drm/i915: enable/disable backlight for eDP
[linux-2.6/btrfs-unstable.git] / drivers / gpu / drm / i915 / intel_dp.c
blobda526c9a9ceff268741daccce01a12351c5257e4
1 /*
2 * Copyright © 2008 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <drm/drmP.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_edid.h>
35 #include "intel_drv.h"
36 #include <drm/i915_drm.h>
37 #include "i915_drv.h"
39 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
41 /**
42 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
43 * @intel_dp: DP struct
45 * If a CPU or PCH DP output is attached to an eDP panel, this function
46 * will return true, and false otherwise.
48 static bool is_edp(struct intel_dp *intel_dp)
50 return intel_dp->base.type == INTEL_OUTPUT_EDP;
53 /**
54 * is_pch_edp - is the port on the PCH and attached to an eDP panel?
55 * @intel_dp: DP struct
57 * Returns true if the given DP struct corresponds to a PCH DP port attached
58 * to an eDP panel, false otherwise. Helpful for determining whether we
59 * may need FDI resources for a given DP output or not.
61 static bool is_pch_edp(struct intel_dp *intel_dp)
63 return intel_dp->is_pch_edp;
66 /**
67 * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
68 * @intel_dp: DP struct
70 * Returns true if the given DP struct corresponds to a CPU eDP port.
72 static bool is_cpu_edp(struct intel_dp *intel_dp)
74 return is_edp(intel_dp) && !is_pch_edp(intel_dp);
77 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
79 return container_of(intel_attached_encoder(connector),
80 struct intel_dp, base);
83 /**
84 * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
85 * @encoder: DRM encoder
87 * Return true if @encoder corresponds to a PCH attached eDP panel. Needed
88 * by intel_display.c.
90 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
92 struct intel_dp *intel_dp;
94 if (!encoder)
95 return false;
97 intel_dp = enc_to_intel_dp(encoder);
99 return is_pch_edp(intel_dp);
102 static void intel_dp_link_down(struct intel_dp *intel_dp);
104 void
105 intel_edp_link_config(struct intel_encoder *intel_encoder,
106 int *lane_num, int *link_bw)
108 struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
110 *lane_num = intel_dp->lane_count;
111 *link_bw = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
115 intel_edp_target_clock(struct intel_encoder *intel_encoder,
116 struct drm_display_mode *mode)
118 struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
119 struct intel_connector *intel_connector = intel_dp->attached_connector;
121 if (intel_connector->panel.fixed_mode)
122 return intel_connector->panel.fixed_mode->clock;
123 else
124 return mode->clock;
127 static int
128 intel_dp_max_link_bw(struct intel_dp *intel_dp)
130 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
132 switch (max_link_bw) {
133 case DP_LINK_BW_1_62:
134 case DP_LINK_BW_2_7:
135 break;
136 default:
137 max_link_bw = DP_LINK_BW_1_62;
138 break;
140 return max_link_bw;
143 static int
144 intel_dp_link_clock(uint8_t link_bw)
146 if (link_bw == DP_LINK_BW_2_7)
147 return 270000;
148 else
149 return 162000;
153 * The units on the numbers in the next two are... bizarre. Examples will
154 * make it clearer; this one parallels an example in the eDP spec.
156 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
158 * 270000 * 1 * 8 / 10 == 216000
160 * The actual data capacity of that configuration is 2.16Gbit/s, so the
161 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
162 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
163 * 119000. At 18bpp that's 2142000 kilobits per second.
165 * Thus the strange-looking division by 10 in intel_dp_link_required, to
166 * get the result in decakilobits instead of kilobits.
169 static int
170 intel_dp_link_required(int pixel_clock, int bpp)
172 return (pixel_clock * bpp + 9) / 10;
175 static int
176 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
178 return (max_link_clock * max_lanes * 8) / 10;
181 static bool
182 intel_dp_adjust_dithering(struct intel_dp *intel_dp,
183 struct drm_display_mode *mode,
184 bool adjust_mode)
186 int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
187 int max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
188 int max_rate, mode_rate;
190 mode_rate = intel_dp_link_required(mode->clock, 24);
191 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
193 if (mode_rate > max_rate) {
194 mode_rate = intel_dp_link_required(mode->clock, 18);
195 if (mode_rate > max_rate)
196 return false;
198 if (adjust_mode)
199 mode->private_flags
200 |= INTEL_MODE_DP_FORCE_6BPC;
202 return true;
205 return true;
208 static int
209 intel_dp_mode_valid(struct drm_connector *connector,
210 struct drm_display_mode *mode)
212 struct intel_dp *intel_dp = intel_attached_dp(connector);
213 struct intel_connector *intel_connector = to_intel_connector(connector);
214 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
216 if (is_edp(intel_dp) && fixed_mode) {
217 if (mode->hdisplay > fixed_mode->hdisplay)
218 return MODE_PANEL;
220 if (mode->vdisplay > fixed_mode->vdisplay)
221 return MODE_PANEL;
224 if (!intel_dp_adjust_dithering(intel_dp, mode, false))
225 return MODE_CLOCK_HIGH;
227 if (mode->clock < 10000)
228 return MODE_CLOCK_LOW;
230 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
231 return MODE_H_ILLEGAL;
233 return MODE_OK;
236 static uint32_t
237 pack_aux(uint8_t *src, int src_bytes)
239 int i;
240 uint32_t v = 0;
242 if (src_bytes > 4)
243 src_bytes = 4;
244 for (i = 0; i < src_bytes; i++)
245 v |= ((uint32_t) src[i]) << ((3-i) * 8);
246 return v;
249 static void
250 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
252 int i;
253 if (dst_bytes > 4)
254 dst_bytes = 4;
255 for (i = 0; i < dst_bytes; i++)
256 dst[i] = src >> ((3-i) * 8);
259 /* hrawclock is 1/4 the FSB frequency */
260 static int
261 intel_hrawclk(struct drm_device *dev)
263 struct drm_i915_private *dev_priv = dev->dev_private;
264 uint32_t clkcfg;
266 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
267 if (IS_VALLEYVIEW(dev))
268 return 200;
270 clkcfg = I915_READ(CLKCFG);
271 switch (clkcfg & CLKCFG_FSB_MASK) {
272 case CLKCFG_FSB_400:
273 return 100;
274 case CLKCFG_FSB_533:
275 return 133;
276 case CLKCFG_FSB_667:
277 return 166;
278 case CLKCFG_FSB_800:
279 return 200;
280 case CLKCFG_FSB_1067:
281 return 266;
282 case CLKCFG_FSB_1333:
283 return 333;
284 /* these two are just a guess; one of them might be right */
285 case CLKCFG_FSB_1600:
286 case CLKCFG_FSB_1600_ALT:
287 return 400;
288 default:
289 return 133;
293 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
295 struct drm_device *dev = intel_dp->base.base.dev;
296 struct drm_i915_private *dev_priv = dev->dev_private;
298 return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
301 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
303 struct drm_device *dev = intel_dp->base.base.dev;
304 struct drm_i915_private *dev_priv = dev->dev_private;
306 return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
309 static void
310 intel_dp_check_edp(struct intel_dp *intel_dp)
312 struct drm_device *dev = intel_dp->base.base.dev;
313 struct drm_i915_private *dev_priv = dev->dev_private;
315 if (!is_edp(intel_dp))
316 return;
317 if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
318 WARN(1, "eDP powered off while attempting aux channel communication.\n");
319 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
320 I915_READ(PCH_PP_STATUS),
321 I915_READ(PCH_PP_CONTROL));
325 static int
326 intel_dp_aux_ch(struct intel_dp *intel_dp,
327 uint8_t *send, int send_bytes,
328 uint8_t *recv, int recv_size)
330 uint32_t output_reg = intel_dp->output_reg;
331 struct drm_device *dev = intel_dp->base.base.dev;
332 struct drm_i915_private *dev_priv = dev->dev_private;
333 uint32_t ch_ctl = output_reg + 0x10;
334 uint32_t ch_data = ch_ctl + 4;
335 int i;
336 int recv_bytes;
337 uint32_t status;
338 uint32_t aux_clock_divider;
339 int try, precharge;
341 if (IS_HASWELL(dev)) {
342 switch (intel_dp->port) {
343 case PORT_A:
344 ch_ctl = DPA_AUX_CH_CTL;
345 ch_data = DPA_AUX_CH_DATA1;
346 break;
347 case PORT_B:
348 ch_ctl = PCH_DPB_AUX_CH_CTL;
349 ch_data = PCH_DPB_AUX_CH_DATA1;
350 break;
351 case PORT_C:
352 ch_ctl = PCH_DPC_AUX_CH_CTL;
353 ch_data = PCH_DPC_AUX_CH_DATA1;
354 break;
355 case PORT_D:
356 ch_ctl = PCH_DPD_AUX_CH_CTL;
357 ch_data = PCH_DPD_AUX_CH_DATA1;
358 break;
359 default:
360 BUG();
364 intel_dp_check_edp(intel_dp);
365 /* The clock divider is based off the hrawclk,
366 * and would like to run at 2MHz. So, take the
367 * hrawclk value and divide by 2 and use that
369 * Note that PCH attached eDP panels should use a 125MHz input
370 * clock divider.
372 if (is_cpu_edp(intel_dp)) {
373 if (IS_VALLEYVIEW(dev))
374 aux_clock_divider = 100;
375 else if (IS_GEN6(dev) || IS_GEN7(dev))
376 aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
377 else
378 aux_clock_divider = 225; /* eDP input clock at 450Mhz */
379 } else if (HAS_PCH_SPLIT(dev))
380 aux_clock_divider = 63; /* IRL input clock fixed at 125Mhz */
381 else
382 aux_clock_divider = intel_hrawclk(dev) / 2;
384 if (IS_GEN6(dev))
385 precharge = 3;
386 else
387 precharge = 5;
389 /* Try to wait for any previous AUX channel activity */
390 for (try = 0; try < 3; try++) {
391 status = I915_READ(ch_ctl);
392 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
393 break;
394 msleep(1);
397 if (try == 3) {
398 WARN(1, "dp_aux_ch not started status 0x%08x\n",
399 I915_READ(ch_ctl));
400 return -EBUSY;
403 /* Must try at least 3 times according to DP spec */
404 for (try = 0; try < 5; try++) {
405 /* Load the send data into the aux channel data registers */
406 for (i = 0; i < send_bytes; i += 4)
407 I915_WRITE(ch_data + i,
408 pack_aux(send + i, send_bytes - i));
410 /* Send the command and wait for it to complete */
411 I915_WRITE(ch_ctl,
412 DP_AUX_CH_CTL_SEND_BUSY |
413 DP_AUX_CH_CTL_TIME_OUT_400us |
414 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
415 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
416 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
417 DP_AUX_CH_CTL_DONE |
418 DP_AUX_CH_CTL_TIME_OUT_ERROR |
419 DP_AUX_CH_CTL_RECEIVE_ERROR);
420 for (;;) {
421 status = I915_READ(ch_ctl);
422 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
423 break;
424 udelay(100);
427 /* Clear done status and any errors */
428 I915_WRITE(ch_ctl,
429 status |
430 DP_AUX_CH_CTL_DONE |
431 DP_AUX_CH_CTL_TIME_OUT_ERROR |
432 DP_AUX_CH_CTL_RECEIVE_ERROR);
434 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
435 DP_AUX_CH_CTL_RECEIVE_ERROR))
436 continue;
437 if (status & DP_AUX_CH_CTL_DONE)
438 break;
441 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
442 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
443 return -EBUSY;
446 /* Check for timeout or receive error.
447 * Timeouts occur when the sink is not connected
449 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
450 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
451 return -EIO;
454 /* Timeouts occur when the device isn't connected, so they're
455 * "normal" -- don't fill the kernel log with these */
456 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
457 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
458 return -ETIMEDOUT;
461 /* Unload any bytes sent back from the other side */
462 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
463 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
464 if (recv_bytes > recv_size)
465 recv_bytes = recv_size;
467 for (i = 0; i < recv_bytes; i += 4)
468 unpack_aux(I915_READ(ch_data + i),
469 recv + i, recv_bytes - i);
471 return recv_bytes;
474 /* Write data to the aux channel in native mode */
475 static int
476 intel_dp_aux_native_write(struct intel_dp *intel_dp,
477 uint16_t address, uint8_t *send, int send_bytes)
479 int ret;
480 uint8_t msg[20];
481 int msg_bytes;
482 uint8_t ack;
484 intel_dp_check_edp(intel_dp);
485 if (send_bytes > 16)
486 return -1;
487 msg[0] = AUX_NATIVE_WRITE << 4;
488 msg[1] = address >> 8;
489 msg[2] = address & 0xff;
490 msg[3] = send_bytes - 1;
491 memcpy(&msg[4], send, send_bytes);
492 msg_bytes = send_bytes + 4;
493 for (;;) {
494 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
495 if (ret < 0)
496 return ret;
497 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
498 break;
499 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
500 udelay(100);
501 else
502 return -EIO;
504 return send_bytes;
507 /* Write a single byte to the aux channel in native mode */
508 static int
509 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
510 uint16_t address, uint8_t byte)
512 return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
515 /* read bytes from a native aux channel */
516 static int
517 intel_dp_aux_native_read(struct intel_dp *intel_dp,
518 uint16_t address, uint8_t *recv, int recv_bytes)
520 uint8_t msg[4];
521 int msg_bytes;
522 uint8_t reply[20];
523 int reply_bytes;
524 uint8_t ack;
525 int ret;
527 intel_dp_check_edp(intel_dp);
528 msg[0] = AUX_NATIVE_READ << 4;
529 msg[1] = address >> 8;
530 msg[2] = address & 0xff;
531 msg[3] = recv_bytes - 1;
533 msg_bytes = 4;
534 reply_bytes = recv_bytes + 1;
536 for (;;) {
537 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
538 reply, reply_bytes);
539 if (ret == 0)
540 return -EPROTO;
541 if (ret < 0)
542 return ret;
543 ack = reply[0];
544 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
545 memcpy(recv, reply + 1, ret - 1);
546 return ret - 1;
548 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
549 udelay(100);
550 else
551 return -EIO;
555 static int
556 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
557 uint8_t write_byte, uint8_t *read_byte)
559 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
560 struct intel_dp *intel_dp = container_of(adapter,
561 struct intel_dp,
562 adapter);
563 uint16_t address = algo_data->address;
564 uint8_t msg[5];
565 uint8_t reply[2];
566 unsigned retry;
567 int msg_bytes;
568 int reply_bytes;
569 int ret;
571 intel_dp_check_edp(intel_dp);
572 /* Set up the command byte */
573 if (mode & MODE_I2C_READ)
574 msg[0] = AUX_I2C_READ << 4;
575 else
576 msg[0] = AUX_I2C_WRITE << 4;
578 if (!(mode & MODE_I2C_STOP))
579 msg[0] |= AUX_I2C_MOT << 4;
581 msg[1] = address >> 8;
582 msg[2] = address;
584 switch (mode) {
585 case MODE_I2C_WRITE:
586 msg[3] = 0;
587 msg[4] = write_byte;
588 msg_bytes = 5;
589 reply_bytes = 1;
590 break;
591 case MODE_I2C_READ:
592 msg[3] = 0;
593 msg_bytes = 4;
594 reply_bytes = 2;
595 break;
596 default:
597 msg_bytes = 3;
598 reply_bytes = 1;
599 break;
602 for (retry = 0; retry < 5; retry++) {
603 ret = intel_dp_aux_ch(intel_dp,
604 msg, msg_bytes,
605 reply, reply_bytes);
606 if (ret < 0) {
607 DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
608 return ret;
611 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
612 case AUX_NATIVE_REPLY_ACK:
613 /* I2C-over-AUX Reply field is only valid
614 * when paired with AUX ACK.
616 break;
617 case AUX_NATIVE_REPLY_NACK:
618 DRM_DEBUG_KMS("aux_ch native nack\n");
619 return -EREMOTEIO;
620 case AUX_NATIVE_REPLY_DEFER:
621 udelay(100);
622 continue;
623 default:
624 DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
625 reply[0]);
626 return -EREMOTEIO;
629 switch (reply[0] & AUX_I2C_REPLY_MASK) {
630 case AUX_I2C_REPLY_ACK:
631 if (mode == MODE_I2C_READ) {
632 *read_byte = reply[1];
634 return reply_bytes - 1;
635 case AUX_I2C_REPLY_NACK:
636 DRM_DEBUG_KMS("aux_i2c nack\n");
637 return -EREMOTEIO;
638 case AUX_I2C_REPLY_DEFER:
639 DRM_DEBUG_KMS("aux_i2c defer\n");
640 udelay(100);
641 break;
642 default:
643 DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
644 return -EREMOTEIO;
648 DRM_ERROR("too many retries, giving up\n");
649 return -EREMOTEIO;
652 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
653 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
655 static int
656 intel_dp_i2c_init(struct intel_dp *intel_dp,
657 struct intel_connector *intel_connector, const char *name)
659 int ret;
661 DRM_DEBUG_KMS("i2c_init %s\n", name);
662 intel_dp->algo.running = false;
663 intel_dp->algo.address = 0;
664 intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
666 memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
667 intel_dp->adapter.owner = THIS_MODULE;
668 intel_dp->adapter.class = I2C_CLASS_DDC;
669 strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
670 intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
671 intel_dp->adapter.algo_data = &intel_dp->algo;
672 intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
674 ironlake_edp_panel_vdd_on(intel_dp);
675 ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
676 ironlake_edp_panel_vdd_off(intel_dp, false);
677 return ret;
680 static bool
681 intel_dp_mode_fixup(struct drm_encoder *encoder,
682 const struct drm_display_mode *mode,
683 struct drm_display_mode *adjusted_mode)
685 struct drm_device *dev = encoder->dev;
686 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
687 struct intel_connector *intel_connector = intel_dp->attached_connector;
688 int lane_count, clock;
689 int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
690 int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
691 int bpp, mode_rate;
692 static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
694 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
695 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
696 adjusted_mode);
697 intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
698 mode, adjusted_mode);
701 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
702 return false;
704 DRM_DEBUG_KMS("DP link computation with max lane count %i "
705 "max bw %02x pixel clock %iKHz\n",
706 max_lane_count, bws[max_clock], adjusted_mode->clock);
708 if (!intel_dp_adjust_dithering(intel_dp, adjusted_mode, true))
709 return false;
711 bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
712 mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
714 for (clock = 0; clock <= max_clock; clock++) {
715 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
716 int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
718 if (mode_rate <= link_avail) {
719 intel_dp->link_bw = bws[clock];
720 intel_dp->lane_count = lane_count;
721 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
722 DRM_DEBUG_KMS("DP link bw %02x lane "
723 "count %d clock %d bpp %d\n",
724 intel_dp->link_bw, intel_dp->lane_count,
725 adjusted_mode->clock, bpp);
726 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
727 mode_rate, link_avail);
728 return true;
733 return false;
736 struct intel_dp_m_n {
737 uint32_t tu;
738 uint32_t gmch_m;
739 uint32_t gmch_n;
740 uint32_t link_m;
741 uint32_t link_n;
744 static void
745 intel_reduce_ratio(uint32_t *num, uint32_t *den)
747 while (*num > 0xffffff || *den > 0xffffff) {
748 *num >>= 1;
749 *den >>= 1;
753 static void
754 intel_dp_compute_m_n(int bpp,
755 int nlanes,
756 int pixel_clock,
757 int link_clock,
758 struct intel_dp_m_n *m_n)
760 m_n->tu = 64;
761 m_n->gmch_m = (pixel_clock * bpp) >> 3;
762 m_n->gmch_n = link_clock * nlanes;
763 intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
764 m_n->link_m = pixel_clock;
765 m_n->link_n = link_clock;
766 intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
769 void
770 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
771 struct drm_display_mode *adjusted_mode)
773 struct drm_device *dev = crtc->dev;
774 struct intel_encoder *encoder;
775 struct drm_i915_private *dev_priv = dev->dev_private;
776 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
777 int lane_count = 4;
778 struct intel_dp_m_n m_n;
779 int pipe = intel_crtc->pipe;
782 * Find the lane count in the intel_encoder private
784 for_each_encoder_on_crtc(dev, crtc, encoder) {
785 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
787 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
788 intel_dp->base.type == INTEL_OUTPUT_EDP)
790 lane_count = intel_dp->lane_count;
791 break;
796 * Compute the GMCH and Link ratios. The '3' here is
797 * the number of bytes_per_pixel post-LUT, which we always
798 * set up for 8-bits of R/G/B, or 3 bytes total.
800 intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
801 mode->clock, adjusted_mode->clock, &m_n);
803 if (IS_HASWELL(dev)) {
804 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
805 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
806 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
807 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
808 } else if (HAS_PCH_SPLIT(dev)) {
809 I915_WRITE(TRANSDATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
810 I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
811 I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
812 I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
813 } else if (IS_VALLEYVIEW(dev)) {
814 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
815 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
816 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
817 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
818 } else {
819 I915_WRITE(PIPE_GMCH_DATA_M(pipe),
820 TU_SIZE(m_n.tu) | m_n.gmch_m);
821 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
822 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
823 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
827 void intel_dp_init_link_config(struct intel_dp *intel_dp)
829 memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
830 intel_dp->link_configuration[0] = intel_dp->link_bw;
831 intel_dp->link_configuration[1] = intel_dp->lane_count;
832 intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
834 * Check for DPCD version > 1.1 and enhanced framing support
836 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
837 (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
838 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
842 static void
843 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
844 struct drm_display_mode *adjusted_mode)
846 struct drm_device *dev = encoder->dev;
847 struct drm_i915_private *dev_priv = dev->dev_private;
848 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
849 struct drm_crtc *crtc = intel_dp->base.base.crtc;
850 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
853 * There are four kinds of DP registers:
855 * IBX PCH
856 * SNB CPU
857 * IVB CPU
858 * CPT PCH
860 * IBX PCH and CPU are the same for almost everything,
861 * except that the CPU DP PLL is configured in this
862 * register
864 * CPT PCH is quite different, having many bits moved
865 * to the TRANS_DP_CTL register instead. That
866 * configuration happens (oddly) in ironlake_pch_enable
869 /* Preserve the BIOS-computed detected bit. This is
870 * supposed to be read-only.
872 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
874 /* Handle DP bits in common between all three register formats */
875 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
877 switch (intel_dp->lane_count) {
878 case 1:
879 intel_dp->DP |= DP_PORT_WIDTH_1;
880 break;
881 case 2:
882 intel_dp->DP |= DP_PORT_WIDTH_2;
883 break;
884 case 4:
885 intel_dp->DP |= DP_PORT_WIDTH_4;
886 break;
888 if (intel_dp->has_audio) {
889 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
890 pipe_name(intel_crtc->pipe));
891 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
892 intel_write_eld(encoder, adjusted_mode);
895 intel_dp_init_link_config(intel_dp);
897 /* Split out the IBX/CPU vs CPT settings */
899 if (is_cpu_edp(intel_dp) && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
900 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
901 intel_dp->DP |= DP_SYNC_HS_HIGH;
902 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
903 intel_dp->DP |= DP_SYNC_VS_HIGH;
904 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
906 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
907 intel_dp->DP |= DP_ENHANCED_FRAMING;
909 intel_dp->DP |= intel_crtc->pipe << 29;
911 /* don't miss out required setting for eDP */
912 if (adjusted_mode->clock < 200000)
913 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
914 else
915 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
916 } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
917 intel_dp->DP |= intel_dp->color_range;
919 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
920 intel_dp->DP |= DP_SYNC_HS_HIGH;
921 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
922 intel_dp->DP |= DP_SYNC_VS_HIGH;
923 intel_dp->DP |= DP_LINK_TRAIN_OFF;
925 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
926 intel_dp->DP |= DP_ENHANCED_FRAMING;
928 if (intel_crtc->pipe == 1)
929 intel_dp->DP |= DP_PIPEB_SELECT;
931 if (is_cpu_edp(intel_dp)) {
932 /* don't miss out required setting for eDP */
933 if (adjusted_mode->clock < 200000)
934 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
935 else
936 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
938 } else {
939 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
943 #define IDLE_ON_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
944 #define IDLE_ON_VALUE (PP_ON | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
946 #define IDLE_OFF_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
947 #define IDLE_OFF_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
949 #define IDLE_CYCLE_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
950 #define IDLE_CYCLE_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
952 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
953 u32 mask,
954 u32 value)
956 struct drm_device *dev = intel_dp->base.base.dev;
957 struct drm_i915_private *dev_priv = dev->dev_private;
959 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
960 mask, value,
961 I915_READ(PCH_PP_STATUS),
962 I915_READ(PCH_PP_CONTROL));
964 if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
965 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
966 I915_READ(PCH_PP_STATUS),
967 I915_READ(PCH_PP_CONTROL));
971 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
973 DRM_DEBUG_KMS("Wait for panel power on\n");
974 ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
977 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
979 DRM_DEBUG_KMS("Wait for panel power off time\n");
980 ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
983 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
985 DRM_DEBUG_KMS("Wait for panel power cycle\n");
986 ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
990 /* Read the current pp_control value, unlocking the register if it
991 * is locked
994 static u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
996 u32 control = I915_READ(PCH_PP_CONTROL);
998 control &= ~PANEL_UNLOCK_MASK;
999 control |= PANEL_UNLOCK_REGS;
1000 return control;
1003 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
1005 struct drm_device *dev = intel_dp->base.base.dev;
1006 struct drm_i915_private *dev_priv = dev->dev_private;
1007 u32 pp;
1009 if (!is_edp(intel_dp))
1010 return;
1011 DRM_DEBUG_KMS("Turn eDP VDD on\n");
1013 WARN(intel_dp->want_panel_vdd,
1014 "eDP VDD already requested on\n");
1016 intel_dp->want_panel_vdd = true;
1018 if (ironlake_edp_have_panel_vdd(intel_dp)) {
1019 DRM_DEBUG_KMS("eDP VDD already on\n");
1020 return;
1023 if (!ironlake_edp_have_panel_power(intel_dp))
1024 ironlake_wait_panel_power_cycle(intel_dp);
1026 pp = ironlake_get_pp_control(dev_priv);
1027 pp |= EDP_FORCE_VDD;
1028 I915_WRITE(PCH_PP_CONTROL, pp);
1029 POSTING_READ(PCH_PP_CONTROL);
1030 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1031 I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1034 * If the panel wasn't on, delay before accessing aux channel
1036 if (!ironlake_edp_have_panel_power(intel_dp)) {
1037 DRM_DEBUG_KMS("eDP was not running\n");
1038 msleep(intel_dp->panel_power_up_delay);
1042 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1044 struct drm_device *dev = intel_dp->base.base.dev;
1045 struct drm_i915_private *dev_priv = dev->dev_private;
1046 u32 pp;
1048 if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1049 pp = ironlake_get_pp_control(dev_priv);
1050 pp &= ~EDP_FORCE_VDD;
1051 I915_WRITE(PCH_PP_CONTROL, pp);
1052 POSTING_READ(PCH_PP_CONTROL);
1054 /* Make sure sequencer is idle before allowing subsequent activity */
1055 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1056 I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1058 msleep(intel_dp->panel_power_down_delay);
1062 static void ironlake_panel_vdd_work(struct work_struct *__work)
1064 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1065 struct intel_dp, panel_vdd_work);
1066 struct drm_device *dev = intel_dp->base.base.dev;
1068 mutex_lock(&dev->mode_config.mutex);
1069 ironlake_panel_vdd_off_sync(intel_dp);
1070 mutex_unlock(&dev->mode_config.mutex);
1073 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1075 if (!is_edp(intel_dp))
1076 return;
1078 DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1079 WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1081 intel_dp->want_panel_vdd = false;
1083 if (sync) {
1084 ironlake_panel_vdd_off_sync(intel_dp);
1085 } else {
1087 * Queue the timer to fire a long
1088 * time from now (relative to the power down delay)
1089 * to keep the panel power up across a sequence of operations
1091 schedule_delayed_work(&intel_dp->panel_vdd_work,
1092 msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1096 static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1098 struct drm_device *dev = intel_dp->base.base.dev;
1099 struct drm_i915_private *dev_priv = dev->dev_private;
1100 u32 pp;
1102 if (!is_edp(intel_dp))
1103 return;
1105 DRM_DEBUG_KMS("Turn eDP power on\n");
1107 if (ironlake_edp_have_panel_power(intel_dp)) {
1108 DRM_DEBUG_KMS("eDP power already on\n");
1109 return;
1112 ironlake_wait_panel_power_cycle(intel_dp);
1114 pp = ironlake_get_pp_control(dev_priv);
1115 if (IS_GEN5(dev)) {
1116 /* ILK workaround: disable reset around power sequence */
1117 pp &= ~PANEL_POWER_RESET;
1118 I915_WRITE(PCH_PP_CONTROL, pp);
1119 POSTING_READ(PCH_PP_CONTROL);
1122 pp |= POWER_TARGET_ON;
1123 if (!IS_GEN5(dev))
1124 pp |= PANEL_POWER_RESET;
1126 I915_WRITE(PCH_PP_CONTROL, pp);
1127 POSTING_READ(PCH_PP_CONTROL);
1129 ironlake_wait_panel_on(intel_dp);
1131 if (IS_GEN5(dev)) {
1132 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1133 I915_WRITE(PCH_PP_CONTROL, pp);
1134 POSTING_READ(PCH_PP_CONTROL);
1138 static void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1140 struct drm_device *dev = intel_dp->base.base.dev;
1141 struct drm_i915_private *dev_priv = dev->dev_private;
1142 u32 pp;
1144 if (!is_edp(intel_dp))
1145 return;
1147 DRM_DEBUG_KMS("Turn eDP power off\n");
1149 WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1151 pp = ironlake_get_pp_control(dev_priv);
1152 /* We need to switch off panel power _and_ force vdd, for otherwise some
1153 * panels get very unhappy and cease to work. */
1154 pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1155 I915_WRITE(PCH_PP_CONTROL, pp);
1156 POSTING_READ(PCH_PP_CONTROL);
1158 intel_dp->want_panel_vdd = false;
1160 ironlake_wait_panel_off(intel_dp);
1163 static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1165 struct drm_device *dev = intel_dp->base.base.dev;
1166 struct drm_i915_private *dev_priv = dev->dev_private;
1167 int pipe = to_intel_crtc(intel_dp->base.base.crtc)->pipe;
1168 u32 pp;
1170 if (!is_edp(intel_dp))
1171 return;
1173 DRM_DEBUG_KMS("\n");
1175 * If we enable the backlight right away following a panel power
1176 * on, we may see slight flicker as the panel syncs with the eDP
1177 * link. So delay a bit to make sure the image is solid before
1178 * allowing it to appear.
1180 msleep(intel_dp->backlight_on_delay);
1181 pp = ironlake_get_pp_control(dev_priv);
1182 pp |= EDP_BLC_ENABLE;
1183 I915_WRITE(PCH_PP_CONTROL, pp);
1184 POSTING_READ(PCH_PP_CONTROL);
1186 intel_panel_enable_backlight(dev, pipe);
1189 static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1191 struct drm_device *dev = intel_dp->base.base.dev;
1192 struct drm_i915_private *dev_priv = dev->dev_private;
1193 u32 pp;
1195 if (!is_edp(intel_dp))
1196 return;
1198 intel_panel_disable_backlight(dev);
1200 DRM_DEBUG_KMS("\n");
1201 pp = ironlake_get_pp_control(dev_priv);
1202 pp &= ~EDP_BLC_ENABLE;
1203 I915_WRITE(PCH_PP_CONTROL, pp);
1204 POSTING_READ(PCH_PP_CONTROL);
1205 msleep(intel_dp->backlight_off_delay);
1208 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1210 struct drm_device *dev = intel_dp->base.base.dev;
1211 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1212 struct drm_i915_private *dev_priv = dev->dev_private;
1213 u32 dpa_ctl;
1215 assert_pipe_disabled(dev_priv,
1216 to_intel_crtc(crtc)->pipe);
1218 DRM_DEBUG_KMS("\n");
1219 dpa_ctl = I915_READ(DP_A);
1220 WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1221 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1223 /* We don't adjust intel_dp->DP while tearing down the link, to
1224 * facilitate link retraining (e.g. after hotplug). Hence clear all
1225 * enable bits here to ensure that we don't enable too much. */
1226 intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1227 intel_dp->DP |= DP_PLL_ENABLE;
1228 I915_WRITE(DP_A, intel_dp->DP);
1229 POSTING_READ(DP_A);
1230 udelay(200);
1233 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1235 struct drm_device *dev = intel_dp->base.base.dev;
1236 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1237 struct drm_i915_private *dev_priv = dev->dev_private;
1238 u32 dpa_ctl;
1240 assert_pipe_disabled(dev_priv,
1241 to_intel_crtc(crtc)->pipe);
1243 dpa_ctl = I915_READ(DP_A);
1244 WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1245 "dp pll off, should be on\n");
1246 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1248 /* We can't rely on the value tracked for the DP register in
1249 * intel_dp->DP because link_down must not change that (otherwise link
1250 * re-training will fail. */
1251 dpa_ctl &= ~DP_PLL_ENABLE;
1252 I915_WRITE(DP_A, dpa_ctl);
1253 POSTING_READ(DP_A);
1254 udelay(200);
1257 /* If the sink supports it, try to set the power state appropriately */
1258 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1260 int ret, i;
1262 /* Should have a valid DPCD by this point */
1263 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1264 return;
1266 if (mode != DRM_MODE_DPMS_ON) {
1267 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1268 DP_SET_POWER_D3);
1269 if (ret != 1)
1270 DRM_DEBUG_DRIVER("failed to write sink power state\n");
1271 } else {
1273 * When turning on, we need to retry for 1ms to give the sink
1274 * time to wake up.
1276 for (i = 0; i < 3; i++) {
1277 ret = intel_dp_aux_native_write_1(intel_dp,
1278 DP_SET_POWER,
1279 DP_SET_POWER_D0);
1280 if (ret == 1)
1281 break;
1282 msleep(1);
1287 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1288 enum pipe *pipe)
1290 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1291 struct drm_device *dev = encoder->base.dev;
1292 struct drm_i915_private *dev_priv = dev->dev_private;
1293 u32 tmp = I915_READ(intel_dp->output_reg);
1295 if (!(tmp & DP_PORT_EN))
1296 return false;
1298 if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
1299 *pipe = PORT_TO_PIPE_CPT(tmp);
1300 } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
1301 *pipe = PORT_TO_PIPE(tmp);
1302 } else {
1303 u32 trans_sel;
1304 u32 trans_dp;
1305 int i;
1307 switch (intel_dp->output_reg) {
1308 case PCH_DP_B:
1309 trans_sel = TRANS_DP_PORT_SEL_B;
1310 break;
1311 case PCH_DP_C:
1312 trans_sel = TRANS_DP_PORT_SEL_C;
1313 break;
1314 case PCH_DP_D:
1315 trans_sel = TRANS_DP_PORT_SEL_D;
1316 break;
1317 default:
1318 return true;
1321 for_each_pipe(i) {
1322 trans_dp = I915_READ(TRANS_DP_CTL(i));
1323 if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1324 *pipe = i;
1325 return true;
1330 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n", intel_dp->output_reg);
1332 return true;
1335 static void intel_disable_dp(struct intel_encoder *encoder)
1337 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1339 /* Make sure the panel is off before trying to change the mode. But also
1340 * ensure that we have vdd while we switch off the panel. */
1341 ironlake_edp_panel_vdd_on(intel_dp);
1342 ironlake_edp_backlight_off(intel_dp);
1343 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1344 ironlake_edp_panel_off(intel_dp);
1346 /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1347 if (!is_cpu_edp(intel_dp))
1348 intel_dp_link_down(intel_dp);
1351 static void intel_post_disable_dp(struct intel_encoder *encoder)
1353 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1355 if (is_cpu_edp(intel_dp)) {
1356 intel_dp_link_down(intel_dp);
1357 ironlake_edp_pll_off(intel_dp);
1361 static void intel_enable_dp(struct intel_encoder *encoder)
1363 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1364 struct drm_device *dev = encoder->base.dev;
1365 struct drm_i915_private *dev_priv = dev->dev_private;
1366 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1368 if (WARN_ON(dp_reg & DP_PORT_EN))
1369 return;
1371 ironlake_edp_panel_vdd_on(intel_dp);
1372 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1373 intel_dp_start_link_train(intel_dp);
1374 ironlake_edp_panel_on(intel_dp);
1375 ironlake_edp_panel_vdd_off(intel_dp, true);
1376 intel_dp_complete_link_train(intel_dp);
1377 ironlake_edp_backlight_on(intel_dp);
1380 static void intel_pre_enable_dp(struct intel_encoder *encoder)
1382 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1384 if (is_cpu_edp(intel_dp))
1385 ironlake_edp_pll_on(intel_dp);
1389 * Native read with retry for link status and receiver capability reads for
1390 * cases where the sink may still be asleep.
1392 static bool
1393 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1394 uint8_t *recv, int recv_bytes)
1396 int ret, i;
1399 * Sinks are *supposed* to come up within 1ms from an off state,
1400 * but we're also supposed to retry 3 times per the spec.
1402 for (i = 0; i < 3; i++) {
1403 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1404 recv_bytes);
1405 if (ret == recv_bytes)
1406 return true;
1407 msleep(1);
1410 return false;
1414 * Fetch AUX CH registers 0x202 - 0x207 which contain
1415 * link status information
1417 static bool
1418 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1420 return intel_dp_aux_native_read_retry(intel_dp,
1421 DP_LANE0_1_STATUS,
1422 link_status,
1423 DP_LINK_STATUS_SIZE);
1426 #if 0
1427 static char *voltage_names[] = {
1428 "0.4V", "0.6V", "0.8V", "1.2V"
1430 static char *pre_emph_names[] = {
1431 "0dB", "3.5dB", "6dB", "9.5dB"
1433 static char *link_train_names[] = {
1434 "pattern 1", "pattern 2", "idle", "off"
1436 #endif
1439 * These are source-specific values; current Intel hardware supports
1440 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1443 static uint8_t
1444 intel_dp_voltage_max(struct intel_dp *intel_dp)
1446 struct drm_device *dev = intel_dp->base.base.dev;
1448 if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1449 return DP_TRAIN_VOLTAGE_SWING_800;
1450 else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1451 return DP_TRAIN_VOLTAGE_SWING_1200;
1452 else
1453 return DP_TRAIN_VOLTAGE_SWING_800;
1456 static uint8_t
1457 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1459 struct drm_device *dev = intel_dp->base.base.dev;
1461 if (IS_HASWELL(dev)) {
1462 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1463 case DP_TRAIN_VOLTAGE_SWING_400:
1464 return DP_TRAIN_PRE_EMPHASIS_9_5;
1465 case DP_TRAIN_VOLTAGE_SWING_600:
1466 return DP_TRAIN_PRE_EMPHASIS_6;
1467 case DP_TRAIN_VOLTAGE_SWING_800:
1468 return DP_TRAIN_PRE_EMPHASIS_3_5;
1469 case DP_TRAIN_VOLTAGE_SWING_1200:
1470 default:
1471 return DP_TRAIN_PRE_EMPHASIS_0;
1473 } else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1474 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1475 case DP_TRAIN_VOLTAGE_SWING_400:
1476 return DP_TRAIN_PRE_EMPHASIS_6;
1477 case DP_TRAIN_VOLTAGE_SWING_600:
1478 case DP_TRAIN_VOLTAGE_SWING_800:
1479 return DP_TRAIN_PRE_EMPHASIS_3_5;
1480 default:
1481 return DP_TRAIN_PRE_EMPHASIS_0;
1483 } else {
1484 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1485 case DP_TRAIN_VOLTAGE_SWING_400:
1486 return DP_TRAIN_PRE_EMPHASIS_6;
1487 case DP_TRAIN_VOLTAGE_SWING_600:
1488 return DP_TRAIN_PRE_EMPHASIS_6;
1489 case DP_TRAIN_VOLTAGE_SWING_800:
1490 return DP_TRAIN_PRE_EMPHASIS_3_5;
1491 case DP_TRAIN_VOLTAGE_SWING_1200:
1492 default:
1493 return DP_TRAIN_PRE_EMPHASIS_0;
1498 static void
1499 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1501 uint8_t v = 0;
1502 uint8_t p = 0;
1503 int lane;
1504 uint8_t voltage_max;
1505 uint8_t preemph_max;
1507 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1508 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
1509 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
1511 if (this_v > v)
1512 v = this_v;
1513 if (this_p > p)
1514 p = this_p;
1517 voltage_max = intel_dp_voltage_max(intel_dp);
1518 if (v >= voltage_max)
1519 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1521 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1522 if (p >= preemph_max)
1523 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1525 for (lane = 0; lane < 4; lane++)
1526 intel_dp->train_set[lane] = v | p;
1529 static uint32_t
1530 intel_dp_signal_levels(uint8_t train_set)
1532 uint32_t signal_levels = 0;
1534 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1535 case DP_TRAIN_VOLTAGE_SWING_400:
1536 default:
1537 signal_levels |= DP_VOLTAGE_0_4;
1538 break;
1539 case DP_TRAIN_VOLTAGE_SWING_600:
1540 signal_levels |= DP_VOLTAGE_0_6;
1541 break;
1542 case DP_TRAIN_VOLTAGE_SWING_800:
1543 signal_levels |= DP_VOLTAGE_0_8;
1544 break;
1545 case DP_TRAIN_VOLTAGE_SWING_1200:
1546 signal_levels |= DP_VOLTAGE_1_2;
1547 break;
1549 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1550 case DP_TRAIN_PRE_EMPHASIS_0:
1551 default:
1552 signal_levels |= DP_PRE_EMPHASIS_0;
1553 break;
1554 case DP_TRAIN_PRE_EMPHASIS_3_5:
1555 signal_levels |= DP_PRE_EMPHASIS_3_5;
1556 break;
1557 case DP_TRAIN_PRE_EMPHASIS_6:
1558 signal_levels |= DP_PRE_EMPHASIS_6;
1559 break;
1560 case DP_TRAIN_PRE_EMPHASIS_9_5:
1561 signal_levels |= DP_PRE_EMPHASIS_9_5;
1562 break;
1564 return signal_levels;
1567 /* Gen6's DP voltage swing and pre-emphasis control */
1568 static uint32_t
1569 intel_gen6_edp_signal_levels(uint8_t train_set)
1571 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1572 DP_TRAIN_PRE_EMPHASIS_MASK);
1573 switch (signal_levels) {
1574 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1575 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1576 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1577 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1578 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1579 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1580 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1581 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1582 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1583 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1584 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1585 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1586 case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1587 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1588 default:
1589 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1590 "0x%x\n", signal_levels);
1591 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1595 /* Gen7's DP voltage swing and pre-emphasis control */
1596 static uint32_t
1597 intel_gen7_edp_signal_levels(uint8_t train_set)
1599 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1600 DP_TRAIN_PRE_EMPHASIS_MASK);
1601 switch (signal_levels) {
1602 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1603 return EDP_LINK_TRAIN_400MV_0DB_IVB;
1604 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1605 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1606 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1607 return EDP_LINK_TRAIN_400MV_6DB_IVB;
1609 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1610 return EDP_LINK_TRAIN_600MV_0DB_IVB;
1611 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1612 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1614 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1615 return EDP_LINK_TRAIN_800MV_0DB_IVB;
1616 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1617 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1619 default:
1620 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1621 "0x%x\n", signal_levels);
1622 return EDP_LINK_TRAIN_500MV_0DB_IVB;
1626 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
1627 static uint32_t
1628 intel_dp_signal_levels_hsw(uint8_t train_set)
1630 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1631 DP_TRAIN_PRE_EMPHASIS_MASK);
1632 switch (signal_levels) {
1633 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1634 return DDI_BUF_EMP_400MV_0DB_HSW;
1635 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1636 return DDI_BUF_EMP_400MV_3_5DB_HSW;
1637 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1638 return DDI_BUF_EMP_400MV_6DB_HSW;
1639 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
1640 return DDI_BUF_EMP_400MV_9_5DB_HSW;
1642 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1643 return DDI_BUF_EMP_600MV_0DB_HSW;
1644 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1645 return DDI_BUF_EMP_600MV_3_5DB_HSW;
1646 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1647 return DDI_BUF_EMP_600MV_6DB_HSW;
1649 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1650 return DDI_BUF_EMP_800MV_0DB_HSW;
1651 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1652 return DDI_BUF_EMP_800MV_3_5DB_HSW;
1653 default:
1654 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1655 "0x%x\n", signal_levels);
1656 return DDI_BUF_EMP_400MV_0DB_HSW;
1660 static bool
1661 intel_dp_set_link_train(struct intel_dp *intel_dp,
1662 uint32_t dp_reg_value,
1663 uint8_t dp_train_pat)
1665 struct drm_device *dev = intel_dp->base.base.dev;
1666 struct drm_i915_private *dev_priv = dev->dev_private;
1667 int ret;
1668 uint32_t temp;
1670 if (IS_HASWELL(dev)) {
1671 temp = I915_READ(DP_TP_CTL(intel_dp->port));
1673 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
1674 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
1675 else
1676 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
1678 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
1679 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1680 case DP_TRAINING_PATTERN_DISABLE:
1681 temp |= DP_TP_CTL_LINK_TRAIN_IDLE;
1682 I915_WRITE(DP_TP_CTL(intel_dp->port), temp);
1684 if (wait_for((I915_READ(DP_TP_STATUS(intel_dp->port)) &
1685 DP_TP_STATUS_IDLE_DONE), 1))
1686 DRM_ERROR("Timed out waiting for DP idle patterns\n");
1688 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
1689 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
1691 break;
1692 case DP_TRAINING_PATTERN_1:
1693 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
1694 break;
1695 case DP_TRAINING_PATTERN_2:
1696 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
1697 break;
1698 case DP_TRAINING_PATTERN_3:
1699 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
1700 break;
1702 I915_WRITE(DP_TP_CTL(intel_dp->port), temp);
1704 } else if (HAS_PCH_CPT(dev) &&
1705 (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1706 dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
1708 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1709 case DP_TRAINING_PATTERN_DISABLE:
1710 dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
1711 break;
1712 case DP_TRAINING_PATTERN_1:
1713 dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
1714 break;
1715 case DP_TRAINING_PATTERN_2:
1716 dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1717 break;
1718 case DP_TRAINING_PATTERN_3:
1719 DRM_ERROR("DP training pattern 3 not supported\n");
1720 dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1721 break;
1724 } else {
1725 dp_reg_value &= ~DP_LINK_TRAIN_MASK;
1727 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1728 case DP_TRAINING_PATTERN_DISABLE:
1729 dp_reg_value |= DP_LINK_TRAIN_OFF;
1730 break;
1731 case DP_TRAINING_PATTERN_1:
1732 dp_reg_value |= DP_LINK_TRAIN_PAT_1;
1733 break;
1734 case DP_TRAINING_PATTERN_2:
1735 dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1736 break;
1737 case DP_TRAINING_PATTERN_3:
1738 DRM_ERROR("DP training pattern 3 not supported\n");
1739 dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1740 break;
1744 I915_WRITE(intel_dp->output_reg, dp_reg_value);
1745 POSTING_READ(intel_dp->output_reg);
1747 intel_dp_aux_native_write_1(intel_dp,
1748 DP_TRAINING_PATTERN_SET,
1749 dp_train_pat);
1751 if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
1752 DP_TRAINING_PATTERN_DISABLE) {
1753 ret = intel_dp_aux_native_write(intel_dp,
1754 DP_TRAINING_LANE0_SET,
1755 intel_dp->train_set,
1756 intel_dp->lane_count);
1757 if (ret != intel_dp->lane_count)
1758 return false;
1761 return true;
1764 /* Enable corresponding port and start training pattern 1 */
1765 void
1766 intel_dp_start_link_train(struct intel_dp *intel_dp)
1768 struct drm_encoder *encoder = &intel_dp->base.base;
1769 struct drm_device *dev = encoder->dev;
1770 int i;
1771 uint8_t voltage;
1772 bool clock_recovery = false;
1773 int voltage_tries, loop_tries;
1774 uint32_t DP = intel_dp->DP;
1776 if (IS_HASWELL(dev))
1777 intel_ddi_prepare_link_retrain(encoder);
1779 /* Write the link configuration data */
1780 intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1781 intel_dp->link_configuration,
1782 DP_LINK_CONFIGURATION_SIZE);
1784 DP |= DP_PORT_EN;
1786 memset(intel_dp->train_set, 0, 4);
1787 voltage = 0xff;
1788 voltage_tries = 0;
1789 loop_tries = 0;
1790 clock_recovery = false;
1791 for (;;) {
1792 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1793 uint8_t link_status[DP_LINK_STATUS_SIZE];
1794 uint32_t signal_levels;
1796 if (IS_HASWELL(dev)) {
1797 signal_levels = intel_dp_signal_levels_hsw(
1798 intel_dp->train_set[0]);
1799 DP = (DP & ~DDI_BUF_EMP_MASK) | signal_levels;
1800 } else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1801 signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1802 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1803 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1804 signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1805 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1806 } else {
1807 signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1808 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1810 DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n",
1811 signal_levels);
1813 /* Set training pattern 1 */
1814 if (!intel_dp_set_link_train(intel_dp, DP,
1815 DP_TRAINING_PATTERN_1 |
1816 DP_LINK_SCRAMBLING_DISABLE))
1817 break;
1819 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
1820 if (!intel_dp_get_link_status(intel_dp, link_status)) {
1821 DRM_ERROR("failed to get link status\n");
1822 break;
1825 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1826 DRM_DEBUG_KMS("clock recovery OK\n");
1827 clock_recovery = true;
1828 break;
1831 /* Check to see if we've tried the max voltage */
1832 for (i = 0; i < intel_dp->lane_count; i++)
1833 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1834 break;
1835 if (i == intel_dp->lane_count && voltage_tries == 5) {
1836 if (++loop_tries == 5) {
1837 DRM_DEBUG_KMS("too many full retries, give up\n");
1838 break;
1840 memset(intel_dp->train_set, 0, 4);
1841 voltage_tries = 0;
1842 continue;
1845 /* Check to see if we've tried the same voltage 5 times */
1846 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) != voltage) {
1847 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1848 voltage_tries = 0;
1849 } else
1850 ++voltage_tries;
1852 /* Compute new intel_dp->train_set as requested by target */
1853 intel_get_adjust_train(intel_dp, link_status);
1856 intel_dp->DP = DP;
1859 void
1860 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1862 struct drm_device *dev = intel_dp->base.base.dev;
1863 bool channel_eq = false;
1864 int tries, cr_tries;
1865 uint32_t DP = intel_dp->DP;
1867 /* channel equalization */
1868 tries = 0;
1869 cr_tries = 0;
1870 channel_eq = false;
1871 for (;;) {
1872 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1873 uint32_t signal_levels;
1874 uint8_t link_status[DP_LINK_STATUS_SIZE];
1876 if (cr_tries > 5) {
1877 DRM_ERROR("failed to train DP, aborting\n");
1878 intel_dp_link_down(intel_dp);
1879 break;
1882 if (IS_HASWELL(dev)) {
1883 signal_levels = intel_dp_signal_levels_hsw(intel_dp->train_set[0]);
1884 DP = (DP & ~DDI_BUF_EMP_MASK) | signal_levels;
1885 } else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1886 signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1887 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1888 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1889 signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1890 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1891 } else {
1892 signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1893 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1896 /* channel eq pattern */
1897 if (!intel_dp_set_link_train(intel_dp, DP,
1898 DP_TRAINING_PATTERN_2 |
1899 DP_LINK_SCRAMBLING_DISABLE))
1900 break;
1902 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
1903 if (!intel_dp_get_link_status(intel_dp, link_status))
1904 break;
1906 /* Make sure clock is still ok */
1907 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1908 intel_dp_start_link_train(intel_dp);
1909 cr_tries++;
1910 continue;
1913 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
1914 channel_eq = true;
1915 break;
1918 /* Try 5 times, then try clock recovery if that fails */
1919 if (tries > 5) {
1920 intel_dp_link_down(intel_dp);
1921 intel_dp_start_link_train(intel_dp);
1922 tries = 0;
1923 cr_tries++;
1924 continue;
1927 /* Compute new intel_dp->train_set as requested by target */
1928 intel_get_adjust_train(intel_dp, link_status);
1929 ++tries;
1932 if (channel_eq)
1933 DRM_DEBUG_KMS("Channel EQ done. DP Training successfull\n");
1935 intel_dp_set_link_train(intel_dp, DP, DP_TRAINING_PATTERN_DISABLE);
1938 static void
1939 intel_dp_link_down(struct intel_dp *intel_dp)
1941 struct drm_device *dev = intel_dp->base.base.dev;
1942 struct drm_i915_private *dev_priv = dev->dev_private;
1943 uint32_t DP = intel_dp->DP;
1946 * DDI code has a strict mode set sequence and we should try to respect
1947 * it, otherwise we might hang the machine in many different ways. So we
1948 * really should be disabling the port only on a complete crtc_disable
1949 * sequence. This function is just called under two conditions on DDI
1950 * code:
1951 * - Link train failed while doing crtc_enable, and on this case we
1952 * really should respect the mode set sequence and wait for a
1953 * crtc_disable.
1954 * - Someone turned the monitor off and intel_dp_check_link_status
1955 * called us. We don't need to disable the whole port on this case, so
1956 * when someone turns the monitor on again,
1957 * intel_ddi_prepare_link_retrain will take care of redoing the link
1958 * train.
1960 if (IS_HASWELL(dev))
1961 return;
1963 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
1964 return;
1966 DRM_DEBUG_KMS("\n");
1968 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1969 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1970 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1971 } else {
1972 DP &= ~DP_LINK_TRAIN_MASK;
1973 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1975 POSTING_READ(intel_dp->output_reg);
1977 msleep(17);
1979 if (HAS_PCH_IBX(dev) &&
1980 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1981 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1983 /* Hardware workaround: leaving our transcoder select
1984 * set to transcoder B while it's off will prevent the
1985 * corresponding HDMI output on transcoder A.
1987 * Combine this with another hardware workaround:
1988 * transcoder select bit can only be cleared while the
1989 * port is enabled.
1991 DP &= ~DP_PIPEB_SELECT;
1992 I915_WRITE(intel_dp->output_reg, DP);
1994 /* Changes to enable or select take place the vblank
1995 * after being written.
1997 if (crtc == NULL) {
1998 /* We can arrive here never having been attached
1999 * to a CRTC, for instance, due to inheriting
2000 * random state from the BIOS.
2002 * If the pipe is not running, play safe and
2003 * wait for the clocks to stabilise before
2004 * continuing.
2006 POSTING_READ(intel_dp->output_reg);
2007 msleep(50);
2008 } else
2009 intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
2012 DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2013 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2014 POSTING_READ(intel_dp->output_reg);
2015 msleep(intel_dp->panel_power_down_delay);
2018 static bool
2019 intel_dp_get_dpcd(struct intel_dp *intel_dp)
2021 if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
2022 sizeof(intel_dp->dpcd)) == 0)
2023 return false; /* aux transfer failed */
2025 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2026 return false; /* DPCD not present */
2028 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2029 DP_DWN_STRM_PORT_PRESENT))
2030 return true; /* native DP sink */
2032 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2033 return true; /* no per-port downstream info */
2035 if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
2036 intel_dp->downstream_ports,
2037 DP_MAX_DOWNSTREAM_PORTS) == 0)
2038 return false; /* downstream port status fetch failed */
2040 return true;
2043 static void
2044 intel_dp_probe_oui(struct intel_dp *intel_dp)
2046 u8 buf[3];
2048 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2049 return;
2051 ironlake_edp_panel_vdd_on(intel_dp);
2053 if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
2054 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2055 buf[0], buf[1], buf[2]);
2057 if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2058 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2059 buf[0], buf[1], buf[2]);
2061 ironlake_edp_panel_vdd_off(intel_dp, false);
2064 static bool
2065 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2067 int ret;
2069 ret = intel_dp_aux_native_read_retry(intel_dp,
2070 DP_DEVICE_SERVICE_IRQ_VECTOR,
2071 sink_irq_vector, 1);
2072 if (!ret)
2073 return false;
2075 return true;
2078 static void
2079 intel_dp_handle_test_request(struct intel_dp *intel_dp)
2081 /* NAK by default */
2082 intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
2086 * According to DP spec
2087 * 5.1.2:
2088 * 1. Read DPCD
2089 * 2. Configure link according to Receiver Capabilities
2090 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
2091 * 4. Check link status on receipt of hot-plug interrupt
2094 static void
2095 intel_dp_check_link_status(struct intel_dp *intel_dp)
2097 u8 sink_irq_vector;
2098 u8 link_status[DP_LINK_STATUS_SIZE];
2100 if (!intel_dp->base.connectors_active)
2101 return;
2103 if (WARN_ON(!intel_dp->base.base.crtc))
2104 return;
2106 /* Try to read receiver status if the link appears to be up */
2107 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2108 intel_dp_link_down(intel_dp);
2109 return;
2112 /* Now read the DPCD to see if it's actually running */
2113 if (!intel_dp_get_dpcd(intel_dp)) {
2114 intel_dp_link_down(intel_dp);
2115 return;
2118 /* Try to read the source of the interrupt */
2119 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2120 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2121 /* Clear interrupt source */
2122 intel_dp_aux_native_write_1(intel_dp,
2123 DP_DEVICE_SERVICE_IRQ_VECTOR,
2124 sink_irq_vector);
2126 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2127 intel_dp_handle_test_request(intel_dp);
2128 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2129 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2132 if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2133 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2134 drm_get_encoder_name(&intel_dp->base.base));
2135 intel_dp_start_link_train(intel_dp);
2136 intel_dp_complete_link_train(intel_dp);
2140 /* XXX this is probably wrong for multiple downstream ports */
2141 static enum drm_connector_status
2142 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2144 uint8_t *dpcd = intel_dp->dpcd;
2145 bool hpd;
2146 uint8_t type;
2148 if (!intel_dp_get_dpcd(intel_dp))
2149 return connector_status_disconnected;
2151 /* if there's no downstream port, we're done */
2152 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2153 return connector_status_connected;
2155 /* If we're HPD-aware, SINK_COUNT changes dynamically */
2156 hpd = !!(intel_dp->downstream_ports[0] & DP_DS_PORT_HPD);
2157 if (hpd) {
2158 uint8_t reg;
2159 if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
2160 &reg, 1))
2161 return connector_status_unknown;
2162 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
2163 : connector_status_disconnected;
2166 /* If no HPD, poke DDC gently */
2167 if (drm_probe_ddc(&intel_dp->adapter))
2168 return connector_status_connected;
2170 /* Well we tried, say unknown for unreliable port types */
2171 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
2172 if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID)
2173 return connector_status_unknown;
2175 /* Anything else is out of spec, warn and ignore */
2176 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2177 return connector_status_disconnected;
2180 static enum drm_connector_status
2181 ironlake_dp_detect(struct intel_dp *intel_dp)
2183 enum drm_connector_status status;
2185 /* Can't disconnect eDP, but you can close the lid... */
2186 if (is_edp(intel_dp)) {
2187 status = intel_panel_detect(intel_dp->base.base.dev);
2188 if (status == connector_status_unknown)
2189 status = connector_status_connected;
2190 return status;
2193 return intel_dp_detect_dpcd(intel_dp);
2196 static enum drm_connector_status
2197 g4x_dp_detect(struct intel_dp *intel_dp)
2199 struct drm_device *dev = intel_dp->base.base.dev;
2200 struct drm_i915_private *dev_priv = dev->dev_private;
2201 uint32_t bit;
2203 switch (intel_dp->output_reg) {
2204 case DP_B:
2205 bit = DPB_HOTPLUG_LIVE_STATUS;
2206 break;
2207 case DP_C:
2208 bit = DPC_HOTPLUG_LIVE_STATUS;
2209 break;
2210 case DP_D:
2211 bit = DPD_HOTPLUG_LIVE_STATUS;
2212 break;
2213 default:
2214 return connector_status_unknown;
2217 if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2218 return connector_status_disconnected;
2220 return intel_dp_detect_dpcd(intel_dp);
2223 static struct edid *
2224 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2226 struct intel_connector *intel_connector = to_intel_connector(connector);
2228 /* use cached edid if we have one */
2229 if (intel_connector->edid) {
2230 struct edid *edid;
2231 int size;
2233 /* invalid edid */
2234 if (IS_ERR(intel_connector->edid))
2235 return NULL;
2237 size = (intel_connector->edid->extensions + 1) * EDID_LENGTH;
2238 edid = kmalloc(size, GFP_KERNEL);
2239 if (!edid)
2240 return NULL;
2242 memcpy(edid, intel_connector->edid, size);
2243 return edid;
2246 return drm_get_edid(connector, adapter);
2249 static int
2250 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2252 struct intel_connector *intel_connector = to_intel_connector(connector);
2254 /* use cached edid if we have one */
2255 if (intel_connector->edid) {
2256 /* invalid edid */
2257 if (IS_ERR(intel_connector->edid))
2258 return 0;
2260 return intel_connector_update_modes(connector,
2261 intel_connector->edid);
2264 return intel_ddc_get_modes(connector, adapter);
2269 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
2271 * \return true if DP port is connected.
2272 * \return false if DP port is disconnected.
2274 static enum drm_connector_status
2275 intel_dp_detect(struct drm_connector *connector, bool force)
2277 struct intel_dp *intel_dp = intel_attached_dp(connector);
2278 struct drm_device *dev = intel_dp->base.base.dev;
2279 enum drm_connector_status status;
2280 struct edid *edid = NULL;
2282 intel_dp->has_audio = false;
2284 if (HAS_PCH_SPLIT(dev))
2285 status = ironlake_dp_detect(intel_dp);
2286 else
2287 status = g4x_dp_detect(intel_dp);
2289 DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
2290 intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
2291 intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
2292 intel_dp->dpcd[6], intel_dp->dpcd[7]);
2294 if (status != connector_status_connected)
2295 return status;
2297 intel_dp_probe_oui(intel_dp);
2299 if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2300 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2301 } else {
2302 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2303 if (edid) {
2304 intel_dp->has_audio = drm_detect_monitor_audio(edid);
2305 kfree(edid);
2309 return connector_status_connected;
2312 static int intel_dp_get_modes(struct drm_connector *connector)
2314 struct intel_dp *intel_dp = intel_attached_dp(connector);
2315 struct intel_connector *intel_connector = to_intel_connector(connector);
2316 struct drm_device *dev = intel_dp->base.base.dev;
2317 int ret;
2319 /* We should parse the EDID data and find out if it has an audio sink
2322 ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2323 if (ret)
2324 return ret;
2326 /* if eDP has no EDID, fall back to fixed mode */
2327 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2328 struct drm_display_mode *mode;
2329 mode = drm_mode_duplicate(dev,
2330 intel_connector->panel.fixed_mode);
2331 if (mode) {
2332 drm_mode_probed_add(connector, mode);
2333 return 1;
2336 return 0;
2339 static bool
2340 intel_dp_detect_audio(struct drm_connector *connector)
2342 struct intel_dp *intel_dp = intel_attached_dp(connector);
2343 struct edid *edid;
2344 bool has_audio = false;
2346 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2347 if (edid) {
2348 has_audio = drm_detect_monitor_audio(edid);
2349 kfree(edid);
2352 return has_audio;
2355 static int
2356 intel_dp_set_property(struct drm_connector *connector,
2357 struct drm_property *property,
2358 uint64_t val)
2360 struct drm_i915_private *dev_priv = connector->dev->dev_private;
2361 struct intel_dp *intel_dp = intel_attached_dp(connector);
2362 int ret;
2364 ret = drm_connector_property_set_value(connector, property, val);
2365 if (ret)
2366 return ret;
2368 if (property == dev_priv->force_audio_property) {
2369 int i = val;
2370 bool has_audio;
2372 if (i == intel_dp->force_audio)
2373 return 0;
2375 intel_dp->force_audio = i;
2377 if (i == HDMI_AUDIO_AUTO)
2378 has_audio = intel_dp_detect_audio(connector);
2379 else
2380 has_audio = (i == HDMI_AUDIO_ON);
2382 if (has_audio == intel_dp->has_audio)
2383 return 0;
2385 intel_dp->has_audio = has_audio;
2386 goto done;
2389 if (property == dev_priv->broadcast_rgb_property) {
2390 if (val == !!intel_dp->color_range)
2391 return 0;
2393 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2394 goto done;
2397 return -EINVAL;
2399 done:
2400 if (intel_dp->base.base.crtc) {
2401 struct drm_crtc *crtc = intel_dp->base.base.crtc;
2402 intel_set_mode(crtc, &crtc->mode,
2403 crtc->x, crtc->y, crtc->fb);
2406 return 0;
2409 static void
2410 intel_dp_destroy(struct drm_connector *connector)
2412 struct drm_device *dev = connector->dev;
2413 struct intel_dp *intel_dp = intel_attached_dp(connector);
2414 struct intel_connector *intel_connector = to_intel_connector(connector);
2416 if (!IS_ERR_OR_NULL(intel_connector->edid))
2417 kfree(intel_connector->edid);
2419 if (is_edp(intel_dp)) {
2420 intel_panel_destroy_backlight(dev);
2421 intel_panel_fini(&intel_connector->panel);
2424 drm_sysfs_connector_remove(connector);
2425 drm_connector_cleanup(connector);
2426 kfree(connector);
2429 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2431 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2433 i2c_del_adapter(&intel_dp->adapter);
2434 drm_encoder_cleanup(encoder);
2435 if (is_edp(intel_dp)) {
2436 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2437 ironlake_panel_vdd_off_sync(intel_dp);
2439 kfree(intel_dp);
2442 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2443 .mode_fixup = intel_dp_mode_fixup,
2444 .mode_set = intel_dp_mode_set,
2445 .disable = intel_encoder_noop,
2448 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs_hsw = {
2449 .mode_fixup = intel_dp_mode_fixup,
2450 .mode_set = intel_ddi_mode_set,
2451 .disable = intel_encoder_noop,
2454 static const struct drm_connector_funcs intel_dp_connector_funcs = {
2455 .dpms = intel_connector_dpms,
2456 .detect = intel_dp_detect,
2457 .fill_modes = drm_helper_probe_single_connector_modes,
2458 .set_property = intel_dp_set_property,
2459 .destroy = intel_dp_destroy,
2462 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2463 .get_modes = intel_dp_get_modes,
2464 .mode_valid = intel_dp_mode_valid,
2465 .best_encoder = intel_best_encoder,
2468 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2469 .destroy = intel_dp_encoder_destroy,
2472 static void
2473 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2475 struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
2477 intel_dp_check_link_status(intel_dp);
2480 /* Return which DP Port should be selected for Transcoder DP control */
2482 intel_trans_dp_port_sel(struct drm_crtc *crtc)
2484 struct drm_device *dev = crtc->dev;
2485 struct intel_encoder *encoder;
2487 for_each_encoder_on_crtc(dev, crtc, encoder) {
2488 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2490 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
2491 intel_dp->base.type == INTEL_OUTPUT_EDP)
2492 return intel_dp->output_reg;
2495 return -1;
2498 /* check the VBT to see whether the eDP is on DP-D port */
2499 bool intel_dpd_is_edp(struct drm_device *dev)
2501 struct drm_i915_private *dev_priv = dev->dev_private;
2502 struct child_device_config *p_child;
2503 int i;
2505 if (!dev_priv->child_dev_num)
2506 return false;
2508 for (i = 0; i < dev_priv->child_dev_num; i++) {
2509 p_child = dev_priv->child_dev + i;
2511 if (p_child->dvo_port == PORT_IDPD &&
2512 p_child->device_type == DEVICE_TYPE_eDP)
2513 return true;
2515 return false;
2518 static void
2519 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2521 intel_attach_force_audio_property(connector);
2522 intel_attach_broadcast_rgb_property(connector);
2525 void
2526 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
2528 struct drm_i915_private *dev_priv = dev->dev_private;
2529 struct drm_connector *connector;
2530 struct intel_dp *intel_dp;
2531 struct intel_encoder *intel_encoder;
2532 struct intel_connector *intel_connector;
2533 struct drm_display_mode *fixed_mode = NULL;
2534 const char *name = NULL;
2535 int type;
2537 intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
2538 if (!intel_dp)
2539 return;
2541 intel_dp->output_reg = output_reg;
2542 intel_dp->port = port;
2543 /* Preserve the current hw state. */
2544 intel_dp->DP = I915_READ(intel_dp->output_reg);
2546 intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2547 if (!intel_connector) {
2548 kfree(intel_dp);
2549 return;
2551 intel_encoder = &intel_dp->base;
2552 intel_dp->attached_connector = intel_connector;
2554 if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
2555 if (intel_dpd_is_edp(dev))
2556 intel_dp->is_pch_edp = true;
2559 * FIXME : We need to initialize built-in panels before external panels.
2560 * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
2562 if (IS_VALLEYVIEW(dev) && output_reg == DP_C) {
2563 type = DRM_MODE_CONNECTOR_eDP;
2564 intel_encoder->type = INTEL_OUTPUT_EDP;
2565 } else if (output_reg == DP_A || is_pch_edp(intel_dp)) {
2566 type = DRM_MODE_CONNECTOR_eDP;
2567 intel_encoder->type = INTEL_OUTPUT_EDP;
2568 } else {
2569 type = DRM_MODE_CONNECTOR_DisplayPort;
2570 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2573 connector = &intel_connector->base;
2574 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2575 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2577 connector->polled = DRM_CONNECTOR_POLL_HPD;
2579 intel_encoder->cloneable = false;
2581 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2582 ironlake_panel_vdd_work);
2584 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2586 connector->interlace_allowed = true;
2587 connector->doublescan_allowed = 0;
2589 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2590 DRM_MODE_ENCODER_TMDS);
2592 if (IS_HASWELL(dev))
2593 drm_encoder_helper_add(&intel_encoder->base,
2594 &intel_dp_helper_funcs_hsw);
2595 else
2596 drm_encoder_helper_add(&intel_encoder->base,
2597 &intel_dp_helper_funcs);
2599 intel_connector_attach_encoder(intel_connector, intel_encoder);
2600 drm_sysfs_connector_add(connector);
2602 if (IS_HASWELL(dev)) {
2603 intel_encoder->enable = intel_enable_ddi;
2604 intel_encoder->pre_enable = intel_ddi_pre_enable;
2605 intel_encoder->disable = intel_disable_ddi;
2606 intel_encoder->post_disable = intel_ddi_post_disable;
2607 intel_encoder->get_hw_state = intel_ddi_get_hw_state;
2608 } else {
2609 intel_encoder->enable = intel_enable_dp;
2610 intel_encoder->pre_enable = intel_pre_enable_dp;
2611 intel_encoder->disable = intel_disable_dp;
2612 intel_encoder->post_disable = intel_post_disable_dp;
2613 intel_encoder->get_hw_state = intel_dp_get_hw_state;
2615 intel_connector->get_hw_state = intel_connector_get_hw_state;
2617 /* Set up the DDC bus. */
2618 switch (port) {
2619 case PORT_A:
2620 name = "DPDDC-A";
2621 break;
2622 case PORT_B:
2623 dev_priv->hotplug_supported_mask |= DPB_HOTPLUG_INT_STATUS;
2624 name = "DPDDC-B";
2625 break;
2626 case PORT_C:
2627 dev_priv->hotplug_supported_mask |= DPC_HOTPLUG_INT_STATUS;
2628 name = "DPDDC-C";
2629 break;
2630 case PORT_D:
2631 dev_priv->hotplug_supported_mask |= DPD_HOTPLUG_INT_STATUS;
2632 name = "DPDDC-D";
2633 break;
2634 default:
2635 WARN(1, "Invalid port %c\n", port_name(port));
2636 break;
2639 /* Cache some DPCD data in the eDP case */
2640 if (is_edp(intel_dp)) {
2641 struct edp_power_seq cur, vbt, spec, final;
2642 u32 pp_on, pp_off, pp_div, pp;
2644 /* Workaround: Need to write PP_CONTROL with the unlock key as
2645 * the very first thing. */
2646 pp = ironlake_get_pp_control(dev_priv);
2647 I915_WRITE(PCH_PP_CONTROL, pp);
2649 pp_on = I915_READ(PCH_PP_ON_DELAYS);
2650 pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2651 pp_div = I915_READ(PCH_PP_DIVISOR);
2653 /* Pull timing values out of registers */
2654 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2655 PANEL_POWER_UP_DELAY_SHIFT;
2657 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2658 PANEL_LIGHT_ON_DELAY_SHIFT;
2660 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2661 PANEL_LIGHT_OFF_DELAY_SHIFT;
2663 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2664 PANEL_POWER_DOWN_DELAY_SHIFT;
2666 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2667 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2669 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2670 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2672 vbt = dev_priv->edp.pps;
2674 /* Upper limits from eDP 1.3 spec. Note that we use the clunky
2675 * units of our hw here, which are all in 100usec. */
2676 spec.t1_t3 = 210 * 10;
2677 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
2678 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
2679 spec.t10 = 500 * 10;
2680 /* This one is special and actually in units of 100ms, but zero
2681 * based in the hw (so we need to add 100 ms). But the sw vbt
2682 * table multiplies it with 1000 to make it in units of 100usec,
2683 * too. */
2684 spec.t11_t12 = (510 + 100) * 10;
2686 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2687 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2689 /* Use the max of the register settings and vbt. If both are
2690 * unset, fall back to the spec limits. */
2691 #define assign_final(field) final.field = (max(cur.field, vbt.field) == 0 ? \
2692 spec.field : \
2693 max(cur.field, vbt.field))
2694 assign_final(t1_t3);
2695 assign_final(t8);
2696 assign_final(t9);
2697 assign_final(t10);
2698 assign_final(t11_t12);
2699 #undef assign_final
2701 #define get_delay(field) (DIV_ROUND_UP(final.field, 10))
2702 intel_dp->panel_power_up_delay = get_delay(t1_t3);
2703 intel_dp->backlight_on_delay = get_delay(t8);
2704 intel_dp->backlight_off_delay = get_delay(t9);
2705 intel_dp->panel_power_down_delay = get_delay(t10);
2706 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2707 #undef get_delay
2709 /* And finally store the new values in the power sequencer. */
2710 pp_on = (final.t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
2711 (final.t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
2712 pp_off = (final.t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
2713 (final.t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
2714 pp_div = (pp_div & PP_REFERENCE_DIVIDER_MASK) |
2715 (DIV_ROUND_UP(final.t11_t12, 1000) << PANEL_POWER_CYCLE_DELAY_SHIFT);
2717 /* Haswell doesn't have any port selection bits for the panel
2718 * power sequence any more. */
2719 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
2720 if (is_cpu_edp(intel_dp))
2721 pp_on |= PANEL_POWER_PORT_DP_A;
2722 else
2723 pp_on |= PANEL_POWER_PORT_DP_D;
2726 I915_WRITE(PCH_PP_ON_DELAYS, pp_on);
2727 I915_WRITE(PCH_PP_OFF_DELAYS, pp_off);
2728 I915_WRITE(PCH_PP_DIVISOR, pp_div);
2731 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2732 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2733 intel_dp->panel_power_cycle_delay);
2735 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2736 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2738 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
2739 I915_READ(PCH_PP_ON_DELAYS),
2740 I915_READ(PCH_PP_OFF_DELAYS),
2741 I915_READ(PCH_PP_DIVISOR));
2744 intel_dp_i2c_init(intel_dp, intel_connector, name);
2746 if (is_edp(intel_dp)) {
2747 bool ret;
2748 struct drm_display_mode *scan;
2749 struct edid *edid;
2751 ironlake_edp_panel_vdd_on(intel_dp);
2752 ret = intel_dp_get_dpcd(intel_dp);
2753 ironlake_edp_panel_vdd_off(intel_dp, false);
2755 if (ret) {
2756 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2757 dev_priv->no_aux_handshake =
2758 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2759 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2760 } else {
2761 /* if this fails, presume the device is a ghost */
2762 DRM_INFO("failed to retrieve link info, disabling eDP\n");
2763 intel_dp_encoder_destroy(&intel_dp->base.base);
2764 intel_dp_destroy(&intel_connector->base);
2765 return;
2768 ironlake_edp_panel_vdd_on(intel_dp);
2769 edid = drm_get_edid(connector, &intel_dp->adapter);
2770 if (edid) {
2771 if (drm_add_edid_modes(connector, edid)) {
2772 drm_mode_connector_update_edid_property(connector, edid);
2773 drm_edid_to_eld(connector, edid);
2774 } else {
2775 kfree(edid);
2776 edid = ERR_PTR(-EINVAL);
2778 } else {
2779 edid = ERR_PTR(-ENOENT);
2781 intel_connector->edid = edid;
2783 /* prefer fixed mode from EDID if available */
2784 list_for_each_entry(scan, &connector->probed_modes, head) {
2785 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
2786 fixed_mode = drm_mode_duplicate(dev, scan);
2787 break;
2791 /* fallback to VBT if available for eDP */
2792 if (!fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
2793 fixed_mode = drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2794 if (fixed_mode)
2795 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
2798 ironlake_edp_panel_vdd_off(intel_dp, false);
2801 intel_encoder->hot_plug = intel_dp_hot_plug;
2803 if (is_edp(intel_dp)) {
2804 intel_panel_init(&intel_connector->panel, fixed_mode);
2805 intel_panel_setup_backlight(connector);
2808 intel_dp_add_properties(intel_dp, connector);
2810 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2811 * 0xd. Failure to do so will result in spurious interrupts being
2812 * generated on the port when a cable is not attached.
2814 if (IS_G4X(dev) && !IS_GM45(dev)) {
2815 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2816 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);