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
410 return tp->snd_una != tp->snd_up;
413 #define OPTION_SACK_ADVERTISE (1 << 0)
414 #define OPTION_TS (1 << 1)
415 #define OPTION_MD5 (1 << 2)
416 #define OPTION_WSCALE (1 << 3)
417 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
419 struct tcp_out_options {
420 u16 options; /* bit field of OPTION_* */
421 u16 mss; /* 0 to disable */
422 u8 ws; /* window scale, 0 to disable */
423 u8 num_sack_blocks; /* number of SACK blocks to include */
424 u8 hash_size; /* bytes in hash_location */
425 __u8 *hash_location; /* temporary pointer, overloaded */
426 __u32 tsval, tsecr; /* need to include OPTION_TS */
427 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
430 /* Write previously computed TCP options to the packet.
432 * Beware: Something in the Internet is very sensitive to the ordering of
433 * TCP options, we learned this through the hard way, so be careful here.
434 * Luckily we can at least blame others for their non-compliance but from
435 * inter-operability perspective it seems that we're somewhat stuck with
436 * the ordering which we have been using if we want to keep working with
437 * those broken things (not that it currently hurts anybody as there isn't
438 * particular reason why the ordering would need to be changed).
440 * At least SACK_PERM as the first option is known to lead to a disaster
441 * (but it may well be that other scenarios fail similarly).
443 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
444 struct tcp_out_options *opts)
446 u16 options = opts->options; /* mungable copy */
448 if (unlikely(OPTION_MD5 & options)) {
449 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
450 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
451 /* overload cookie hash location */
452 opts->hash_location = (__u8 *)ptr;
453 ptr += 4;
456 if (unlikely(opts->mss)) {
457 *ptr++ = htonl((TCPOPT_MSS << 24) |
458 (TCPOLEN_MSS << 16) |
459 opts->mss);
462 if (likely(OPTION_TS & options)) {
463 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
464 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
465 (TCPOLEN_SACK_PERM << 16) |
466 (TCPOPT_TIMESTAMP << 8) |
467 TCPOLEN_TIMESTAMP);
468 options &= ~OPTION_SACK_ADVERTISE;
469 } else {
470 *ptr++ = htonl((TCPOPT_NOP << 24) |
471 (TCPOPT_NOP << 16) |
472 (TCPOPT_TIMESTAMP << 8) |
473 TCPOLEN_TIMESTAMP);
475 *ptr++ = htonl(opts->tsval);
476 *ptr++ = htonl(opts->tsecr);
479 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
480 *ptr++ = htonl((TCPOPT_NOP << 24) |
481 (TCPOPT_NOP << 16) |
482 (TCPOPT_SACK_PERM << 8) |
483 TCPOLEN_SACK_PERM);
486 if (unlikely(OPTION_WSCALE & options)) {
487 *ptr++ = htonl((TCPOPT_NOP << 24) |
488 (TCPOPT_WINDOW << 16) |
489 (TCPOLEN_WINDOW << 8) |
490 opts->ws);
493 if (unlikely(opts->num_sack_blocks)) {
494 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
495 tp->duplicate_sack : tp->selective_acks;
496 int this_sack;
498 *ptr++ = htonl((TCPOPT_NOP << 24) |
499 (TCPOPT_NOP << 16) |
500 (TCPOPT_SACK << 8) |
501 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
502 TCPOLEN_SACK_PERBLOCK)));
504 for (this_sack = 0; this_sack < opts->num_sack_blocks;
505 ++this_sack) {
506 *ptr++ = htonl(sp[this_sack].start_seq);
507 *ptr++ = htonl(sp[this_sack].end_seq);
510 tp->rx_opt.dsack = 0;
513 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
514 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
515 u8 *p = (u8 *)ptr;
516 u32 len; /* Fast Open option length */
518 if (foc->exp) {
519 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
520 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
521 TCPOPT_FASTOPEN_MAGIC);
522 p += TCPOLEN_EXP_FASTOPEN_BASE;
523 } else {
524 len = TCPOLEN_FASTOPEN_BASE + foc->len;
525 *p++ = TCPOPT_FASTOPEN;
526 *p++ = len;
529 memcpy(p, foc->val, foc->len);
530 if ((len & 3) == 2) {
531 p[foc->len] = TCPOPT_NOP;
532 p[foc->len + 1] = TCPOPT_NOP;
534 ptr += (len + 3) >> 2;
538 /* Compute TCP options for SYN packets. This is not the final
539 * network wire format yet.
541 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
542 struct tcp_out_options *opts,
543 struct tcp_md5sig_key **md5)
545 struct tcp_sock *tp = tcp_sk(sk);
546 unsigned int remaining = MAX_TCP_OPTION_SPACE;
547 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
549 #ifdef CONFIG_TCP_MD5SIG
550 *md5 = tp->af_specific->md5_lookup(sk, sk);
551 if (*md5) {
552 opts->options |= OPTION_MD5;
553 remaining -= TCPOLEN_MD5SIG_ALIGNED;
555 #else
556 *md5 = NULL;
557 #endif
559 /* We always get an MSS option. The option bytes which will be seen in
560 * normal data packets should timestamps be used, must be in the MSS
561 * advertised. But we subtract them from tp->mss_cache so that
562 * calculations in tcp_sendmsg are simpler etc. So account for this
563 * fact here if necessary. If we don't do this correctly, as a
564 * receiver we won't recognize data packets as being full sized when we
565 * should, and thus we won't abide by the delayed ACK rules correctly.
566 * SACKs don't matter, we never delay an ACK when we have any of those
567 * going out. */
568 opts->mss = tcp_advertise_mss(sk);
569 remaining -= TCPOLEN_MSS_ALIGNED;
571 if (likely(sysctl_tcp_timestamps && !*md5)) {
572 opts->options |= OPTION_TS;
573 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
574 opts->tsecr = tp->rx_opt.ts_recent;
575 remaining -= TCPOLEN_TSTAMP_ALIGNED;
577 if (likely(sysctl_tcp_window_scaling)) {
578 opts->ws = tp->rx_opt.rcv_wscale;
579 opts->options |= OPTION_WSCALE;
580 remaining -= TCPOLEN_WSCALE_ALIGNED;
582 if (likely(sysctl_tcp_sack)) {
583 opts->options |= OPTION_SACK_ADVERTISE;
584 if (unlikely(!(OPTION_TS & opts->options)))
585 remaining -= TCPOLEN_SACKPERM_ALIGNED;
588 if (fastopen && fastopen->cookie.len >= 0) {
589 u32 need = fastopen->cookie.len;
591 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
592 TCPOLEN_FASTOPEN_BASE;
593 need = (need + 3) & ~3U; /* Align to 32 bits */
594 if (remaining >= need) {
595 opts->options |= OPTION_FAST_OPEN_COOKIE;
596 opts->fastopen_cookie = &fastopen->cookie;
597 remaining -= need;
598 tp->syn_fastopen = 1;
599 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
603 return MAX_TCP_OPTION_SPACE - remaining;
606 /* Set up TCP options for SYN-ACKs. */
607 static unsigned int tcp_synack_options(struct request_sock *req,
608 unsigned int mss, struct sk_buff *skb,
609 struct tcp_out_options *opts,
610 const struct tcp_md5sig_key *md5,
611 struct tcp_fastopen_cookie *foc)
613 struct inet_request_sock *ireq = inet_rsk(req);
614 unsigned int remaining = MAX_TCP_OPTION_SPACE;
616 #ifdef CONFIG_TCP_MD5SIG
617 if (md5) {
618 opts->options |= OPTION_MD5;
619 remaining -= TCPOLEN_MD5SIG_ALIGNED;
621 /* We can't fit any SACK blocks in a packet with MD5 + TS
622 * options. There was discussion about disabling SACK
623 * rather than TS in order to fit in better with old,
624 * buggy kernels, but that was deemed to be unnecessary.
626 ireq->tstamp_ok &= !ireq->sack_ok;
628 #endif
630 /* We always send an MSS option. */
631 opts->mss = mss;
632 remaining -= TCPOLEN_MSS_ALIGNED;
634 if (likely(ireq->wscale_ok)) {
635 opts->ws = ireq->rcv_wscale;
636 opts->options |= OPTION_WSCALE;
637 remaining -= TCPOLEN_WSCALE_ALIGNED;
639 if (likely(ireq->tstamp_ok)) {
640 opts->options |= OPTION_TS;
641 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
642 opts->tsecr = req->ts_recent;
643 remaining -= TCPOLEN_TSTAMP_ALIGNED;
645 if (likely(ireq->sack_ok)) {
646 opts->options |= OPTION_SACK_ADVERTISE;
647 if (unlikely(!ireq->tstamp_ok))
648 remaining -= TCPOLEN_SACKPERM_ALIGNED;
650 if (foc != NULL && foc->len >= 0) {
651 u32 need = foc->len;
653 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
654 TCPOLEN_FASTOPEN_BASE;
655 need = (need + 3) & ~3U; /* Align to 32 bits */
656 if (remaining >= need) {
657 opts->options |= OPTION_FAST_OPEN_COOKIE;
658 opts->fastopen_cookie = foc;
659 remaining -= need;
663 return MAX_TCP_OPTION_SPACE - remaining;
666 /* Compute TCP options for ESTABLISHED sockets. This is not the
667 * final wire format yet.
669 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
670 struct tcp_out_options *opts,
671 struct tcp_md5sig_key **md5)
673 struct tcp_sock *tp = tcp_sk(sk);
674 unsigned int size = 0;
675 unsigned int eff_sacks;
677 opts->options = 0;
679 #ifdef CONFIG_TCP_MD5SIG
680 *md5 = tp->af_specific->md5_lookup(sk, sk);
681 if (unlikely(*md5)) {
682 opts->options |= OPTION_MD5;
683 size += TCPOLEN_MD5SIG_ALIGNED;
685 #else
686 *md5 = NULL;
687 #endif
689 if (likely(tp->rx_opt.tstamp_ok)) {
690 opts->options |= OPTION_TS;
691 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
692 opts->tsecr = tp->rx_opt.ts_recent;
693 size += TCPOLEN_TSTAMP_ALIGNED;
696 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
697 if (unlikely(eff_sacks)) {
698 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
699 opts->num_sack_blocks =
700 min_t(unsigned int, eff_sacks,
701 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
702 TCPOLEN_SACK_PERBLOCK);
703 size += TCPOLEN_SACK_BASE_ALIGNED +
704 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
707 return size;
711 /* TCP SMALL QUEUES (TSQ)
713 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
714 * to reduce RTT and bufferbloat.
715 * We do this using a special skb destructor (tcp_wfree).
717 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
718 * needs to be reallocated in a driver.
719 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
721 * Since transmit from skb destructor is forbidden, we use a tasklet
722 * to process all sockets that eventually need to send more skbs.
723 * We use one tasklet per cpu, with its own queue of sockets.
725 struct tsq_tasklet {
726 struct tasklet_struct tasklet;
727 struct list_head head; /* queue of tcp sockets */
729 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
731 static void tcp_tsq_handler(struct sock *sk)
733 if ((1 << sk->sk_state) &
734 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
735 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
736 struct tcp_sock *tp = tcp_sk(sk);
738 if (tp->lost_out > tp->retrans_out &&
739 tp->snd_cwnd > tcp_packets_in_flight(tp))
740 tcp_xmit_retransmit_queue(sk);
742 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
743 0, GFP_ATOMIC);
747 * One tasklet per cpu tries to send more skbs.
748 * We run in tasklet context but need to disable irqs when
749 * transferring tsq->head because tcp_wfree() might
750 * interrupt us (non NAPI drivers)
752 static void tcp_tasklet_func(unsigned long data)
754 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
755 LIST_HEAD(list);
756 unsigned long flags;
757 struct list_head *q, *n;
758 struct tcp_sock *tp;
759 struct sock *sk;
761 local_irq_save(flags);
762 list_splice_init(&tsq->head, &list);
763 local_irq_restore(flags);
765 list_for_each_safe(q, n, &list) {
766 tp = list_entry(q, struct tcp_sock, tsq_node);
767 list_del(&tp->tsq_node);
769 sk = (struct sock *)tp;
770 smp_mb__before_atomic();
771 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
773 if (!sk->sk_lock.owned &&
774 test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) {
775 bh_lock_sock(sk);
776 if (!sock_owned_by_user(sk)) {
777 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
778 tcp_tsq_handler(sk);
780 bh_unlock_sock(sk);
783 sk_free(sk);
787 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
788 TCPF_WRITE_TIMER_DEFERRED | \
789 TCPF_DELACK_TIMER_DEFERRED | \
790 TCPF_MTU_REDUCED_DEFERRED)
792 * tcp_release_cb - tcp release_sock() callback
793 * @sk: socket
795 * called from release_sock() to perform protocol dependent
796 * actions before socket release.
798 void tcp_release_cb(struct sock *sk)
800 unsigned long flags, nflags;
802 /* perform an atomic operation only if at least one flag is set */
803 do {
804 flags = sk->sk_tsq_flags;
805 if (!(flags & TCP_DEFERRED_ALL))
806 return;
807 nflags = flags & ~TCP_DEFERRED_ALL;
808 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
810 if (flags & TCPF_TSQ_DEFERRED)
811 tcp_tsq_handler(sk);
813 /* Here begins the tricky part :
814 * We are called from release_sock() with :
815 * 1) BH disabled
816 * 2) sk_lock.slock spinlock held
817 * 3) socket owned by us (sk->sk_lock.owned == 1)
819 * But following code is meant to be called from BH handlers,
820 * so we should keep BH disabled, but early release socket ownership
822 sock_release_ownership(sk);
824 if (flags & TCPF_WRITE_TIMER_DEFERRED) {
825 tcp_write_timer_handler(sk);
826 __sock_put(sk);
828 if (flags & TCPF_DELACK_TIMER_DEFERRED) {
829 tcp_delack_timer_handler(sk);
830 __sock_put(sk);
832 if (flags & TCPF_MTU_REDUCED_DEFERRED) {
833 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
834 __sock_put(sk);
837 EXPORT_SYMBOL(tcp_release_cb);
839 void __init tcp_tasklet_init(void)
841 int i;
843 for_each_possible_cpu(i) {
844 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
846 INIT_LIST_HEAD(&tsq->head);
847 tasklet_init(&tsq->tasklet,
848 tcp_tasklet_func,
849 (unsigned long)tsq);
854 * Write buffer destructor automatically called from kfree_skb.
855 * We can't xmit new skbs from this context, as we might already
856 * hold qdisc lock.
858 void tcp_wfree(struct sk_buff *skb)
860 struct sock *sk = skb->sk;
861 struct tcp_sock *tp = tcp_sk(sk);
862 unsigned long flags, nval, oval;
863 int wmem;
865 /* Keep one reference on sk_wmem_alloc.
866 * Will be released by sk_free() from here or tcp_tasklet_func()
868 wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc);
870 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
871 * Wait until our queues (qdisc + devices) are drained.
872 * This gives :
873 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
874 * - chance for incoming ACK (processed by another cpu maybe)
875 * to migrate this flow (skb->ooo_okay will be eventually set)
877 if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
878 goto out;
880 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
881 struct tsq_tasklet *tsq;
882 bool empty;
884 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
885 goto out;
887 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
888 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
889 if (nval != oval)
890 continue;
892 /* queue this socket to tasklet queue */
893 local_irq_save(flags);
894 tsq = this_cpu_ptr(&tsq_tasklet);
895 empty = list_empty(&tsq->head);
896 list_add(&tp->tsq_node, &tsq->head);
897 if (empty)
898 tasklet_schedule(&tsq->tasklet);
899 local_irq_restore(flags);
900 return;
902 out:
903 sk_free(sk);
906 /* This routine actually transmits TCP packets queued in by
907 * tcp_do_sendmsg(). This is used by both the initial
908 * transmission and possible later retransmissions.
909 * All SKB's seen here are completely headerless. It is our
910 * job to build the TCP header, and pass the packet down to
911 * IP so it can do the same plus pass the packet off to the
912 * device.
914 * We are working here with either a clone of the original
915 * SKB, or a fresh unique copy made by the retransmit engine.
917 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
918 gfp_t gfp_mask)
920 const struct inet_connection_sock *icsk = inet_csk(sk);
921 struct inet_sock *inet;
922 struct tcp_sock *tp;
923 struct tcp_skb_cb *tcb;
924 struct tcp_out_options opts;
925 unsigned int tcp_options_size, tcp_header_size;
926 struct tcp_md5sig_key *md5;
927 struct tcphdr *th;
928 int err;
930 BUG_ON(!skb || !tcp_skb_pcount(skb));
931 tp = tcp_sk(sk);
933 if (clone_it) {
934 skb_mstamp_get(&skb->skb_mstamp);
935 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
936 - tp->snd_una;
937 tcp_rate_skb_sent(sk, skb);
939 if (unlikely(skb_cloned(skb)))
940 skb = pskb_copy(skb, gfp_mask);
941 else
942 skb = skb_clone(skb, gfp_mask);
943 if (unlikely(!skb))
944 return -ENOBUFS;
947 inet = inet_sk(sk);
948 tcb = TCP_SKB_CB(skb);
949 memset(&opts, 0, sizeof(opts));
951 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
952 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
953 else
954 tcp_options_size = tcp_established_options(sk, skb, &opts,
955 &md5);
956 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
958 /* if no packet is in qdisc/device queue, then allow XPS to select
959 * another queue. We can be called from tcp_tsq_handler()
960 * which holds one reference to sk_wmem_alloc.
962 * TODO: Ideally, in-flight pure ACK packets should not matter here.
963 * One way to get this would be to set skb->truesize = 2 on them.
965 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
967 skb_push(skb, tcp_header_size);
968 skb_reset_transport_header(skb);
970 skb_orphan(skb);
971 skb->sk = sk;
972 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
973 skb_set_hash_from_sk(skb, sk);
974 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
976 /* Build TCP header and checksum it. */
977 th = (struct tcphdr *)skb->data;
978 th->source = inet->inet_sport;
979 th->dest = inet->inet_dport;
980 th->seq = htonl(tcb->seq);
981 th->ack_seq = htonl(tp->rcv_nxt);
982 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
983 tcb->tcp_flags);
985 th->check = 0;
986 th->urg_ptr = 0;
988 /* The urg_mode check is necessary during a below snd_una win probe */
989 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
990 if (before(tp->snd_up, tcb->seq + 0x10000)) {
991 th->urg_ptr = htons(tp->snd_up - tcb->seq);
992 th->urg = 1;
993 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
994 th->urg_ptr = htons(0xFFFF);
995 th->urg = 1;
999 tcp_options_write((__be32 *)(th + 1), tp, &opts);
1000 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1001 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1002 th->window = htons(tcp_select_window(sk));
1003 tcp_ecn_send(sk, skb, th, tcp_header_size);
1004 } else {
1005 /* RFC1323: The window in SYN & SYN/ACK segments
1006 * is never scaled.
1008 th->window = htons(min(tp->rcv_wnd, 65535U));
1010 #ifdef CONFIG_TCP_MD5SIG
1011 /* Calculate the MD5 hash, as we have all we need now */
1012 if (md5) {
1013 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1014 tp->af_specific->calc_md5_hash(opts.hash_location,
1015 md5, sk, skb);
1017 #endif
1019 icsk->icsk_af_ops->send_check(sk, skb);
1021 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1022 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1024 if (skb->len != tcp_header_size) {
1025 tcp_event_data_sent(tp, sk);
1026 tp->data_segs_out += tcp_skb_pcount(skb);
1029 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1030 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1031 tcp_skb_pcount(skb));
1033 tp->segs_out += tcp_skb_pcount(skb);
1034 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1035 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1036 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1038 /* Our usage of tstamp should remain private */
1039 skb->tstamp = 0;
1041 /* Cleanup our debris for IP stacks */
1042 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1043 sizeof(struct inet6_skb_parm)));
1045 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1047 if (likely(err <= 0))
1048 return err;
1050 tcp_enter_cwr(sk);
1052 return net_xmit_eval(err);
1055 /* This routine just queues the buffer for sending.
1057 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1058 * otherwise socket can stall.
1060 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1062 struct tcp_sock *tp = tcp_sk(sk);
1064 /* Advance write_seq and place onto the write_queue. */
1065 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1066 __skb_header_release(skb);
1067 tcp_add_write_queue_tail(sk, skb);
1068 sk->sk_wmem_queued += skb->truesize;
1069 sk_mem_charge(sk, skb->truesize);
1072 /* Initialize TSO segments for a packet. */
1073 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1075 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1076 /* Avoid the costly divide in the normal
1077 * non-TSO case.
1079 tcp_skb_pcount_set(skb, 1);
1080 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1081 } else {
1082 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1083 TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1087 /* When a modification to fackets out becomes necessary, we need to check
1088 * skb is counted to fackets_out or not.
1090 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1091 int decr)
1093 struct tcp_sock *tp = tcp_sk(sk);
1095 if (!tp->sacked_out || tcp_is_reno(tp))
1096 return;
1098 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1099 tp->fackets_out -= decr;
1102 /* Pcount in the middle of the write queue got changed, we need to do various
1103 * tweaks to fix counters
1105 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1107 struct tcp_sock *tp = tcp_sk(sk);
1109 tp->packets_out -= decr;
1111 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1112 tp->sacked_out -= decr;
1113 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1114 tp->retrans_out -= decr;
1115 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1116 tp->lost_out -= decr;
1118 /* Reno case is special. Sigh... */
1119 if (tcp_is_reno(tp) && decr > 0)
1120 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1122 tcp_adjust_fackets_out(sk, skb, decr);
1124 if (tp->lost_skb_hint &&
1125 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1126 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1127 tp->lost_cnt_hint -= decr;
1129 tcp_verify_left_out(tp);
1132 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1134 return TCP_SKB_CB(skb)->txstamp_ack ||
1135 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1138 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1140 struct skb_shared_info *shinfo = skb_shinfo(skb);
1142 if (unlikely(tcp_has_tx_tstamp(skb)) &&
1143 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1144 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1145 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1147 shinfo->tx_flags &= ~tsflags;
1148 shinfo2->tx_flags |= tsflags;
1149 swap(shinfo->tskey, shinfo2->tskey);
1150 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1151 TCP_SKB_CB(skb)->txstamp_ack = 0;
1155 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1157 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1158 TCP_SKB_CB(skb)->eor = 0;
1161 /* Function to create two new TCP segments. Shrinks the given segment
1162 * to the specified size and appends a new segment with the rest of the
1163 * packet to the list. This won't be called frequently, I hope.
1164 * Remember, these are still headerless SKBs at this point.
1166 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1167 unsigned int mss_now, gfp_t gfp)
1169 struct tcp_sock *tp = tcp_sk(sk);
1170 struct sk_buff *buff;
1171 int nsize, old_factor;
1172 int nlen;
1173 u8 flags;
1175 if (WARN_ON(len > skb->len))
1176 return -EINVAL;
1178 nsize = skb_headlen(skb) - len;
1179 if (nsize < 0)
1180 nsize = 0;
1182 if (skb_unclone(skb, gfp))
1183 return -ENOMEM;
1185 /* Get a new skb... force flag on. */
1186 buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1187 if (!buff)
1188 return -ENOMEM; /* We'll just try again later. */
1190 sk->sk_wmem_queued += buff->truesize;
1191 sk_mem_charge(sk, buff->truesize);
1192 nlen = skb->len - len - nsize;
1193 buff->truesize += nlen;
1194 skb->truesize -= nlen;
1196 /* Correct the sequence numbers. */
1197 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1198 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1199 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1201 /* PSH and FIN should only be set in the second packet. */
1202 flags = TCP_SKB_CB(skb)->tcp_flags;
1203 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1204 TCP_SKB_CB(buff)->tcp_flags = flags;
1205 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1206 tcp_skb_fragment_eor(skb, buff);
1208 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1209 /* Copy and checksum data tail into the new buffer. */
1210 buff->csum = csum_partial_copy_nocheck(skb->data + len,
1211 skb_put(buff, nsize),
1212 nsize, 0);
1214 skb_trim(skb, len);
1216 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1217 } else {
1218 skb->ip_summed = CHECKSUM_PARTIAL;
1219 skb_split(skb, buff, len);
1222 buff->ip_summed = skb->ip_summed;
1224 buff->tstamp = skb->tstamp;
1225 tcp_fragment_tstamp(skb, buff);
1227 old_factor = tcp_skb_pcount(skb);
1229 /* Fix up tso_factor for both original and new SKB. */
1230 tcp_set_skb_tso_segs(skb, mss_now);
1231 tcp_set_skb_tso_segs(buff, mss_now);
1233 /* Update delivered info for the new segment */
1234 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1236 /* If this packet has been sent out already, we must
1237 * adjust the various packet counters.
1239 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1240 int diff = old_factor - tcp_skb_pcount(skb) -
1241 tcp_skb_pcount(buff);
1243 if (diff)
1244 tcp_adjust_pcount(sk, skb, diff);
1247 /* Link BUFF into the send queue. */
1248 __skb_header_release(buff);
1249 tcp_insert_write_queue_after(skb, buff, sk);
1251 return 0;
1254 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1255 * eventually). The difference is that pulled data not copied, but
1256 * immediately discarded.
1258 static void __pskb_trim_head(struct sk_buff *skb, int len)
1260 struct skb_shared_info *shinfo;
1261 int i, k, eat;
1263 eat = min_t(int, len, skb_headlen(skb));
1264 if (eat) {
1265 __skb_pull(skb, eat);
1266 len -= eat;
1267 if (!len)
1268 return;
1270 eat = len;
1271 k = 0;
1272 shinfo = skb_shinfo(skb);
1273 for (i = 0; i < shinfo->nr_frags; i++) {
1274 int size = skb_frag_size(&shinfo->frags[i]);
1276 if (size <= eat) {
1277 skb_frag_unref(skb, i);
1278 eat -= size;
1279 } else {
1280 shinfo->frags[k] = shinfo->frags[i];
1281 if (eat) {
1282 shinfo->frags[k].page_offset += eat;
1283 skb_frag_size_sub(&shinfo->frags[k], eat);
1284 eat = 0;
1286 k++;
1289 shinfo->nr_frags = k;
1291 skb_reset_tail_pointer(skb);
1292 skb->data_len -= len;
1293 skb->len = skb->data_len;
1296 /* Remove acked data from a packet in the transmit queue. */
1297 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1299 if (skb_unclone(skb, GFP_ATOMIC))
1300 return -ENOMEM;
1302 __pskb_trim_head(skb, len);
1304 TCP_SKB_CB(skb)->seq += len;
1305 skb->ip_summed = CHECKSUM_PARTIAL;
1307 skb->truesize -= len;
1308 sk->sk_wmem_queued -= len;
1309 sk_mem_uncharge(sk, len);
1310 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1312 /* Any change of skb->len requires recalculation of tso factor. */
1313 if (tcp_skb_pcount(skb) > 1)
1314 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1316 return 0;
1319 /* Calculate MSS not accounting any TCP options. */
1320 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1322 const struct tcp_sock *tp = tcp_sk(sk);
1323 const struct inet_connection_sock *icsk = inet_csk(sk);
1324 int mss_now;
1326 /* Calculate base mss without TCP options:
1327 It is MMS_S - sizeof(tcphdr) of rfc1122
1329 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1331 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1332 if (icsk->icsk_af_ops->net_frag_header_len) {
1333 const struct dst_entry *dst = __sk_dst_get(sk);
1335 if (dst && dst_allfrag(dst))
1336 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1339 /* Clamp it (mss_clamp does not include tcp options) */
1340 if (mss_now > tp->rx_opt.mss_clamp)
1341 mss_now = tp->rx_opt.mss_clamp;
1343 /* Now subtract optional transport overhead */
1344 mss_now -= icsk->icsk_ext_hdr_len;
1346 /* Then reserve room for full set of TCP options and 8 bytes of data */
1347 if (mss_now < 48)
1348 mss_now = 48;
1349 return mss_now;
1352 /* Calculate MSS. Not accounting for SACKs here. */
1353 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1355 /* Subtract TCP options size, not including SACKs */
1356 return __tcp_mtu_to_mss(sk, pmtu) -
1357 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1360 /* Inverse of above */
1361 int tcp_mss_to_mtu(struct sock *sk, int mss)
1363 const struct tcp_sock *tp = tcp_sk(sk);
1364 const struct inet_connection_sock *icsk = inet_csk(sk);
1365 int mtu;
1367 mtu = mss +
1368 tp->tcp_header_len +
1369 icsk->icsk_ext_hdr_len +
1370 icsk->icsk_af_ops->net_header_len;
1372 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1373 if (icsk->icsk_af_ops->net_frag_header_len) {
1374 const struct dst_entry *dst = __sk_dst_get(sk);
1376 if (dst && dst_allfrag(dst))
1377 mtu += icsk->icsk_af_ops->net_frag_header_len;
1379 return mtu;
1381 EXPORT_SYMBOL(tcp_mss_to_mtu);
1383 /* MTU probing init per socket */
1384 void tcp_mtup_init(struct sock *sk)
1386 struct tcp_sock *tp = tcp_sk(sk);
1387 struct inet_connection_sock *icsk = inet_csk(sk);
1388 struct net *net = sock_net(sk);
1390 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1391 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1392 icsk->icsk_af_ops->net_header_len;
1393 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1394 icsk->icsk_mtup.probe_size = 0;
1395 if (icsk->icsk_mtup.enabled)
1396 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1398 EXPORT_SYMBOL(tcp_mtup_init);
1400 /* This function synchronize snd mss to current pmtu/exthdr set.
1402 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1403 for TCP options, but includes only bare TCP header.
1405 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1406 It is minimum of user_mss and mss received with SYN.
1407 It also does not include TCP options.
1409 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1411 tp->mss_cache is current effective sending mss, including
1412 all tcp options except for SACKs. It is evaluated,
1413 taking into account current pmtu, but never exceeds
1414 tp->rx_opt.mss_clamp.
1416 NOTE1. rfc1122 clearly states that advertised MSS
1417 DOES NOT include either tcp or ip options.
1419 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1420 are READ ONLY outside this function. --ANK (980731)
1422 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1424 struct tcp_sock *tp = tcp_sk(sk);
1425 struct inet_connection_sock *icsk = inet_csk(sk);
1426 int mss_now;
1428 if (icsk->icsk_mtup.search_high > pmtu)
1429 icsk->icsk_mtup.search_high = pmtu;
1431 mss_now = tcp_mtu_to_mss(sk, pmtu);
1432 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1434 /* And store cached results */
1435 icsk->icsk_pmtu_cookie = pmtu;
1436 if (icsk->icsk_mtup.enabled)
1437 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1438 tp->mss_cache = mss_now;
1440 return mss_now;
1442 EXPORT_SYMBOL(tcp_sync_mss);
1444 /* Compute the current effective MSS, taking SACKs and IP options,
1445 * and even PMTU discovery events into account.
1447 unsigned int tcp_current_mss(struct sock *sk)
1449 const struct tcp_sock *tp = tcp_sk(sk);
1450 const struct dst_entry *dst = __sk_dst_get(sk);
1451 u32 mss_now;
1452 unsigned int header_len;
1453 struct tcp_out_options opts;
1454 struct tcp_md5sig_key *md5;
1456 mss_now = tp->mss_cache;
1458 if (dst) {
1459 u32 mtu = dst_mtu(dst);
1460 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1461 mss_now = tcp_sync_mss(sk, mtu);
1464 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1465 sizeof(struct tcphdr);
1466 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1467 * some common options. If this is an odd packet (because we have SACK
1468 * blocks etc) then our calculated header_len will be different, and
1469 * we have to adjust mss_now correspondingly */
1470 if (header_len != tp->tcp_header_len) {
1471 int delta = (int) header_len - tp->tcp_header_len;
1472 mss_now -= delta;
1475 return mss_now;
1478 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1479 * As additional protections, we do not touch cwnd in retransmission phases,
1480 * and if application hit its sndbuf limit recently.
1482 static void tcp_cwnd_application_limited(struct sock *sk)
1484 struct tcp_sock *tp = tcp_sk(sk);
1486 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1487 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1488 /* Limited by application or receiver window. */
1489 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1490 u32 win_used = max(tp->snd_cwnd_used, init_win);
1491 if (win_used < tp->snd_cwnd) {
1492 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1493 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1495 tp->snd_cwnd_used = 0;
1497 tp->snd_cwnd_stamp = tcp_time_stamp;
1500 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1502 struct tcp_sock *tp = tcp_sk(sk);
1504 /* Track the maximum number of outstanding packets in each
1505 * window, and remember whether we were cwnd-limited then.
1507 if (!before(tp->snd_una, tp->max_packets_seq) ||
1508 tp->packets_out > tp->max_packets_out) {
1509 tp->max_packets_out = tp->packets_out;
1510 tp->max_packets_seq = tp->snd_nxt;
1511 tp->is_cwnd_limited = is_cwnd_limited;
1514 if (tcp_is_cwnd_limited(sk)) {
1515 /* Network is feed fully. */
1516 tp->snd_cwnd_used = 0;
1517 tp->snd_cwnd_stamp = tcp_time_stamp;
1518 } else {
1519 /* Network starves. */
1520 if (tp->packets_out > tp->snd_cwnd_used)
1521 tp->snd_cwnd_used = tp->packets_out;
1523 if (sysctl_tcp_slow_start_after_idle &&
1524 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1525 tcp_cwnd_application_limited(sk);
1527 /* The following conditions together indicate the starvation
1528 * is caused by insufficient sender buffer:
1529 * 1) just sent some data (see tcp_write_xmit)
1530 * 2) not cwnd limited (this else condition)
1531 * 3) no more data to send (null tcp_send_head )
1532 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1534 if (!tcp_send_head(sk) && sk->sk_socket &&
1535 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1536 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1537 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1541 /* Minshall's variant of the Nagle send check. */
1542 static bool tcp_minshall_check(const struct tcp_sock *tp)
1544 return after(tp->snd_sml, tp->snd_una) &&
1545 !after(tp->snd_sml, tp->snd_nxt);
1548 /* Update snd_sml if this skb is under mss
1549 * Note that a TSO packet might end with a sub-mss segment
1550 * The test is really :
1551 * if ((skb->len % mss) != 0)
1552 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1553 * But we can avoid doing the divide again given we already have
1554 * skb_pcount = skb->len / mss_now
1556 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1557 const struct sk_buff *skb)
1559 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1560 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1563 /* Return false, if packet can be sent now without violation Nagle's rules:
1564 * 1. It is full sized. (provided by caller in %partial bool)
1565 * 2. Or it contains FIN. (already checked by caller)
1566 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1567 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1568 * With Minshall's modification: all sent small packets are ACKed.
1570 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1571 int nonagle)
1573 return partial &&
1574 ((nonagle & TCP_NAGLE_CORK) ||
1575 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1578 /* Return how many segs we'd like on a TSO packet,
1579 * to send one TSO packet per ms
1581 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1582 int min_tso_segs)
1584 u32 bytes, segs;
1586 bytes = min(sk->sk_pacing_rate >> 10,
1587 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1589 /* Goal is to send at least one packet per ms,
1590 * not one big TSO packet every 100 ms.
1591 * This preserves ACK clocking and is consistent
1592 * with tcp_tso_should_defer() heuristic.
1594 segs = max_t(u32, bytes / mss_now, min_tso_segs);
1596 return min_t(u32, segs, sk->sk_gso_max_segs);
1598 EXPORT_SYMBOL(tcp_tso_autosize);
1600 /* Return the number of segments we want in the skb we are transmitting.
1601 * See if congestion control module wants to decide; otherwise, autosize.
1603 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1605 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1606 u32 tso_segs = ca_ops->tso_segs_goal ? ca_ops->tso_segs_goal(sk) : 0;
1608 return tso_segs ? :
1609 tcp_tso_autosize(sk, mss_now, sysctl_tcp_min_tso_segs);
1612 /* Returns the portion of skb which can be sent right away */
1613 static unsigned int tcp_mss_split_point(const struct sock *sk,
1614 const struct sk_buff *skb,
1615 unsigned int mss_now,
1616 unsigned int max_segs,
1617 int nonagle)
1619 const struct tcp_sock *tp = tcp_sk(sk);
1620 u32 partial, needed, window, max_len;
1622 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1623 max_len = mss_now * max_segs;
1625 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1626 return max_len;
1628 needed = min(skb->len, window);
1630 if (max_len <= needed)
1631 return max_len;
1633 partial = needed % mss_now;
1634 /* If last segment is not a full MSS, check if Nagle rules allow us
1635 * to include this last segment in this skb.
1636 * Otherwise, we'll split the skb at last MSS boundary
1638 if (tcp_nagle_check(partial != 0, tp, nonagle))
1639 return needed - partial;
1641 return needed;
1644 /* Can at least one segment of SKB be sent right now, according to the
1645 * congestion window rules? If so, return how many segments are allowed.
1647 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1648 const struct sk_buff *skb)
1650 u32 in_flight, cwnd, halfcwnd;
1652 /* Don't be strict about the congestion window for the final FIN. */
1653 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1654 tcp_skb_pcount(skb) == 1)
1655 return 1;
1657 in_flight = tcp_packets_in_flight(tp);
1658 cwnd = tp->snd_cwnd;
1659 if (in_flight >= cwnd)
1660 return 0;
1662 /* For better scheduling, ensure we have at least
1663 * 2 GSO packets in flight.
1665 halfcwnd = max(cwnd >> 1, 1U);
1666 return min(halfcwnd, cwnd - in_flight);
1669 /* Initialize TSO state of a skb.
1670 * This must be invoked the first time we consider transmitting
1671 * SKB onto the wire.
1673 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1675 int tso_segs = tcp_skb_pcount(skb);
1677 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1678 tcp_set_skb_tso_segs(skb, mss_now);
1679 tso_segs = tcp_skb_pcount(skb);
1681 return tso_segs;
1685 /* Return true if the Nagle test allows this packet to be
1686 * sent now.
1688 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1689 unsigned int cur_mss, int nonagle)
1691 /* Nagle rule does not apply to frames, which sit in the middle of the
1692 * write_queue (they have no chances to get new data).
1694 * This is implemented in the callers, where they modify the 'nonagle'
1695 * argument based upon the location of SKB in the send queue.
1697 if (nonagle & TCP_NAGLE_PUSH)
1698 return true;
1700 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1701 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1702 return true;
1704 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1705 return true;
1707 return false;
1710 /* Does at least the first segment of SKB fit into the send window? */
1711 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1712 const struct sk_buff *skb,
1713 unsigned int cur_mss)
1715 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1717 if (skb->len > cur_mss)
1718 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1720 return !after(end_seq, tcp_wnd_end(tp));
1723 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1724 * should be put on the wire right now. If so, it returns the number of
1725 * packets allowed by the congestion window.
1727 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1728 unsigned int cur_mss, int nonagle)
1730 const struct tcp_sock *tp = tcp_sk(sk);
1731 unsigned int cwnd_quota;
1733 tcp_init_tso_segs(skb, cur_mss);
1735 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1736 return 0;
1738 cwnd_quota = tcp_cwnd_test(tp, skb);
1739 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1740 cwnd_quota = 0;
1742 return cwnd_quota;
1745 /* Test if sending is allowed right now. */
1746 bool tcp_may_send_now(struct sock *sk)
1748 const struct tcp_sock *tp = tcp_sk(sk);
1749 struct sk_buff *skb = tcp_send_head(sk);
1751 return skb &&
1752 tcp_snd_test(sk, skb, tcp_current_mss(sk),
1753 (tcp_skb_is_last(sk, skb) ?
1754 tp->nonagle : TCP_NAGLE_PUSH));
1757 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1758 * which is put after SKB on the list. It is very much like
1759 * tcp_fragment() except that it may make several kinds of assumptions
1760 * in order to speed up the splitting operation. In particular, we
1761 * know that all the data is in scatter-gather pages, and that the
1762 * packet has never been sent out before (and thus is not cloned).
1764 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1765 unsigned int mss_now, gfp_t gfp)
1767 struct sk_buff *buff;
1768 int nlen = skb->len - len;
1769 u8 flags;
1771 /* All of a TSO frame must be composed of paged data. */
1772 if (skb->len != skb->data_len)
1773 return tcp_fragment(sk, skb, len, mss_now, gfp);
1775 buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1776 if (unlikely(!buff))
1777 return -ENOMEM;
1779 sk->sk_wmem_queued += buff->truesize;
1780 sk_mem_charge(sk, buff->truesize);
1781 buff->truesize += nlen;
1782 skb->truesize -= nlen;
1784 /* Correct the sequence numbers. */
1785 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1786 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1787 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1789 /* PSH and FIN should only be set in the second packet. */
1790 flags = TCP_SKB_CB(skb)->tcp_flags;
1791 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1792 TCP_SKB_CB(buff)->tcp_flags = flags;
1794 /* This packet was never sent out yet, so no SACK bits. */
1795 TCP_SKB_CB(buff)->sacked = 0;
1797 tcp_skb_fragment_eor(skb, buff);
1799 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1800 skb_split(skb, buff, len);
1801 tcp_fragment_tstamp(skb, buff);
1803 /* Fix up tso_factor for both original and new SKB. */
1804 tcp_set_skb_tso_segs(skb, mss_now);
1805 tcp_set_skb_tso_segs(buff, mss_now);
1807 /* Link BUFF into the send queue. */
1808 __skb_header_release(buff);
1809 tcp_insert_write_queue_after(skb, buff, sk);
1811 return 0;
1814 /* Try to defer sending, if possible, in order to minimize the amount
1815 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1817 * This algorithm is from John Heffner.
1819 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1820 bool *is_cwnd_limited, u32 max_segs)
1822 const struct inet_connection_sock *icsk = inet_csk(sk);
1823 u32 age, send_win, cong_win, limit, in_flight;
1824 struct tcp_sock *tp = tcp_sk(sk);
1825 struct skb_mstamp now;
1826 struct sk_buff *head;
1827 int win_divisor;
1829 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1830 goto send_now;
1832 if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1833 goto send_now;
1835 /* Avoid bursty behavior by allowing defer
1836 * only if the last write was recent.
1838 if ((s32)(tcp_time_stamp - tp->lsndtime) > 0)
1839 goto send_now;
1841 in_flight = tcp_packets_in_flight(tp);
1843 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1845 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1847 /* From in_flight test above, we know that cwnd > in_flight. */
1848 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1850 limit = min(send_win, cong_win);
1852 /* If a full-sized TSO skb can be sent, do it. */
1853 if (limit >= max_segs * tp->mss_cache)
1854 goto send_now;
1856 /* Middle in queue won't get any more data, full sendable already? */
1857 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1858 goto send_now;
1860 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1861 if (win_divisor) {
1862 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1864 /* If at least some fraction of a window is available,
1865 * just use it.
1867 chunk /= win_divisor;
1868 if (limit >= chunk)
1869 goto send_now;
1870 } else {
1871 /* Different approach, try not to defer past a single
1872 * ACK. Receiver should ACK every other full sized
1873 * frame, so if we have space for more than 3 frames
1874 * then send now.
1876 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1877 goto send_now;
1880 head = tcp_write_queue_head(sk);
1881 skb_mstamp_get(&now);
1882 age = skb_mstamp_us_delta(&now, &head->skb_mstamp);
1883 /* If next ACK is likely to come too late (half srtt), do not defer */
1884 if (age < (tp->srtt_us >> 4))
1885 goto send_now;
1887 /* Ok, it looks like it is advisable to defer. */
1889 if (cong_win < send_win && cong_win <= skb->len)
1890 *is_cwnd_limited = true;
1892 return true;
1894 send_now:
1895 return false;
1898 static inline void tcp_mtu_check_reprobe(struct sock *sk)
1900 struct inet_connection_sock *icsk = inet_csk(sk);
1901 struct tcp_sock *tp = tcp_sk(sk);
1902 struct net *net = sock_net(sk);
1903 u32 interval;
1904 s32 delta;
1906 interval = net->ipv4.sysctl_tcp_probe_interval;
1907 delta = tcp_time_stamp - icsk->icsk_mtup.probe_timestamp;
1908 if (unlikely(delta >= interval * HZ)) {
1909 int mss = tcp_current_mss(sk);
1911 /* Update current search range */
1912 icsk->icsk_mtup.probe_size = 0;
1913 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
1914 sizeof(struct tcphdr) +
1915 icsk->icsk_af_ops->net_header_len;
1916 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
1918 /* Update probe time stamp */
1919 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1923 /* Create a new MTU probe if we are ready.
1924 * MTU probe is regularly attempting to increase the path MTU by
1925 * deliberately sending larger packets. This discovers routing
1926 * changes resulting in larger path MTUs.
1928 * Returns 0 if we should wait to probe (no cwnd available),
1929 * 1 if a probe was sent,
1930 * -1 otherwise
1932 static int tcp_mtu_probe(struct sock *sk)
1934 struct inet_connection_sock *icsk = inet_csk(sk);
1935 struct tcp_sock *tp = tcp_sk(sk);
1936 struct sk_buff *skb, *nskb, *next;
1937 struct net *net = sock_net(sk);
1938 int probe_size;
1939 int size_needed;
1940 int copy, len;
1941 int mss_now;
1942 int interval;
1944 /* Not currently probing/verifying,
1945 * not in recovery,
1946 * have enough cwnd, and
1947 * not SACKing (the variable headers throw things off)
1949 if (likely(!icsk->icsk_mtup.enabled ||
1950 icsk->icsk_mtup.probe_size ||
1951 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1952 tp->snd_cwnd < 11 ||
1953 tp->rx_opt.num_sacks || tp->rx_opt.dsack))
1954 return -1;
1956 /* Use binary search for probe_size between tcp_mss_base,
1957 * and current mss_clamp. if (search_high - search_low)
1958 * smaller than a threshold, backoff from probing.
1960 mss_now = tcp_current_mss(sk);
1961 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
1962 icsk->icsk_mtup.search_low) >> 1);
1963 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1964 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
1965 /* When misfortune happens, we are reprobing actively,
1966 * and then reprobe timer has expired. We stick with current
1967 * probing process by not resetting search range to its orignal.
1969 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
1970 interval < net->ipv4.sysctl_tcp_probe_threshold) {
1971 /* Check whether enough time has elaplased for
1972 * another round of probing.
1974 tcp_mtu_check_reprobe(sk);
1975 return -1;
1978 /* Have enough data in the send queue to probe? */
1979 if (tp->write_seq - tp->snd_nxt < size_needed)
1980 return -1;
1982 if (tp->snd_wnd < size_needed)
1983 return -1;
1984 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1985 return 0;
1987 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1988 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1989 if (!tcp_packets_in_flight(tp))
1990 return -1;
1991 else
1992 return 0;
1995 /* We're allowed to probe. Build it now. */
1996 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
1997 if (!nskb)
1998 return -1;
1999 sk->sk_wmem_queued += nskb->truesize;
2000 sk_mem_charge(sk, nskb->truesize);
2002 skb = tcp_send_head(sk);
2004 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2005 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2006 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2007 TCP_SKB_CB(nskb)->sacked = 0;
2008 nskb->csum = 0;
2009 nskb->ip_summed = skb->ip_summed;
2011 tcp_insert_write_queue_before(nskb, skb, sk);
2013 len = 0;
2014 tcp_for_write_queue_from_safe(skb, next, sk) {
2015 copy = min_t(int, skb->len, probe_size - len);
2016 if (nskb->ip_summed) {
2017 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2018 } else {
2019 __wsum csum = skb_copy_and_csum_bits(skb, 0,
2020 skb_put(nskb, copy),
2021 copy, 0);
2022 nskb->csum = csum_block_add(nskb->csum, csum, len);
2025 if (skb->len <= copy) {
2026 /* We've eaten all the data from this skb.
2027 * Throw it away. */
2028 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2029 tcp_unlink_write_queue(skb, sk);
2030 sk_wmem_free_skb(sk, skb);
2031 } else {
2032 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2033 ~(TCPHDR_FIN|TCPHDR_PSH);
2034 if (!skb_shinfo(skb)->nr_frags) {
2035 skb_pull(skb, copy);
2036 if (skb->ip_summed != CHECKSUM_PARTIAL)
2037 skb->csum = csum_partial(skb->data,
2038 skb->len, 0);
2039 } else {
2040 __pskb_trim_head(skb, copy);
2041 tcp_set_skb_tso_segs(skb, mss_now);
2043 TCP_SKB_CB(skb)->seq += copy;
2046 len += copy;
2048 if (len >= probe_size)
2049 break;
2051 tcp_init_tso_segs(nskb, nskb->len);
2053 /* We're ready to send. If this fails, the probe will
2054 * be resegmented into mss-sized pieces by tcp_write_xmit().
2056 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2057 /* Decrement cwnd here because we are sending
2058 * effectively two packets. */
2059 tp->snd_cwnd--;
2060 tcp_event_new_data_sent(sk, nskb);
2062 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2063 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2064 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2066 return 1;
2069 return -1;
2072 /* TCP Small Queues :
2073 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2074 * (These limits are doubled for retransmits)
2075 * This allows for :
2076 * - better RTT estimation and ACK scheduling
2077 * - faster recovery
2078 * - high rates
2079 * Alas, some drivers / subsystems require a fair amount
2080 * of queued bytes to ensure line rate.
2081 * One example is wifi aggregation (802.11 AMPDU)
2083 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2084 unsigned int factor)
2086 unsigned int limit;
2088 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
2089 limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
2090 limit <<= factor;
2092 if (atomic_read(&sk->sk_wmem_alloc) > limit) {
2093 /* Always send the 1st or 2nd skb in write queue.
2094 * No need to wait for TX completion to call us back,
2095 * after softirq/tasklet schedule.
2096 * This helps when TX completions are delayed too much.
2098 if (skb == sk->sk_write_queue.next ||
2099 skb->prev == sk->sk_write_queue.next)
2100 return false;
2102 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2103 /* It is possible TX completion already happened
2104 * before we set TSQ_THROTTLED, so we must
2105 * test again the condition.
2107 smp_mb__after_atomic();
2108 if (atomic_read(&sk->sk_wmem_alloc) > limit)
2109 return true;
2111 return false;
2114 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2116 const u32 now = tcp_time_stamp;
2118 if (tp->chrono_type > TCP_CHRONO_UNSPEC)
2119 tp->chrono_stat[tp->chrono_type - 1] += now - tp->chrono_start;
2120 tp->chrono_start = now;
2121 tp->chrono_type = new;
2124 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2126 struct tcp_sock *tp = tcp_sk(sk);
2128 /* If there are multiple conditions worthy of tracking in a
2129 * chronograph then the highest priority enum takes precedence
2130 * over the other conditions. So that if something "more interesting"
2131 * starts happening, stop the previous chrono and start a new one.
2133 if (type > tp->chrono_type)
2134 tcp_chrono_set(tp, type);
2137 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2139 struct tcp_sock *tp = tcp_sk(sk);
2142 /* There are multiple conditions worthy of tracking in a
2143 * chronograph, so that the highest priority enum takes
2144 * precedence over the other conditions (see tcp_chrono_start).
2145 * If a condition stops, we only stop chrono tracking if
2146 * it's the "most interesting" or current chrono we are
2147 * tracking and starts busy chrono if we have pending data.
2149 if (tcp_write_queue_empty(sk))
2150 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2151 else if (type == tp->chrono_type)
2152 tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2155 /* This routine writes packets to the network. It advances the
2156 * send_head. This happens as incoming acks open up the remote
2157 * window for us.
2159 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2160 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2161 * account rare use of URG, this is not a big flaw.
2163 * Send at most one packet when push_one > 0. Temporarily ignore
2164 * cwnd limit to force at most one packet out when push_one == 2.
2166 * Returns true, if no segments are in flight and we have queued segments,
2167 * but cannot send anything now because of SWS or another problem.
2169 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2170 int push_one, gfp_t gfp)
2172 struct tcp_sock *tp = tcp_sk(sk);
2173 struct sk_buff *skb;
2174 unsigned int tso_segs, sent_pkts;
2175 int cwnd_quota;
2176 int result;
2177 bool is_cwnd_limited = false, is_rwnd_limited = false;
2178 u32 max_segs;
2180 sent_pkts = 0;
2182 if (!push_one) {
2183 /* Do MTU probing. */
2184 result = tcp_mtu_probe(sk);
2185 if (!result) {
2186 return false;
2187 } else if (result > 0) {
2188 sent_pkts = 1;
2192 max_segs = tcp_tso_segs(sk, mss_now);
2193 while ((skb = tcp_send_head(sk))) {
2194 unsigned int limit;
2196 tso_segs = tcp_init_tso_segs(skb, mss_now);
2197 BUG_ON(!tso_segs);
2199 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2200 /* "skb_mstamp" is used as a start point for the retransmit timer */
2201 skb_mstamp_get(&skb->skb_mstamp);
2202 goto repair; /* Skip network transmission */
2205 cwnd_quota = tcp_cwnd_test(tp, skb);
2206 if (!cwnd_quota) {
2207 if (push_one == 2)
2208 /* Force out a loss probe pkt. */
2209 cwnd_quota = 1;
2210 else
2211 break;
2214 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2215 is_rwnd_limited = true;
2216 break;
2219 if (tso_segs == 1) {
2220 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2221 (tcp_skb_is_last(sk, skb) ?
2222 nonagle : TCP_NAGLE_PUSH))))
2223 break;
2224 } else {
2225 if (!push_one &&
2226 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2227 max_segs))
2228 break;
2231 limit = mss_now;
2232 if (tso_segs > 1 && !tcp_urg_mode(tp))
2233 limit = tcp_mss_split_point(sk, skb, mss_now,
2234 min_t(unsigned int,
2235 cwnd_quota,
2236 max_segs),
2237 nonagle);
2239 if (skb->len > limit &&
2240 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2241 break;
2243 if (test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
2244 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
2245 if (tcp_small_queue_check(sk, skb, 0))
2246 break;
2248 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2249 break;
2251 repair:
2252 /* Advance the send_head. This one is sent out.
2253 * This call will increment packets_out.
2255 tcp_event_new_data_sent(sk, skb);
2257 tcp_minshall_update(tp, mss_now, skb);
2258 sent_pkts += tcp_skb_pcount(skb);
2260 if (push_one)
2261 break;
2264 if (is_rwnd_limited)
2265 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2266 else
2267 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2269 if (likely(sent_pkts)) {
2270 if (tcp_in_cwnd_reduction(sk))
2271 tp->prr_out += sent_pkts;
2273 /* Send one loss probe per tail loss episode. */
2274 if (push_one != 2)
2275 tcp_schedule_loss_probe(sk);
2276 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2277 tcp_cwnd_validate(sk, is_cwnd_limited);
2278 return false;
2280 return !tp->packets_out && tcp_send_head(sk);
2283 bool tcp_schedule_loss_probe(struct sock *sk)
2285 struct inet_connection_sock *icsk = inet_csk(sk);
2286 struct tcp_sock *tp = tcp_sk(sk);
2287 u32 timeout, tlp_time_stamp, rto_time_stamp;
2288 u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2290 /* No consecutive loss probes. */
2291 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
2292 tcp_rearm_rto(sk);
2293 return false;
2295 /* Don't do any loss probe on a Fast Open connection before 3WHS
2296 * finishes.
2298 if (tp->fastopen_rsk)
2299 return false;
2301 /* TLP is only scheduled when next timer event is RTO. */
2302 if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2303 return false;
2305 /* Schedule a loss probe in 2*RTT for SACK capable connections
2306 * in Open state, that are either limited by cwnd or application.
2308 if ((sysctl_tcp_early_retrans != 3 && sysctl_tcp_early_retrans != 4) ||
2309 !tp->packets_out || !tcp_is_sack(tp) ||
2310 icsk->icsk_ca_state != TCP_CA_Open)
2311 return false;
2313 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2314 tcp_send_head(sk))
2315 return false;
2317 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2318 * for delayed ack when there's one outstanding packet. If no RTT
2319 * sample is available then probe after TCP_TIMEOUT_INIT.
2321 timeout = rtt << 1 ? : TCP_TIMEOUT_INIT;
2322 if (tp->packets_out == 1)
2323 timeout = max_t(u32, timeout,
2324 (rtt + (rtt >> 1) + TCP_DELACK_MAX));
2325 timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2327 /* If RTO is shorter, just schedule TLP in its place. */
2328 tlp_time_stamp = tcp_time_stamp + timeout;
2329 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2330 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2331 s32 delta = rto_time_stamp - tcp_time_stamp;
2332 if (delta > 0)
2333 timeout = delta;
2336 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2337 TCP_RTO_MAX);
2338 return true;
2341 /* Thanks to skb fast clones, we can detect if a prior transmit of
2342 * a packet is still in a qdisc or driver queue.
2343 * In this case, there is very little point doing a retransmit !
2345 static bool skb_still_in_host_queue(const struct sock *sk,
2346 const struct sk_buff *skb)
2348 if (unlikely(skb_fclone_busy(sk, skb))) {
2349 NET_INC_STATS(sock_net(sk),
2350 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2351 return true;
2353 return false;
2356 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2357 * retransmit the last segment.
2359 void tcp_send_loss_probe(struct sock *sk)
2361 struct tcp_sock *tp = tcp_sk(sk);
2362 struct sk_buff *skb;
2363 int pcount;
2364 int mss = tcp_current_mss(sk);
2366 skb = tcp_send_head(sk);
2367 if (skb) {
2368 if (tcp_snd_wnd_test(tp, skb, mss)) {
2369 pcount = tp->packets_out;
2370 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2371 if (tp->packets_out > pcount)
2372 goto probe_sent;
2373 goto rearm_timer;
2375 skb = tcp_write_queue_prev(sk, skb);
2376 } else {
2377 skb = tcp_write_queue_tail(sk);
2380 /* At most one outstanding TLP retransmission. */
2381 if (tp->tlp_high_seq)
2382 goto rearm_timer;
2384 /* Retransmit last segment. */
2385 if (WARN_ON(!skb))
2386 goto rearm_timer;
2388 if (skb_still_in_host_queue(sk, skb))
2389 goto rearm_timer;
2391 pcount = tcp_skb_pcount(skb);
2392 if (WARN_ON(!pcount))
2393 goto rearm_timer;
2395 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2396 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2397 GFP_ATOMIC)))
2398 goto rearm_timer;
2399 skb = tcp_write_queue_next(sk, skb);
2402 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2403 goto rearm_timer;
2405 if (__tcp_retransmit_skb(sk, skb, 1))
2406 goto rearm_timer;
2408 /* Record snd_nxt for loss detection. */
2409 tp->tlp_high_seq = tp->snd_nxt;
2411 probe_sent:
2412 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2413 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2414 inet_csk(sk)->icsk_pending = 0;
2415 rearm_timer:
2416 tcp_rearm_rto(sk);
2419 /* Push out any pending frames which were held back due to
2420 * TCP_CORK or attempt at coalescing tiny packets.
2421 * The socket must be locked by the caller.
2423 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2424 int nonagle)
2426 /* If we are closed, the bytes will have to remain here.
2427 * In time closedown will finish, we empty the write queue and
2428 * all will be happy.
2430 if (unlikely(sk->sk_state == TCP_CLOSE))
2431 return;
2433 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2434 sk_gfp_mask(sk, GFP_ATOMIC)))
2435 tcp_check_probe_timer(sk);
2438 /* Send _single_ skb sitting at the send head. This function requires
2439 * true push pending frames to setup probe timer etc.
2441 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2443 struct sk_buff *skb = tcp_send_head(sk);
2445 BUG_ON(!skb || skb->len < mss_now);
2447 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2450 /* This function returns the amount that we can raise the
2451 * usable window based on the following constraints
2453 * 1. The window can never be shrunk once it is offered (RFC 793)
2454 * 2. We limit memory per socket
2456 * RFC 1122:
2457 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2458 * RECV.NEXT + RCV.WIN fixed until:
2459 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2461 * i.e. don't raise the right edge of the window until you can raise
2462 * it at least MSS bytes.
2464 * Unfortunately, the recommended algorithm breaks header prediction,
2465 * since header prediction assumes th->window stays fixed.
2467 * Strictly speaking, keeping th->window fixed violates the receiver
2468 * side SWS prevention criteria. The problem is that under this rule
2469 * a stream of single byte packets will cause the right side of the
2470 * window to always advance by a single byte.
2472 * Of course, if the sender implements sender side SWS prevention
2473 * then this will not be a problem.
2475 * BSD seems to make the following compromise:
2477 * If the free space is less than the 1/4 of the maximum
2478 * space available and the free space is less than 1/2 mss,
2479 * then set the window to 0.
2480 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2481 * Otherwise, just prevent the window from shrinking
2482 * and from being larger than the largest representable value.
2484 * This prevents incremental opening of the window in the regime
2485 * where TCP is limited by the speed of the reader side taking
2486 * data out of the TCP receive queue. It does nothing about
2487 * those cases where the window is constrained on the sender side
2488 * because the pipeline is full.
2490 * BSD also seems to "accidentally" limit itself to windows that are a
2491 * multiple of MSS, at least until the free space gets quite small.
2492 * This would appear to be a side effect of the mbuf implementation.
2493 * Combining these two algorithms results in the observed behavior
2494 * of having a fixed window size at almost all times.
2496 * Below we obtain similar behavior by forcing the offered window to
2497 * a multiple of the mss when it is feasible to do so.
2499 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2500 * Regular options like TIMESTAMP are taken into account.
2502 u32 __tcp_select_window(struct sock *sk)
2504 struct inet_connection_sock *icsk = inet_csk(sk);
2505 struct tcp_sock *tp = tcp_sk(sk);
2506 /* MSS for the peer's data. Previous versions used mss_clamp
2507 * here. I don't know if the value based on our guesses
2508 * of peer's MSS is better for the performance. It's more correct
2509 * but may be worse for the performance because of rcv_mss
2510 * fluctuations. --SAW 1998/11/1
2512 int mss = icsk->icsk_ack.rcv_mss;
2513 int free_space = tcp_space(sk);
2514 int allowed_space = tcp_full_space(sk);
2515 int full_space = min_t(int, tp->window_clamp, allowed_space);
2516 int window;
2518 if (mss > full_space)
2519 mss = full_space;
2521 if (free_space < (full_space >> 1)) {
2522 icsk->icsk_ack.quick = 0;
2524 if (tcp_under_memory_pressure(sk))
2525 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2526 4U * tp->advmss);
2528 /* free_space might become our new window, make sure we don't
2529 * increase it due to wscale.
2531 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2533 /* if free space is less than mss estimate, or is below 1/16th
2534 * of the maximum allowed, try to move to zero-window, else
2535 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2536 * new incoming data is dropped due to memory limits.
2537 * With large window, mss test triggers way too late in order
2538 * to announce zero window in time before rmem limit kicks in.
2540 if (free_space < (allowed_space >> 4) || free_space < mss)
2541 return 0;
2544 if (free_space > tp->rcv_ssthresh)
2545 free_space = tp->rcv_ssthresh;
2547 /* Don't do rounding if we are using window scaling, since the
2548 * scaled window will not line up with the MSS boundary anyway.
2550 window = tp->rcv_wnd;
2551 if (tp->rx_opt.rcv_wscale) {
2552 window = free_space;
2554 /* Advertise enough space so that it won't get scaled away.
2555 * Import case: prevent zero window announcement if
2556 * 1<<rcv_wscale > mss.
2558 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2559 window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2560 << tp->rx_opt.rcv_wscale);
2561 } else {
2562 /* Get the largest window that is a nice multiple of mss.
2563 * Window clamp already applied above.
2564 * If our current window offering is within 1 mss of the
2565 * free space we just keep it. This prevents the divide
2566 * and multiply from happening most of the time.
2567 * We also don't do any window rounding when the free space
2568 * is too small.
2570 if (window <= free_space - mss || window > free_space)
2571 window = (free_space / mss) * mss;
2572 else if (mss == full_space &&
2573 free_space > window + (full_space >> 1))
2574 window = free_space;
2577 return window;
2580 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2581 const struct sk_buff *next_skb)
2583 if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2584 const struct skb_shared_info *next_shinfo =
2585 skb_shinfo(next_skb);
2586 struct skb_shared_info *shinfo = skb_shinfo(skb);
2588 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2589 shinfo->tskey = next_shinfo->tskey;
2590 TCP_SKB_CB(skb)->txstamp_ack |=
2591 TCP_SKB_CB(next_skb)->txstamp_ack;
2595 /* Collapses two adjacent SKB's during retransmission. */
2596 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2598 struct tcp_sock *tp = tcp_sk(sk);
2599 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2600 int skb_size, next_skb_size;
2602 skb_size = skb->len;
2603 next_skb_size = next_skb->len;
2605 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2607 if (next_skb_size) {
2608 if (next_skb_size <= skb_availroom(skb))
2609 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2610 next_skb_size);
2611 else if (!skb_shift(skb, next_skb, next_skb_size))
2612 return false;
2614 tcp_highest_sack_combine(sk, next_skb, skb);
2616 tcp_unlink_write_queue(next_skb, sk);
2618 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2619 skb->ip_summed = CHECKSUM_PARTIAL;
2621 if (skb->ip_summed != CHECKSUM_PARTIAL)
2622 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2624 /* Update sequence range on original skb. */
2625 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2627 /* Merge over control information. This moves PSH/FIN etc. over */
2628 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2630 /* All done, get rid of second SKB and account for it so
2631 * packet counting does not break.
2633 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2634 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2636 /* changed transmit queue under us so clear hints */
2637 tcp_clear_retrans_hints_partial(tp);
2638 if (next_skb == tp->retransmit_skb_hint)
2639 tp->retransmit_skb_hint = skb;
2641 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2643 tcp_skb_collapse_tstamp(skb, next_skb);
2645 sk_wmem_free_skb(sk, next_skb);
2646 return true;
2649 /* Check if coalescing SKBs is legal. */
2650 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2652 if (tcp_skb_pcount(skb) > 1)
2653 return false;
2654 if (skb_cloned(skb))
2655 return false;
2656 if (skb == tcp_send_head(sk))
2657 return false;
2658 /* Some heuristics for collapsing over SACK'd could be invented */
2659 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2660 return false;
2662 return true;
2665 /* Collapse packets in the retransmit queue to make to create
2666 * less packets on the wire. This is only done on retransmission.
2668 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2669 int space)
2671 struct tcp_sock *tp = tcp_sk(sk);
2672 struct sk_buff *skb = to, *tmp;
2673 bool first = true;
2675 if (!sysctl_tcp_retrans_collapse)
2676 return;
2677 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2678 return;
2680 tcp_for_write_queue_from_safe(skb, tmp, sk) {
2681 if (!tcp_can_collapse(sk, skb))
2682 break;
2684 if (!tcp_skb_can_collapse_to(to))
2685 break;
2687 space -= skb->len;
2689 if (first) {
2690 first = false;
2691 continue;
2694 if (space < 0)
2695 break;
2697 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2698 break;
2700 if (!tcp_collapse_retrans(sk, to))
2701 break;
2705 /* This retransmits one SKB. Policy decisions and retransmit queue
2706 * state updates are done by the caller. Returns non-zero if an
2707 * error occurred which prevented the send.
2709 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2711 struct inet_connection_sock *icsk = inet_csk(sk);
2712 struct tcp_sock *tp = tcp_sk(sk);
2713 unsigned int cur_mss;
2714 int diff, len, err;
2717 /* Inconclusive MTU probe */
2718 if (icsk->icsk_mtup.probe_size)
2719 icsk->icsk_mtup.probe_size = 0;
2721 /* Do not sent more than we queued. 1/4 is reserved for possible
2722 * copying overhead: fragmentation, tunneling, mangling etc.
2724 if (atomic_read(&sk->sk_wmem_alloc) >
2725 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2726 sk->sk_sndbuf))
2727 return -EAGAIN;
2729 if (skb_still_in_host_queue(sk, skb))
2730 return -EBUSY;
2732 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2733 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2734 BUG();
2735 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2736 return -ENOMEM;
2739 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2740 return -EHOSTUNREACH; /* Routing failure or similar. */
2742 cur_mss = tcp_current_mss(sk);
2744 /* If receiver has shrunk his window, and skb is out of
2745 * new window, do not retransmit it. The exception is the
2746 * case, when window is shrunk to zero. In this case
2747 * our retransmit serves as a zero window probe.
2749 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2750 TCP_SKB_CB(skb)->seq != tp->snd_una)
2751 return -EAGAIN;
2753 len = cur_mss * segs;
2754 if (skb->len > len) {
2755 if (tcp_fragment(sk, skb, len, cur_mss, GFP_ATOMIC))
2756 return -ENOMEM; /* We'll try again later. */
2757 } else {
2758 if (skb_unclone(skb, GFP_ATOMIC))
2759 return -ENOMEM;
2761 diff = tcp_skb_pcount(skb);
2762 tcp_set_skb_tso_segs(skb, cur_mss);
2763 diff -= tcp_skb_pcount(skb);
2764 if (diff)
2765 tcp_adjust_pcount(sk, skb, diff);
2766 if (skb->len < cur_mss)
2767 tcp_retrans_try_collapse(sk, skb, cur_mss);
2770 /* RFC3168, section 6.1.1.1. ECN fallback */
2771 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2772 tcp_ecn_clear_syn(sk, skb);
2774 /* make sure skb->data is aligned on arches that require it
2775 * and check if ack-trimming & collapsing extended the headroom
2776 * beyond what csum_start can cover.
2778 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2779 skb_headroom(skb) >= 0xFFFF)) {
2780 struct sk_buff *nskb;
2782 skb_mstamp_get(&skb->skb_mstamp);
2783 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2784 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2785 -ENOBUFS;
2786 } else {
2787 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2790 if (likely(!err)) {
2791 segs = tcp_skb_pcount(skb);
2793 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2794 /* Update global TCP statistics. */
2795 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2796 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2797 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2798 tp->total_retrans += segs;
2800 return err;
2803 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2805 struct tcp_sock *tp = tcp_sk(sk);
2806 int err = __tcp_retransmit_skb(sk, skb, segs);
2808 if (err == 0) {
2809 #if FASTRETRANS_DEBUG > 0
2810 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2811 net_dbg_ratelimited("retrans_out leaked\n");
2813 #endif
2814 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2815 tp->retrans_out += tcp_skb_pcount(skb);
2817 /* Save stamp of the first retransmit. */
2818 if (!tp->retrans_stamp)
2819 tp->retrans_stamp = tcp_skb_timestamp(skb);
2821 } else if (err != -EBUSY) {
2822 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2825 if (tp->undo_retrans < 0)
2826 tp->undo_retrans = 0;
2827 tp->undo_retrans += tcp_skb_pcount(skb);
2828 return err;
2831 /* This gets called after a retransmit timeout, and the initially
2832 * retransmitted data is acknowledged. It tries to continue
2833 * resending the rest of the retransmit queue, until either
2834 * we've sent it all or the congestion window limit is reached.
2835 * If doing SACK, the first ACK which comes back for a timeout
2836 * based retransmit packet might feed us FACK information again.
2837 * If so, we use it to avoid unnecessarily retransmissions.
2839 void tcp_xmit_retransmit_queue(struct sock *sk)
2841 const struct inet_connection_sock *icsk = inet_csk(sk);
2842 struct tcp_sock *tp = tcp_sk(sk);
2843 struct sk_buff *skb;
2844 struct sk_buff *hole = NULL;
2845 u32 max_segs;
2846 int mib_idx;
2848 if (!tp->packets_out)
2849 return;
2851 if (tp->retransmit_skb_hint) {
2852 skb = tp->retransmit_skb_hint;
2853 } else {
2854 skb = tcp_write_queue_head(sk);
2857 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
2858 tcp_for_write_queue_from(skb, sk) {
2859 __u8 sacked;
2860 int segs;
2862 if (skb == tcp_send_head(sk))
2863 break;
2864 /* we could do better than to assign each time */
2865 if (!hole)
2866 tp->retransmit_skb_hint = skb;
2868 segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
2869 if (segs <= 0)
2870 return;
2871 sacked = TCP_SKB_CB(skb)->sacked;
2872 /* In case tcp_shift_skb_data() have aggregated large skbs,
2873 * we need to make sure not sending too bigs TSO packets
2875 segs = min_t(int, segs, max_segs);
2877 if (tp->retrans_out >= tp->lost_out) {
2878 break;
2879 } else if (!(sacked & TCPCB_LOST)) {
2880 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2881 hole = skb;
2882 continue;
2884 } else {
2885 if (icsk->icsk_ca_state != TCP_CA_Loss)
2886 mib_idx = LINUX_MIB_TCPFASTRETRANS;
2887 else
2888 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2891 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2892 continue;
2894 if (tcp_small_queue_check(sk, skb, 1))
2895 return;
2897 if (tcp_retransmit_skb(sk, skb, segs))
2898 return;
2900 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
2902 if (tcp_in_cwnd_reduction(sk))
2903 tp->prr_out += tcp_skb_pcount(skb);
2905 if (skb == tcp_write_queue_head(sk) &&
2906 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
2907 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2908 inet_csk(sk)->icsk_rto,
2909 TCP_RTO_MAX);
2913 /* We allow to exceed memory limits for FIN packets to expedite
2914 * connection tear down and (memory) recovery.
2915 * Otherwise tcp_send_fin() could be tempted to either delay FIN
2916 * or even be forced to close flow without any FIN.
2917 * In general, we want to allow one skb per socket to avoid hangs
2918 * with edge trigger epoll()
2920 void sk_forced_mem_schedule(struct sock *sk, int size)
2922 int amt;
2924 if (size <= sk->sk_forward_alloc)
2925 return;
2926 amt = sk_mem_pages(size);
2927 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2928 sk_memory_allocated_add(sk, amt);
2930 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2931 mem_cgroup_charge_skmem(sk->sk_memcg, amt);
2934 /* Send a FIN. The caller locks the socket for us.
2935 * We should try to send a FIN packet really hard, but eventually give up.
2937 void tcp_send_fin(struct sock *sk)
2939 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
2940 struct tcp_sock *tp = tcp_sk(sk);
2942 /* Optimization, tack on the FIN if we have one skb in write queue and
2943 * this skb was not yet sent, or we are under memory pressure.
2944 * Note: in the latter case, FIN packet will be sent after a timeout,
2945 * as TCP stack thinks it has already been transmitted.
2947 if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) {
2948 coalesce:
2949 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
2950 TCP_SKB_CB(tskb)->end_seq++;
2951 tp->write_seq++;
2952 if (!tcp_send_head(sk)) {
2953 /* This means tskb was already sent.
2954 * Pretend we included the FIN on previous transmit.
2955 * We need to set tp->snd_nxt to the value it would have
2956 * if FIN had been sent. This is because retransmit path
2957 * does not change tp->snd_nxt.
2959 tp->snd_nxt++;
2960 return;
2962 } else {
2963 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
2964 if (unlikely(!skb)) {
2965 if (tskb)
2966 goto coalesce;
2967 return;
2969 skb_reserve(skb, MAX_TCP_HEADER);
2970 sk_forced_mem_schedule(sk, skb->truesize);
2971 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2972 tcp_init_nondata_skb(skb, tp->write_seq,
2973 TCPHDR_ACK | TCPHDR_FIN);
2974 tcp_queue_skb(sk, skb);
2976 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
2979 /* We get here when a process closes a file descriptor (either due to
2980 * an explicit close() or as a byproduct of exit()'ing) and there
2981 * was unread data in the receive queue. This behavior is recommended
2982 * by RFC 2525, section 2.17. -DaveM
2984 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2986 struct sk_buff *skb;
2988 /* NOTE: No TCP options attached and we never retransmit this. */
2989 skb = alloc_skb(MAX_TCP_HEADER, priority);
2990 if (!skb) {
2991 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2992 return;
2995 /* Reserve space for headers and prepare control bits. */
2996 skb_reserve(skb, MAX_TCP_HEADER);
2997 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2998 TCPHDR_ACK | TCPHDR_RST);
2999 skb_mstamp_get(&skb->skb_mstamp);
3000 /* Send it off. */
3001 if (tcp_transmit_skb(sk, skb, 0, priority))
3002 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3004 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3007 /* Send a crossed SYN-ACK during socket establishment.
3008 * WARNING: This routine must only be called when we have already sent
3009 * a SYN packet that crossed the incoming SYN that caused this routine
3010 * to get called. If this assumption fails then the initial rcv_wnd
3011 * and rcv_wscale values will not be correct.
3013 int tcp_send_synack(struct sock *sk)
3015 struct sk_buff *skb;
3017 skb = tcp_write_queue_head(sk);
3018 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3019 pr_debug("%s: wrong queue state\n", __func__);
3020 return -EFAULT;
3022 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3023 if (skb_cloned(skb)) {
3024 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
3025 if (!nskb)
3026 return -ENOMEM;
3027 tcp_unlink_write_queue(skb, sk);
3028 __skb_header_release(nskb);
3029 __tcp_add_write_queue_head(sk, nskb);
3030 sk_wmem_free_skb(sk, skb);
3031 sk->sk_wmem_queued += nskb->truesize;
3032 sk_mem_charge(sk, nskb->truesize);
3033 skb = nskb;
3036 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3037 tcp_ecn_send_synack(sk, skb);
3039 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3043 * tcp_make_synack - Prepare a SYN-ACK.
3044 * sk: listener socket
3045 * dst: dst entry attached to the SYNACK
3046 * req: request_sock pointer
3048 * Allocate one skb and build a SYNACK packet.
3049 * @dst is consumed : Caller should not use it again.
3051 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3052 struct request_sock *req,
3053 struct tcp_fastopen_cookie *foc,
3054 enum tcp_synack_type synack_type)
3056 struct inet_request_sock *ireq = inet_rsk(req);
3057 const struct tcp_sock *tp = tcp_sk(sk);
3058 struct tcp_md5sig_key *md5 = NULL;
3059 struct tcp_out_options opts;
3060 struct sk_buff *skb;
3061 int tcp_header_size;
3062 struct tcphdr *th;
3063 u16 user_mss;
3064 int mss;
3066 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3067 if (unlikely(!skb)) {
3068 dst_release(dst);
3069 return NULL;
3071 /* Reserve space for headers. */
3072 skb_reserve(skb, MAX_TCP_HEADER);
3074 switch (synack_type) {
3075 case TCP_SYNACK_NORMAL:
3076 skb_set_owner_w(skb, req_to_sk(req));
3077 break;
3078 case TCP_SYNACK_COOKIE:
3079 /* Under synflood, we do not attach skb to a socket,
3080 * to avoid false sharing.
3082 break;
3083 case TCP_SYNACK_FASTOPEN:
3084 /* sk is a const pointer, because we want to express multiple
3085 * cpu might call us concurrently.
3086 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3088 skb_set_owner_w(skb, (struct sock *)sk);
3089 break;
3091 skb_dst_set(skb, dst);
3093 mss = dst_metric_advmss(dst);
3094 user_mss = READ_ONCE(tp->rx_opt.user_mss);
3095 if (user_mss && user_mss < mss)
3096 mss = user_mss;
3098 memset(&opts, 0, sizeof(opts));
3099 #ifdef CONFIG_SYN_COOKIES
3100 if (unlikely(req->cookie_ts))
3101 skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req);
3102 else
3103 #endif
3104 skb_mstamp_get(&skb->skb_mstamp);
3106 #ifdef CONFIG_TCP_MD5SIG
3107 rcu_read_lock();
3108 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3109 #endif
3110 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3111 tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) +
3112 sizeof(*th);
3114 skb_push(skb, tcp_header_size);
3115 skb_reset_transport_header(skb);
3117 th = (struct tcphdr *)skb->data;
3118 memset(th, 0, sizeof(struct tcphdr));
3119 th->syn = 1;
3120 th->ack = 1;
3121 tcp_ecn_make_synack(req, th);
3122 th->source = htons(ireq->ir_num);
3123 th->dest = ireq->ir_rmt_port;
3124 /* Setting of flags are superfluous here for callers (and ECE is
3125 * not even correctly set)
3127 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
3128 TCPHDR_SYN | TCPHDR_ACK);
3130 th->seq = htonl(TCP_SKB_CB(skb)->seq);
3131 /* XXX data is queued and acked as is. No buffer/window check */
3132 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3134 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3135 th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3136 tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3137 th->doff = (tcp_header_size >> 2);
3138 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3140 #ifdef CONFIG_TCP_MD5SIG
3141 /* Okay, we have all we need - do the md5 hash if needed */
3142 if (md5)
3143 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3144 md5, req_to_sk(req), skb);
3145 rcu_read_unlock();
3146 #endif
3148 /* Do not fool tcpdump (if any), clean our debris */
3149 skb->tstamp = 0;
3150 return skb;
3152 EXPORT_SYMBOL(tcp_make_synack);
3154 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3156 struct inet_connection_sock *icsk = inet_csk(sk);
3157 const struct tcp_congestion_ops *ca;
3158 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3160 if (ca_key == TCP_CA_UNSPEC)
3161 return;
3163 rcu_read_lock();
3164 ca = tcp_ca_find_key(ca_key);
3165 if (likely(ca && try_module_get(ca->owner))) {
3166 module_put(icsk->icsk_ca_ops->owner);
3167 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3168 icsk->icsk_ca_ops = ca;
3170 rcu_read_unlock();
3173 /* Do all connect socket setups that can be done AF independent. */
3174 static void tcp_connect_init(struct sock *sk)
3176 const struct dst_entry *dst = __sk_dst_get(sk);
3177 struct tcp_sock *tp = tcp_sk(sk);
3178 __u8 rcv_wscale;
3180 /* We'll fix this up when we get a response from the other end.
3181 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3183 tp->tcp_header_len = sizeof(struct tcphdr) +
3184 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
3186 #ifdef CONFIG_TCP_MD5SIG
3187 if (tp->af_specific->md5_lookup(sk, sk))
3188 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3189 #endif
3191 /* If user gave his TCP_MAXSEG, record it to clamp */
3192 if (tp->rx_opt.user_mss)
3193 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3194 tp->max_window = 0;
3195 tcp_mtup_init(sk);
3196 tcp_sync_mss(sk, dst_mtu(dst));
3198 tcp_ca_dst_init(sk, dst);
3200 if (!tp->window_clamp)
3201 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3202 tp->advmss = dst_metric_advmss(dst);
3203 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
3204 tp->advmss = tp->rx_opt.user_mss;
3206 tcp_initialize_rcv_mss(sk);
3208 /* limit the window selection if the user enforce a smaller rx buffer */
3209 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3210 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3211 tp->window_clamp = tcp_full_space(sk);
3213 tcp_select_initial_window(tcp_full_space(sk),
3214 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3215 &tp->rcv_wnd,
3216 &tp->window_clamp,
3217 sysctl_tcp_window_scaling,
3218 &rcv_wscale,
3219 dst_metric(dst, RTAX_INITRWND));
3221 tp->rx_opt.rcv_wscale = rcv_wscale;
3222 tp->rcv_ssthresh = tp->rcv_wnd;
3224 sk->sk_err = 0;
3225 sock_reset_flag(sk, SOCK_DONE);
3226 tp->snd_wnd = 0;
3227 tcp_init_wl(tp, 0);
3228 tp->snd_una = tp->write_seq;
3229 tp->snd_sml = tp->write_seq;
3230 tp->snd_up = tp->write_seq;
3231 tp->snd_nxt = tp->write_seq;
3233 if (likely(!tp->repair))
3234 tp->rcv_nxt = 0;
3235 else
3236 tp->rcv_tstamp = tcp_time_stamp;
3237 tp->rcv_wup = tp->rcv_nxt;
3238 tp->copied_seq = tp->rcv_nxt;
3240 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
3241 inet_csk(sk)->icsk_retransmits = 0;
3242 tcp_clear_retrans(tp);
3245 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3247 struct tcp_sock *tp = tcp_sk(sk);
3248 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3250 tcb->end_seq += skb->len;
3251 __skb_header_release(skb);
3252 __tcp_add_write_queue_tail(sk, skb);
3253 sk->sk_wmem_queued += skb->truesize;
3254 sk_mem_charge(sk, skb->truesize);
3255 tp->write_seq = tcb->end_seq;
3256 tp->packets_out += tcp_skb_pcount(skb);
3259 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3260 * queue a data-only packet after the regular SYN, such that regular SYNs
3261 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3262 * only the SYN sequence, the data are retransmitted in the first ACK.
3263 * If cookie is not cached or other error occurs, falls back to send a
3264 * regular SYN with Fast Open cookie request option.
3266 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3268 struct tcp_sock *tp = tcp_sk(sk);
3269 struct tcp_fastopen_request *fo = tp->fastopen_req;
3270 int syn_loss = 0, space, err = 0;
3271 unsigned long last_syn_loss = 0;
3272 struct sk_buff *syn_data;
3274 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3275 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
3276 &syn_loss, &last_syn_loss);
3277 /* Recurring FO SYN losses: revert to regular handshake temporarily */
3278 if (syn_loss > 1 &&
3279 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
3280 fo->cookie.len = -1;
3281 goto fallback;
3284 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
3285 fo->cookie.len = -1;
3286 else if (fo->cookie.len <= 0)
3287 goto fallback;
3289 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3290 * user-MSS. Reserve maximum option space for middleboxes that add
3291 * private TCP options. The cost is reduced data space in SYN :(
3293 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
3294 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3295 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3296 MAX_TCP_OPTION_SPACE;
3298 space = min_t(size_t, space, fo->size);
3300 /* limit to order-0 allocations */
3301 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3303 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3304 if (!syn_data)
3305 goto fallback;
3306 syn_data->ip_summed = CHECKSUM_PARTIAL;
3307 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3308 if (space) {
3309 int copied = copy_from_iter(skb_put(syn_data, space), space,
3310 &fo->data->msg_iter);
3311 if (unlikely(!copied)) {
3312 kfree_skb(syn_data);
3313 goto fallback;
3315 if (copied != space) {
3316 skb_trim(syn_data, copied);
3317 space = copied;
3320 /* No more data pending in inet_wait_for_connect() */
3321 if (space == fo->size)
3322 fo->data = NULL;
3323 fo->copied = space;
3325 tcp_connect_queue_skb(sk, syn_data);
3326 if (syn_data->len)
3327 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3329 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3331 syn->skb_mstamp = syn_data->skb_mstamp;
3333 /* Now full SYN+DATA was cloned and sent (or not),
3334 * remove the SYN from the original skb (syn_data)
3335 * we keep in write queue in case of a retransmit, as we
3336 * also have the SYN packet (with no data) in the same queue.
3338 TCP_SKB_CB(syn_data)->seq++;
3339 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3340 if (!err) {
3341 tp->syn_data = (fo->copied > 0);
3342 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3343 goto done;
3346 fallback:
3347 /* Send a regular SYN with Fast Open cookie request option */
3348 if (fo->cookie.len > 0)
3349 fo->cookie.len = 0;
3350 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3351 if (err)
3352 tp->syn_fastopen = 0;
3353 done:
3354 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3355 return err;
3358 /* Build a SYN and send it off. */
3359 int tcp_connect(struct sock *sk)
3361 struct tcp_sock *tp = tcp_sk(sk);
3362 struct sk_buff *buff;
3363 int err;
3365 tcp_connect_init(sk);
3367 if (unlikely(tp->repair)) {
3368 tcp_finish_connect(sk, NULL);
3369 return 0;
3372 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3373 if (unlikely(!buff))
3374 return -ENOBUFS;
3376 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3377 tp->retrans_stamp = tcp_time_stamp;
3378 tcp_connect_queue_skb(sk, buff);
3379 tcp_ecn_send_syn(sk, buff);
3381 /* Send off SYN; include data in Fast Open. */
3382 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3383 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3384 if (err == -ECONNREFUSED)
3385 return err;
3387 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3388 * in order to make this packet get counted in tcpOutSegs.
3390 tp->snd_nxt = tp->write_seq;
3391 tp->pushed_seq = tp->write_seq;
3392 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3394 /* Timer for repeating the SYN until an answer. */
3395 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3396 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3397 return 0;
3399 EXPORT_SYMBOL(tcp_connect);
3401 /* Send out a delayed ack, the caller does the policy checking
3402 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3403 * for details.
3405 void tcp_send_delayed_ack(struct sock *sk)
3407 struct inet_connection_sock *icsk = inet_csk(sk);
3408 int ato = icsk->icsk_ack.ato;
3409 unsigned long timeout;
3411 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3413 if (ato > TCP_DELACK_MIN) {
3414 const struct tcp_sock *tp = tcp_sk(sk);
3415 int max_ato = HZ / 2;
3417 if (icsk->icsk_ack.pingpong ||
3418 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3419 max_ato = TCP_DELACK_MAX;
3421 /* Slow path, intersegment interval is "high". */
3423 /* If some rtt estimate is known, use it to bound delayed ack.
3424 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3425 * directly.
3427 if (tp->srtt_us) {
3428 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3429 TCP_DELACK_MIN);
3431 if (rtt < max_ato)
3432 max_ato = rtt;
3435 ato = min(ato, max_ato);
3438 /* Stay within the limit we were given */
3439 timeout = jiffies + ato;
3441 /* Use new timeout only if there wasn't a older one earlier. */
3442 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3443 /* If delack timer was blocked or is about to expire,
3444 * send ACK now.
3446 if (icsk->icsk_ack.blocked ||
3447 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3448 tcp_send_ack(sk);
3449 return;
3452 if (!time_before(timeout, icsk->icsk_ack.timeout))
3453 timeout = icsk->icsk_ack.timeout;
3455 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3456 icsk->icsk_ack.timeout = timeout;
3457 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3460 /* This routine sends an ack and also updates the window. */
3461 void tcp_send_ack(struct sock *sk)
3463 struct sk_buff *buff;
3465 /* If we have been reset, we may not send again. */
3466 if (sk->sk_state == TCP_CLOSE)
3467 return;
3469 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3471 /* We are not putting this on the write queue, so
3472 * tcp_transmit_skb() will set the ownership to this
3473 * sock.
3475 buff = alloc_skb(MAX_TCP_HEADER,
3476 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3477 if (unlikely(!buff)) {
3478 inet_csk_schedule_ack(sk);
3479 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3480 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3481 TCP_DELACK_MAX, TCP_RTO_MAX);
3482 return;
3485 /* Reserve space for headers and prepare control bits. */
3486 skb_reserve(buff, MAX_TCP_HEADER);
3487 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3489 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3490 * too much.
3491 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3493 skb_set_tcp_pure_ack(buff);
3495 /* Send it off, this clears delayed acks for us. */
3496 skb_mstamp_get(&buff->skb_mstamp);
3497 tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0);
3499 EXPORT_SYMBOL_GPL(tcp_send_ack);
3501 /* This routine sends a packet with an out of date sequence
3502 * number. It assumes the other end will try to ack it.
3504 * Question: what should we make while urgent mode?
3505 * 4.4BSD forces sending single byte of data. We cannot send
3506 * out of window data, because we have SND.NXT==SND.MAX...
3508 * Current solution: to send TWO zero-length segments in urgent mode:
3509 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3510 * out-of-date with SND.UNA-1 to probe window.
3512 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3514 struct tcp_sock *tp = tcp_sk(sk);
3515 struct sk_buff *skb;
3517 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3518 skb = alloc_skb(MAX_TCP_HEADER,
3519 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3520 if (!skb)
3521 return -1;
3523 /* Reserve space for headers and set control bits. */
3524 skb_reserve(skb, MAX_TCP_HEADER);
3525 /* Use a previous sequence. This should cause the other
3526 * end to send an ack. Don't queue or clone SKB, just
3527 * send it.
3529 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3530 skb_mstamp_get(&skb->skb_mstamp);
3531 NET_INC_STATS(sock_net(sk), mib);
3532 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3535 void tcp_send_window_probe(struct sock *sk)
3537 if (sk->sk_state == TCP_ESTABLISHED) {
3538 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3539 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3543 /* Initiate keepalive or window probe from timer. */
3544 int tcp_write_wakeup(struct sock *sk, int mib)
3546 struct tcp_sock *tp = tcp_sk(sk);
3547 struct sk_buff *skb;
3549 if (sk->sk_state == TCP_CLOSE)
3550 return -1;
3552 skb = tcp_send_head(sk);
3553 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3554 int err;
3555 unsigned int mss = tcp_current_mss(sk);
3556 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3558 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3559 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3561 /* We are probing the opening of a window
3562 * but the window size is != 0
3563 * must have been a result SWS avoidance ( sender )
3565 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3566 skb->len > mss) {
3567 seg_size = min(seg_size, mss);
3568 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3569 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3570 return -1;
3571 } else if (!tcp_skb_pcount(skb))
3572 tcp_set_skb_tso_segs(skb, mss);
3574 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3575 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3576 if (!err)
3577 tcp_event_new_data_sent(sk, skb);
3578 return err;
3579 } else {
3580 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3581 tcp_xmit_probe_skb(sk, 1, mib);
3582 return tcp_xmit_probe_skb(sk, 0, mib);
3586 /* A window probe timeout has occurred. If window is not closed send
3587 * a partial packet else a zero probe.
3589 void tcp_send_probe0(struct sock *sk)
3591 struct inet_connection_sock *icsk = inet_csk(sk);
3592 struct tcp_sock *tp = tcp_sk(sk);
3593 struct net *net = sock_net(sk);
3594 unsigned long probe_max;
3595 int err;
3597 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3599 if (tp->packets_out || !tcp_send_head(sk)) {
3600 /* Cancel probe timer, if it is not required. */
3601 icsk->icsk_probes_out = 0;
3602 icsk->icsk_backoff = 0;
3603 return;
3606 if (err <= 0) {
3607 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3608 icsk->icsk_backoff++;
3609 icsk->icsk_probes_out++;
3610 probe_max = TCP_RTO_MAX;
3611 } else {
3612 /* If packet was not sent due to local congestion,
3613 * do not backoff and do not remember icsk_probes_out.
3614 * Let local senders to fight for local resources.
3616 * Use accumulated backoff yet.
3618 if (!icsk->icsk_probes_out)
3619 icsk->icsk_probes_out = 1;
3620 probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3622 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3623 tcp_probe0_when(sk, probe_max),
3624 TCP_RTO_MAX);
3627 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3629 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3630 struct flowi fl;
3631 int res;
3633 tcp_rsk(req)->txhash = net_tx_rndhash();
3634 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3635 if (!res) {
3636 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3637 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3638 if (unlikely(tcp_passive_fastopen(sk)))
3639 tcp_sk(sk)->total_retrans++;
3641 return res;
3643 EXPORT_SYMBOL(tcp_rtx_synack);