net: phy: bcm7xxx: Implement EGPHY workaround for 7278
[linux-2.6/btrfs-unstable.git] / net / ipv4 / tcp_ipv4.c
blobf7325b25b06e65581ecc496f95e819aa738c0987
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * IPv4 specific functions
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
16 * See tcp.c for author information
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
53 #define pr_fmt(fmt) "TCP: " fmt
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/secure_seq.h>
76 #include <net/busy_poll.h>
78 #include <linux/inet.h>
79 #include <linux/ipv6.h>
80 #include <linux/stddef.h>
81 #include <linux/proc_fs.h>
82 #include <linux/seq_file.h>
84 #include <crypto/hash.h>
85 #include <linux/scatterlist.h>
87 int sysctl_tcp_low_latency __read_mostly;
89 #ifdef CONFIG_TCP_MD5SIG
90 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
91 __be32 daddr, __be32 saddr, const struct tcphdr *th);
92 #endif
94 struct inet_hashinfo tcp_hashinfo;
95 EXPORT_SYMBOL(tcp_hashinfo);
97 static u32 tcp_v4_init_sequence(const struct sk_buff *skb, u32 *tsoff)
99 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
100 ip_hdr(skb)->saddr,
101 tcp_hdr(skb)->dest,
102 tcp_hdr(skb)->source, tsoff);
105 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
107 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
108 struct tcp_sock *tp = tcp_sk(sk);
110 /* With PAWS, it is safe from the viewpoint
111 of data integrity. Even without PAWS it is safe provided sequence
112 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
114 Actually, the idea is close to VJ's one, only timestamp cache is
115 held not per host, but per port pair and TW bucket is used as state
116 holder.
118 If TW bucket has been already destroyed we fall back to VJ's scheme
119 and use initial timestamp retrieved from peer table.
121 if (tcptw->tw_ts_recent_stamp &&
122 (!twp || (sock_net(sk)->ipv4.sysctl_tcp_tw_reuse &&
123 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
124 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
125 if (tp->write_seq == 0)
126 tp->write_seq = 1;
127 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
128 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
129 sock_hold(sktw);
130 return 1;
133 return 0;
135 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
137 /* This will initiate an outgoing connection. */
138 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
140 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
141 struct inet_sock *inet = inet_sk(sk);
142 struct tcp_sock *tp = tcp_sk(sk);
143 __be16 orig_sport, orig_dport;
144 __be32 daddr, nexthop;
145 struct flowi4 *fl4;
146 struct rtable *rt;
147 int err;
148 struct ip_options_rcu *inet_opt;
149 struct inet_timewait_death_row *tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
151 if (addr_len < sizeof(struct sockaddr_in))
152 return -EINVAL;
154 if (usin->sin_family != AF_INET)
155 return -EAFNOSUPPORT;
157 nexthop = daddr = usin->sin_addr.s_addr;
158 inet_opt = rcu_dereference_protected(inet->inet_opt,
159 lockdep_sock_is_held(sk));
160 if (inet_opt && inet_opt->opt.srr) {
161 if (!daddr)
162 return -EINVAL;
163 nexthop = inet_opt->opt.faddr;
166 orig_sport = inet->inet_sport;
167 orig_dport = usin->sin_port;
168 fl4 = &inet->cork.fl.u.ip4;
169 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
170 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
171 IPPROTO_TCP,
172 orig_sport, orig_dport, sk);
173 if (IS_ERR(rt)) {
174 err = PTR_ERR(rt);
175 if (err == -ENETUNREACH)
176 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
177 return err;
180 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
181 ip_rt_put(rt);
182 return -ENETUNREACH;
185 if (!inet_opt || !inet_opt->opt.srr)
186 daddr = fl4->daddr;
188 if (!inet->inet_saddr)
189 inet->inet_saddr = fl4->saddr;
190 sk_rcv_saddr_set(sk, inet->inet_saddr);
192 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
193 /* Reset inherited state */
194 tp->rx_opt.ts_recent = 0;
195 tp->rx_opt.ts_recent_stamp = 0;
196 if (likely(!tp->repair))
197 tp->write_seq = 0;
200 if (tcp_death_row->sysctl_tw_recycle &&
201 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
202 tcp_fetch_timewait_stamp(sk, &rt->dst);
204 inet->inet_dport = usin->sin_port;
205 sk_daddr_set(sk, daddr);
207 inet_csk(sk)->icsk_ext_hdr_len = 0;
208 if (inet_opt)
209 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
211 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
213 /* Socket identity is still unknown (sport may be zero).
214 * However we set state to SYN-SENT and not releasing socket
215 * lock select source port, enter ourselves into the hash tables and
216 * complete initialization after this.
218 tcp_set_state(sk, TCP_SYN_SENT);
219 err = inet_hash_connect(tcp_death_row, sk);
220 if (err)
221 goto failure;
223 sk_set_txhash(sk);
225 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
226 inet->inet_sport, inet->inet_dport, sk);
227 if (IS_ERR(rt)) {
228 err = PTR_ERR(rt);
229 rt = NULL;
230 goto failure;
232 /* OK, now commit destination to socket. */
233 sk->sk_gso_type = SKB_GSO_TCPV4;
234 sk_setup_caps(sk, &rt->dst);
236 if (!tp->write_seq && likely(!tp->repair))
237 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
238 inet->inet_daddr,
239 inet->inet_sport,
240 usin->sin_port,
241 &tp->tsoffset);
243 inet->inet_id = tp->write_seq ^ jiffies;
245 err = tcp_connect(sk);
247 rt = NULL;
248 if (err)
249 goto failure;
251 return 0;
253 failure:
255 * This unhashes the socket and releases the local port,
256 * if necessary.
258 tcp_set_state(sk, TCP_CLOSE);
259 ip_rt_put(rt);
260 sk->sk_route_caps = 0;
261 inet->inet_dport = 0;
262 return err;
264 EXPORT_SYMBOL(tcp_v4_connect);
267 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
268 * It can be called through tcp_release_cb() if socket was owned by user
269 * at the time tcp_v4_err() was called to handle ICMP message.
271 void tcp_v4_mtu_reduced(struct sock *sk)
273 struct dst_entry *dst;
274 struct inet_sock *inet = inet_sk(sk);
275 u32 mtu = tcp_sk(sk)->mtu_info;
277 dst = inet_csk_update_pmtu(sk, mtu);
278 if (!dst)
279 return;
281 /* Something is about to be wrong... Remember soft error
282 * for the case, if this connection will not able to recover.
284 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
285 sk->sk_err_soft = EMSGSIZE;
287 mtu = dst_mtu(dst);
289 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
290 ip_sk_accept_pmtu(sk) &&
291 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
292 tcp_sync_mss(sk, mtu);
294 /* Resend the TCP packet because it's
295 * clear that the old packet has been
296 * dropped. This is the new "fast" path mtu
297 * discovery.
299 tcp_simple_retransmit(sk);
300 } /* else let the usual retransmit timer handle it */
302 EXPORT_SYMBOL(tcp_v4_mtu_reduced);
304 static void do_redirect(struct sk_buff *skb, struct sock *sk)
306 struct dst_entry *dst = __sk_dst_check(sk, 0);
308 if (dst)
309 dst->ops->redirect(dst, sk, skb);
313 /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
314 void tcp_req_err(struct sock *sk, u32 seq, bool abort)
316 struct request_sock *req = inet_reqsk(sk);
317 struct net *net = sock_net(sk);
319 /* ICMPs are not backlogged, hence we cannot get
320 * an established socket here.
322 if (seq != tcp_rsk(req)->snt_isn) {
323 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
324 } else if (abort) {
326 * Still in SYN_RECV, just remove it silently.
327 * There is no good way to pass the error to the newly
328 * created socket, and POSIX does not want network
329 * errors returned from accept().
331 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
332 tcp_listendrop(req->rsk_listener);
334 reqsk_put(req);
336 EXPORT_SYMBOL(tcp_req_err);
339 * This routine is called by the ICMP module when it gets some
340 * sort of error condition. If err < 0 then the socket should
341 * be closed and the error returned to the user. If err > 0
342 * it's just the icmp type << 8 | icmp code. After adjustment
343 * header points to the first 8 bytes of the tcp header. We need
344 * to find the appropriate port.
346 * The locking strategy used here is very "optimistic". When
347 * someone else accesses the socket the ICMP is just dropped
348 * and for some paths there is no check at all.
349 * A more general error queue to queue errors for later handling
350 * is probably better.
354 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
356 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
357 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
358 struct inet_connection_sock *icsk;
359 struct tcp_sock *tp;
360 struct inet_sock *inet;
361 const int type = icmp_hdr(icmp_skb)->type;
362 const int code = icmp_hdr(icmp_skb)->code;
363 struct sock *sk;
364 struct sk_buff *skb;
365 struct request_sock *fastopen;
366 __u32 seq, snd_una;
367 __u32 remaining;
368 int err;
369 struct net *net = dev_net(icmp_skb->dev);
371 sk = __inet_lookup_established(net, &tcp_hashinfo, iph->daddr,
372 th->dest, iph->saddr, ntohs(th->source),
373 inet_iif(icmp_skb));
374 if (!sk) {
375 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
376 return;
378 if (sk->sk_state == TCP_TIME_WAIT) {
379 inet_twsk_put(inet_twsk(sk));
380 return;
382 seq = ntohl(th->seq);
383 if (sk->sk_state == TCP_NEW_SYN_RECV)
384 return tcp_req_err(sk, seq,
385 type == ICMP_PARAMETERPROB ||
386 type == ICMP_TIME_EXCEEDED ||
387 (type == ICMP_DEST_UNREACH &&
388 (code == ICMP_NET_UNREACH ||
389 code == ICMP_HOST_UNREACH)));
391 bh_lock_sock(sk);
392 /* If too many ICMPs get dropped on busy
393 * servers this needs to be solved differently.
394 * We do take care of PMTU discovery (RFC1191) special case :
395 * we can receive locally generated ICMP messages while socket is held.
397 if (sock_owned_by_user(sk)) {
398 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
399 __NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
401 if (sk->sk_state == TCP_CLOSE)
402 goto out;
404 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
405 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
406 goto out;
409 icsk = inet_csk(sk);
410 tp = tcp_sk(sk);
411 /* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
412 fastopen = tp->fastopen_rsk;
413 snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
414 if (sk->sk_state != TCP_LISTEN &&
415 !between(seq, snd_una, tp->snd_nxt)) {
416 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
417 goto out;
420 switch (type) {
421 case ICMP_REDIRECT:
422 do_redirect(icmp_skb, sk);
423 goto out;
424 case ICMP_SOURCE_QUENCH:
425 /* Just silently ignore these. */
426 goto out;
427 case ICMP_PARAMETERPROB:
428 err = EPROTO;
429 break;
430 case ICMP_DEST_UNREACH:
431 if (code > NR_ICMP_UNREACH)
432 goto out;
434 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
435 /* We are not interested in TCP_LISTEN and open_requests
436 * (SYN-ACKs send out by Linux are always <576bytes so
437 * they should go through unfragmented).
439 if (sk->sk_state == TCP_LISTEN)
440 goto out;
442 tp->mtu_info = info;
443 if (!sock_owned_by_user(sk)) {
444 tcp_v4_mtu_reduced(sk);
445 } else {
446 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags))
447 sock_hold(sk);
449 goto out;
452 err = icmp_err_convert[code].errno;
453 /* check if icmp_skb allows revert of backoff
454 * (see draft-zimmermann-tcp-lcd) */
455 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
456 break;
457 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
458 !icsk->icsk_backoff || fastopen)
459 break;
461 if (sock_owned_by_user(sk))
462 break;
464 icsk->icsk_backoff--;
465 icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) :
466 TCP_TIMEOUT_INIT;
467 icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
469 skb = tcp_write_queue_head(sk);
470 BUG_ON(!skb);
472 remaining = icsk->icsk_rto -
473 min(icsk->icsk_rto,
474 tcp_time_stamp - tcp_skb_timestamp(skb));
476 if (remaining) {
477 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
478 remaining, TCP_RTO_MAX);
479 } else {
480 /* RTO revert clocked out retransmission.
481 * Will retransmit now */
482 tcp_retransmit_timer(sk);
485 break;
486 case ICMP_TIME_EXCEEDED:
487 err = EHOSTUNREACH;
488 break;
489 default:
490 goto out;
493 switch (sk->sk_state) {
494 case TCP_SYN_SENT:
495 case TCP_SYN_RECV:
496 /* Only in fast or simultaneous open. If a fast open socket is
497 * is already accepted it is treated as a connected one below.
499 if (fastopen && !fastopen->sk)
500 break;
502 if (!sock_owned_by_user(sk)) {
503 sk->sk_err = err;
505 sk->sk_error_report(sk);
507 tcp_done(sk);
508 } else {
509 sk->sk_err_soft = err;
511 goto out;
514 /* If we've already connected we will keep trying
515 * until we time out, or the user gives up.
517 * rfc1122 4.2.3.9 allows to consider as hard errors
518 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
519 * but it is obsoleted by pmtu discovery).
521 * Note, that in modern internet, where routing is unreliable
522 * and in each dark corner broken firewalls sit, sending random
523 * errors ordered by their masters even this two messages finally lose
524 * their original sense (even Linux sends invalid PORT_UNREACHs)
526 * Now we are in compliance with RFCs.
527 * --ANK (980905)
530 inet = inet_sk(sk);
531 if (!sock_owned_by_user(sk) && inet->recverr) {
532 sk->sk_err = err;
533 sk->sk_error_report(sk);
534 } else { /* Only an error on timeout */
535 sk->sk_err_soft = err;
538 out:
539 bh_unlock_sock(sk);
540 sock_put(sk);
543 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
545 struct tcphdr *th = tcp_hdr(skb);
547 if (skb->ip_summed == CHECKSUM_PARTIAL) {
548 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
549 skb->csum_start = skb_transport_header(skb) - skb->head;
550 skb->csum_offset = offsetof(struct tcphdr, check);
551 } else {
552 th->check = tcp_v4_check(skb->len, saddr, daddr,
553 csum_partial(th,
554 th->doff << 2,
555 skb->csum));
559 /* This routine computes an IPv4 TCP checksum. */
560 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
562 const struct inet_sock *inet = inet_sk(sk);
564 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
566 EXPORT_SYMBOL(tcp_v4_send_check);
569 * This routine will send an RST to the other tcp.
571 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
572 * for reset.
573 * Answer: if a packet caused RST, it is not for a socket
574 * existing in our system, if it is matched to a socket,
575 * it is just duplicate segment or bug in other side's TCP.
576 * So that we build reply only basing on parameters
577 * arrived with segment.
578 * Exception: precedence violation. We do not implement it in any case.
581 static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb)
583 const struct tcphdr *th = tcp_hdr(skb);
584 struct {
585 struct tcphdr th;
586 #ifdef CONFIG_TCP_MD5SIG
587 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
588 #endif
589 } rep;
590 struct ip_reply_arg arg;
591 #ifdef CONFIG_TCP_MD5SIG
592 struct tcp_md5sig_key *key = NULL;
593 const __u8 *hash_location = NULL;
594 unsigned char newhash[16];
595 int genhash;
596 struct sock *sk1 = NULL;
597 #endif
598 struct net *net;
600 /* Never send a reset in response to a reset. */
601 if (th->rst)
602 return;
604 /* If sk not NULL, it means we did a successful lookup and incoming
605 * route had to be correct. prequeue might have dropped our dst.
607 if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
608 return;
610 /* Swap the send and the receive. */
611 memset(&rep, 0, sizeof(rep));
612 rep.th.dest = th->source;
613 rep.th.source = th->dest;
614 rep.th.doff = sizeof(struct tcphdr) / 4;
615 rep.th.rst = 1;
617 if (th->ack) {
618 rep.th.seq = th->ack_seq;
619 } else {
620 rep.th.ack = 1;
621 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
622 skb->len - (th->doff << 2));
625 memset(&arg, 0, sizeof(arg));
626 arg.iov[0].iov_base = (unsigned char *)&rep;
627 arg.iov[0].iov_len = sizeof(rep.th);
629 net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
630 #ifdef CONFIG_TCP_MD5SIG
631 rcu_read_lock();
632 hash_location = tcp_parse_md5sig_option(th);
633 if (sk && sk_fullsock(sk)) {
634 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
635 &ip_hdr(skb)->saddr, AF_INET);
636 } else if (hash_location) {
638 * active side is lost. Try to find listening socket through
639 * source port, and then find md5 key through listening socket.
640 * we are not loose security here:
641 * Incoming packet is checked with md5 hash with finding key,
642 * no RST generated if md5 hash doesn't match.
644 sk1 = __inet_lookup_listener(net, &tcp_hashinfo, NULL, 0,
645 ip_hdr(skb)->saddr,
646 th->source, ip_hdr(skb)->daddr,
647 ntohs(th->source), inet_iif(skb));
648 /* don't send rst if it can't find key */
649 if (!sk1)
650 goto out;
652 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
653 &ip_hdr(skb)->saddr, AF_INET);
654 if (!key)
655 goto out;
658 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
659 if (genhash || memcmp(hash_location, newhash, 16) != 0)
660 goto out;
664 if (key) {
665 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
666 (TCPOPT_NOP << 16) |
667 (TCPOPT_MD5SIG << 8) |
668 TCPOLEN_MD5SIG);
669 /* Update length and the length the header thinks exists */
670 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
671 rep.th.doff = arg.iov[0].iov_len / 4;
673 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
674 key, ip_hdr(skb)->saddr,
675 ip_hdr(skb)->daddr, &rep.th);
677 #endif
678 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
679 ip_hdr(skb)->saddr, /* XXX */
680 arg.iov[0].iov_len, IPPROTO_TCP, 0);
681 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
682 arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0;
684 /* When socket is gone, all binding information is lost.
685 * routing might fail in this case. No choice here, if we choose to force
686 * input interface, we will misroute in case of asymmetric route.
688 if (sk)
689 arg.bound_dev_if = sk->sk_bound_dev_if;
691 BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) !=
692 offsetof(struct inet_timewait_sock, tw_bound_dev_if));
694 arg.tos = ip_hdr(skb)->tos;
695 arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL);
696 local_bh_disable();
697 ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk),
698 skb, &TCP_SKB_CB(skb)->header.h4.opt,
699 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
700 &arg, arg.iov[0].iov_len);
702 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
703 __TCP_INC_STATS(net, TCP_MIB_OUTRSTS);
704 local_bh_enable();
706 #ifdef CONFIG_TCP_MD5SIG
707 out:
708 rcu_read_unlock();
709 #endif
712 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
713 outside socket context is ugly, certainly. What can I do?
716 static void tcp_v4_send_ack(const struct sock *sk,
717 struct sk_buff *skb, u32 seq, u32 ack,
718 u32 win, u32 tsval, u32 tsecr, int oif,
719 struct tcp_md5sig_key *key,
720 int reply_flags, u8 tos)
722 const struct tcphdr *th = tcp_hdr(skb);
723 struct {
724 struct tcphdr th;
725 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
726 #ifdef CONFIG_TCP_MD5SIG
727 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
728 #endif
730 } rep;
731 struct net *net = sock_net(sk);
732 struct ip_reply_arg arg;
734 memset(&rep.th, 0, sizeof(struct tcphdr));
735 memset(&arg, 0, sizeof(arg));
737 arg.iov[0].iov_base = (unsigned char *)&rep;
738 arg.iov[0].iov_len = sizeof(rep.th);
739 if (tsecr) {
740 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
741 (TCPOPT_TIMESTAMP << 8) |
742 TCPOLEN_TIMESTAMP);
743 rep.opt[1] = htonl(tsval);
744 rep.opt[2] = htonl(tsecr);
745 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
748 /* Swap the send and the receive. */
749 rep.th.dest = th->source;
750 rep.th.source = th->dest;
751 rep.th.doff = arg.iov[0].iov_len / 4;
752 rep.th.seq = htonl(seq);
753 rep.th.ack_seq = htonl(ack);
754 rep.th.ack = 1;
755 rep.th.window = htons(win);
757 #ifdef CONFIG_TCP_MD5SIG
758 if (key) {
759 int offset = (tsecr) ? 3 : 0;
761 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
762 (TCPOPT_NOP << 16) |
763 (TCPOPT_MD5SIG << 8) |
764 TCPOLEN_MD5SIG);
765 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
766 rep.th.doff = arg.iov[0].iov_len/4;
768 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
769 key, ip_hdr(skb)->saddr,
770 ip_hdr(skb)->daddr, &rep.th);
772 #endif
773 arg.flags = reply_flags;
774 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
775 ip_hdr(skb)->saddr, /* XXX */
776 arg.iov[0].iov_len, IPPROTO_TCP, 0);
777 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
778 if (oif)
779 arg.bound_dev_if = oif;
780 arg.tos = tos;
781 arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL);
782 local_bh_disable();
783 ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk),
784 skb, &TCP_SKB_CB(skb)->header.h4.opt,
785 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
786 &arg, arg.iov[0].iov_len);
788 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
789 local_bh_enable();
792 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
794 struct inet_timewait_sock *tw = inet_twsk(sk);
795 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
797 tcp_v4_send_ack(sk, skb,
798 tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
799 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
800 tcp_time_stamp + tcptw->tw_ts_offset,
801 tcptw->tw_ts_recent,
802 tw->tw_bound_dev_if,
803 tcp_twsk_md5_key(tcptw),
804 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
805 tw->tw_tos
808 inet_twsk_put(tw);
811 static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
812 struct request_sock *req)
814 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
815 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
817 u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 :
818 tcp_sk(sk)->snd_nxt;
820 /* RFC 7323 2.3
821 * The window field (SEG.WND) of every outgoing segment, with the
822 * exception of <SYN> segments, MUST be right-shifted by
823 * Rcv.Wind.Shift bits:
825 tcp_v4_send_ack(sk, skb, seq,
826 tcp_rsk(req)->rcv_nxt,
827 req->rsk_rcv_wnd >> inet_rsk(req)->rcv_wscale,
828 tcp_time_stamp + tcp_rsk(req)->ts_off,
829 req->ts_recent,
831 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
832 AF_INET),
833 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
834 ip_hdr(skb)->tos);
838 * Send a SYN-ACK after having received a SYN.
839 * This still operates on a request_sock only, not on a big
840 * socket.
842 static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
843 struct flowi *fl,
844 struct request_sock *req,
845 struct tcp_fastopen_cookie *foc,
846 enum tcp_synack_type synack_type)
848 const struct inet_request_sock *ireq = inet_rsk(req);
849 struct flowi4 fl4;
850 int err = -1;
851 struct sk_buff *skb;
853 /* First, grab a route. */
854 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
855 return -1;
857 skb = tcp_make_synack(sk, dst, req, foc, synack_type);
859 if (skb) {
860 __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
862 err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
863 ireq->ir_rmt_addr,
864 ireq->opt);
865 err = net_xmit_eval(err);
868 return err;
872 * IPv4 request_sock destructor.
874 static void tcp_v4_reqsk_destructor(struct request_sock *req)
876 kfree(inet_rsk(req)->opt);
879 #ifdef CONFIG_TCP_MD5SIG
881 * RFC2385 MD5 checksumming requires a mapping of
882 * IP address->MD5 Key.
883 * We need to maintain these in the sk structure.
886 /* Find the Key structure for an address. */
887 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
888 const union tcp_md5_addr *addr,
889 int family)
891 const struct tcp_sock *tp = tcp_sk(sk);
892 struct tcp_md5sig_key *key;
893 unsigned int size = sizeof(struct in_addr);
894 const struct tcp_md5sig_info *md5sig;
896 /* caller either holds rcu_read_lock() or socket lock */
897 md5sig = rcu_dereference_check(tp->md5sig_info,
898 lockdep_sock_is_held(sk));
899 if (!md5sig)
900 return NULL;
901 #if IS_ENABLED(CONFIG_IPV6)
902 if (family == AF_INET6)
903 size = sizeof(struct in6_addr);
904 #endif
905 hlist_for_each_entry_rcu(key, &md5sig->head, node) {
906 if (key->family != family)
907 continue;
908 if (!memcmp(&key->addr, addr, size))
909 return key;
911 return NULL;
913 EXPORT_SYMBOL(tcp_md5_do_lookup);
915 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
916 const struct sock *addr_sk)
918 const union tcp_md5_addr *addr;
920 addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
921 return tcp_md5_do_lookup(sk, addr, AF_INET);
923 EXPORT_SYMBOL(tcp_v4_md5_lookup);
925 /* This can be called on a newly created socket, from other files */
926 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
927 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
929 /* Add Key to the list */
930 struct tcp_md5sig_key *key;
931 struct tcp_sock *tp = tcp_sk(sk);
932 struct tcp_md5sig_info *md5sig;
934 key = tcp_md5_do_lookup(sk, addr, family);
935 if (key) {
936 /* Pre-existing entry - just update that one. */
937 memcpy(key->key, newkey, newkeylen);
938 key->keylen = newkeylen;
939 return 0;
942 md5sig = rcu_dereference_protected(tp->md5sig_info,
943 lockdep_sock_is_held(sk));
944 if (!md5sig) {
945 md5sig = kmalloc(sizeof(*md5sig), gfp);
946 if (!md5sig)
947 return -ENOMEM;
949 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
950 INIT_HLIST_HEAD(&md5sig->head);
951 rcu_assign_pointer(tp->md5sig_info, md5sig);
954 key = sock_kmalloc(sk, sizeof(*key), gfp);
955 if (!key)
956 return -ENOMEM;
957 if (!tcp_alloc_md5sig_pool()) {
958 sock_kfree_s(sk, key, sizeof(*key));
959 return -ENOMEM;
962 memcpy(key->key, newkey, newkeylen);
963 key->keylen = newkeylen;
964 key->family = family;
965 memcpy(&key->addr, addr,
966 (family == AF_INET6) ? sizeof(struct in6_addr) :
967 sizeof(struct in_addr));
968 hlist_add_head_rcu(&key->node, &md5sig->head);
969 return 0;
971 EXPORT_SYMBOL(tcp_md5_do_add);
973 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
975 struct tcp_md5sig_key *key;
977 key = tcp_md5_do_lookup(sk, addr, family);
978 if (!key)
979 return -ENOENT;
980 hlist_del_rcu(&key->node);
981 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
982 kfree_rcu(key, rcu);
983 return 0;
985 EXPORT_SYMBOL(tcp_md5_do_del);
987 static void tcp_clear_md5_list(struct sock *sk)
989 struct tcp_sock *tp = tcp_sk(sk);
990 struct tcp_md5sig_key *key;
991 struct hlist_node *n;
992 struct tcp_md5sig_info *md5sig;
994 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
996 hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
997 hlist_del_rcu(&key->node);
998 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
999 kfree_rcu(key, rcu);
1003 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1004 int optlen)
1006 struct tcp_md5sig cmd;
1007 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1009 if (optlen < sizeof(cmd))
1010 return -EINVAL;
1012 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1013 return -EFAULT;
1015 if (sin->sin_family != AF_INET)
1016 return -EINVAL;
1018 if (!cmd.tcpm_keylen)
1019 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1020 AF_INET);
1022 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1023 return -EINVAL;
1025 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1026 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1027 GFP_KERNEL);
1030 static int tcp_v4_md5_hash_headers(struct tcp_md5sig_pool *hp,
1031 __be32 daddr, __be32 saddr,
1032 const struct tcphdr *th, int nbytes)
1034 struct tcp4_pseudohdr *bp;
1035 struct scatterlist sg;
1036 struct tcphdr *_th;
1038 bp = hp->scratch;
1039 bp->saddr = saddr;
1040 bp->daddr = daddr;
1041 bp->pad = 0;
1042 bp->protocol = IPPROTO_TCP;
1043 bp->len = cpu_to_be16(nbytes);
1045 _th = (struct tcphdr *)(bp + 1);
1046 memcpy(_th, th, sizeof(*th));
1047 _th->check = 0;
1049 sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th));
1050 ahash_request_set_crypt(hp->md5_req, &sg, NULL,
1051 sizeof(*bp) + sizeof(*th));
1052 return crypto_ahash_update(hp->md5_req);
1055 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1056 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1058 struct tcp_md5sig_pool *hp;
1059 struct ahash_request *req;
1061 hp = tcp_get_md5sig_pool();
1062 if (!hp)
1063 goto clear_hash_noput;
1064 req = hp->md5_req;
1066 if (crypto_ahash_init(req))
1067 goto clear_hash;
1068 if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, th->doff << 2))
1069 goto clear_hash;
1070 if (tcp_md5_hash_key(hp, key))
1071 goto clear_hash;
1072 ahash_request_set_crypt(req, NULL, md5_hash, 0);
1073 if (crypto_ahash_final(req))
1074 goto clear_hash;
1076 tcp_put_md5sig_pool();
1077 return 0;
1079 clear_hash:
1080 tcp_put_md5sig_pool();
1081 clear_hash_noput:
1082 memset(md5_hash, 0, 16);
1083 return 1;
1086 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1087 const struct sock *sk,
1088 const struct sk_buff *skb)
1090 struct tcp_md5sig_pool *hp;
1091 struct ahash_request *req;
1092 const struct tcphdr *th = tcp_hdr(skb);
1093 __be32 saddr, daddr;
1095 if (sk) { /* valid for establish/request sockets */
1096 saddr = sk->sk_rcv_saddr;
1097 daddr = sk->sk_daddr;
1098 } else {
1099 const struct iphdr *iph = ip_hdr(skb);
1100 saddr = iph->saddr;
1101 daddr = iph->daddr;
1104 hp = tcp_get_md5sig_pool();
1105 if (!hp)
1106 goto clear_hash_noput;
1107 req = hp->md5_req;
1109 if (crypto_ahash_init(req))
1110 goto clear_hash;
1112 if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, skb->len))
1113 goto clear_hash;
1114 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1115 goto clear_hash;
1116 if (tcp_md5_hash_key(hp, key))
1117 goto clear_hash;
1118 ahash_request_set_crypt(req, NULL, md5_hash, 0);
1119 if (crypto_ahash_final(req))
1120 goto clear_hash;
1122 tcp_put_md5sig_pool();
1123 return 0;
1125 clear_hash:
1126 tcp_put_md5sig_pool();
1127 clear_hash_noput:
1128 memset(md5_hash, 0, 16);
1129 return 1;
1131 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1133 #endif
1135 /* Called with rcu_read_lock() */
1136 static bool tcp_v4_inbound_md5_hash(const struct sock *sk,
1137 const struct sk_buff *skb)
1139 #ifdef CONFIG_TCP_MD5SIG
1141 * This gets called for each TCP segment that arrives
1142 * so we want to be efficient.
1143 * We have 3 drop cases:
1144 * o No MD5 hash and one expected.
1145 * o MD5 hash and we're not expecting one.
1146 * o MD5 hash and its wrong.
1148 const __u8 *hash_location = NULL;
1149 struct tcp_md5sig_key *hash_expected;
1150 const struct iphdr *iph = ip_hdr(skb);
1151 const struct tcphdr *th = tcp_hdr(skb);
1152 int genhash;
1153 unsigned char newhash[16];
1155 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1156 AF_INET);
1157 hash_location = tcp_parse_md5sig_option(th);
1159 /* We've parsed the options - do we have a hash? */
1160 if (!hash_expected && !hash_location)
1161 return false;
1163 if (hash_expected && !hash_location) {
1164 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1165 return true;
1168 if (!hash_expected && hash_location) {
1169 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1170 return true;
1173 /* Okay, so this is hash_expected and hash_location -
1174 * so we need to calculate the checksum.
1176 genhash = tcp_v4_md5_hash_skb(newhash,
1177 hash_expected,
1178 NULL, skb);
1180 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1181 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
1182 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1183 &iph->saddr, ntohs(th->source),
1184 &iph->daddr, ntohs(th->dest),
1185 genhash ? " tcp_v4_calc_md5_hash failed"
1186 : "");
1187 return true;
1189 return false;
1190 #endif
1191 return false;
1194 static void tcp_v4_init_req(struct request_sock *req,
1195 const struct sock *sk_listener,
1196 struct sk_buff *skb)
1198 struct inet_request_sock *ireq = inet_rsk(req);
1200 sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
1201 sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
1202 ireq->opt = tcp_v4_save_options(skb);
1205 static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
1206 struct flowi *fl,
1207 const struct request_sock *req,
1208 bool *strict)
1210 struct dst_entry *dst = inet_csk_route_req(sk, &fl->u.ip4, req);
1212 if (strict) {
1213 if (fl->u.ip4.daddr == inet_rsk(req)->ir_rmt_addr)
1214 *strict = true;
1215 else
1216 *strict = false;
1219 return dst;
1222 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1223 .family = PF_INET,
1224 .obj_size = sizeof(struct tcp_request_sock),
1225 .rtx_syn_ack = tcp_rtx_synack,
1226 .send_ack = tcp_v4_reqsk_send_ack,
1227 .destructor = tcp_v4_reqsk_destructor,
1228 .send_reset = tcp_v4_send_reset,
1229 .syn_ack_timeout = tcp_syn_ack_timeout,
1232 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1233 .mss_clamp = TCP_MSS_DEFAULT,
1234 #ifdef CONFIG_TCP_MD5SIG
1235 .req_md5_lookup = tcp_v4_md5_lookup,
1236 .calc_md5_hash = tcp_v4_md5_hash_skb,
1237 #endif
1238 .init_req = tcp_v4_init_req,
1239 #ifdef CONFIG_SYN_COOKIES
1240 .cookie_init_seq = cookie_v4_init_sequence,
1241 #endif
1242 .route_req = tcp_v4_route_req,
1243 .init_seq = tcp_v4_init_sequence,
1244 .send_synack = tcp_v4_send_synack,
1247 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1249 /* Never answer to SYNs send to broadcast or multicast */
1250 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1251 goto drop;
1253 return tcp_conn_request(&tcp_request_sock_ops,
1254 &tcp_request_sock_ipv4_ops, sk, skb);
1256 drop:
1257 tcp_listendrop(sk);
1258 return 0;
1260 EXPORT_SYMBOL(tcp_v4_conn_request);
1264 * The three way handshake has completed - we got a valid synack -
1265 * now create the new socket.
1267 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
1268 struct request_sock *req,
1269 struct dst_entry *dst,
1270 struct request_sock *req_unhash,
1271 bool *own_req)
1273 struct inet_request_sock *ireq;
1274 struct inet_sock *newinet;
1275 struct tcp_sock *newtp;
1276 struct sock *newsk;
1277 #ifdef CONFIG_TCP_MD5SIG
1278 struct tcp_md5sig_key *key;
1279 #endif
1280 struct ip_options_rcu *inet_opt;
1282 if (sk_acceptq_is_full(sk))
1283 goto exit_overflow;
1285 newsk = tcp_create_openreq_child(sk, req, skb);
1286 if (!newsk)
1287 goto exit_nonewsk;
1289 newsk->sk_gso_type = SKB_GSO_TCPV4;
1290 inet_sk_rx_dst_set(newsk, skb);
1292 newtp = tcp_sk(newsk);
1293 newinet = inet_sk(newsk);
1294 ireq = inet_rsk(req);
1295 sk_daddr_set(newsk, ireq->ir_rmt_addr);
1296 sk_rcv_saddr_set(newsk, ireq->ir_loc_addr);
1297 newsk->sk_bound_dev_if = ireq->ir_iif;
1298 newinet->inet_saddr = ireq->ir_loc_addr;
1299 inet_opt = ireq->opt;
1300 rcu_assign_pointer(newinet->inet_opt, inet_opt);
1301 ireq->opt = NULL;
1302 newinet->mc_index = inet_iif(skb);
1303 newinet->mc_ttl = ip_hdr(skb)->ttl;
1304 newinet->rcv_tos = ip_hdr(skb)->tos;
1305 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1306 if (inet_opt)
1307 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1308 newinet->inet_id = newtp->write_seq ^ jiffies;
1310 if (!dst) {
1311 dst = inet_csk_route_child_sock(sk, newsk, req);
1312 if (!dst)
1313 goto put_and_exit;
1314 } else {
1315 /* syncookie case : see end of cookie_v4_check() */
1317 sk_setup_caps(newsk, dst);
1319 tcp_ca_openreq_child(newsk, dst);
1321 tcp_sync_mss(newsk, dst_mtu(dst));
1322 newtp->advmss = dst_metric_advmss(dst);
1323 if (tcp_sk(sk)->rx_opt.user_mss &&
1324 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1325 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1327 tcp_initialize_rcv_mss(newsk);
1329 #ifdef CONFIG_TCP_MD5SIG
1330 /* Copy over the MD5 key from the original socket */
1331 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1332 AF_INET);
1333 if (key) {
1335 * We're using one, so create a matching key
1336 * on the newsk structure. If we fail to get
1337 * memory, then we end up not copying the key
1338 * across. Shucks.
1340 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1341 AF_INET, key->key, key->keylen, GFP_ATOMIC);
1342 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1344 #endif
1346 if (__inet_inherit_port(sk, newsk) < 0)
1347 goto put_and_exit;
1348 *own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash));
1349 if (*own_req)
1350 tcp_move_syn(newtp, req);
1352 return newsk;
1354 exit_overflow:
1355 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1356 exit_nonewsk:
1357 dst_release(dst);
1358 exit:
1359 tcp_listendrop(sk);
1360 return NULL;
1361 put_and_exit:
1362 inet_csk_prepare_forced_close(newsk);
1363 tcp_done(newsk);
1364 goto exit;
1366 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1368 static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
1370 #ifdef CONFIG_SYN_COOKIES
1371 const struct tcphdr *th = tcp_hdr(skb);
1373 if (!th->syn)
1374 sk = cookie_v4_check(sk, skb);
1375 #endif
1376 return sk;
1379 /* The socket must have it's spinlock held when we get
1380 * here, unless it is a TCP_LISTEN socket.
1382 * We have a potential double-lock case here, so even when
1383 * doing backlog processing we use the BH locking scheme.
1384 * This is because we cannot sleep with the original spinlock
1385 * held.
1387 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1389 struct sock *rsk;
1391 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1392 struct dst_entry *dst = sk->sk_rx_dst;
1394 sock_rps_save_rxhash(sk, skb);
1395 sk_mark_napi_id(sk, skb);
1396 if (dst) {
1397 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1398 !dst->ops->check(dst, 0)) {
1399 dst_release(dst);
1400 sk->sk_rx_dst = NULL;
1403 tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len);
1404 return 0;
1407 if (tcp_checksum_complete(skb))
1408 goto csum_err;
1410 if (sk->sk_state == TCP_LISTEN) {
1411 struct sock *nsk = tcp_v4_cookie_check(sk, skb);
1413 if (!nsk)
1414 goto discard;
1415 if (nsk != sk) {
1416 sock_rps_save_rxhash(nsk, skb);
1417 sk_mark_napi_id(nsk, skb);
1418 if (tcp_child_process(sk, nsk, skb)) {
1419 rsk = nsk;
1420 goto reset;
1422 return 0;
1424 } else
1425 sock_rps_save_rxhash(sk, skb);
1427 if (tcp_rcv_state_process(sk, skb)) {
1428 rsk = sk;
1429 goto reset;
1431 return 0;
1433 reset:
1434 tcp_v4_send_reset(rsk, skb);
1435 discard:
1436 kfree_skb(skb);
1437 /* Be careful here. If this function gets more complicated and
1438 * gcc suffers from register pressure on the x86, sk (in %ebx)
1439 * might be destroyed here. This current version compiles correctly,
1440 * but you have been warned.
1442 return 0;
1444 csum_err:
1445 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1446 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1447 goto discard;
1449 EXPORT_SYMBOL(tcp_v4_do_rcv);
1451 void tcp_v4_early_demux(struct sk_buff *skb)
1453 const struct iphdr *iph;
1454 const struct tcphdr *th;
1455 struct sock *sk;
1457 if (skb->pkt_type != PACKET_HOST)
1458 return;
1460 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1461 return;
1463 iph = ip_hdr(skb);
1464 th = tcp_hdr(skb);
1466 if (th->doff < sizeof(struct tcphdr) / 4)
1467 return;
1469 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1470 iph->saddr, th->source,
1471 iph->daddr, ntohs(th->dest),
1472 skb->skb_iif);
1473 if (sk) {
1474 skb->sk = sk;
1475 skb->destructor = sock_edemux;
1476 if (sk_fullsock(sk)) {
1477 struct dst_entry *dst = READ_ONCE(sk->sk_rx_dst);
1479 if (dst)
1480 dst = dst_check(dst, 0);
1481 if (dst &&
1482 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1483 skb_dst_set_noref(skb, dst);
1488 /* Packet is added to VJ-style prequeue for processing in process
1489 * context, if a reader task is waiting. Apparently, this exciting
1490 * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
1491 * failed somewhere. Latency? Burstiness? Well, at least now we will
1492 * see, why it failed. 8)8) --ANK
1495 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb)
1497 struct tcp_sock *tp = tcp_sk(sk);
1499 if (sysctl_tcp_low_latency || !tp->ucopy.task)
1500 return false;
1502 if (skb->len <= tcp_hdrlen(skb) &&
1503 skb_queue_len(&tp->ucopy.prequeue) == 0)
1504 return false;
1506 /* Before escaping RCU protected region, we need to take care of skb
1507 * dst. Prequeue is only enabled for established sockets.
1508 * For such sockets, we might need the skb dst only to set sk->sk_rx_dst
1509 * Instead of doing full sk_rx_dst validity here, let's perform
1510 * an optimistic check.
1512 if (likely(sk->sk_rx_dst))
1513 skb_dst_drop(skb);
1514 else
1515 skb_dst_force_safe(skb);
1517 __skb_queue_tail(&tp->ucopy.prequeue, skb);
1518 tp->ucopy.memory += skb->truesize;
1519 if (skb_queue_len(&tp->ucopy.prequeue) >= 32 ||
1520 tp->ucopy.memory + atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) {
1521 struct sk_buff *skb1;
1523 BUG_ON(sock_owned_by_user(sk));
1524 __NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPPREQUEUEDROPPED,
1525 skb_queue_len(&tp->ucopy.prequeue));
1527 while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1528 sk_backlog_rcv(sk, skb1);
1530 tp->ucopy.memory = 0;
1531 } else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
1532 wake_up_interruptible_sync_poll(sk_sleep(sk),
1533 POLLIN | POLLRDNORM | POLLRDBAND);
1534 if (!inet_csk_ack_scheduled(sk))
1535 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
1536 (3 * tcp_rto_min(sk)) / 4,
1537 TCP_RTO_MAX);
1539 return true;
1541 EXPORT_SYMBOL(tcp_prequeue);
1543 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb)
1545 u32 limit = sk->sk_rcvbuf + sk->sk_sndbuf;
1547 /* Only socket owner can try to collapse/prune rx queues
1548 * to reduce memory overhead, so add a little headroom here.
1549 * Few sockets backlog are possibly concurrently non empty.
1551 limit += 64*1024;
1553 /* In case all data was pulled from skb frags (in __pskb_pull_tail()),
1554 * we can fix skb->truesize to its real value to avoid future drops.
1555 * This is valid because skb is not yet charged to the socket.
1556 * It has been noticed pure SACK packets were sometimes dropped
1557 * (if cooked by drivers without copybreak feature).
1559 if (!skb->data_len)
1560 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
1562 if (unlikely(sk_add_backlog(sk, skb, limit))) {
1563 bh_unlock_sock(sk);
1564 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP);
1565 return true;
1567 return false;
1569 EXPORT_SYMBOL(tcp_add_backlog);
1571 int tcp_filter(struct sock *sk, struct sk_buff *skb)
1573 struct tcphdr *th = (struct tcphdr *)skb->data;
1574 unsigned int eaten = skb->len;
1575 int err;
1577 err = sk_filter_trim_cap(sk, skb, th->doff * 4);
1578 if (!err) {
1579 eaten -= skb->len;
1580 TCP_SKB_CB(skb)->end_seq -= eaten;
1582 return err;
1584 EXPORT_SYMBOL(tcp_filter);
1587 * From tcp_input.c
1590 int tcp_v4_rcv(struct sk_buff *skb)
1592 struct net *net = dev_net(skb->dev);
1593 const struct iphdr *iph;
1594 const struct tcphdr *th;
1595 bool refcounted;
1596 struct sock *sk;
1597 int ret;
1599 if (skb->pkt_type != PACKET_HOST)
1600 goto discard_it;
1602 /* Count it even if it's bad */
1603 __TCP_INC_STATS(net, TCP_MIB_INSEGS);
1605 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1606 goto discard_it;
1608 th = (const struct tcphdr *)skb->data;
1610 if (unlikely(th->doff < sizeof(struct tcphdr) / 4))
1611 goto bad_packet;
1612 if (!pskb_may_pull(skb, th->doff * 4))
1613 goto discard_it;
1615 /* An explanation is required here, I think.
1616 * Packet length and doff are validated by header prediction,
1617 * provided case of th->doff==0 is eliminated.
1618 * So, we defer the checks. */
1620 if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
1621 goto csum_error;
1623 th = (const struct tcphdr *)skb->data;
1624 iph = ip_hdr(skb);
1625 /* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
1626 * barrier() makes sure compiler wont play fool^Waliasing games.
1628 memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
1629 sizeof(struct inet_skb_parm));
1630 barrier();
1632 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1633 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1634 skb->len - th->doff * 4);
1635 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1636 TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
1637 TCP_SKB_CB(skb)->tcp_tw_isn = 0;
1638 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1639 TCP_SKB_CB(skb)->sacked = 0;
1641 lookup:
1642 sk = __inet_lookup_skb(&tcp_hashinfo, skb, __tcp_hdrlen(th), th->source,
1643 th->dest, &refcounted);
1644 if (!sk)
1645 goto no_tcp_socket;
1647 process:
1648 if (sk->sk_state == TCP_TIME_WAIT)
1649 goto do_time_wait;
1651 if (sk->sk_state == TCP_NEW_SYN_RECV) {
1652 struct request_sock *req = inet_reqsk(sk);
1653 struct sock *nsk;
1655 sk = req->rsk_listener;
1656 if (unlikely(tcp_v4_inbound_md5_hash(sk, skb))) {
1657 sk_drops_add(sk, skb);
1658 reqsk_put(req);
1659 goto discard_it;
1661 if (unlikely(sk->sk_state != TCP_LISTEN)) {
1662 inet_csk_reqsk_queue_drop_and_put(sk, req);
1663 goto lookup;
1665 /* We own a reference on the listener, increase it again
1666 * as we might lose it too soon.
1668 sock_hold(sk);
1669 refcounted = true;
1670 nsk = tcp_check_req(sk, skb, req, false);
1671 if (!nsk) {
1672 reqsk_put(req);
1673 goto discard_and_relse;
1675 if (nsk == sk) {
1676 reqsk_put(req);
1677 } else if (tcp_child_process(sk, nsk, skb)) {
1678 tcp_v4_send_reset(nsk, skb);
1679 goto discard_and_relse;
1680 } else {
1681 sock_put(sk);
1682 return 0;
1685 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1686 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
1687 goto discard_and_relse;
1690 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1691 goto discard_and_relse;
1693 if (tcp_v4_inbound_md5_hash(sk, skb))
1694 goto discard_and_relse;
1696 nf_reset(skb);
1698 if (tcp_filter(sk, skb))
1699 goto discard_and_relse;
1700 th = (const struct tcphdr *)skb->data;
1701 iph = ip_hdr(skb);
1703 skb->dev = NULL;
1705 if (sk->sk_state == TCP_LISTEN) {
1706 ret = tcp_v4_do_rcv(sk, skb);
1707 goto put_and_return;
1710 sk_incoming_cpu_update(sk);
1712 bh_lock_sock_nested(sk);
1713 tcp_segs_in(tcp_sk(sk), skb);
1714 ret = 0;
1715 if (!sock_owned_by_user(sk)) {
1716 if (!tcp_prequeue(sk, skb))
1717 ret = tcp_v4_do_rcv(sk, skb);
1718 } else if (tcp_add_backlog(sk, skb)) {
1719 goto discard_and_relse;
1721 bh_unlock_sock(sk);
1723 put_and_return:
1724 if (refcounted)
1725 sock_put(sk);
1727 return ret;
1729 no_tcp_socket:
1730 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1731 goto discard_it;
1733 if (tcp_checksum_complete(skb)) {
1734 csum_error:
1735 __TCP_INC_STATS(net, TCP_MIB_CSUMERRORS);
1736 bad_packet:
1737 __TCP_INC_STATS(net, TCP_MIB_INERRS);
1738 } else {
1739 tcp_v4_send_reset(NULL, skb);
1742 discard_it:
1743 /* Discard frame. */
1744 kfree_skb(skb);
1745 return 0;
1747 discard_and_relse:
1748 sk_drops_add(sk, skb);
1749 if (refcounted)
1750 sock_put(sk);
1751 goto discard_it;
1753 do_time_wait:
1754 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1755 inet_twsk_put(inet_twsk(sk));
1756 goto discard_it;
1759 if (tcp_checksum_complete(skb)) {
1760 inet_twsk_put(inet_twsk(sk));
1761 goto csum_error;
1763 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1764 case TCP_TW_SYN: {
1765 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1766 &tcp_hashinfo, skb,
1767 __tcp_hdrlen(th),
1768 iph->saddr, th->source,
1769 iph->daddr, th->dest,
1770 inet_iif(skb));
1771 if (sk2) {
1772 inet_twsk_deschedule_put(inet_twsk(sk));
1773 sk = sk2;
1774 refcounted = false;
1775 goto process;
1777 /* Fall through to ACK */
1779 case TCP_TW_ACK:
1780 tcp_v4_timewait_ack(sk, skb);
1781 break;
1782 case TCP_TW_RST:
1783 tcp_v4_send_reset(sk, skb);
1784 inet_twsk_deschedule_put(inet_twsk(sk));
1785 goto discard_it;
1786 case TCP_TW_SUCCESS:;
1788 goto discard_it;
1791 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1792 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1793 .twsk_unique = tcp_twsk_unique,
1794 .twsk_destructor= tcp_twsk_destructor,
1797 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
1799 struct dst_entry *dst = skb_dst(skb);
1801 if (dst && dst_hold_safe(dst)) {
1802 sk->sk_rx_dst = dst;
1803 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
1806 EXPORT_SYMBOL(inet_sk_rx_dst_set);
1808 const struct inet_connection_sock_af_ops ipv4_specific = {
1809 .queue_xmit = ip_queue_xmit,
1810 .send_check = tcp_v4_send_check,
1811 .rebuild_header = inet_sk_rebuild_header,
1812 .sk_rx_dst_set = inet_sk_rx_dst_set,
1813 .conn_request = tcp_v4_conn_request,
1814 .syn_recv_sock = tcp_v4_syn_recv_sock,
1815 .net_header_len = sizeof(struct iphdr),
1816 .setsockopt = ip_setsockopt,
1817 .getsockopt = ip_getsockopt,
1818 .addr2sockaddr = inet_csk_addr2sockaddr,
1819 .sockaddr_len = sizeof(struct sockaddr_in),
1820 #ifdef CONFIG_COMPAT
1821 .compat_setsockopt = compat_ip_setsockopt,
1822 .compat_getsockopt = compat_ip_getsockopt,
1823 #endif
1824 .mtu_reduced = tcp_v4_mtu_reduced,
1826 EXPORT_SYMBOL(ipv4_specific);
1828 #ifdef CONFIG_TCP_MD5SIG
1829 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1830 .md5_lookup = tcp_v4_md5_lookup,
1831 .calc_md5_hash = tcp_v4_md5_hash_skb,
1832 .md5_parse = tcp_v4_parse_md5_keys,
1834 #endif
1836 /* NOTE: A lot of things set to zero explicitly by call to
1837 * sk_alloc() so need not be done here.
1839 static int tcp_v4_init_sock(struct sock *sk)
1841 struct inet_connection_sock *icsk = inet_csk(sk);
1843 tcp_init_sock(sk);
1845 icsk->icsk_af_ops = &ipv4_specific;
1847 #ifdef CONFIG_TCP_MD5SIG
1848 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
1849 #endif
1851 return 0;
1854 void tcp_v4_destroy_sock(struct sock *sk)
1856 struct tcp_sock *tp = tcp_sk(sk);
1858 tcp_clear_xmit_timers(sk);
1860 tcp_cleanup_congestion_control(sk);
1862 /* Cleanup up the write buffer. */
1863 tcp_write_queue_purge(sk);
1865 /* Cleans up our, hopefully empty, out_of_order_queue. */
1866 skb_rbtree_purge(&tp->out_of_order_queue);
1868 #ifdef CONFIG_TCP_MD5SIG
1869 /* Clean up the MD5 key list, if any */
1870 if (tp->md5sig_info) {
1871 tcp_clear_md5_list(sk);
1872 kfree_rcu(tp->md5sig_info, rcu);
1873 tp->md5sig_info = NULL;
1875 #endif
1877 /* Clean prequeue, it must be empty really */
1878 __skb_queue_purge(&tp->ucopy.prequeue);
1880 /* Clean up a referenced TCP bind bucket. */
1881 if (inet_csk(sk)->icsk_bind_hash)
1882 inet_put_port(sk);
1884 BUG_ON(tp->fastopen_rsk);
1886 /* If socket is aborted during connect operation */
1887 tcp_free_fastopen_req(tp);
1888 tcp_saved_syn_free(tp);
1890 sk_sockets_allocated_dec(sk);
1892 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1894 #ifdef CONFIG_PROC_FS
1895 /* Proc filesystem TCP sock list dumping. */
1898 * Get next listener socket follow cur. If cur is NULL, get first socket
1899 * starting from bucket given in st->bucket; when st->bucket is zero the
1900 * very first socket in the hash table is returned.
1902 static void *listening_get_next(struct seq_file *seq, void *cur)
1904 struct tcp_iter_state *st = seq->private;
1905 struct net *net = seq_file_net(seq);
1906 struct inet_listen_hashbucket *ilb;
1907 struct sock *sk = cur;
1909 if (!sk) {
1910 get_head:
1911 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1912 spin_lock(&ilb->lock);
1913 sk = sk_head(&ilb->head);
1914 st->offset = 0;
1915 goto get_sk;
1917 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1918 ++st->num;
1919 ++st->offset;
1921 sk = sk_next(sk);
1922 get_sk:
1923 sk_for_each_from(sk) {
1924 if (!net_eq(sock_net(sk), net))
1925 continue;
1926 if (sk->sk_family == st->family)
1927 return sk;
1929 spin_unlock(&ilb->lock);
1930 st->offset = 0;
1931 if (++st->bucket < INET_LHTABLE_SIZE)
1932 goto get_head;
1933 return NULL;
1936 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
1938 struct tcp_iter_state *st = seq->private;
1939 void *rc;
1941 st->bucket = 0;
1942 st->offset = 0;
1943 rc = listening_get_next(seq, NULL);
1945 while (rc && *pos) {
1946 rc = listening_get_next(seq, rc);
1947 --*pos;
1949 return rc;
1952 static inline bool empty_bucket(const struct tcp_iter_state *st)
1954 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain);
1958 * Get first established socket starting from bucket given in st->bucket.
1959 * If st->bucket is zero, the very first socket in the hash is returned.
1961 static void *established_get_first(struct seq_file *seq)
1963 struct tcp_iter_state *st = seq->private;
1964 struct net *net = seq_file_net(seq);
1965 void *rc = NULL;
1967 st->offset = 0;
1968 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
1969 struct sock *sk;
1970 struct hlist_nulls_node *node;
1971 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
1973 /* Lockless fast path for the common case of empty buckets */
1974 if (empty_bucket(st))
1975 continue;
1977 spin_lock_bh(lock);
1978 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
1979 if (sk->sk_family != st->family ||
1980 !net_eq(sock_net(sk), net)) {
1981 continue;
1983 rc = sk;
1984 goto out;
1986 spin_unlock_bh(lock);
1988 out:
1989 return rc;
1992 static void *established_get_next(struct seq_file *seq, void *cur)
1994 struct sock *sk = cur;
1995 struct hlist_nulls_node *node;
1996 struct tcp_iter_state *st = seq->private;
1997 struct net *net = seq_file_net(seq);
1999 ++st->num;
2000 ++st->offset;
2002 sk = sk_nulls_next(sk);
2004 sk_nulls_for_each_from(sk, node) {
2005 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2006 return sk;
2009 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2010 ++st->bucket;
2011 return established_get_first(seq);
2014 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2016 struct tcp_iter_state *st = seq->private;
2017 void *rc;
2019 st->bucket = 0;
2020 rc = established_get_first(seq);
2022 while (rc && pos) {
2023 rc = established_get_next(seq, rc);
2024 --pos;
2026 return rc;
2029 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2031 void *rc;
2032 struct tcp_iter_state *st = seq->private;
2034 st->state = TCP_SEQ_STATE_LISTENING;
2035 rc = listening_get_idx(seq, &pos);
2037 if (!rc) {
2038 st->state = TCP_SEQ_STATE_ESTABLISHED;
2039 rc = established_get_idx(seq, pos);
2042 return rc;
2045 static void *tcp_seek_last_pos(struct seq_file *seq)
2047 struct tcp_iter_state *st = seq->private;
2048 int offset = st->offset;
2049 int orig_num = st->num;
2050 void *rc = NULL;
2052 switch (st->state) {
2053 case TCP_SEQ_STATE_LISTENING:
2054 if (st->bucket >= INET_LHTABLE_SIZE)
2055 break;
2056 st->state = TCP_SEQ_STATE_LISTENING;
2057 rc = listening_get_next(seq, NULL);
2058 while (offset-- && rc)
2059 rc = listening_get_next(seq, rc);
2060 if (rc)
2061 break;
2062 st->bucket = 0;
2063 st->state = TCP_SEQ_STATE_ESTABLISHED;
2064 /* Fallthrough */
2065 case TCP_SEQ_STATE_ESTABLISHED:
2066 if (st->bucket > tcp_hashinfo.ehash_mask)
2067 break;
2068 rc = established_get_first(seq);
2069 while (offset-- && rc)
2070 rc = established_get_next(seq, rc);
2073 st->num = orig_num;
2075 return rc;
2078 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2080 struct tcp_iter_state *st = seq->private;
2081 void *rc;
2083 if (*pos && *pos == st->last_pos) {
2084 rc = tcp_seek_last_pos(seq);
2085 if (rc)
2086 goto out;
2089 st->state = TCP_SEQ_STATE_LISTENING;
2090 st->num = 0;
2091 st->bucket = 0;
2092 st->offset = 0;
2093 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2095 out:
2096 st->last_pos = *pos;
2097 return rc;
2100 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2102 struct tcp_iter_state *st = seq->private;
2103 void *rc = NULL;
2105 if (v == SEQ_START_TOKEN) {
2106 rc = tcp_get_idx(seq, 0);
2107 goto out;
2110 switch (st->state) {
2111 case TCP_SEQ_STATE_LISTENING:
2112 rc = listening_get_next(seq, v);
2113 if (!rc) {
2114 st->state = TCP_SEQ_STATE_ESTABLISHED;
2115 st->bucket = 0;
2116 st->offset = 0;
2117 rc = established_get_first(seq);
2119 break;
2120 case TCP_SEQ_STATE_ESTABLISHED:
2121 rc = established_get_next(seq, v);
2122 break;
2124 out:
2125 ++*pos;
2126 st->last_pos = *pos;
2127 return rc;
2130 static void tcp_seq_stop(struct seq_file *seq, void *v)
2132 struct tcp_iter_state *st = seq->private;
2134 switch (st->state) {
2135 case TCP_SEQ_STATE_LISTENING:
2136 if (v != SEQ_START_TOKEN)
2137 spin_unlock(&tcp_hashinfo.listening_hash[st->bucket].lock);
2138 break;
2139 case TCP_SEQ_STATE_ESTABLISHED:
2140 if (v)
2141 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2142 break;
2146 int tcp_seq_open(struct inode *inode, struct file *file)
2148 struct tcp_seq_afinfo *afinfo = PDE_DATA(inode);
2149 struct tcp_iter_state *s;
2150 int err;
2152 err = seq_open_net(inode, file, &afinfo->seq_ops,
2153 sizeof(struct tcp_iter_state));
2154 if (err < 0)
2155 return err;
2157 s = ((struct seq_file *)file->private_data)->private;
2158 s->family = afinfo->family;
2159 s->last_pos = 0;
2160 return 0;
2162 EXPORT_SYMBOL(tcp_seq_open);
2164 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2166 int rc = 0;
2167 struct proc_dir_entry *p;
2169 afinfo->seq_ops.start = tcp_seq_start;
2170 afinfo->seq_ops.next = tcp_seq_next;
2171 afinfo->seq_ops.stop = tcp_seq_stop;
2173 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2174 afinfo->seq_fops, afinfo);
2175 if (!p)
2176 rc = -ENOMEM;
2177 return rc;
2179 EXPORT_SYMBOL(tcp_proc_register);
2181 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2183 remove_proc_entry(afinfo->name, net->proc_net);
2185 EXPORT_SYMBOL(tcp_proc_unregister);
2187 static void get_openreq4(const struct request_sock *req,
2188 struct seq_file *f, int i)
2190 const struct inet_request_sock *ireq = inet_rsk(req);
2191 long delta = req->rsk_timer.expires - jiffies;
2193 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2194 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2196 ireq->ir_loc_addr,
2197 ireq->ir_num,
2198 ireq->ir_rmt_addr,
2199 ntohs(ireq->ir_rmt_port),
2200 TCP_SYN_RECV,
2201 0, 0, /* could print option size, but that is af dependent. */
2202 1, /* timers active (only the expire timer) */
2203 jiffies_delta_to_clock_t(delta),
2204 req->num_timeout,
2205 from_kuid_munged(seq_user_ns(f),
2206 sock_i_uid(req->rsk_listener)),
2207 0, /* non standard timer */
2208 0, /* open_requests have no inode */
2210 req);
2213 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2215 int timer_active;
2216 unsigned long timer_expires;
2217 const struct tcp_sock *tp = tcp_sk(sk);
2218 const struct inet_connection_sock *icsk = inet_csk(sk);
2219 const struct inet_sock *inet = inet_sk(sk);
2220 const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
2221 __be32 dest = inet->inet_daddr;
2222 __be32 src = inet->inet_rcv_saddr;
2223 __u16 destp = ntohs(inet->inet_dport);
2224 __u16 srcp = ntohs(inet->inet_sport);
2225 int rx_queue;
2226 int state;
2228 if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2229 icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2230 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2231 timer_active = 1;
2232 timer_expires = icsk->icsk_timeout;
2233 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2234 timer_active = 4;
2235 timer_expires = icsk->icsk_timeout;
2236 } else if (timer_pending(&sk->sk_timer)) {
2237 timer_active = 2;
2238 timer_expires = sk->sk_timer.expires;
2239 } else {
2240 timer_active = 0;
2241 timer_expires = jiffies;
2244 state = sk_state_load(sk);
2245 if (state == TCP_LISTEN)
2246 rx_queue = sk->sk_ack_backlog;
2247 else
2248 /* Because we don't lock the socket,
2249 * we might find a transient negative value.
2251 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2253 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2254 "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2255 i, src, srcp, dest, destp, state,
2256 tp->write_seq - tp->snd_una,
2257 rx_queue,
2258 timer_active,
2259 jiffies_delta_to_clock_t(timer_expires - jiffies),
2260 icsk->icsk_retransmits,
2261 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2262 icsk->icsk_probes_out,
2263 sock_i_ino(sk),
2264 atomic_read(&sk->sk_refcnt), sk,
2265 jiffies_to_clock_t(icsk->icsk_rto),
2266 jiffies_to_clock_t(icsk->icsk_ack.ato),
2267 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2268 tp->snd_cwnd,
2269 state == TCP_LISTEN ?
2270 fastopenq->max_qlen :
2271 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2274 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2275 struct seq_file *f, int i)
2277 long delta = tw->tw_timer.expires - jiffies;
2278 __be32 dest, src;
2279 __u16 destp, srcp;
2281 dest = tw->tw_daddr;
2282 src = tw->tw_rcv_saddr;
2283 destp = ntohs(tw->tw_dport);
2284 srcp = ntohs(tw->tw_sport);
2286 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2287 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2288 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2289 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2290 atomic_read(&tw->tw_refcnt), tw);
2293 #define TMPSZ 150
2295 static int tcp4_seq_show(struct seq_file *seq, void *v)
2297 struct tcp_iter_state *st;
2298 struct sock *sk = v;
2300 seq_setwidth(seq, TMPSZ - 1);
2301 if (v == SEQ_START_TOKEN) {
2302 seq_puts(seq, " sl local_address rem_address st tx_queue "
2303 "rx_queue tr tm->when retrnsmt uid timeout "
2304 "inode");
2305 goto out;
2307 st = seq->private;
2309 if (sk->sk_state == TCP_TIME_WAIT)
2310 get_timewait4_sock(v, seq, st->num);
2311 else if (sk->sk_state == TCP_NEW_SYN_RECV)
2312 get_openreq4(v, seq, st->num);
2313 else
2314 get_tcp4_sock(v, seq, st->num);
2315 out:
2316 seq_pad(seq, '\n');
2317 return 0;
2320 static const struct file_operations tcp_afinfo_seq_fops = {
2321 .owner = THIS_MODULE,
2322 .open = tcp_seq_open,
2323 .read = seq_read,
2324 .llseek = seq_lseek,
2325 .release = seq_release_net
2328 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2329 .name = "tcp",
2330 .family = AF_INET,
2331 .seq_fops = &tcp_afinfo_seq_fops,
2332 .seq_ops = {
2333 .show = tcp4_seq_show,
2337 static int __net_init tcp4_proc_init_net(struct net *net)
2339 return tcp_proc_register(net, &tcp4_seq_afinfo);
2342 static void __net_exit tcp4_proc_exit_net(struct net *net)
2344 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2347 static struct pernet_operations tcp4_net_ops = {
2348 .init = tcp4_proc_init_net,
2349 .exit = tcp4_proc_exit_net,
2352 int __init tcp4_proc_init(void)
2354 return register_pernet_subsys(&tcp4_net_ops);
2357 void tcp4_proc_exit(void)
2359 unregister_pernet_subsys(&tcp4_net_ops);
2361 #endif /* CONFIG_PROC_FS */
2363 struct proto tcp_prot = {
2364 .name = "TCP",
2365 .owner = THIS_MODULE,
2366 .close = tcp_close,
2367 .connect = tcp_v4_connect,
2368 .disconnect = tcp_disconnect,
2369 .accept = inet_csk_accept,
2370 .ioctl = tcp_ioctl,
2371 .init = tcp_v4_init_sock,
2372 .destroy = tcp_v4_destroy_sock,
2373 .shutdown = tcp_shutdown,
2374 .setsockopt = tcp_setsockopt,
2375 .getsockopt = tcp_getsockopt,
2376 .keepalive = tcp_set_keepalive,
2377 .recvmsg = tcp_recvmsg,
2378 .sendmsg = tcp_sendmsg,
2379 .sendpage = tcp_sendpage,
2380 .backlog_rcv = tcp_v4_do_rcv,
2381 .release_cb = tcp_release_cb,
2382 .hash = inet_hash,
2383 .unhash = inet_unhash,
2384 .get_port = inet_csk_get_port,
2385 .enter_memory_pressure = tcp_enter_memory_pressure,
2386 .stream_memory_free = tcp_stream_memory_free,
2387 .sockets_allocated = &tcp_sockets_allocated,
2388 .orphan_count = &tcp_orphan_count,
2389 .memory_allocated = &tcp_memory_allocated,
2390 .memory_pressure = &tcp_memory_pressure,
2391 .sysctl_mem = sysctl_tcp_mem,
2392 .sysctl_wmem = sysctl_tcp_wmem,
2393 .sysctl_rmem = sysctl_tcp_rmem,
2394 .max_header = MAX_TCP_HEADER,
2395 .obj_size = sizeof(struct tcp_sock),
2396 .slab_flags = SLAB_DESTROY_BY_RCU,
2397 .twsk_prot = &tcp_timewait_sock_ops,
2398 .rsk_prot = &tcp_request_sock_ops,
2399 .h.hashinfo = &tcp_hashinfo,
2400 .no_autobind = true,
2401 #ifdef CONFIG_COMPAT
2402 .compat_setsockopt = compat_tcp_setsockopt,
2403 .compat_getsockopt = compat_tcp_getsockopt,
2404 #endif
2405 .diag_destroy = tcp_abort,
2407 EXPORT_SYMBOL(tcp_prot);
2409 static void __net_exit tcp_sk_exit(struct net *net)
2411 int cpu;
2413 for_each_possible_cpu(cpu)
2414 inet_ctl_sock_destroy(*per_cpu_ptr(net->ipv4.tcp_sk, cpu));
2415 free_percpu(net->ipv4.tcp_sk);
2418 static int __net_init tcp_sk_init(struct net *net)
2420 int res, cpu, cnt;
2422 net->ipv4.tcp_sk = alloc_percpu(struct sock *);
2423 if (!net->ipv4.tcp_sk)
2424 return -ENOMEM;
2426 for_each_possible_cpu(cpu) {
2427 struct sock *sk;
2429 res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
2430 IPPROTO_TCP, net);
2431 if (res)
2432 goto fail;
2433 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
2434 *per_cpu_ptr(net->ipv4.tcp_sk, cpu) = sk;
2437 net->ipv4.sysctl_tcp_ecn = 2;
2438 net->ipv4.sysctl_tcp_ecn_fallback = 1;
2440 net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
2441 net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
2442 net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
2444 net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME;
2445 net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES;
2446 net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL;
2448 net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES;
2449 net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES;
2450 net->ipv4.sysctl_tcp_syncookies = 1;
2451 net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
2452 net->ipv4.sysctl_tcp_retries1 = TCP_RETR1;
2453 net->ipv4.sysctl_tcp_retries2 = TCP_RETR2;
2454 net->ipv4.sysctl_tcp_orphan_retries = 0;
2455 net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT;
2456 net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX;
2457 net->ipv4.sysctl_tcp_tw_reuse = 0;
2459 cnt = tcp_hashinfo.ehash_mask + 1;
2460 net->ipv4.tcp_death_row.sysctl_tw_recycle = 0;
2461 net->ipv4.tcp_death_row.sysctl_max_tw_buckets = (cnt + 1) / 2;
2462 net->ipv4.tcp_death_row.hashinfo = &tcp_hashinfo;
2464 net->ipv4.sysctl_max_syn_backlog = max(128, cnt / 256);
2466 return 0;
2467 fail:
2468 tcp_sk_exit(net);
2470 return res;
2473 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2475 inet_twsk_purge(&tcp_hashinfo, AF_INET);
2478 static struct pernet_operations __net_initdata tcp_sk_ops = {
2479 .init = tcp_sk_init,
2480 .exit = tcp_sk_exit,
2481 .exit_batch = tcp_sk_exit_batch,
2484 void __init tcp_v4_init(void)
2486 if (register_pernet_subsys(&tcp_sk_ops))
2487 panic("Failed to create the TCP control socket.\n");