alpha: use Kbuild logic to include <asm-generic/sections.h>
[linux-2.6/btrfs-unstable.git] / net / mac80211 / key.c
blob4712150dc2109df0b6f17162da8ec5119a94ec0a
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/if_ether.h>
14 #include <linux/etherdevice.h>
15 #include <linux/list.h>
16 #include <linux/rcupdate.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/slab.h>
19 #include <linux/export.h>
20 #include <net/mac80211.h>
21 #include <asm/unaligned.h>
22 #include "ieee80211_i.h"
23 #include "driver-ops.h"
24 #include "debugfs_key.h"
25 #include "aes_ccm.h"
26 #include "aes_cmac.h"
29 /**
30 * DOC: Key handling basics
32 * Key handling in mac80211 is done based on per-interface (sub_if_data)
33 * keys and per-station keys. Since each station belongs to an interface,
34 * each station key also belongs to that interface.
36 * Hardware acceleration is done on a best-effort basis for algorithms
37 * that are implemented in software, for each key the hardware is asked
38 * to enable that key for offloading but if it cannot do that the key is
39 * simply kept for software encryption (unless it is for an algorithm
40 * that isn't implemented in software).
41 * There is currently no way of knowing whether a key is handled in SW
42 * or HW except by looking into debugfs.
44 * All key management is internally protected by a mutex. Within all
45 * other parts of mac80211, key references are, just as STA structure
46 * references, protected by RCU. Note, however, that some things are
47 * unprotected, namely the key->sta dereferences within the hardware
48 * acceleration functions. This means that sta_info_destroy() must
49 * remove the key which waits for an RCU grace period.
52 static const u8 bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
54 static void assert_key_lock(struct ieee80211_local *local)
56 lockdep_assert_held(&local->key_mtx);
59 static void increment_tailroom_need_count(struct ieee80211_sub_if_data *sdata)
62 * When this count is zero, SKB resizing for allocating tailroom
63 * for IV or MMIC is skipped. But, this check has created two race
64 * cases in xmit path while transiting from zero count to one:
66 * 1. SKB resize was skipped because no key was added but just before
67 * the xmit key is added and SW encryption kicks off.
69 * 2. SKB resize was skipped because all the keys were hw planted but
70 * just before xmit one of the key is deleted and SW encryption kicks
71 * off.
73 * In both the above case SW encryption will find not enough space for
74 * tailroom and exits with WARN_ON. (See WARN_ONs at wpa.c)
76 * Solution has been explained at
77 * http://mid.gmane.org/1308590980.4322.19.camel@jlt3.sipsolutions.net
80 if (!sdata->crypto_tx_tailroom_needed_cnt++) {
82 * Flush all XMIT packets currently using HW encryption or no
83 * encryption at all if the count transition is from 0 -> 1.
85 synchronize_net();
89 static int ieee80211_key_enable_hw_accel(struct ieee80211_key *key)
91 struct ieee80211_sub_if_data *sdata;
92 struct sta_info *sta;
93 int ret;
95 might_sleep();
97 if (key->flags & KEY_FLAG_TAINTED)
98 return -EINVAL;
100 if (!key->local->ops->set_key)
101 goto out_unsupported;
103 assert_key_lock(key->local);
105 sta = key->sta;
108 * If this is a per-STA GTK, check if it
109 * is supported; if not, return.
111 if (sta && !(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE) &&
112 !(key->local->hw.flags & IEEE80211_HW_SUPPORTS_PER_STA_GTK))
113 goto out_unsupported;
115 if (sta && !sta->uploaded)
116 goto out_unsupported;
118 sdata = key->sdata;
119 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
121 * The driver doesn't know anything about VLAN interfaces.
122 * Hence, don't send GTKs for VLAN interfaces to the driver.
124 if (!(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE))
125 goto out_unsupported;
128 ret = drv_set_key(key->local, SET_KEY, sdata,
129 sta ? &sta->sta : NULL, &key->conf);
131 if (!ret) {
132 key->flags |= KEY_FLAG_UPLOADED_TO_HARDWARE;
134 if (!(key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC))
135 sdata->crypto_tx_tailroom_needed_cnt--;
137 WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) &&
138 (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV));
140 return 0;
143 if (ret != -ENOSPC && ret != -EOPNOTSUPP)
144 sdata_err(sdata,
145 "failed to set key (%d, %pM) to hardware (%d)\n",
146 key->conf.keyidx,
147 sta ? sta->sta.addr : bcast_addr, ret);
149 out_unsupported:
150 switch (key->conf.cipher) {
151 case WLAN_CIPHER_SUITE_WEP40:
152 case WLAN_CIPHER_SUITE_WEP104:
153 case WLAN_CIPHER_SUITE_TKIP:
154 case WLAN_CIPHER_SUITE_CCMP:
155 case WLAN_CIPHER_SUITE_AES_CMAC:
156 /* all of these we can do in software */
157 return 0;
158 default:
159 return -EINVAL;
163 static void ieee80211_key_disable_hw_accel(struct ieee80211_key *key)
165 struct ieee80211_sub_if_data *sdata;
166 struct sta_info *sta;
167 int ret;
169 might_sleep();
171 if (!key || !key->local->ops->set_key)
172 return;
174 assert_key_lock(key->local);
176 if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
177 return;
179 sta = key->sta;
180 sdata = key->sdata;
182 if (!(key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC))
183 increment_tailroom_need_count(sdata);
185 ret = drv_set_key(key->local, DISABLE_KEY, sdata,
186 sta ? &sta->sta : NULL, &key->conf);
188 if (ret)
189 sdata_err(sdata,
190 "failed to remove key (%d, %pM) from hardware (%d)\n",
191 key->conf.keyidx,
192 sta ? sta->sta.addr : bcast_addr, ret);
194 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
197 static void __ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata,
198 int idx, bool uni, bool multi)
200 struct ieee80211_key *key = NULL;
202 assert_key_lock(sdata->local);
204 if (idx >= 0 && idx < NUM_DEFAULT_KEYS)
205 key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
207 if (uni) {
208 rcu_assign_pointer(sdata->default_unicast_key, key);
209 drv_set_default_unicast_key(sdata->local, sdata, idx);
212 if (multi)
213 rcu_assign_pointer(sdata->default_multicast_key, key);
215 ieee80211_debugfs_key_update_default(sdata);
218 void ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata, int idx,
219 bool uni, bool multi)
221 mutex_lock(&sdata->local->key_mtx);
222 __ieee80211_set_default_key(sdata, idx, uni, multi);
223 mutex_unlock(&sdata->local->key_mtx);
226 static void
227 __ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata, int idx)
229 struct ieee80211_key *key = NULL;
231 assert_key_lock(sdata->local);
233 if (idx >= NUM_DEFAULT_KEYS &&
234 idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
235 key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
237 rcu_assign_pointer(sdata->default_mgmt_key, key);
239 ieee80211_debugfs_key_update_default(sdata);
242 void ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata,
243 int idx)
245 mutex_lock(&sdata->local->key_mtx);
246 __ieee80211_set_default_mgmt_key(sdata, idx);
247 mutex_unlock(&sdata->local->key_mtx);
251 static void ieee80211_key_replace(struct ieee80211_sub_if_data *sdata,
252 struct sta_info *sta,
253 bool pairwise,
254 struct ieee80211_key *old,
255 struct ieee80211_key *new)
257 int idx;
258 bool defunikey, defmultikey, defmgmtkey;
260 /* caller must provide at least one old/new */
261 if (WARN_ON(!new && !old))
262 return;
264 if (new)
265 list_add_tail(&new->list, &sdata->key_list);
267 WARN_ON(new && old && new->conf.keyidx != old->conf.keyidx);
269 if (old)
270 idx = old->conf.keyidx;
271 else
272 idx = new->conf.keyidx;
274 if (sta) {
275 if (pairwise) {
276 rcu_assign_pointer(sta->ptk[idx], new);
277 sta->ptk_idx = idx;
278 } else {
279 rcu_assign_pointer(sta->gtk[idx], new);
280 sta->gtk_idx = idx;
282 } else {
283 defunikey = old &&
284 old == key_mtx_dereference(sdata->local,
285 sdata->default_unicast_key);
286 defmultikey = old &&
287 old == key_mtx_dereference(sdata->local,
288 sdata->default_multicast_key);
289 defmgmtkey = old &&
290 old == key_mtx_dereference(sdata->local,
291 sdata->default_mgmt_key);
293 if (defunikey && !new)
294 __ieee80211_set_default_key(sdata, -1, true, false);
295 if (defmultikey && !new)
296 __ieee80211_set_default_key(sdata, -1, false, true);
297 if (defmgmtkey && !new)
298 __ieee80211_set_default_mgmt_key(sdata, -1);
300 rcu_assign_pointer(sdata->keys[idx], new);
301 if (defunikey && new)
302 __ieee80211_set_default_key(sdata, new->conf.keyidx,
303 true, false);
304 if (defmultikey && new)
305 __ieee80211_set_default_key(sdata, new->conf.keyidx,
306 false, true);
307 if (defmgmtkey && new)
308 __ieee80211_set_default_mgmt_key(sdata,
309 new->conf.keyidx);
312 if (old)
313 list_del(&old->list);
316 struct ieee80211_key *
317 ieee80211_key_alloc(u32 cipher, int idx, size_t key_len,
318 const u8 *key_data,
319 size_t seq_len, const u8 *seq,
320 const struct ieee80211_cipher_scheme *cs)
322 struct ieee80211_key *key;
323 int i, j, err;
325 if (WARN_ON(idx < 0 || idx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS))
326 return ERR_PTR(-EINVAL);
328 key = kzalloc(sizeof(struct ieee80211_key) + key_len, GFP_KERNEL);
329 if (!key)
330 return ERR_PTR(-ENOMEM);
333 * Default to software encryption; we'll later upload the
334 * key to the hardware if possible.
336 key->conf.flags = 0;
337 key->flags = 0;
339 key->conf.cipher = cipher;
340 key->conf.keyidx = idx;
341 key->conf.keylen = key_len;
342 switch (cipher) {
343 case WLAN_CIPHER_SUITE_WEP40:
344 case WLAN_CIPHER_SUITE_WEP104:
345 key->conf.iv_len = IEEE80211_WEP_IV_LEN;
346 key->conf.icv_len = IEEE80211_WEP_ICV_LEN;
347 break;
348 case WLAN_CIPHER_SUITE_TKIP:
349 key->conf.iv_len = IEEE80211_TKIP_IV_LEN;
350 key->conf.icv_len = IEEE80211_TKIP_ICV_LEN;
351 if (seq) {
352 for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
353 key->u.tkip.rx[i].iv32 =
354 get_unaligned_le32(&seq[2]);
355 key->u.tkip.rx[i].iv16 =
356 get_unaligned_le16(seq);
359 spin_lock_init(&key->u.tkip.txlock);
360 break;
361 case WLAN_CIPHER_SUITE_CCMP:
362 key->conf.iv_len = IEEE80211_CCMP_HDR_LEN;
363 key->conf.icv_len = IEEE80211_CCMP_MIC_LEN;
364 if (seq) {
365 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
366 for (j = 0; j < IEEE80211_CCMP_PN_LEN; j++)
367 key->u.ccmp.rx_pn[i][j] =
368 seq[IEEE80211_CCMP_PN_LEN - j - 1];
371 * Initialize AES key state here as an optimization so that
372 * it does not need to be initialized for every packet.
374 key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(key_data);
375 if (IS_ERR(key->u.ccmp.tfm)) {
376 err = PTR_ERR(key->u.ccmp.tfm);
377 kfree(key);
378 return ERR_PTR(err);
380 break;
381 case WLAN_CIPHER_SUITE_AES_CMAC:
382 key->conf.iv_len = 0;
383 key->conf.icv_len = sizeof(struct ieee80211_mmie);
384 if (seq)
385 for (j = 0; j < IEEE80211_CMAC_PN_LEN; j++)
386 key->u.aes_cmac.rx_pn[j] =
387 seq[IEEE80211_CMAC_PN_LEN - j - 1];
389 * Initialize AES key state here as an optimization so that
390 * it does not need to be initialized for every packet.
392 key->u.aes_cmac.tfm =
393 ieee80211_aes_cmac_key_setup(key_data);
394 if (IS_ERR(key->u.aes_cmac.tfm)) {
395 err = PTR_ERR(key->u.aes_cmac.tfm);
396 kfree(key);
397 return ERR_PTR(err);
399 break;
400 default:
401 if (cs) {
402 size_t len = (seq_len > MAX_PN_LEN) ?
403 MAX_PN_LEN : seq_len;
405 key->conf.iv_len = cs->hdr_len;
406 key->conf.icv_len = cs->mic_len;
407 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
408 for (j = 0; j < len; j++)
409 key->u.gen.rx_pn[i][j] =
410 seq[len - j - 1];
413 memcpy(key->conf.key, key_data, key_len);
414 INIT_LIST_HEAD(&key->list);
416 return key;
419 static void ieee80211_key_free_common(struct ieee80211_key *key)
421 if (key->conf.cipher == WLAN_CIPHER_SUITE_CCMP)
422 ieee80211_aes_key_free(key->u.ccmp.tfm);
423 if (key->conf.cipher == WLAN_CIPHER_SUITE_AES_CMAC)
424 ieee80211_aes_cmac_key_free(key->u.aes_cmac.tfm);
425 kzfree(key);
428 static void __ieee80211_key_destroy(struct ieee80211_key *key,
429 bool delay_tailroom)
431 if (key->local)
432 ieee80211_key_disable_hw_accel(key);
434 if (key->local) {
435 struct ieee80211_sub_if_data *sdata = key->sdata;
437 ieee80211_debugfs_key_remove(key);
439 if (delay_tailroom) {
440 /* see ieee80211_delayed_tailroom_dec */
441 sdata->crypto_tx_tailroom_pending_dec++;
442 schedule_delayed_work(&sdata->dec_tailroom_needed_wk,
443 HZ/2);
444 } else {
445 sdata->crypto_tx_tailroom_needed_cnt--;
449 ieee80211_key_free_common(key);
452 static void ieee80211_key_destroy(struct ieee80211_key *key,
453 bool delay_tailroom)
455 if (!key)
456 return;
459 * Synchronize so the TX path can no longer be using
460 * this key before we free/remove it.
462 synchronize_net();
464 __ieee80211_key_destroy(key, delay_tailroom);
467 void ieee80211_key_free_unused(struct ieee80211_key *key)
469 WARN_ON(key->sdata || key->local);
470 ieee80211_key_free_common(key);
473 int ieee80211_key_link(struct ieee80211_key *key,
474 struct ieee80211_sub_if_data *sdata,
475 struct sta_info *sta)
477 struct ieee80211_local *local = sdata->local;
478 struct ieee80211_key *old_key;
479 int idx, ret;
480 bool pairwise;
482 pairwise = key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE;
483 idx = key->conf.keyidx;
484 key->local = sdata->local;
485 key->sdata = sdata;
486 key->sta = sta;
488 mutex_lock(&sdata->local->key_mtx);
490 if (sta && pairwise)
491 old_key = key_mtx_dereference(sdata->local, sta->ptk[idx]);
492 else if (sta)
493 old_key = key_mtx_dereference(sdata->local, sta->gtk[idx]);
494 else
495 old_key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
497 increment_tailroom_need_count(sdata);
499 ieee80211_key_replace(sdata, sta, pairwise, old_key, key);
500 ieee80211_key_destroy(old_key, true);
502 ieee80211_debugfs_key_add(key);
504 if (!local->wowlan) {
505 ret = ieee80211_key_enable_hw_accel(key);
506 if (ret)
507 ieee80211_key_free(key, true);
508 } else {
509 ret = 0;
512 mutex_unlock(&sdata->local->key_mtx);
514 return ret;
517 void ieee80211_key_free(struct ieee80211_key *key, bool delay_tailroom)
519 if (!key)
520 return;
523 * Replace key with nothingness if it was ever used.
525 if (key->sdata)
526 ieee80211_key_replace(key->sdata, key->sta,
527 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
528 key, NULL);
529 ieee80211_key_destroy(key, delay_tailroom);
532 void ieee80211_enable_keys(struct ieee80211_sub_if_data *sdata)
534 struct ieee80211_key *key;
536 ASSERT_RTNL();
538 if (WARN_ON(!ieee80211_sdata_running(sdata)))
539 return;
541 mutex_lock(&sdata->local->key_mtx);
543 sdata->crypto_tx_tailroom_needed_cnt = 0;
545 list_for_each_entry(key, &sdata->key_list, list) {
546 increment_tailroom_need_count(sdata);
547 ieee80211_key_enable_hw_accel(key);
550 mutex_unlock(&sdata->local->key_mtx);
553 void ieee80211_iter_keys(struct ieee80211_hw *hw,
554 struct ieee80211_vif *vif,
555 void (*iter)(struct ieee80211_hw *hw,
556 struct ieee80211_vif *vif,
557 struct ieee80211_sta *sta,
558 struct ieee80211_key_conf *key,
559 void *data),
560 void *iter_data)
562 struct ieee80211_local *local = hw_to_local(hw);
563 struct ieee80211_key *key, *tmp;
564 struct ieee80211_sub_if_data *sdata;
566 ASSERT_RTNL();
568 mutex_lock(&local->key_mtx);
569 if (vif) {
570 sdata = vif_to_sdata(vif);
571 list_for_each_entry_safe(key, tmp, &sdata->key_list, list)
572 iter(hw, &sdata->vif,
573 key->sta ? &key->sta->sta : NULL,
574 &key->conf, iter_data);
575 } else {
576 list_for_each_entry(sdata, &local->interfaces, list)
577 list_for_each_entry_safe(key, tmp,
578 &sdata->key_list, list)
579 iter(hw, &sdata->vif,
580 key->sta ? &key->sta->sta : NULL,
581 &key->conf, iter_data);
583 mutex_unlock(&local->key_mtx);
585 EXPORT_SYMBOL(ieee80211_iter_keys);
587 static void ieee80211_free_keys_iface(struct ieee80211_sub_if_data *sdata,
588 struct list_head *keys)
590 struct ieee80211_key *key, *tmp;
592 sdata->crypto_tx_tailroom_needed_cnt -=
593 sdata->crypto_tx_tailroom_pending_dec;
594 sdata->crypto_tx_tailroom_pending_dec = 0;
596 ieee80211_debugfs_key_remove_mgmt_default(sdata);
598 list_for_each_entry_safe(key, tmp, &sdata->key_list, list) {
599 ieee80211_key_replace(key->sdata, key->sta,
600 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
601 key, NULL);
602 list_add_tail(&key->list, keys);
605 ieee80211_debugfs_key_update_default(sdata);
608 void ieee80211_free_keys(struct ieee80211_sub_if_data *sdata,
609 bool force_synchronize)
611 struct ieee80211_local *local = sdata->local;
612 struct ieee80211_sub_if_data *vlan;
613 struct ieee80211_key *key, *tmp;
614 LIST_HEAD(keys);
616 cancel_delayed_work_sync(&sdata->dec_tailroom_needed_wk);
618 mutex_lock(&local->key_mtx);
620 ieee80211_free_keys_iface(sdata, &keys);
622 if (sdata->vif.type == NL80211_IFTYPE_AP) {
623 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
624 ieee80211_free_keys_iface(vlan, &keys);
627 if (!list_empty(&keys) || force_synchronize)
628 synchronize_net();
629 list_for_each_entry_safe(key, tmp, &keys, list)
630 __ieee80211_key_destroy(key, false);
632 WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt ||
633 sdata->crypto_tx_tailroom_pending_dec);
634 if (sdata->vif.type == NL80211_IFTYPE_AP) {
635 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
636 WARN_ON_ONCE(vlan->crypto_tx_tailroom_needed_cnt ||
637 vlan->crypto_tx_tailroom_pending_dec);
640 mutex_unlock(&local->key_mtx);
643 void ieee80211_free_sta_keys(struct ieee80211_local *local,
644 struct sta_info *sta)
646 struct ieee80211_key *key;
647 int i;
649 mutex_lock(&local->key_mtx);
650 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
651 key = key_mtx_dereference(local, sta->gtk[i]);
652 if (!key)
653 continue;
654 ieee80211_key_replace(key->sdata, key->sta,
655 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
656 key, NULL);
657 __ieee80211_key_destroy(key, true);
660 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
661 key = key_mtx_dereference(local, sta->ptk[i]);
662 if (!key)
663 continue;
664 ieee80211_key_replace(key->sdata, key->sta,
665 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
666 key, NULL);
667 __ieee80211_key_destroy(key, true);
670 mutex_unlock(&local->key_mtx);
673 void ieee80211_delayed_tailroom_dec(struct work_struct *wk)
675 struct ieee80211_sub_if_data *sdata;
677 sdata = container_of(wk, struct ieee80211_sub_if_data,
678 dec_tailroom_needed_wk.work);
681 * The reason for the delayed tailroom needed decrementing is to
682 * make roaming faster: during roaming, all keys are first deleted
683 * and then new keys are installed. The first new key causes the
684 * crypto_tx_tailroom_needed_cnt to go from 0 to 1, which invokes
685 * the cost of synchronize_net() (which can be slow). Avoid this
686 * by deferring the crypto_tx_tailroom_needed_cnt decrementing on
687 * key removal for a while, so if we roam the value is larger than
688 * zero and no 0->1 transition happens.
690 * The cost is that if the AP switching was from an AP with keys
691 * to one without, we still allocate tailroom while it would no
692 * longer be needed. However, in the typical (fast) roaming case
693 * within an ESS this usually won't happen.
696 mutex_lock(&sdata->local->key_mtx);
697 sdata->crypto_tx_tailroom_needed_cnt -=
698 sdata->crypto_tx_tailroom_pending_dec;
699 sdata->crypto_tx_tailroom_pending_dec = 0;
700 mutex_unlock(&sdata->local->key_mtx);
703 void ieee80211_gtk_rekey_notify(struct ieee80211_vif *vif, const u8 *bssid,
704 const u8 *replay_ctr, gfp_t gfp)
706 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
708 trace_api_gtk_rekey_notify(sdata, bssid, replay_ctr);
710 cfg80211_gtk_rekey_notify(sdata->dev, bssid, replay_ctr, gfp);
712 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_notify);
714 void ieee80211_get_key_tx_seq(struct ieee80211_key_conf *keyconf,
715 struct ieee80211_key_seq *seq)
717 struct ieee80211_key *key;
718 u64 pn64;
720 if (WARN_ON(!(keyconf->flags & IEEE80211_KEY_FLAG_GENERATE_IV)))
721 return;
723 key = container_of(keyconf, struct ieee80211_key, conf);
725 switch (key->conf.cipher) {
726 case WLAN_CIPHER_SUITE_TKIP:
727 seq->tkip.iv32 = key->u.tkip.tx.iv32;
728 seq->tkip.iv16 = key->u.tkip.tx.iv16;
729 break;
730 case WLAN_CIPHER_SUITE_CCMP:
731 pn64 = atomic64_read(&key->u.ccmp.tx_pn);
732 seq->ccmp.pn[5] = pn64;
733 seq->ccmp.pn[4] = pn64 >> 8;
734 seq->ccmp.pn[3] = pn64 >> 16;
735 seq->ccmp.pn[2] = pn64 >> 24;
736 seq->ccmp.pn[1] = pn64 >> 32;
737 seq->ccmp.pn[0] = pn64 >> 40;
738 break;
739 case WLAN_CIPHER_SUITE_AES_CMAC:
740 pn64 = atomic64_read(&key->u.aes_cmac.tx_pn);
741 seq->ccmp.pn[5] = pn64;
742 seq->ccmp.pn[4] = pn64 >> 8;
743 seq->ccmp.pn[3] = pn64 >> 16;
744 seq->ccmp.pn[2] = pn64 >> 24;
745 seq->ccmp.pn[1] = pn64 >> 32;
746 seq->ccmp.pn[0] = pn64 >> 40;
747 break;
748 default:
749 WARN_ON(1);
752 EXPORT_SYMBOL(ieee80211_get_key_tx_seq);
754 void ieee80211_get_key_rx_seq(struct ieee80211_key_conf *keyconf,
755 int tid, struct ieee80211_key_seq *seq)
757 struct ieee80211_key *key;
758 const u8 *pn;
760 key = container_of(keyconf, struct ieee80211_key, conf);
762 switch (key->conf.cipher) {
763 case WLAN_CIPHER_SUITE_TKIP:
764 if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
765 return;
766 seq->tkip.iv32 = key->u.tkip.rx[tid].iv32;
767 seq->tkip.iv16 = key->u.tkip.rx[tid].iv16;
768 break;
769 case WLAN_CIPHER_SUITE_CCMP:
770 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
771 return;
772 if (tid < 0)
773 pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
774 else
775 pn = key->u.ccmp.rx_pn[tid];
776 memcpy(seq->ccmp.pn, pn, IEEE80211_CCMP_PN_LEN);
777 break;
778 case WLAN_CIPHER_SUITE_AES_CMAC:
779 if (WARN_ON(tid != 0))
780 return;
781 pn = key->u.aes_cmac.rx_pn;
782 memcpy(seq->aes_cmac.pn, pn, IEEE80211_CMAC_PN_LEN);
783 break;
786 EXPORT_SYMBOL(ieee80211_get_key_rx_seq);
788 void ieee80211_set_key_tx_seq(struct ieee80211_key_conf *keyconf,
789 struct ieee80211_key_seq *seq)
791 struct ieee80211_key *key;
792 u64 pn64;
794 key = container_of(keyconf, struct ieee80211_key, conf);
796 switch (key->conf.cipher) {
797 case WLAN_CIPHER_SUITE_TKIP:
798 key->u.tkip.tx.iv32 = seq->tkip.iv32;
799 key->u.tkip.tx.iv16 = seq->tkip.iv16;
800 break;
801 case WLAN_CIPHER_SUITE_CCMP:
802 pn64 = (u64)seq->ccmp.pn[5] |
803 ((u64)seq->ccmp.pn[4] << 8) |
804 ((u64)seq->ccmp.pn[3] << 16) |
805 ((u64)seq->ccmp.pn[2] << 24) |
806 ((u64)seq->ccmp.pn[1] << 32) |
807 ((u64)seq->ccmp.pn[0] << 40);
808 atomic64_set(&key->u.ccmp.tx_pn, pn64);
809 break;
810 case WLAN_CIPHER_SUITE_AES_CMAC:
811 pn64 = (u64)seq->aes_cmac.pn[5] |
812 ((u64)seq->aes_cmac.pn[4] << 8) |
813 ((u64)seq->aes_cmac.pn[3] << 16) |
814 ((u64)seq->aes_cmac.pn[2] << 24) |
815 ((u64)seq->aes_cmac.pn[1] << 32) |
816 ((u64)seq->aes_cmac.pn[0] << 40);
817 atomic64_set(&key->u.aes_cmac.tx_pn, pn64);
818 break;
819 default:
820 WARN_ON(1);
821 break;
824 EXPORT_SYMBOL_GPL(ieee80211_set_key_tx_seq);
826 void ieee80211_set_key_rx_seq(struct ieee80211_key_conf *keyconf,
827 int tid, struct ieee80211_key_seq *seq)
829 struct ieee80211_key *key;
830 u8 *pn;
832 key = container_of(keyconf, struct ieee80211_key, conf);
834 switch (key->conf.cipher) {
835 case WLAN_CIPHER_SUITE_TKIP:
836 if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
837 return;
838 key->u.tkip.rx[tid].iv32 = seq->tkip.iv32;
839 key->u.tkip.rx[tid].iv16 = seq->tkip.iv16;
840 break;
841 case WLAN_CIPHER_SUITE_CCMP:
842 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
843 return;
844 if (tid < 0)
845 pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
846 else
847 pn = key->u.ccmp.rx_pn[tid];
848 memcpy(pn, seq->ccmp.pn, IEEE80211_CCMP_PN_LEN);
849 break;
850 case WLAN_CIPHER_SUITE_AES_CMAC:
851 if (WARN_ON(tid != 0))
852 return;
853 pn = key->u.aes_cmac.rx_pn;
854 memcpy(pn, seq->aes_cmac.pn, IEEE80211_CMAC_PN_LEN);
855 break;
856 default:
857 WARN_ON(1);
858 break;
861 EXPORT_SYMBOL_GPL(ieee80211_set_key_rx_seq);
863 void ieee80211_remove_key(struct ieee80211_key_conf *keyconf)
865 struct ieee80211_key *key;
867 key = container_of(keyconf, struct ieee80211_key, conf);
869 assert_key_lock(key->local);
872 * if key was uploaded, we assume the driver will/has remove(d)
873 * it, so adjust bookkeeping accordingly
875 if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) {
876 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
878 if (!(key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC))
879 increment_tailroom_need_count(key->sdata);
882 ieee80211_key_free(key, false);
884 EXPORT_SYMBOL_GPL(ieee80211_remove_key);
886 struct ieee80211_key_conf *
887 ieee80211_gtk_rekey_add(struct ieee80211_vif *vif,
888 struct ieee80211_key_conf *keyconf)
890 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
891 struct ieee80211_local *local = sdata->local;
892 struct ieee80211_key *key;
893 int err;
895 if (WARN_ON(!local->wowlan))
896 return ERR_PTR(-EINVAL);
898 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
899 return ERR_PTR(-EINVAL);
901 key = ieee80211_key_alloc(keyconf->cipher, keyconf->keyidx,
902 keyconf->keylen, keyconf->key,
903 0, NULL, NULL);
904 if (IS_ERR(key))
905 return ERR_CAST(key);
907 if (sdata->u.mgd.mfp != IEEE80211_MFP_DISABLED)
908 key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT;
910 err = ieee80211_key_link(key, sdata, NULL);
911 if (err)
912 return ERR_PTR(err);
914 return &key->conf;
916 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_add);