2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/compat.h>
34 #include <linux/bit_spinlock.h>
35 #include <linux/xattr.h>
36 #include <linux/posix_acl.h>
37 #include <linux/falloc.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/mount.h>
41 #include <linux/btrfs.h>
42 #include <linux/blkdev.h>
43 #include <linux/posix_acl_xattr.h>
44 #include <linux/uio.h>
47 #include "transaction.h"
48 #include "btrfs_inode.h"
49 #include "print-tree.h"
50 #include "ordered-data.h"
54 #include "compression.h"
56 #include "free-space-cache.h"
57 #include "inode-map.h"
64 struct btrfs_iget_args
{
65 struct btrfs_key
*location
;
66 struct btrfs_root
*root
;
69 struct btrfs_dio_data
{
70 u64 outstanding_extents
;
72 u64 unsubmitted_oe_range_start
;
73 u64 unsubmitted_oe_range_end
;
77 static const struct inode_operations btrfs_dir_inode_operations
;
78 static const struct inode_operations btrfs_symlink_inode_operations
;
79 static const struct inode_operations btrfs_dir_ro_inode_operations
;
80 static const struct inode_operations btrfs_special_inode_operations
;
81 static const struct inode_operations btrfs_file_inode_operations
;
82 static const struct address_space_operations btrfs_aops
;
83 static const struct address_space_operations btrfs_symlink_aops
;
84 static const struct file_operations btrfs_dir_file_operations
;
85 static const struct extent_io_ops btrfs_extent_io_ops
;
87 static struct kmem_cache
*btrfs_inode_cachep
;
88 struct kmem_cache
*btrfs_trans_handle_cachep
;
89 struct kmem_cache
*btrfs_path_cachep
;
90 struct kmem_cache
*btrfs_free_space_cachep
;
93 static const unsigned char btrfs_type_by_mode
[S_IFMT
>> S_SHIFT
] = {
94 [S_IFREG
>> S_SHIFT
] = BTRFS_FT_REG_FILE
,
95 [S_IFDIR
>> S_SHIFT
] = BTRFS_FT_DIR
,
96 [S_IFCHR
>> S_SHIFT
] = BTRFS_FT_CHRDEV
,
97 [S_IFBLK
>> S_SHIFT
] = BTRFS_FT_BLKDEV
,
98 [S_IFIFO
>> S_SHIFT
] = BTRFS_FT_FIFO
,
99 [S_IFSOCK
>> S_SHIFT
] = BTRFS_FT_SOCK
,
100 [S_IFLNK
>> S_SHIFT
] = BTRFS_FT_SYMLINK
,
103 static int btrfs_setsize(struct inode
*inode
, struct iattr
*attr
);
104 static int btrfs_truncate(struct inode
*inode
);
105 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent
*ordered_extent
);
106 static noinline
int cow_file_range(struct inode
*inode
,
107 struct page
*locked_page
,
108 u64 start
, u64 end
, u64 delalloc_end
,
109 int *page_started
, unsigned long *nr_written
,
110 int unlock
, struct btrfs_dedupe_hash
*hash
);
111 static struct extent_map
*create_io_em(struct inode
*inode
, u64 start
, u64 len
,
112 u64 orig_start
, u64 block_start
,
113 u64 block_len
, u64 orig_block_len
,
114 u64 ram_bytes
, int compress_type
,
117 static void __endio_write_update_ordered(struct inode
*inode
,
118 const u64 offset
, const u64 bytes
,
119 const bool uptodate
);
122 * Cleanup all submitted ordered extents in specified range to handle errors
123 * from the fill_dellaloc() callback.
125 * NOTE: caller must ensure that when an error happens, it can not call
126 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
127 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
128 * to be released, which we want to happen only when finishing the ordered
129 * extent (btrfs_finish_ordered_io()). Also note that the caller of the
130 * fill_delalloc() callback already does proper cleanup for the first page of
131 * the range, that is, it invokes the callback writepage_end_io_hook() for the
132 * range of the first page.
134 static inline void btrfs_cleanup_ordered_extents(struct inode
*inode
,
138 return __endio_write_update_ordered(inode
, offset
+ PAGE_SIZE
,
139 bytes
- PAGE_SIZE
, false);
142 static int btrfs_dirty_inode(struct inode
*inode
);
144 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
145 void btrfs_test_inode_set_ops(struct inode
*inode
)
147 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
151 static int btrfs_init_inode_security(struct btrfs_trans_handle
*trans
,
152 struct inode
*inode
, struct inode
*dir
,
153 const struct qstr
*qstr
)
157 err
= btrfs_init_acl(trans
, inode
, dir
);
159 err
= btrfs_xattr_security_init(trans
, inode
, dir
, qstr
);
164 * this does all the hard work for inserting an inline extent into
165 * the btree. The caller should have done a btrfs_drop_extents so that
166 * no overlapping inline items exist in the btree
168 static int insert_inline_extent(struct btrfs_trans_handle
*trans
,
169 struct btrfs_path
*path
, int extent_inserted
,
170 struct btrfs_root
*root
, struct inode
*inode
,
171 u64 start
, size_t size
, size_t compressed_size
,
173 struct page
**compressed_pages
)
175 struct extent_buffer
*leaf
;
176 struct page
*page
= NULL
;
179 struct btrfs_file_extent_item
*ei
;
181 size_t cur_size
= size
;
182 unsigned long offset
;
184 if (compressed_size
&& compressed_pages
)
185 cur_size
= compressed_size
;
187 inode_add_bytes(inode
, size
);
189 if (!extent_inserted
) {
190 struct btrfs_key key
;
193 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
195 key
.type
= BTRFS_EXTENT_DATA_KEY
;
197 datasize
= btrfs_file_extent_calc_inline_size(cur_size
);
198 path
->leave_spinning
= 1;
199 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
204 leaf
= path
->nodes
[0];
205 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
206 struct btrfs_file_extent_item
);
207 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
208 btrfs_set_file_extent_type(leaf
, ei
, BTRFS_FILE_EXTENT_INLINE
);
209 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
210 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
211 btrfs_set_file_extent_ram_bytes(leaf
, ei
, size
);
212 ptr
= btrfs_file_extent_inline_start(ei
);
214 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
217 while (compressed_size
> 0) {
218 cpage
= compressed_pages
[i
];
219 cur_size
= min_t(unsigned long, compressed_size
,
222 kaddr
= kmap_atomic(cpage
);
223 write_extent_buffer(leaf
, kaddr
, ptr
, cur_size
);
224 kunmap_atomic(kaddr
);
228 compressed_size
-= cur_size
;
230 btrfs_set_file_extent_compression(leaf
, ei
,
233 page
= find_get_page(inode
->i_mapping
,
234 start
>> PAGE_SHIFT
);
235 btrfs_set_file_extent_compression(leaf
, ei
, 0);
236 kaddr
= kmap_atomic(page
);
237 offset
= start
& (PAGE_SIZE
- 1);
238 write_extent_buffer(leaf
, kaddr
+ offset
, ptr
, size
);
239 kunmap_atomic(kaddr
);
242 btrfs_mark_buffer_dirty(leaf
);
243 btrfs_release_path(path
);
246 * we're an inline extent, so nobody can
247 * extend the file past i_size without locking
248 * a page we already have locked.
250 * We must do any isize and inode updates
251 * before we unlock the pages. Otherwise we
252 * could end up racing with unlink.
254 BTRFS_I(inode
)->disk_i_size
= inode
->i_size
;
255 ret
= btrfs_update_inode(trans
, root
, inode
);
263 * conditionally insert an inline extent into the file. This
264 * does the checks required to make sure the data is small enough
265 * to fit as an inline extent.
267 static noinline
int cow_file_range_inline(struct btrfs_root
*root
,
268 struct inode
*inode
, u64 start
,
269 u64 end
, size_t compressed_size
,
271 struct page
**compressed_pages
)
273 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
274 struct btrfs_trans_handle
*trans
;
275 u64 isize
= i_size_read(inode
);
276 u64 actual_end
= min(end
+ 1, isize
);
277 u64 inline_len
= actual_end
- start
;
278 u64 aligned_end
= ALIGN(end
, fs_info
->sectorsize
);
279 u64 data_len
= inline_len
;
281 struct btrfs_path
*path
;
282 int extent_inserted
= 0;
283 u32 extent_item_size
;
286 data_len
= compressed_size
;
289 actual_end
> fs_info
->sectorsize
||
290 data_len
> BTRFS_MAX_INLINE_DATA_SIZE(fs_info
) ||
292 (actual_end
& (fs_info
->sectorsize
- 1)) == 0) ||
294 data_len
> fs_info
->max_inline
) {
298 path
= btrfs_alloc_path();
302 trans
= btrfs_join_transaction(root
);
304 btrfs_free_path(path
);
305 return PTR_ERR(trans
);
307 trans
->block_rsv
= &fs_info
->delalloc_block_rsv
;
309 if (compressed_size
&& compressed_pages
)
310 extent_item_size
= btrfs_file_extent_calc_inline_size(
313 extent_item_size
= btrfs_file_extent_calc_inline_size(
316 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
,
317 start
, aligned_end
, NULL
,
318 1, 1, extent_item_size
, &extent_inserted
);
320 btrfs_abort_transaction(trans
, ret
);
324 if (isize
> actual_end
)
325 inline_len
= min_t(u64
, isize
, actual_end
);
326 ret
= insert_inline_extent(trans
, path
, extent_inserted
,
328 inline_len
, compressed_size
,
329 compress_type
, compressed_pages
);
330 if (ret
&& ret
!= -ENOSPC
) {
331 btrfs_abort_transaction(trans
, ret
);
333 } else if (ret
== -ENOSPC
) {
338 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
339 btrfs_delalloc_release_metadata(BTRFS_I(inode
), end
+ 1 - start
);
340 btrfs_drop_extent_cache(BTRFS_I(inode
), start
, aligned_end
- 1, 0);
343 * Don't forget to free the reserved space, as for inlined extent
344 * it won't count as data extent, free them directly here.
345 * And at reserve time, it's always aligned to page size, so
346 * just free one page here.
348 btrfs_qgroup_free_data(inode
, NULL
, 0, PAGE_SIZE
);
349 btrfs_free_path(path
);
350 btrfs_end_transaction(trans
);
354 struct async_extent
{
359 unsigned long nr_pages
;
361 struct list_head list
;
366 struct btrfs_root
*root
;
367 struct page
*locked_page
;
370 struct list_head extents
;
371 struct btrfs_work work
;
374 static noinline
int add_async_extent(struct async_cow
*cow
,
375 u64 start
, u64 ram_size
,
378 unsigned long nr_pages
,
381 struct async_extent
*async_extent
;
383 async_extent
= kmalloc(sizeof(*async_extent
), GFP_NOFS
);
384 BUG_ON(!async_extent
); /* -ENOMEM */
385 async_extent
->start
= start
;
386 async_extent
->ram_size
= ram_size
;
387 async_extent
->compressed_size
= compressed_size
;
388 async_extent
->pages
= pages
;
389 async_extent
->nr_pages
= nr_pages
;
390 async_extent
->compress_type
= compress_type
;
391 list_add_tail(&async_extent
->list
, &cow
->extents
);
395 static inline int inode_need_compress(struct inode
*inode
)
397 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
400 if (btrfs_test_opt(fs_info
, FORCE_COMPRESS
))
402 /* bad compression ratios */
403 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
)
405 if (btrfs_test_opt(fs_info
, COMPRESS
) ||
406 BTRFS_I(inode
)->flags
& BTRFS_INODE_COMPRESS
||
407 BTRFS_I(inode
)->force_compress
)
412 static inline void inode_should_defrag(struct btrfs_inode
*inode
,
413 u64 start
, u64 end
, u64 num_bytes
, u64 small_write
)
415 /* If this is a small write inside eof, kick off a defrag */
416 if (num_bytes
< small_write
&&
417 (start
> 0 || end
+ 1 < inode
->disk_i_size
))
418 btrfs_add_inode_defrag(NULL
, inode
);
422 * we create compressed extents in two phases. The first
423 * phase compresses a range of pages that have already been
424 * locked (both pages and state bits are locked).
426 * This is done inside an ordered work queue, and the compression
427 * is spread across many cpus. The actual IO submission is step
428 * two, and the ordered work queue takes care of making sure that
429 * happens in the same order things were put onto the queue by
430 * writepages and friends.
432 * If this code finds it can't get good compression, it puts an
433 * entry onto the work queue to write the uncompressed bytes. This
434 * makes sure that both compressed inodes and uncompressed inodes
435 * are written in the same order that the flusher thread sent them
438 static noinline
void compress_file_range(struct inode
*inode
,
439 struct page
*locked_page
,
441 struct async_cow
*async_cow
,
444 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
445 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
447 u64 blocksize
= fs_info
->sectorsize
;
449 u64 isize
= i_size_read(inode
);
451 struct page
**pages
= NULL
;
452 unsigned long nr_pages
;
453 unsigned long total_compressed
= 0;
454 unsigned long total_in
= 0;
457 int compress_type
= fs_info
->compress_type
;
460 inode_should_defrag(BTRFS_I(inode
), start
, end
, end
- start
+ 1,
463 actual_end
= min_t(u64
, isize
, end
+ 1);
466 nr_pages
= (end
>> PAGE_SHIFT
) - (start
>> PAGE_SHIFT
) + 1;
467 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED
% PAGE_SIZE
) != 0);
468 nr_pages
= min_t(unsigned long, nr_pages
,
469 BTRFS_MAX_COMPRESSED
/ PAGE_SIZE
);
472 * we don't want to send crud past the end of i_size through
473 * compression, that's just a waste of CPU time. So, if the
474 * end of the file is before the start of our current
475 * requested range of bytes, we bail out to the uncompressed
476 * cleanup code that can deal with all of this.
478 * It isn't really the fastest way to fix things, but this is a
479 * very uncommon corner.
481 if (actual_end
<= start
)
482 goto cleanup_and_bail_uncompressed
;
484 total_compressed
= actual_end
- start
;
487 * skip compression for a small file range(<=blocksize) that
488 * isn't an inline extent, since it doesn't save disk space at all.
490 if (total_compressed
<= blocksize
&&
491 (start
> 0 || end
+ 1 < BTRFS_I(inode
)->disk_i_size
))
492 goto cleanup_and_bail_uncompressed
;
494 total_compressed
= min_t(unsigned long, total_compressed
,
495 BTRFS_MAX_UNCOMPRESSED
);
496 num_bytes
= ALIGN(end
- start
+ 1, blocksize
);
497 num_bytes
= max(blocksize
, num_bytes
);
502 * we do compression for mount -o compress and when the
503 * inode has not been flagged as nocompress. This flag can
504 * change at any time if we discover bad compression ratios.
506 if (inode_need_compress(inode
)) {
508 pages
= kcalloc(nr_pages
, sizeof(struct page
*), GFP_NOFS
);
510 /* just bail out to the uncompressed code */
514 if (BTRFS_I(inode
)->force_compress
)
515 compress_type
= BTRFS_I(inode
)->force_compress
;
518 * we need to call clear_page_dirty_for_io on each
519 * page in the range. Otherwise applications with the file
520 * mmap'd can wander in and change the page contents while
521 * we are compressing them.
523 * If the compression fails for any reason, we set the pages
524 * dirty again later on.
526 extent_range_clear_dirty_for_io(inode
, start
, end
);
528 ret
= btrfs_compress_pages(compress_type
,
529 inode
->i_mapping
, start
,
536 unsigned long offset
= total_compressed
&
538 struct page
*page
= pages
[nr_pages
- 1];
541 /* zero the tail end of the last page, we might be
542 * sending it down to disk
545 kaddr
= kmap_atomic(page
);
546 memset(kaddr
+ offset
, 0,
548 kunmap_atomic(kaddr
);
555 /* lets try to make an inline extent */
556 if (ret
|| total_in
< (actual_end
- start
)) {
557 /* we didn't compress the entire range, try
558 * to make an uncompressed inline extent.
560 ret
= cow_file_range_inline(root
, inode
, start
, end
,
561 0, BTRFS_COMPRESS_NONE
, NULL
);
563 /* try making a compressed inline extent */
564 ret
= cow_file_range_inline(root
, inode
, start
, end
,
566 compress_type
, pages
);
569 unsigned long clear_flags
= EXTENT_DELALLOC
|
570 EXTENT_DELALLOC_NEW
| EXTENT_DEFRAG
;
571 unsigned long page_error_op
;
573 clear_flags
|= (ret
< 0) ? EXTENT_DO_ACCOUNTING
: 0;
574 page_error_op
= ret
< 0 ? PAGE_SET_ERROR
: 0;
577 * inline extent creation worked or returned error,
578 * we don't need to create any more async work items.
579 * Unlock and free up our temp pages.
581 extent_clear_unlock_delalloc(inode
, start
, end
, end
,
589 btrfs_free_reserved_data_space_noquota(inode
,
598 * we aren't doing an inline extent round the compressed size
599 * up to a block size boundary so the allocator does sane
602 total_compressed
= ALIGN(total_compressed
, blocksize
);
605 * one last check to make sure the compression is really a
606 * win, compare the page count read with the blocks on disk,
607 * compression must free at least one sector size
609 total_in
= ALIGN(total_in
, PAGE_SIZE
);
610 if (total_compressed
+ blocksize
<= total_in
) {
611 num_bytes
= total_in
;
615 * The async work queues will take care of doing actual
616 * allocation on disk for these compressed pages, and
617 * will submit them to the elevator.
619 add_async_extent(async_cow
, start
, num_bytes
,
620 total_compressed
, pages
, nr_pages
,
623 if (start
+ num_bytes
< end
) {
634 * the compression code ran but failed to make things smaller,
635 * free any pages it allocated and our page pointer array
637 for (i
= 0; i
< nr_pages
; i
++) {
638 WARN_ON(pages
[i
]->mapping
);
643 total_compressed
= 0;
646 /* flag the file so we don't compress in the future */
647 if (!btrfs_test_opt(fs_info
, FORCE_COMPRESS
) &&
648 !(BTRFS_I(inode
)->force_compress
)) {
649 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
652 cleanup_and_bail_uncompressed
:
654 * No compression, but we still need to write the pages in the file
655 * we've been given so far. redirty the locked page if it corresponds
656 * to our extent and set things up for the async work queue to run
657 * cow_file_range to do the normal delalloc dance.
659 if (page_offset(locked_page
) >= start
&&
660 page_offset(locked_page
) <= end
)
661 __set_page_dirty_nobuffers(locked_page
);
662 /* unlocked later on in the async handlers */
665 extent_range_redirty_for_io(inode
, start
, end
);
666 add_async_extent(async_cow
, start
, end
- start
+ 1, 0, NULL
, 0,
667 BTRFS_COMPRESS_NONE
);
673 for (i
= 0; i
< nr_pages
; i
++) {
674 WARN_ON(pages
[i
]->mapping
);
680 static void free_async_extent_pages(struct async_extent
*async_extent
)
684 if (!async_extent
->pages
)
687 for (i
= 0; i
< async_extent
->nr_pages
; i
++) {
688 WARN_ON(async_extent
->pages
[i
]->mapping
);
689 put_page(async_extent
->pages
[i
]);
691 kfree(async_extent
->pages
);
692 async_extent
->nr_pages
= 0;
693 async_extent
->pages
= NULL
;
697 * phase two of compressed writeback. This is the ordered portion
698 * of the code, which only gets called in the order the work was
699 * queued. We walk all the async extents created by compress_file_range
700 * and send them down to the disk.
702 static noinline
void submit_compressed_extents(struct inode
*inode
,
703 struct async_cow
*async_cow
)
705 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
706 struct async_extent
*async_extent
;
708 struct btrfs_key ins
;
709 struct extent_map
*em
;
710 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
711 struct extent_io_tree
*io_tree
;
715 while (!list_empty(&async_cow
->extents
)) {
716 async_extent
= list_entry(async_cow
->extents
.next
,
717 struct async_extent
, list
);
718 list_del(&async_extent
->list
);
720 io_tree
= &BTRFS_I(inode
)->io_tree
;
723 /* did the compression code fall back to uncompressed IO? */
724 if (!async_extent
->pages
) {
725 int page_started
= 0;
726 unsigned long nr_written
= 0;
728 lock_extent(io_tree
, async_extent
->start
,
729 async_extent
->start
+
730 async_extent
->ram_size
- 1);
732 /* allocate blocks */
733 ret
= cow_file_range(inode
, async_cow
->locked_page
,
735 async_extent
->start
+
736 async_extent
->ram_size
- 1,
737 async_extent
->start
+
738 async_extent
->ram_size
- 1,
739 &page_started
, &nr_written
, 0,
745 * if page_started, cow_file_range inserted an
746 * inline extent and took care of all the unlocking
747 * and IO for us. Otherwise, we need to submit
748 * all those pages down to the drive.
750 if (!page_started
&& !ret
)
751 extent_write_locked_range(io_tree
,
752 inode
, async_extent
->start
,
753 async_extent
->start
+
754 async_extent
->ram_size
- 1,
758 unlock_page(async_cow
->locked_page
);
764 lock_extent(io_tree
, async_extent
->start
,
765 async_extent
->start
+ async_extent
->ram_size
- 1);
767 ret
= btrfs_reserve_extent(root
, async_extent
->ram_size
,
768 async_extent
->compressed_size
,
769 async_extent
->compressed_size
,
770 0, alloc_hint
, &ins
, 1, 1);
772 free_async_extent_pages(async_extent
);
774 if (ret
== -ENOSPC
) {
775 unlock_extent(io_tree
, async_extent
->start
,
776 async_extent
->start
+
777 async_extent
->ram_size
- 1);
780 * we need to redirty the pages if we decide to
781 * fallback to uncompressed IO, otherwise we
782 * will not submit these pages down to lower
785 extent_range_redirty_for_io(inode
,
787 async_extent
->start
+
788 async_extent
->ram_size
- 1);
795 * here we're doing allocation and writeback of the
798 em
= create_io_em(inode
, async_extent
->start
,
799 async_extent
->ram_size
, /* len */
800 async_extent
->start
, /* orig_start */
801 ins
.objectid
, /* block_start */
802 ins
.offset
, /* block_len */
803 ins
.offset
, /* orig_block_len */
804 async_extent
->ram_size
, /* ram_bytes */
805 async_extent
->compress_type
,
806 BTRFS_ORDERED_COMPRESSED
);
808 /* ret value is not necessary due to void function */
809 goto out_free_reserve
;
812 ret
= btrfs_add_ordered_extent_compress(inode
,
815 async_extent
->ram_size
,
817 BTRFS_ORDERED_COMPRESSED
,
818 async_extent
->compress_type
);
820 btrfs_drop_extent_cache(BTRFS_I(inode
),
822 async_extent
->start
+
823 async_extent
->ram_size
- 1, 0);
824 goto out_free_reserve
;
826 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
829 * clear dirty, set writeback and unlock the pages.
831 extent_clear_unlock_delalloc(inode
, async_extent
->start
,
832 async_extent
->start
+
833 async_extent
->ram_size
- 1,
834 async_extent
->start
+
835 async_extent
->ram_size
- 1,
836 NULL
, EXTENT_LOCKED
| EXTENT_DELALLOC
,
837 PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
839 if (btrfs_submit_compressed_write(inode
,
841 async_extent
->ram_size
,
843 ins
.offset
, async_extent
->pages
,
844 async_extent
->nr_pages
)) {
845 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
846 struct page
*p
= async_extent
->pages
[0];
847 const u64 start
= async_extent
->start
;
848 const u64 end
= start
+ async_extent
->ram_size
- 1;
850 p
->mapping
= inode
->i_mapping
;
851 tree
->ops
->writepage_end_io_hook(p
, start
, end
,
854 extent_clear_unlock_delalloc(inode
, start
, end
, end
,
858 free_async_extent_pages(async_extent
);
860 alloc_hint
= ins
.objectid
+ ins
.offset
;
866 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
867 btrfs_free_reserved_extent(fs_info
, ins
.objectid
, ins
.offset
, 1);
869 extent_clear_unlock_delalloc(inode
, async_extent
->start
,
870 async_extent
->start
+
871 async_extent
->ram_size
- 1,
872 async_extent
->start
+
873 async_extent
->ram_size
- 1,
874 NULL
, EXTENT_LOCKED
| EXTENT_DELALLOC
|
875 EXTENT_DELALLOC_NEW
|
876 EXTENT_DEFRAG
| EXTENT_DO_ACCOUNTING
,
877 PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
878 PAGE_SET_WRITEBACK
| PAGE_END_WRITEBACK
|
880 free_async_extent_pages(async_extent
);
885 static u64
get_extent_allocation_hint(struct inode
*inode
, u64 start
,
888 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
889 struct extent_map
*em
;
892 read_lock(&em_tree
->lock
);
893 em
= search_extent_mapping(em_tree
, start
, num_bytes
);
896 * if block start isn't an actual block number then find the
897 * first block in this inode and use that as a hint. If that
898 * block is also bogus then just don't worry about it.
900 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
902 em
= search_extent_mapping(em_tree
, 0, 0);
903 if (em
&& em
->block_start
< EXTENT_MAP_LAST_BYTE
)
904 alloc_hint
= em
->block_start
;
908 alloc_hint
= em
->block_start
;
912 read_unlock(&em_tree
->lock
);
918 * when extent_io.c finds a delayed allocation range in the file,
919 * the call backs end up in this code. The basic idea is to
920 * allocate extents on disk for the range, and create ordered data structs
921 * in ram to track those extents.
923 * locked_page is the page that writepage had locked already. We use
924 * it to make sure we don't do extra locks or unlocks.
926 * *page_started is set to one if we unlock locked_page and do everything
927 * required to start IO on it. It may be clean and already done with
930 static noinline
int cow_file_range(struct inode
*inode
,
931 struct page
*locked_page
,
932 u64 start
, u64 end
, u64 delalloc_end
,
933 int *page_started
, unsigned long *nr_written
,
934 int unlock
, struct btrfs_dedupe_hash
*hash
)
936 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
937 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
940 unsigned long ram_size
;
942 u64 cur_alloc_size
= 0;
943 u64 blocksize
= fs_info
->sectorsize
;
944 struct btrfs_key ins
;
945 struct extent_map
*em
;
947 unsigned long page_ops
;
948 bool extent_reserved
= false;
951 if (btrfs_is_free_space_inode(BTRFS_I(inode
))) {
957 num_bytes
= ALIGN(end
- start
+ 1, blocksize
);
958 num_bytes
= max(blocksize
, num_bytes
);
959 disk_num_bytes
= num_bytes
;
961 inode_should_defrag(BTRFS_I(inode
), start
, end
, num_bytes
, SZ_64K
);
964 /* lets try to make an inline extent */
965 ret
= cow_file_range_inline(root
, inode
, start
, end
, 0,
966 BTRFS_COMPRESS_NONE
, NULL
);
968 extent_clear_unlock_delalloc(inode
, start
, end
,
970 EXTENT_LOCKED
| EXTENT_DELALLOC
|
971 EXTENT_DELALLOC_NEW
|
972 EXTENT_DEFRAG
, PAGE_UNLOCK
|
973 PAGE_CLEAR_DIRTY
| PAGE_SET_WRITEBACK
|
975 btrfs_free_reserved_data_space_noquota(inode
, start
,
977 *nr_written
= *nr_written
+
978 (end
- start
+ PAGE_SIZE
) / PAGE_SIZE
;
981 } else if (ret
< 0) {
986 BUG_ON(disk_num_bytes
>
987 btrfs_super_total_bytes(fs_info
->super_copy
));
989 alloc_hint
= get_extent_allocation_hint(inode
, start
, num_bytes
);
990 btrfs_drop_extent_cache(BTRFS_I(inode
), start
,
991 start
+ num_bytes
- 1, 0);
993 while (disk_num_bytes
> 0) {
994 cur_alloc_size
= disk_num_bytes
;
995 ret
= btrfs_reserve_extent(root
, cur_alloc_size
, cur_alloc_size
,
996 fs_info
->sectorsize
, 0, alloc_hint
,
1000 cur_alloc_size
= ins
.offset
;
1001 extent_reserved
= true;
1003 ram_size
= ins
.offset
;
1004 em
= create_io_em(inode
, start
, ins
.offset
, /* len */
1005 start
, /* orig_start */
1006 ins
.objectid
, /* block_start */
1007 ins
.offset
, /* block_len */
1008 ins
.offset
, /* orig_block_len */
1009 ram_size
, /* ram_bytes */
1010 BTRFS_COMPRESS_NONE
, /* compress_type */
1011 BTRFS_ORDERED_REGULAR
/* type */);
1014 free_extent_map(em
);
1016 ret
= btrfs_add_ordered_extent(inode
, start
, ins
.objectid
,
1017 ram_size
, cur_alloc_size
, 0);
1019 goto out_drop_extent_cache
;
1021 if (root
->root_key
.objectid
==
1022 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
1023 ret
= btrfs_reloc_clone_csums(inode
, start
,
1026 * Only drop cache here, and process as normal.
1028 * We must not allow extent_clear_unlock_delalloc()
1029 * at out_unlock label to free meta of this ordered
1030 * extent, as its meta should be freed by
1031 * btrfs_finish_ordered_io().
1033 * So we must continue until @start is increased to
1034 * skip current ordered extent.
1037 btrfs_drop_extent_cache(BTRFS_I(inode
), start
,
1038 start
+ ram_size
- 1, 0);
1041 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
1043 /* we're not doing compressed IO, don't unlock the first
1044 * page (which the caller expects to stay locked), don't
1045 * clear any dirty bits and don't set any writeback bits
1047 * Do set the Private2 bit so we know this page was properly
1048 * setup for writepage
1050 page_ops
= unlock
? PAGE_UNLOCK
: 0;
1051 page_ops
|= PAGE_SET_PRIVATE2
;
1053 extent_clear_unlock_delalloc(inode
, start
,
1054 start
+ ram_size
- 1,
1055 delalloc_end
, locked_page
,
1056 EXTENT_LOCKED
| EXTENT_DELALLOC
,
1058 if (disk_num_bytes
< cur_alloc_size
)
1061 disk_num_bytes
-= cur_alloc_size
;
1062 num_bytes
-= cur_alloc_size
;
1063 alloc_hint
= ins
.objectid
+ ins
.offset
;
1064 start
+= cur_alloc_size
;
1065 extent_reserved
= false;
1068 * btrfs_reloc_clone_csums() error, since start is increased
1069 * extent_clear_unlock_delalloc() at out_unlock label won't
1070 * free metadata of current ordered extent, we're OK to exit.
1078 out_drop_extent_cache
:
1079 btrfs_drop_extent_cache(BTRFS_I(inode
), start
, start
+ ram_size
- 1, 0);
1081 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
1082 btrfs_free_reserved_extent(fs_info
, ins
.objectid
, ins
.offset
, 1);
1084 clear_bits
= EXTENT_LOCKED
| EXTENT_DELALLOC
| EXTENT_DELALLOC_NEW
|
1085 EXTENT_DEFRAG
| EXTENT_CLEAR_META_RESV
;
1086 page_ops
= PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
| PAGE_SET_WRITEBACK
|
1089 * If we reserved an extent for our delalloc range (or a subrange) and
1090 * failed to create the respective ordered extent, then it means that
1091 * when we reserved the extent we decremented the extent's size from
1092 * the data space_info's bytes_may_use counter and incremented the
1093 * space_info's bytes_reserved counter by the same amount. We must make
1094 * sure extent_clear_unlock_delalloc() does not try to decrement again
1095 * the data space_info's bytes_may_use counter, therefore we do not pass
1096 * it the flag EXTENT_CLEAR_DATA_RESV.
1098 if (extent_reserved
) {
1099 extent_clear_unlock_delalloc(inode
, start
,
1100 start
+ cur_alloc_size
,
1101 start
+ cur_alloc_size
,
1105 start
+= cur_alloc_size
;
1109 extent_clear_unlock_delalloc(inode
, start
, end
, delalloc_end
,
1111 clear_bits
| EXTENT_CLEAR_DATA_RESV
,
1117 * work queue call back to started compression on a file and pages
1119 static noinline
void async_cow_start(struct btrfs_work
*work
)
1121 struct async_cow
*async_cow
;
1123 async_cow
= container_of(work
, struct async_cow
, work
);
1125 compress_file_range(async_cow
->inode
, async_cow
->locked_page
,
1126 async_cow
->start
, async_cow
->end
, async_cow
,
1128 if (num_added
== 0) {
1129 btrfs_add_delayed_iput(async_cow
->inode
);
1130 async_cow
->inode
= NULL
;
1135 * work queue call back to submit previously compressed pages
1137 static noinline
void async_cow_submit(struct btrfs_work
*work
)
1139 struct btrfs_fs_info
*fs_info
;
1140 struct async_cow
*async_cow
;
1141 struct btrfs_root
*root
;
1142 unsigned long nr_pages
;
1144 async_cow
= container_of(work
, struct async_cow
, work
);
1146 root
= async_cow
->root
;
1147 fs_info
= root
->fs_info
;
1148 nr_pages
= (async_cow
->end
- async_cow
->start
+ PAGE_SIZE
) >>
1152 * atomic_sub_return implies a barrier for waitqueue_active
1154 if (atomic_sub_return(nr_pages
, &fs_info
->async_delalloc_pages
) <
1156 waitqueue_active(&fs_info
->async_submit_wait
))
1157 wake_up(&fs_info
->async_submit_wait
);
1159 if (async_cow
->inode
)
1160 submit_compressed_extents(async_cow
->inode
, async_cow
);
1163 static noinline
void async_cow_free(struct btrfs_work
*work
)
1165 struct async_cow
*async_cow
;
1166 async_cow
= container_of(work
, struct async_cow
, work
);
1167 if (async_cow
->inode
)
1168 btrfs_add_delayed_iput(async_cow
->inode
);
1172 static int cow_file_range_async(struct inode
*inode
, struct page
*locked_page
,
1173 u64 start
, u64 end
, int *page_started
,
1174 unsigned long *nr_written
)
1176 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1177 struct async_cow
*async_cow
;
1178 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1179 unsigned long nr_pages
;
1182 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, end
, EXTENT_LOCKED
,
1183 1, 0, NULL
, GFP_NOFS
);
1184 while (start
< end
) {
1185 async_cow
= kmalloc(sizeof(*async_cow
), GFP_NOFS
);
1186 BUG_ON(!async_cow
); /* -ENOMEM */
1187 async_cow
->inode
= igrab(inode
);
1188 async_cow
->root
= root
;
1189 async_cow
->locked_page
= locked_page
;
1190 async_cow
->start
= start
;
1192 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
&&
1193 !btrfs_test_opt(fs_info
, FORCE_COMPRESS
))
1196 cur_end
= min(end
, start
+ SZ_512K
- 1);
1198 async_cow
->end
= cur_end
;
1199 INIT_LIST_HEAD(&async_cow
->extents
);
1201 btrfs_init_work(&async_cow
->work
,
1202 btrfs_delalloc_helper
,
1203 async_cow_start
, async_cow_submit
,
1206 nr_pages
= (cur_end
- start
+ PAGE_SIZE
) >>
1208 atomic_add(nr_pages
, &fs_info
->async_delalloc_pages
);
1210 btrfs_queue_work(fs_info
->delalloc_workers
, &async_cow
->work
);
1212 while (atomic_read(&fs_info
->async_submit_draining
) &&
1213 atomic_read(&fs_info
->async_delalloc_pages
)) {
1214 wait_event(fs_info
->async_submit_wait
,
1215 (atomic_read(&fs_info
->async_delalloc_pages
) ==
1219 *nr_written
+= nr_pages
;
1220 start
= cur_end
+ 1;
1226 static noinline
int csum_exist_in_range(struct btrfs_fs_info
*fs_info
,
1227 u64 bytenr
, u64 num_bytes
)
1230 struct btrfs_ordered_sum
*sums
;
1233 ret
= btrfs_lookup_csums_range(fs_info
->csum_root
, bytenr
,
1234 bytenr
+ num_bytes
- 1, &list
, 0);
1235 if (ret
== 0 && list_empty(&list
))
1238 while (!list_empty(&list
)) {
1239 sums
= list_entry(list
.next
, struct btrfs_ordered_sum
, list
);
1240 list_del(&sums
->list
);
1247 * when nowcow writeback call back. This checks for snapshots or COW copies
1248 * of the extents that exist in the file, and COWs the file as required.
1250 * If no cow copies or snapshots exist, we write directly to the existing
1253 static noinline
int run_delalloc_nocow(struct inode
*inode
,
1254 struct page
*locked_page
,
1255 u64 start
, u64 end
, int *page_started
, int force
,
1256 unsigned long *nr_written
)
1258 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1259 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1260 struct extent_buffer
*leaf
;
1261 struct btrfs_path
*path
;
1262 struct btrfs_file_extent_item
*fi
;
1263 struct btrfs_key found_key
;
1264 struct extent_map
*em
;
1279 u64 ino
= btrfs_ino(BTRFS_I(inode
));
1281 path
= btrfs_alloc_path();
1283 extent_clear_unlock_delalloc(inode
, start
, end
, end
,
1285 EXTENT_LOCKED
| EXTENT_DELALLOC
|
1286 EXTENT_DO_ACCOUNTING
|
1287 EXTENT_DEFRAG
, PAGE_UNLOCK
|
1289 PAGE_SET_WRITEBACK
|
1290 PAGE_END_WRITEBACK
);
1294 nolock
= btrfs_is_free_space_inode(BTRFS_I(inode
));
1296 cow_start
= (u64
)-1;
1299 ret
= btrfs_lookup_file_extent(NULL
, root
, path
, ino
,
1303 if (ret
> 0 && path
->slots
[0] > 0 && check_prev
) {
1304 leaf
= path
->nodes
[0];
1305 btrfs_item_key_to_cpu(leaf
, &found_key
,
1306 path
->slots
[0] - 1);
1307 if (found_key
.objectid
== ino
&&
1308 found_key
.type
== BTRFS_EXTENT_DATA_KEY
)
1313 leaf
= path
->nodes
[0];
1314 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1315 ret
= btrfs_next_leaf(root
, path
);
1320 leaf
= path
->nodes
[0];
1326 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1328 if (found_key
.objectid
> ino
)
1330 if (WARN_ON_ONCE(found_key
.objectid
< ino
) ||
1331 found_key
.type
< BTRFS_EXTENT_DATA_KEY
) {
1335 if (found_key
.type
> BTRFS_EXTENT_DATA_KEY
||
1336 found_key
.offset
> end
)
1339 if (found_key
.offset
> cur_offset
) {
1340 extent_end
= found_key
.offset
;
1345 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1346 struct btrfs_file_extent_item
);
1347 extent_type
= btrfs_file_extent_type(leaf
, fi
);
1349 ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, fi
);
1350 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
1351 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1352 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1353 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
1354 extent_end
= found_key
.offset
+
1355 btrfs_file_extent_num_bytes(leaf
, fi
);
1357 btrfs_file_extent_disk_num_bytes(leaf
, fi
);
1358 if (extent_end
<= start
) {
1362 if (disk_bytenr
== 0)
1364 if (btrfs_file_extent_compression(leaf
, fi
) ||
1365 btrfs_file_extent_encryption(leaf
, fi
) ||
1366 btrfs_file_extent_other_encoding(leaf
, fi
))
1368 if (extent_type
== BTRFS_FILE_EXTENT_REG
&& !force
)
1370 if (btrfs_extent_readonly(fs_info
, disk_bytenr
))
1372 if (btrfs_cross_ref_exist(root
, ino
,
1374 extent_offset
, disk_bytenr
))
1376 disk_bytenr
+= extent_offset
;
1377 disk_bytenr
+= cur_offset
- found_key
.offset
;
1378 num_bytes
= min(end
+ 1, extent_end
) - cur_offset
;
1380 * if there are pending snapshots for this root,
1381 * we fall into common COW way.
1384 err
= btrfs_start_write_no_snapshoting(root
);
1389 * force cow if csum exists in the range.
1390 * this ensure that csum for a given extent are
1391 * either valid or do not exist.
1393 if (csum_exist_in_range(fs_info
, disk_bytenr
,
1396 btrfs_end_write_no_snapshoting(root
);
1399 if (!btrfs_inc_nocow_writers(fs_info
, disk_bytenr
)) {
1401 btrfs_end_write_no_snapshoting(root
);
1405 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1406 extent_end
= found_key
.offset
+
1407 btrfs_file_extent_inline_len(leaf
,
1408 path
->slots
[0], fi
);
1409 extent_end
= ALIGN(extent_end
,
1410 fs_info
->sectorsize
);
1415 if (extent_end
<= start
) {
1417 if (!nolock
&& nocow
)
1418 btrfs_end_write_no_snapshoting(root
);
1420 btrfs_dec_nocow_writers(fs_info
, disk_bytenr
);
1424 if (cow_start
== (u64
)-1)
1425 cow_start
= cur_offset
;
1426 cur_offset
= extent_end
;
1427 if (cur_offset
> end
)
1433 btrfs_release_path(path
);
1434 if (cow_start
!= (u64
)-1) {
1435 ret
= cow_file_range(inode
, locked_page
,
1436 cow_start
, found_key
.offset
- 1,
1437 end
, page_started
, nr_written
, 1,
1440 if (!nolock
&& nocow
)
1441 btrfs_end_write_no_snapshoting(root
);
1443 btrfs_dec_nocow_writers(fs_info
,
1447 cow_start
= (u64
)-1;
1450 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1451 u64 orig_start
= found_key
.offset
- extent_offset
;
1453 em
= create_io_em(inode
, cur_offset
, num_bytes
,
1455 disk_bytenr
, /* block_start */
1456 num_bytes
, /* block_len */
1457 disk_num_bytes
, /* orig_block_len */
1458 ram_bytes
, BTRFS_COMPRESS_NONE
,
1459 BTRFS_ORDERED_PREALLOC
);
1461 if (!nolock
&& nocow
)
1462 btrfs_end_write_no_snapshoting(root
);
1464 btrfs_dec_nocow_writers(fs_info
,
1469 free_extent_map(em
);
1472 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1473 type
= BTRFS_ORDERED_PREALLOC
;
1475 type
= BTRFS_ORDERED_NOCOW
;
1478 ret
= btrfs_add_ordered_extent(inode
, cur_offset
, disk_bytenr
,
1479 num_bytes
, num_bytes
, type
);
1481 btrfs_dec_nocow_writers(fs_info
, disk_bytenr
);
1482 BUG_ON(ret
); /* -ENOMEM */
1484 if (root
->root_key
.objectid
==
1485 BTRFS_DATA_RELOC_TREE_OBJECTID
)
1487 * Error handled later, as we must prevent
1488 * extent_clear_unlock_delalloc() in error handler
1489 * from freeing metadata of created ordered extent.
1491 ret
= btrfs_reloc_clone_csums(inode
, cur_offset
,
1494 extent_clear_unlock_delalloc(inode
, cur_offset
,
1495 cur_offset
+ num_bytes
- 1, end
,
1496 locked_page
, EXTENT_LOCKED
|
1498 EXTENT_CLEAR_DATA_RESV
,
1499 PAGE_UNLOCK
| PAGE_SET_PRIVATE2
);
1501 if (!nolock
&& nocow
)
1502 btrfs_end_write_no_snapshoting(root
);
1503 cur_offset
= extent_end
;
1506 * btrfs_reloc_clone_csums() error, now we're OK to call error
1507 * handler, as metadata for created ordered extent will only
1508 * be freed by btrfs_finish_ordered_io().
1512 if (cur_offset
> end
)
1515 btrfs_release_path(path
);
1517 if (cur_offset
<= end
&& cow_start
== (u64
)-1) {
1518 cow_start
= cur_offset
;
1522 if (cow_start
!= (u64
)-1) {
1523 ret
= cow_file_range(inode
, locked_page
, cow_start
, end
, end
,
1524 page_started
, nr_written
, 1, NULL
);
1530 if (ret
&& cur_offset
< end
)
1531 extent_clear_unlock_delalloc(inode
, cur_offset
, end
, end
,
1532 locked_page
, EXTENT_LOCKED
|
1533 EXTENT_DELALLOC
| EXTENT_DEFRAG
|
1534 EXTENT_DO_ACCOUNTING
, PAGE_UNLOCK
|
1536 PAGE_SET_WRITEBACK
|
1537 PAGE_END_WRITEBACK
);
1538 btrfs_free_path(path
);
1542 static inline int need_force_cow(struct inode
*inode
, u64 start
, u64 end
)
1545 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
1546 !(BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
))
1550 * @defrag_bytes is a hint value, no spinlock held here,
1551 * if is not zero, it means the file is defragging.
1552 * Force cow if given extent needs to be defragged.
1554 if (BTRFS_I(inode
)->defrag_bytes
&&
1555 test_range_bit(&BTRFS_I(inode
)->io_tree
, start
, end
,
1556 EXTENT_DEFRAG
, 0, NULL
))
1563 * extent_io.c call back to do delayed allocation processing
1565 static int run_delalloc_range(void *private_data
, struct page
*locked_page
,
1566 u64 start
, u64 end
, int *page_started
,
1567 unsigned long *nr_written
)
1569 struct inode
*inode
= private_data
;
1571 int force_cow
= need_force_cow(inode
, start
, end
);
1573 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
&& !force_cow
) {
1574 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1575 page_started
, 1, nr_written
);
1576 } else if (BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
&& !force_cow
) {
1577 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1578 page_started
, 0, nr_written
);
1579 } else if (!inode_need_compress(inode
)) {
1580 ret
= cow_file_range(inode
, locked_page
, start
, end
, end
,
1581 page_started
, nr_written
, 1, NULL
);
1583 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
1584 &BTRFS_I(inode
)->runtime_flags
);
1585 ret
= cow_file_range_async(inode
, locked_page
, start
, end
,
1586 page_started
, nr_written
);
1589 btrfs_cleanup_ordered_extents(inode
, start
, end
- start
+ 1);
1593 static void btrfs_split_extent_hook(void *private_data
,
1594 struct extent_state
*orig
, u64 split
)
1596 struct inode
*inode
= private_data
;
1599 /* not delalloc, ignore it */
1600 if (!(orig
->state
& EXTENT_DELALLOC
))
1603 size
= orig
->end
- orig
->start
+ 1;
1604 if (size
> BTRFS_MAX_EXTENT_SIZE
) {
1609 * See the explanation in btrfs_merge_extent_hook, the same
1610 * applies here, just in reverse.
1612 new_size
= orig
->end
- split
+ 1;
1613 num_extents
= count_max_extents(new_size
);
1614 new_size
= split
- orig
->start
;
1615 num_extents
+= count_max_extents(new_size
);
1616 if (count_max_extents(size
) >= num_extents
)
1620 spin_lock(&BTRFS_I(inode
)->lock
);
1621 BTRFS_I(inode
)->outstanding_extents
++;
1622 spin_unlock(&BTRFS_I(inode
)->lock
);
1626 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1627 * extents so we can keep track of new extents that are just merged onto old
1628 * extents, such as when we are doing sequential writes, so we can properly
1629 * account for the metadata space we'll need.
1631 static void btrfs_merge_extent_hook(void *private_data
,
1632 struct extent_state
*new,
1633 struct extent_state
*other
)
1635 struct inode
*inode
= private_data
;
1636 u64 new_size
, old_size
;
1639 /* not delalloc, ignore it */
1640 if (!(other
->state
& EXTENT_DELALLOC
))
1643 if (new->start
> other
->start
)
1644 new_size
= new->end
- other
->start
+ 1;
1646 new_size
= other
->end
- new->start
+ 1;
1648 /* we're not bigger than the max, unreserve the space and go */
1649 if (new_size
<= BTRFS_MAX_EXTENT_SIZE
) {
1650 spin_lock(&BTRFS_I(inode
)->lock
);
1651 BTRFS_I(inode
)->outstanding_extents
--;
1652 spin_unlock(&BTRFS_I(inode
)->lock
);
1657 * We have to add up either side to figure out how many extents were
1658 * accounted for before we merged into one big extent. If the number of
1659 * extents we accounted for is <= the amount we need for the new range
1660 * then we can return, otherwise drop. Think of it like this
1664 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1665 * need 2 outstanding extents, on one side we have 1 and the other side
1666 * we have 1 so they are == and we can return. But in this case
1668 * [MAX_SIZE+4k][MAX_SIZE+4k]
1670 * Each range on their own accounts for 2 extents, but merged together
1671 * they are only 3 extents worth of accounting, so we need to drop in
1674 old_size
= other
->end
- other
->start
+ 1;
1675 num_extents
= count_max_extents(old_size
);
1676 old_size
= new->end
- new->start
+ 1;
1677 num_extents
+= count_max_extents(old_size
);
1678 if (count_max_extents(new_size
) >= num_extents
)
1681 spin_lock(&BTRFS_I(inode
)->lock
);
1682 BTRFS_I(inode
)->outstanding_extents
--;
1683 spin_unlock(&BTRFS_I(inode
)->lock
);
1686 static void btrfs_add_delalloc_inodes(struct btrfs_root
*root
,
1687 struct inode
*inode
)
1689 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1691 spin_lock(&root
->delalloc_lock
);
1692 if (list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1693 list_add_tail(&BTRFS_I(inode
)->delalloc_inodes
,
1694 &root
->delalloc_inodes
);
1695 set_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1696 &BTRFS_I(inode
)->runtime_flags
);
1697 root
->nr_delalloc_inodes
++;
1698 if (root
->nr_delalloc_inodes
== 1) {
1699 spin_lock(&fs_info
->delalloc_root_lock
);
1700 BUG_ON(!list_empty(&root
->delalloc_root
));
1701 list_add_tail(&root
->delalloc_root
,
1702 &fs_info
->delalloc_roots
);
1703 spin_unlock(&fs_info
->delalloc_root_lock
);
1706 spin_unlock(&root
->delalloc_lock
);
1709 static void btrfs_del_delalloc_inode(struct btrfs_root
*root
,
1710 struct btrfs_inode
*inode
)
1712 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
1714 spin_lock(&root
->delalloc_lock
);
1715 if (!list_empty(&inode
->delalloc_inodes
)) {
1716 list_del_init(&inode
->delalloc_inodes
);
1717 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1718 &inode
->runtime_flags
);
1719 root
->nr_delalloc_inodes
--;
1720 if (!root
->nr_delalloc_inodes
) {
1721 spin_lock(&fs_info
->delalloc_root_lock
);
1722 BUG_ON(list_empty(&root
->delalloc_root
));
1723 list_del_init(&root
->delalloc_root
);
1724 spin_unlock(&fs_info
->delalloc_root_lock
);
1727 spin_unlock(&root
->delalloc_lock
);
1731 * extent_io.c set_bit_hook, used to track delayed allocation
1732 * bytes in this file, and to maintain the list of inodes that
1733 * have pending delalloc work to be done.
1735 static void btrfs_set_bit_hook(void *private_data
,
1736 struct extent_state
*state
, unsigned *bits
)
1738 struct inode
*inode
= private_data
;
1740 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1742 if ((*bits
& EXTENT_DEFRAG
) && !(*bits
& EXTENT_DELALLOC
))
1745 * set_bit and clear bit hooks normally require _irqsave/restore
1746 * but in this case, we are only testing for the DELALLOC
1747 * bit, which is only set or cleared with irqs on
1749 if (!(state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1750 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1751 u64 len
= state
->end
+ 1 - state
->start
;
1752 bool do_list
= !btrfs_is_free_space_inode(BTRFS_I(inode
));
1754 if (*bits
& EXTENT_FIRST_DELALLOC
) {
1755 *bits
&= ~EXTENT_FIRST_DELALLOC
;
1757 spin_lock(&BTRFS_I(inode
)->lock
);
1758 BTRFS_I(inode
)->outstanding_extents
++;
1759 spin_unlock(&BTRFS_I(inode
)->lock
);
1762 /* For sanity tests */
1763 if (btrfs_is_testing(fs_info
))
1766 percpu_counter_add_batch(&fs_info
->delalloc_bytes
, len
,
1767 fs_info
->delalloc_batch
);
1768 spin_lock(&BTRFS_I(inode
)->lock
);
1769 BTRFS_I(inode
)->delalloc_bytes
+= len
;
1770 if (*bits
& EXTENT_DEFRAG
)
1771 BTRFS_I(inode
)->defrag_bytes
+= len
;
1772 if (do_list
&& !test_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1773 &BTRFS_I(inode
)->runtime_flags
))
1774 btrfs_add_delalloc_inodes(root
, inode
);
1775 spin_unlock(&BTRFS_I(inode
)->lock
);
1778 if (!(state
->state
& EXTENT_DELALLOC_NEW
) &&
1779 (*bits
& EXTENT_DELALLOC_NEW
)) {
1780 spin_lock(&BTRFS_I(inode
)->lock
);
1781 BTRFS_I(inode
)->new_delalloc_bytes
+= state
->end
+ 1 -
1783 spin_unlock(&BTRFS_I(inode
)->lock
);
1788 * extent_io.c clear_bit_hook, see set_bit_hook for why
1790 static void btrfs_clear_bit_hook(void *private_data
,
1791 struct extent_state
*state
,
1794 struct btrfs_inode
*inode
= BTRFS_I((struct inode
*)private_data
);
1795 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
1796 u64 len
= state
->end
+ 1 - state
->start
;
1797 u32 num_extents
= count_max_extents(len
);
1799 spin_lock(&inode
->lock
);
1800 if ((state
->state
& EXTENT_DEFRAG
) && (*bits
& EXTENT_DEFRAG
))
1801 inode
->defrag_bytes
-= len
;
1802 spin_unlock(&inode
->lock
);
1805 * set_bit and clear bit hooks normally require _irqsave/restore
1806 * but in this case, we are only testing for the DELALLOC
1807 * bit, which is only set or cleared with irqs on
1809 if ((state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1810 struct btrfs_root
*root
= inode
->root
;
1811 bool do_list
= !btrfs_is_free_space_inode(inode
);
1813 if (*bits
& EXTENT_FIRST_DELALLOC
) {
1814 *bits
&= ~EXTENT_FIRST_DELALLOC
;
1815 } else if (!(*bits
& EXTENT_CLEAR_META_RESV
)) {
1816 spin_lock(&inode
->lock
);
1817 inode
->outstanding_extents
-= num_extents
;
1818 spin_unlock(&inode
->lock
);
1822 * We don't reserve metadata space for space cache inodes so we
1823 * don't need to call dellalloc_release_metadata if there is an
1826 if (*bits
& EXTENT_CLEAR_META_RESV
&&
1827 root
!= fs_info
->tree_root
)
1828 btrfs_delalloc_release_metadata(inode
, len
);
1830 /* For sanity tests. */
1831 if (btrfs_is_testing(fs_info
))
1834 if (root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
&&
1835 do_list
&& !(state
->state
& EXTENT_NORESERVE
) &&
1836 (*bits
& EXTENT_CLEAR_DATA_RESV
))
1837 btrfs_free_reserved_data_space_noquota(
1841 percpu_counter_add_batch(&fs_info
->delalloc_bytes
, -len
,
1842 fs_info
->delalloc_batch
);
1843 spin_lock(&inode
->lock
);
1844 inode
->delalloc_bytes
-= len
;
1845 if (do_list
&& inode
->delalloc_bytes
== 0 &&
1846 test_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1847 &inode
->runtime_flags
))
1848 btrfs_del_delalloc_inode(root
, inode
);
1849 spin_unlock(&inode
->lock
);
1852 if ((state
->state
& EXTENT_DELALLOC_NEW
) &&
1853 (*bits
& EXTENT_DELALLOC_NEW
)) {
1854 spin_lock(&inode
->lock
);
1855 ASSERT(inode
->new_delalloc_bytes
>= len
);
1856 inode
->new_delalloc_bytes
-= len
;
1857 spin_unlock(&inode
->lock
);
1862 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1863 * we don't create bios that span stripes or chunks
1865 * return 1 if page cannot be merged to bio
1866 * return 0 if page can be merged to bio
1867 * return error otherwise
1869 int btrfs_merge_bio_hook(struct page
*page
, unsigned long offset
,
1870 size_t size
, struct bio
*bio
,
1871 unsigned long bio_flags
)
1873 struct inode
*inode
= page
->mapping
->host
;
1874 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1875 u64 logical
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
1880 if (bio_flags
& EXTENT_BIO_COMPRESSED
)
1883 length
= bio
->bi_iter
.bi_size
;
1884 map_length
= length
;
1885 ret
= btrfs_map_block(fs_info
, btrfs_op(bio
), logical
, &map_length
,
1889 if (map_length
< length
+ size
)
1895 * in order to insert checksums into the metadata in large chunks,
1896 * we wait until bio submission time. All the pages in the bio are
1897 * checksummed and sums are attached onto the ordered extent record.
1899 * At IO completion time the cums attached on the ordered extent record
1900 * are inserted into the btree
1902 static blk_status_t
__btrfs_submit_bio_start(void *private_data
, struct bio
*bio
,
1903 int mirror_num
, unsigned long bio_flags
,
1906 struct inode
*inode
= private_data
;
1907 blk_status_t ret
= 0;
1909 ret
= btrfs_csum_one_bio(inode
, bio
, 0, 0);
1910 BUG_ON(ret
); /* -ENOMEM */
1915 * in order to insert checksums into the metadata in large chunks,
1916 * we wait until bio submission time. All the pages in the bio are
1917 * checksummed and sums are attached onto the ordered extent record.
1919 * At IO completion time the cums attached on the ordered extent record
1920 * are inserted into the btree
1922 static blk_status_t
__btrfs_submit_bio_done(void *private_data
, struct bio
*bio
,
1923 int mirror_num
, unsigned long bio_flags
,
1926 struct inode
*inode
= private_data
;
1927 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1930 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
, 1);
1932 bio
->bi_status
= ret
;
1939 * extent_io.c submission hook. This does the right thing for csum calculation
1940 * on write, or reading the csums from the tree before a read
1942 static blk_status_t
btrfs_submit_bio_hook(void *private_data
, struct bio
*bio
,
1943 int mirror_num
, unsigned long bio_flags
,
1946 struct inode
*inode
= private_data
;
1947 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1948 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1949 enum btrfs_wq_endio_type metadata
= BTRFS_WQ_ENDIO_DATA
;
1950 blk_status_t ret
= 0;
1952 int async
= !atomic_read(&BTRFS_I(inode
)->sync_writers
);
1954 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
1956 if (btrfs_is_free_space_inode(BTRFS_I(inode
)))
1957 metadata
= BTRFS_WQ_ENDIO_FREE_SPACE
;
1959 if (bio_op(bio
) != REQ_OP_WRITE
) {
1960 ret
= btrfs_bio_wq_end_io(fs_info
, bio
, metadata
);
1964 if (bio_flags
& EXTENT_BIO_COMPRESSED
) {
1965 ret
= btrfs_submit_compressed_read(inode
, bio
,
1969 } else if (!skip_sum
) {
1970 ret
= btrfs_lookup_bio_sums(inode
, bio
, NULL
);
1975 } else if (async
&& !skip_sum
) {
1976 /* csum items have already been cloned */
1977 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
1979 /* we're doing a write, do the async checksumming */
1980 ret
= btrfs_wq_submit_bio(fs_info
, bio
, mirror_num
, bio_flags
,
1982 __btrfs_submit_bio_start
,
1983 __btrfs_submit_bio_done
);
1985 } else if (!skip_sum
) {
1986 ret
= btrfs_csum_one_bio(inode
, bio
, 0, 0);
1992 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
, 0);
1996 bio
->bi_status
= ret
;
2003 * given a list of ordered sums record them in the inode. This happens
2004 * at IO completion time based on sums calculated at bio submission time.
2006 static noinline
int add_pending_csums(struct btrfs_trans_handle
*trans
,
2007 struct inode
*inode
, struct list_head
*list
)
2009 struct btrfs_ordered_sum
*sum
;
2011 list_for_each_entry(sum
, list
, list
) {
2012 trans
->adding_csums
= 1;
2013 btrfs_csum_file_blocks(trans
,
2014 BTRFS_I(inode
)->root
->fs_info
->csum_root
, sum
);
2015 trans
->adding_csums
= 0;
2020 int btrfs_set_extent_delalloc(struct inode
*inode
, u64 start
, u64 end
,
2021 struct extent_state
**cached_state
, int dedupe
)
2023 WARN_ON((end
& (PAGE_SIZE
- 1)) == 0);
2024 return set_extent_delalloc(&BTRFS_I(inode
)->io_tree
, start
, end
,
2028 /* see btrfs_writepage_start_hook for details on why this is required */
2029 struct btrfs_writepage_fixup
{
2031 struct btrfs_work work
;
2034 static void btrfs_writepage_fixup_worker(struct btrfs_work
*work
)
2036 struct btrfs_writepage_fixup
*fixup
;
2037 struct btrfs_ordered_extent
*ordered
;
2038 struct extent_state
*cached_state
= NULL
;
2039 struct extent_changeset
*data_reserved
= NULL
;
2041 struct inode
*inode
;
2046 fixup
= container_of(work
, struct btrfs_writepage_fixup
, work
);
2050 if (!page
->mapping
|| !PageDirty(page
) || !PageChecked(page
)) {
2051 ClearPageChecked(page
);
2055 inode
= page
->mapping
->host
;
2056 page_start
= page_offset(page
);
2057 page_end
= page_offset(page
) + PAGE_SIZE
- 1;
2059 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
2062 /* already ordered? We're done */
2063 if (PagePrivate2(page
))
2066 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), page_start
,
2069 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
,
2070 page_end
, &cached_state
, GFP_NOFS
);
2072 btrfs_start_ordered_extent(inode
, ordered
, 1);
2073 btrfs_put_ordered_extent(ordered
);
2077 ret
= btrfs_delalloc_reserve_space(inode
, &data_reserved
, page_start
,
2080 mapping_set_error(page
->mapping
, ret
);
2081 end_extent_writepage(page
, ret
, page_start
, page_end
);
2082 ClearPageChecked(page
);
2086 btrfs_set_extent_delalloc(inode
, page_start
, page_end
, &cached_state
,
2088 ClearPageChecked(page
);
2089 set_page_dirty(page
);
2091 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
2092 &cached_state
, GFP_NOFS
);
2097 extent_changeset_free(data_reserved
);
2101 * There are a few paths in the higher layers of the kernel that directly
2102 * set the page dirty bit without asking the filesystem if it is a
2103 * good idea. This causes problems because we want to make sure COW
2104 * properly happens and the data=ordered rules are followed.
2106 * In our case any range that doesn't have the ORDERED bit set
2107 * hasn't been properly setup for IO. We kick off an async process
2108 * to fix it up. The async helper will wait for ordered extents, set
2109 * the delalloc bit and make it safe to write the page.
2111 static int btrfs_writepage_start_hook(struct page
*page
, u64 start
, u64 end
)
2113 struct inode
*inode
= page
->mapping
->host
;
2114 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2115 struct btrfs_writepage_fixup
*fixup
;
2117 /* this page is properly in the ordered list */
2118 if (TestClearPagePrivate2(page
))
2121 if (PageChecked(page
))
2124 fixup
= kzalloc(sizeof(*fixup
), GFP_NOFS
);
2128 SetPageChecked(page
);
2130 btrfs_init_work(&fixup
->work
, btrfs_fixup_helper
,
2131 btrfs_writepage_fixup_worker
, NULL
, NULL
);
2133 btrfs_queue_work(fs_info
->fixup_workers
, &fixup
->work
);
2137 static int insert_reserved_file_extent(struct btrfs_trans_handle
*trans
,
2138 struct inode
*inode
, u64 file_pos
,
2139 u64 disk_bytenr
, u64 disk_num_bytes
,
2140 u64 num_bytes
, u64 ram_bytes
,
2141 u8 compression
, u8 encryption
,
2142 u16 other_encoding
, int extent_type
)
2144 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2145 struct btrfs_file_extent_item
*fi
;
2146 struct btrfs_path
*path
;
2147 struct extent_buffer
*leaf
;
2148 struct btrfs_key ins
;
2150 int extent_inserted
= 0;
2153 path
= btrfs_alloc_path();
2158 * we may be replacing one extent in the tree with another.
2159 * The new extent is pinned in the extent map, and we don't want
2160 * to drop it from the cache until it is completely in the btree.
2162 * So, tell btrfs_drop_extents to leave this extent in the cache.
2163 * the caller is expected to unpin it and allow it to be merged
2166 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
, file_pos
,
2167 file_pos
+ num_bytes
, NULL
, 0,
2168 1, sizeof(*fi
), &extent_inserted
);
2172 if (!extent_inserted
) {
2173 ins
.objectid
= btrfs_ino(BTRFS_I(inode
));
2174 ins
.offset
= file_pos
;
2175 ins
.type
= BTRFS_EXTENT_DATA_KEY
;
2177 path
->leave_spinning
= 1;
2178 ret
= btrfs_insert_empty_item(trans
, root
, path
, &ins
,
2183 leaf
= path
->nodes
[0];
2184 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2185 struct btrfs_file_extent_item
);
2186 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
2187 btrfs_set_file_extent_type(leaf
, fi
, extent_type
);
2188 btrfs_set_file_extent_disk_bytenr(leaf
, fi
, disk_bytenr
);
2189 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
, disk_num_bytes
);
2190 btrfs_set_file_extent_offset(leaf
, fi
, 0);
2191 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
2192 btrfs_set_file_extent_ram_bytes(leaf
, fi
, ram_bytes
);
2193 btrfs_set_file_extent_compression(leaf
, fi
, compression
);
2194 btrfs_set_file_extent_encryption(leaf
, fi
, encryption
);
2195 btrfs_set_file_extent_other_encoding(leaf
, fi
, other_encoding
);
2197 btrfs_mark_buffer_dirty(leaf
);
2198 btrfs_release_path(path
);
2200 inode_add_bytes(inode
, num_bytes
);
2202 ins
.objectid
= disk_bytenr
;
2203 ins
.offset
= disk_num_bytes
;
2204 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2207 * Release the reserved range from inode dirty range map, as it is
2208 * already moved into delayed_ref_head
2210 ret
= btrfs_qgroup_release_data(inode
, file_pos
, ram_bytes
);
2214 ret
= btrfs_alloc_reserved_file_extent(trans
, root
->root_key
.objectid
,
2215 btrfs_ino(BTRFS_I(inode
)), file_pos
, qg_released
, &ins
);
2217 btrfs_free_path(path
);
2222 /* snapshot-aware defrag */
2223 struct sa_defrag_extent_backref
{
2224 struct rb_node node
;
2225 struct old_sa_defrag_extent
*old
;
2234 struct old_sa_defrag_extent
{
2235 struct list_head list
;
2236 struct new_sa_defrag_extent
*new;
2245 struct new_sa_defrag_extent
{
2246 struct rb_root root
;
2247 struct list_head head
;
2248 struct btrfs_path
*path
;
2249 struct inode
*inode
;
2257 static int backref_comp(struct sa_defrag_extent_backref
*b1
,
2258 struct sa_defrag_extent_backref
*b2
)
2260 if (b1
->root_id
< b2
->root_id
)
2262 else if (b1
->root_id
> b2
->root_id
)
2265 if (b1
->inum
< b2
->inum
)
2267 else if (b1
->inum
> b2
->inum
)
2270 if (b1
->file_pos
< b2
->file_pos
)
2272 else if (b1
->file_pos
> b2
->file_pos
)
2276 * [------------------------------] ===> (a range of space)
2277 * |<--->| |<---->| =============> (fs/file tree A)
2278 * |<---------------------------->| ===> (fs/file tree B)
2280 * A range of space can refer to two file extents in one tree while
2281 * refer to only one file extent in another tree.
2283 * So we may process a disk offset more than one time(two extents in A)
2284 * and locate at the same extent(one extent in B), then insert two same
2285 * backrefs(both refer to the extent in B).
2290 static void backref_insert(struct rb_root
*root
,
2291 struct sa_defrag_extent_backref
*backref
)
2293 struct rb_node
**p
= &root
->rb_node
;
2294 struct rb_node
*parent
= NULL
;
2295 struct sa_defrag_extent_backref
*entry
;
2300 entry
= rb_entry(parent
, struct sa_defrag_extent_backref
, node
);
2302 ret
= backref_comp(backref
, entry
);
2306 p
= &(*p
)->rb_right
;
2309 rb_link_node(&backref
->node
, parent
, p
);
2310 rb_insert_color(&backref
->node
, root
);
2314 * Note the backref might has changed, and in this case we just return 0.
2316 static noinline
int record_one_backref(u64 inum
, u64 offset
, u64 root_id
,
2319 struct btrfs_file_extent_item
*extent
;
2320 struct old_sa_defrag_extent
*old
= ctx
;
2321 struct new_sa_defrag_extent
*new = old
->new;
2322 struct btrfs_path
*path
= new->path
;
2323 struct btrfs_key key
;
2324 struct btrfs_root
*root
;
2325 struct sa_defrag_extent_backref
*backref
;
2326 struct extent_buffer
*leaf
;
2327 struct inode
*inode
= new->inode
;
2328 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2334 if (BTRFS_I(inode
)->root
->root_key
.objectid
== root_id
&&
2335 inum
== btrfs_ino(BTRFS_I(inode
)))
2338 key
.objectid
= root_id
;
2339 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2340 key
.offset
= (u64
)-1;
2342 root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
2344 if (PTR_ERR(root
) == -ENOENT
)
2347 btrfs_debug(fs_info
, "inum=%llu, offset=%llu, root_id=%llu",
2348 inum
, offset
, root_id
);
2349 return PTR_ERR(root
);
2352 key
.objectid
= inum
;
2353 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2354 if (offset
> (u64
)-1 << 32)
2357 key
.offset
= offset
;
2359 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2360 if (WARN_ON(ret
< 0))
2367 leaf
= path
->nodes
[0];
2368 slot
= path
->slots
[0];
2370 if (slot
>= btrfs_header_nritems(leaf
)) {
2371 ret
= btrfs_next_leaf(root
, path
);
2374 } else if (ret
> 0) {
2383 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
2385 if (key
.objectid
> inum
)
2388 if (key
.objectid
< inum
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
)
2391 extent
= btrfs_item_ptr(leaf
, slot
,
2392 struct btrfs_file_extent_item
);
2394 if (btrfs_file_extent_disk_bytenr(leaf
, extent
) != old
->bytenr
)
2398 * 'offset' refers to the exact key.offset,
2399 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2400 * (key.offset - extent_offset).
2402 if (key
.offset
!= offset
)
2405 extent_offset
= btrfs_file_extent_offset(leaf
, extent
);
2406 num_bytes
= btrfs_file_extent_num_bytes(leaf
, extent
);
2408 if (extent_offset
>= old
->extent_offset
+ old
->offset
+
2409 old
->len
|| extent_offset
+ num_bytes
<=
2410 old
->extent_offset
+ old
->offset
)
2415 backref
= kmalloc(sizeof(*backref
), GFP_NOFS
);
2421 backref
->root_id
= root_id
;
2422 backref
->inum
= inum
;
2423 backref
->file_pos
= offset
;
2424 backref
->num_bytes
= num_bytes
;
2425 backref
->extent_offset
= extent_offset
;
2426 backref
->generation
= btrfs_file_extent_generation(leaf
, extent
);
2428 backref_insert(&new->root
, backref
);
2431 btrfs_release_path(path
);
2436 static noinline
bool record_extent_backrefs(struct btrfs_path
*path
,
2437 struct new_sa_defrag_extent
*new)
2439 struct btrfs_fs_info
*fs_info
= btrfs_sb(new->inode
->i_sb
);
2440 struct old_sa_defrag_extent
*old
, *tmp
;
2445 list_for_each_entry_safe(old
, tmp
, &new->head
, list
) {
2446 ret
= iterate_inodes_from_logical(old
->bytenr
+
2447 old
->extent_offset
, fs_info
,
2448 path
, record_one_backref
,
2450 if (ret
< 0 && ret
!= -ENOENT
)
2453 /* no backref to be processed for this extent */
2455 list_del(&old
->list
);
2460 if (list_empty(&new->head
))
2466 static int relink_is_mergable(struct extent_buffer
*leaf
,
2467 struct btrfs_file_extent_item
*fi
,
2468 struct new_sa_defrag_extent
*new)
2470 if (btrfs_file_extent_disk_bytenr(leaf
, fi
) != new->bytenr
)
2473 if (btrfs_file_extent_type(leaf
, fi
) != BTRFS_FILE_EXTENT_REG
)
2476 if (btrfs_file_extent_compression(leaf
, fi
) != new->compress_type
)
2479 if (btrfs_file_extent_encryption(leaf
, fi
) ||
2480 btrfs_file_extent_other_encoding(leaf
, fi
))
2487 * Note the backref might has changed, and in this case we just return 0.
2489 static noinline
int relink_extent_backref(struct btrfs_path
*path
,
2490 struct sa_defrag_extent_backref
*prev
,
2491 struct sa_defrag_extent_backref
*backref
)
2493 struct btrfs_file_extent_item
*extent
;
2494 struct btrfs_file_extent_item
*item
;
2495 struct btrfs_ordered_extent
*ordered
;
2496 struct btrfs_trans_handle
*trans
;
2497 struct btrfs_root
*root
;
2498 struct btrfs_key key
;
2499 struct extent_buffer
*leaf
;
2500 struct old_sa_defrag_extent
*old
= backref
->old
;
2501 struct new_sa_defrag_extent
*new = old
->new;
2502 struct btrfs_fs_info
*fs_info
= btrfs_sb(new->inode
->i_sb
);
2503 struct inode
*inode
;
2504 struct extent_state
*cached
= NULL
;
2513 if (prev
&& prev
->root_id
== backref
->root_id
&&
2514 prev
->inum
== backref
->inum
&&
2515 prev
->file_pos
+ prev
->num_bytes
== backref
->file_pos
)
2518 /* step 1: get root */
2519 key
.objectid
= backref
->root_id
;
2520 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2521 key
.offset
= (u64
)-1;
2523 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
2525 root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
2527 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2528 if (PTR_ERR(root
) == -ENOENT
)
2530 return PTR_ERR(root
);
2533 if (btrfs_root_readonly(root
)) {
2534 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2538 /* step 2: get inode */
2539 key
.objectid
= backref
->inum
;
2540 key
.type
= BTRFS_INODE_ITEM_KEY
;
2543 inode
= btrfs_iget(fs_info
->sb
, &key
, root
, NULL
);
2544 if (IS_ERR(inode
)) {
2545 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2549 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2551 /* step 3: relink backref */
2552 lock_start
= backref
->file_pos
;
2553 lock_end
= backref
->file_pos
+ backref
->num_bytes
- 1;
2554 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lock_start
, lock_end
,
2557 ordered
= btrfs_lookup_first_ordered_extent(inode
, lock_end
);
2559 btrfs_put_ordered_extent(ordered
);
2563 trans
= btrfs_join_transaction(root
);
2564 if (IS_ERR(trans
)) {
2565 ret
= PTR_ERR(trans
);
2569 key
.objectid
= backref
->inum
;
2570 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2571 key
.offset
= backref
->file_pos
;
2573 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2576 } else if (ret
> 0) {
2581 extent
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2582 struct btrfs_file_extent_item
);
2584 if (btrfs_file_extent_generation(path
->nodes
[0], extent
) !=
2585 backref
->generation
)
2588 btrfs_release_path(path
);
2590 start
= backref
->file_pos
;
2591 if (backref
->extent_offset
< old
->extent_offset
+ old
->offset
)
2592 start
+= old
->extent_offset
+ old
->offset
-
2593 backref
->extent_offset
;
2595 len
= min(backref
->extent_offset
+ backref
->num_bytes
,
2596 old
->extent_offset
+ old
->offset
+ old
->len
);
2597 len
-= max(backref
->extent_offset
, old
->extent_offset
+ old
->offset
);
2599 ret
= btrfs_drop_extents(trans
, root
, inode
, start
,
2604 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
2605 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2608 path
->leave_spinning
= 1;
2610 struct btrfs_file_extent_item
*fi
;
2612 struct btrfs_key found_key
;
2614 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2619 leaf
= path
->nodes
[0];
2620 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2622 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2623 struct btrfs_file_extent_item
);
2624 extent_len
= btrfs_file_extent_num_bytes(leaf
, fi
);
2626 if (extent_len
+ found_key
.offset
== start
&&
2627 relink_is_mergable(leaf
, fi
, new)) {
2628 btrfs_set_file_extent_num_bytes(leaf
, fi
,
2630 btrfs_mark_buffer_dirty(leaf
);
2631 inode_add_bytes(inode
, len
);
2637 btrfs_release_path(path
);
2642 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
2645 btrfs_abort_transaction(trans
, ret
);
2649 leaf
= path
->nodes
[0];
2650 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2651 struct btrfs_file_extent_item
);
2652 btrfs_set_file_extent_disk_bytenr(leaf
, item
, new->bytenr
);
2653 btrfs_set_file_extent_disk_num_bytes(leaf
, item
, new->disk_len
);
2654 btrfs_set_file_extent_offset(leaf
, item
, start
- new->file_pos
);
2655 btrfs_set_file_extent_num_bytes(leaf
, item
, len
);
2656 btrfs_set_file_extent_ram_bytes(leaf
, item
, new->len
);
2657 btrfs_set_file_extent_generation(leaf
, item
, trans
->transid
);
2658 btrfs_set_file_extent_type(leaf
, item
, BTRFS_FILE_EXTENT_REG
);
2659 btrfs_set_file_extent_compression(leaf
, item
, new->compress_type
);
2660 btrfs_set_file_extent_encryption(leaf
, item
, 0);
2661 btrfs_set_file_extent_other_encoding(leaf
, item
, 0);
2663 btrfs_mark_buffer_dirty(leaf
);
2664 inode_add_bytes(inode
, len
);
2665 btrfs_release_path(path
);
2667 ret
= btrfs_inc_extent_ref(trans
, fs_info
, new->bytenr
,
2669 backref
->root_id
, backref
->inum
,
2670 new->file_pos
); /* start - extent_offset */
2672 btrfs_abort_transaction(trans
, ret
);
2678 btrfs_release_path(path
);
2679 path
->leave_spinning
= 0;
2680 btrfs_end_transaction(trans
);
2682 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lock_start
, lock_end
,
2688 static void free_sa_defrag_extent(struct new_sa_defrag_extent
*new)
2690 struct old_sa_defrag_extent
*old
, *tmp
;
2695 list_for_each_entry_safe(old
, tmp
, &new->head
, list
) {
2701 static void relink_file_extents(struct new_sa_defrag_extent
*new)
2703 struct btrfs_fs_info
*fs_info
= btrfs_sb(new->inode
->i_sb
);
2704 struct btrfs_path
*path
;
2705 struct sa_defrag_extent_backref
*backref
;
2706 struct sa_defrag_extent_backref
*prev
= NULL
;
2707 struct inode
*inode
;
2708 struct btrfs_root
*root
;
2709 struct rb_node
*node
;
2713 root
= BTRFS_I(inode
)->root
;
2715 path
= btrfs_alloc_path();
2719 if (!record_extent_backrefs(path
, new)) {
2720 btrfs_free_path(path
);
2723 btrfs_release_path(path
);
2726 node
= rb_first(&new->root
);
2729 rb_erase(node
, &new->root
);
2731 backref
= rb_entry(node
, struct sa_defrag_extent_backref
, node
);
2733 ret
= relink_extent_backref(path
, prev
, backref
);
2746 btrfs_free_path(path
);
2748 free_sa_defrag_extent(new);
2750 atomic_dec(&fs_info
->defrag_running
);
2751 wake_up(&fs_info
->transaction_wait
);
2754 static struct new_sa_defrag_extent
*
2755 record_old_file_extents(struct inode
*inode
,
2756 struct btrfs_ordered_extent
*ordered
)
2758 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2759 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2760 struct btrfs_path
*path
;
2761 struct btrfs_key key
;
2762 struct old_sa_defrag_extent
*old
;
2763 struct new_sa_defrag_extent
*new;
2766 new = kmalloc(sizeof(*new), GFP_NOFS
);
2771 new->file_pos
= ordered
->file_offset
;
2772 new->len
= ordered
->len
;
2773 new->bytenr
= ordered
->start
;
2774 new->disk_len
= ordered
->disk_len
;
2775 new->compress_type
= ordered
->compress_type
;
2776 new->root
= RB_ROOT
;
2777 INIT_LIST_HEAD(&new->head
);
2779 path
= btrfs_alloc_path();
2783 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
2784 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2785 key
.offset
= new->file_pos
;
2787 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2790 if (ret
> 0 && path
->slots
[0] > 0)
2793 /* find out all the old extents for the file range */
2795 struct btrfs_file_extent_item
*extent
;
2796 struct extent_buffer
*l
;
2805 slot
= path
->slots
[0];
2807 if (slot
>= btrfs_header_nritems(l
)) {
2808 ret
= btrfs_next_leaf(root
, path
);
2816 btrfs_item_key_to_cpu(l
, &key
, slot
);
2818 if (key
.objectid
!= btrfs_ino(BTRFS_I(inode
)))
2820 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
2822 if (key
.offset
>= new->file_pos
+ new->len
)
2825 extent
= btrfs_item_ptr(l
, slot
, struct btrfs_file_extent_item
);
2827 num_bytes
= btrfs_file_extent_num_bytes(l
, extent
);
2828 if (key
.offset
+ num_bytes
< new->file_pos
)
2831 disk_bytenr
= btrfs_file_extent_disk_bytenr(l
, extent
);
2835 extent_offset
= btrfs_file_extent_offset(l
, extent
);
2837 old
= kmalloc(sizeof(*old
), GFP_NOFS
);
2841 offset
= max(new->file_pos
, key
.offset
);
2842 end
= min(new->file_pos
+ new->len
, key
.offset
+ num_bytes
);
2844 old
->bytenr
= disk_bytenr
;
2845 old
->extent_offset
= extent_offset
;
2846 old
->offset
= offset
- key
.offset
;
2847 old
->len
= end
- offset
;
2850 list_add_tail(&old
->list
, &new->head
);
2856 btrfs_free_path(path
);
2857 atomic_inc(&fs_info
->defrag_running
);
2862 btrfs_free_path(path
);
2864 free_sa_defrag_extent(new);
2868 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info
*fs_info
,
2871 struct btrfs_block_group_cache
*cache
;
2873 cache
= btrfs_lookup_block_group(fs_info
, start
);
2876 spin_lock(&cache
->lock
);
2877 cache
->delalloc_bytes
-= len
;
2878 spin_unlock(&cache
->lock
);
2880 btrfs_put_block_group(cache
);
2883 /* as ordered data IO finishes, this gets called so we can finish
2884 * an ordered extent if the range of bytes in the file it covers are
2887 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent
*ordered_extent
)
2889 struct inode
*inode
= ordered_extent
->inode
;
2890 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2891 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2892 struct btrfs_trans_handle
*trans
= NULL
;
2893 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2894 struct extent_state
*cached_state
= NULL
;
2895 struct new_sa_defrag_extent
*new = NULL
;
2896 int compress_type
= 0;
2898 u64 logical_len
= ordered_extent
->len
;
2900 bool truncated
= false;
2901 bool range_locked
= false;
2902 bool clear_new_delalloc_bytes
= false;
2904 if (!test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
) &&
2905 !test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
) &&
2906 !test_bit(BTRFS_ORDERED_DIRECT
, &ordered_extent
->flags
))
2907 clear_new_delalloc_bytes
= true;
2909 nolock
= btrfs_is_free_space_inode(BTRFS_I(inode
));
2911 if (test_bit(BTRFS_ORDERED_IOERR
, &ordered_extent
->flags
)) {
2916 btrfs_free_io_failure_record(BTRFS_I(inode
),
2917 ordered_extent
->file_offset
,
2918 ordered_extent
->file_offset
+
2919 ordered_extent
->len
- 1);
2921 if (test_bit(BTRFS_ORDERED_TRUNCATED
, &ordered_extent
->flags
)) {
2923 logical_len
= ordered_extent
->truncated_len
;
2924 /* Truncated the entire extent, don't bother adding */
2929 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
)) {
2930 BUG_ON(!list_empty(&ordered_extent
->list
)); /* Logic error */
2933 * For mwrite(mmap + memset to write) case, we still reserve
2934 * space for NOCOW range.
2935 * As NOCOW won't cause a new delayed ref, just free the space
2937 btrfs_qgroup_free_data(inode
, NULL
, ordered_extent
->file_offset
,
2938 ordered_extent
->len
);
2939 btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
2941 trans
= btrfs_join_transaction_nolock(root
);
2943 trans
= btrfs_join_transaction(root
);
2944 if (IS_ERR(trans
)) {
2945 ret
= PTR_ERR(trans
);
2949 trans
->block_rsv
= &fs_info
->delalloc_block_rsv
;
2950 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
2951 if (ret
) /* -ENOMEM or corruption */
2952 btrfs_abort_transaction(trans
, ret
);
2956 range_locked
= true;
2957 lock_extent_bits(io_tree
, ordered_extent
->file_offset
,
2958 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
2961 ret
= test_range_bit(io_tree
, ordered_extent
->file_offset
,
2962 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
2963 EXTENT_DEFRAG
, 0, cached_state
);
2965 u64 last_snapshot
= btrfs_root_last_snapshot(&root
->root_item
);
2966 if (0 && last_snapshot
>= BTRFS_I(inode
)->generation
)
2967 /* the inode is shared */
2968 new = record_old_file_extents(inode
, ordered_extent
);
2970 clear_extent_bit(io_tree
, ordered_extent
->file_offset
,
2971 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
2972 EXTENT_DEFRAG
, 0, 0, &cached_state
, GFP_NOFS
);
2976 trans
= btrfs_join_transaction_nolock(root
);
2978 trans
= btrfs_join_transaction(root
);
2979 if (IS_ERR(trans
)) {
2980 ret
= PTR_ERR(trans
);
2985 trans
->block_rsv
= &fs_info
->delalloc_block_rsv
;
2987 if (test_bit(BTRFS_ORDERED_COMPRESSED
, &ordered_extent
->flags
))
2988 compress_type
= ordered_extent
->compress_type
;
2989 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
2990 BUG_ON(compress_type
);
2991 ret
= btrfs_mark_extent_written(trans
, BTRFS_I(inode
),
2992 ordered_extent
->file_offset
,
2993 ordered_extent
->file_offset
+
2996 BUG_ON(root
== fs_info
->tree_root
);
2997 ret
= insert_reserved_file_extent(trans
, inode
,
2998 ordered_extent
->file_offset
,
2999 ordered_extent
->start
,
3000 ordered_extent
->disk_len
,
3001 logical_len
, logical_len
,
3002 compress_type
, 0, 0,
3003 BTRFS_FILE_EXTENT_REG
);
3005 btrfs_release_delalloc_bytes(fs_info
,
3006 ordered_extent
->start
,
3007 ordered_extent
->disk_len
);
3009 unpin_extent_cache(&BTRFS_I(inode
)->extent_tree
,
3010 ordered_extent
->file_offset
, ordered_extent
->len
,
3013 btrfs_abort_transaction(trans
, ret
);
3017 add_pending_csums(trans
, inode
, &ordered_extent
->list
);
3019 btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
3020 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
3021 if (ret
) { /* -ENOMEM or corruption */
3022 btrfs_abort_transaction(trans
, ret
);
3027 if (range_locked
|| clear_new_delalloc_bytes
) {
3028 unsigned int clear_bits
= 0;
3031 clear_bits
|= EXTENT_LOCKED
;
3032 if (clear_new_delalloc_bytes
)
3033 clear_bits
|= EXTENT_DELALLOC_NEW
;
3034 clear_extent_bit(&BTRFS_I(inode
)->io_tree
,
3035 ordered_extent
->file_offset
,
3036 ordered_extent
->file_offset
+
3037 ordered_extent
->len
- 1,
3039 (clear_bits
& EXTENT_LOCKED
) ? 1 : 0,
3040 0, &cached_state
, GFP_NOFS
);
3043 if (root
!= fs_info
->tree_root
)
3044 btrfs_delalloc_release_metadata(BTRFS_I(inode
),
3045 ordered_extent
->len
);
3047 btrfs_end_transaction(trans
);
3049 if (ret
|| truncated
) {
3053 start
= ordered_extent
->file_offset
+ logical_len
;
3055 start
= ordered_extent
->file_offset
;
3056 end
= ordered_extent
->file_offset
+ ordered_extent
->len
- 1;
3057 clear_extent_uptodate(io_tree
, start
, end
, NULL
, GFP_NOFS
);
3059 /* Drop the cache for the part of the extent we didn't write. */
3060 btrfs_drop_extent_cache(BTRFS_I(inode
), start
, end
, 0);
3063 * If the ordered extent had an IOERR or something else went
3064 * wrong we need to return the space for this ordered extent
3065 * back to the allocator. We only free the extent in the
3066 * truncated case if we didn't write out the extent at all.
3068 if ((ret
|| !logical_len
) &&
3069 !test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
) &&
3070 !test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
))
3071 btrfs_free_reserved_extent(fs_info
,
3072 ordered_extent
->start
,
3073 ordered_extent
->disk_len
, 1);
3078 * This needs to be done to make sure anybody waiting knows we are done
3079 * updating everything for this ordered extent.
3081 btrfs_remove_ordered_extent(inode
, ordered_extent
);
3083 /* for snapshot-aware defrag */
3086 free_sa_defrag_extent(new);
3087 atomic_dec(&fs_info
->defrag_running
);
3089 relink_file_extents(new);
3094 btrfs_put_ordered_extent(ordered_extent
);
3095 /* once for the tree */
3096 btrfs_put_ordered_extent(ordered_extent
);
3101 static void finish_ordered_fn(struct btrfs_work
*work
)
3103 struct btrfs_ordered_extent
*ordered_extent
;
3104 ordered_extent
= container_of(work
, struct btrfs_ordered_extent
, work
);
3105 btrfs_finish_ordered_io(ordered_extent
);
3108 static void btrfs_writepage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
3109 struct extent_state
*state
, int uptodate
)
3111 struct inode
*inode
= page
->mapping
->host
;
3112 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3113 struct btrfs_ordered_extent
*ordered_extent
= NULL
;
3114 struct btrfs_workqueue
*wq
;
3115 btrfs_work_func_t func
;
3117 trace_btrfs_writepage_end_io_hook(page
, start
, end
, uptodate
);
3119 ClearPagePrivate2(page
);
3120 if (!btrfs_dec_test_ordered_pending(inode
, &ordered_extent
, start
,
3121 end
- start
+ 1, uptodate
))
3124 if (btrfs_is_free_space_inode(BTRFS_I(inode
))) {
3125 wq
= fs_info
->endio_freespace_worker
;
3126 func
= btrfs_freespace_write_helper
;
3128 wq
= fs_info
->endio_write_workers
;
3129 func
= btrfs_endio_write_helper
;
3132 btrfs_init_work(&ordered_extent
->work
, func
, finish_ordered_fn
, NULL
,
3134 btrfs_queue_work(wq
, &ordered_extent
->work
);
3137 static int __readpage_endio_check(struct inode
*inode
,
3138 struct btrfs_io_bio
*io_bio
,
3139 int icsum
, struct page
*page
,
3140 int pgoff
, u64 start
, size_t len
)
3146 csum_expected
= *(((u32
*)io_bio
->csum
) + icsum
);
3148 kaddr
= kmap_atomic(page
);
3149 csum
= btrfs_csum_data(kaddr
+ pgoff
, csum
, len
);
3150 btrfs_csum_final(csum
, (u8
*)&csum
);
3151 if (csum
!= csum_expected
)
3154 kunmap_atomic(kaddr
);
3157 btrfs_print_data_csum_error(BTRFS_I(inode
), start
, csum
, csum_expected
,
3158 io_bio
->mirror_num
);
3159 memset(kaddr
+ pgoff
, 1, len
);
3160 flush_dcache_page(page
);
3161 kunmap_atomic(kaddr
);
3162 if (csum_expected
== 0)
3168 * when reads are done, we need to check csums to verify the data is correct
3169 * if there's a match, we allow the bio to finish. If not, the code in
3170 * extent_io.c will try to find good copies for us.
3172 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio
*io_bio
,
3173 u64 phy_offset
, struct page
*page
,
3174 u64 start
, u64 end
, int mirror
)
3176 size_t offset
= start
- page_offset(page
);
3177 struct inode
*inode
= page
->mapping
->host
;
3178 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3179 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3181 if (PageChecked(page
)) {
3182 ClearPageChecked(page
);
3186 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
3189 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
&&
3190 test_range_bit(io_tree
, start
, end
, EXTENT_NODATASUM
, 1, NULL
)) {
3191 clear_extent_bits(io_tree
, start
, end
, EXTENT_NODATASUM
);
3195 phy_offset
>>= inode
->i_sb
->s_blocksize_bits
;
3196 return __readpage_endio_check(inode
, io_bio
, phy_offset
, page
, offset
,
3197 start
, (size_t)(end
- start
+ 1));
3200 void btrfs_add_delayed_iput(struct inode
*inode
)
3202 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3203 struct btrfs_inode
*binode
= BTRFS_I(inode
);
3205 if (atomic_add_unless(&inode
->i_count
, -1, 1))
3208 spin_lock(&fs_info
->delayed_iput_lock
);
3209 if (binode
->delayed_iput_count
== 0) {
3210 ASSERT(list_empty(&binode
->delayed_iput
));
3211 list_add_tail(&binode
->delayed_iput
, &fs_info
->delayed_iputs
);
3213 binode
->delayed_iput_count
++;
3215 spin_unlock(&fs_info
->delayed_iput_lock
);
3218 void btrfs_run_delayed_iputs(struct btrfs_fs_info
*fs_info
)
3221 spin_lock(&fs_info
->delayed_iput_lock
);
3222 while (!list_empty(&fs_info
->delayed_iputs
)) {
3223 struct btrfs_inode
*inode
;
3225 inode
= list_first_entry(&fs_info
->delayed_iputs
,
3226 struct btrfs_inode
, delayed_iput
);
3227 if (inode
->delayed_iput_count
) {
3228 inode
->delayed_iput_count
--;
3229 list_move_tail(&inode
->delayed_iput
,
3230 &fs_info
->delayed_iputs
);
3232 list_del_init(&inode
->delayed_iput
);
3234 spin_unlock(&fs_info
->delayed_iput_lock
);
3235 iput(&inode
->vfs_inode
);
3236 spin_lock(&fs_info
->delayed_iput_lock
);
3238 spin_unlock(&fs_info
->delayed_iput_lock
);
3242 * This is called in transaction commit time. If there are no orphan
3243 * files in the subvolume, it removes orphan item and frees block_rsv
3246 void btrfs_orphan_commit_root(struct btrfs_trans_handle
*trans
,
3247 struct btrfs_root
*root
)
3249 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3250 struct btrfs_block_rsv
*block_rsv
;
3253 if (atomic_read(&root
->orphan_inodes
) ||
3254 root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
)
3257 spin_lock(&root
->orphan_lock
);
3258 if (atomic_read(&root
->orphan_inodes
)) {
3259 spin_unlock(&root
->orphan_lock
);
3263 if (root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
) {
3264 spin_unlock(&root
->orphan_lock
);
3268 block_rsv
= root
->orphan_block_rsv
;
3269 root
->orphan_block_rsv
= NULL
;
3270 spin_unlock(&root
->orphan_lock
);
3272 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &root
->state
) &&
3273 btrfs_root_refs(&root
->root_item
) > 0) {
3274 ret
= btrfs_del_orphan_item(trans
, fs_info
->tree_root
,
3275 root
->root_key
.objectid
);
3277 btrfs_abort_transaction(trans
, ret
);
3279 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
,
3284 WARN_ON(block_rsv
->size
> 0);
3285 btrfs_free_block_rsv(fs_info
, block_rsv
);
3290 * This creates an orphan entry for the given inode in case something goes
3291 * wrong in the middle of an unlink/truncate.
3293 * NOTE: caller of this function should reserve 5 units of metadata for
3296 int btrfs_orphan_add(struct btrfs_trans_handle
*trans
,
3297 struct btrfs_inode
*inode
)
3299 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
3300 struct btrfs_root
*root
= inode
->root
;
3301 struct btrfs_block_rsv
*block_rsv
= NULL
;
3306 if (!root
->orphan_block_rsv
) {
3307 block_rsv
= btrfs_alloc_block_rsv(fs_info
,
3308 BTRFS_BLOCK_RSV_TEMP
);
3313 spin_lock(&root
->orphan_lock
);
3314 if (!root
->orphan_block_rsv
) {
3315 root
->orphan_block_rsv
= block_rsv
;
3316 } else if (block_rsv
) {
3317 btrfs_free_block_rsv(fs_info
, block_rsv
);
3321 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3322 &inode
->runtime_flags
)) {
3325 * For proper ENOSPC handling, we should do orphan
3326 * cleanup when mounting. But this introduces backward
3327 * compatibility issue.
3329 if (!xchg(&root
->orphan_item_inserted
, 1))
3335 atomic_inc(&root
->orphan_inodes
);
3338 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED
,
3339 &inode
->runtime_flags
))
3341 spin_unlock(&root
->orphan_lock
);
3343 /* grab metadata reservation from transaction handle */
3345 ret
= btrfs_orphan_reserve_metadata(trans
, inode
);
3348 atomic_dec(&root
->orphan_inodes
);
3349 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED
,
3350 &inode
->runtime_flags
);
3352 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3353 &inode
->runtime_flags
);
3358 /* insert an orphan item to track this unlinked/truncated file */
3360 ret
= btrfs_insert_orphan_item(trans
, root
, btrfs_ino(inode
));
3362 atomic_dec(&root
->orphan_inodes
);
3364 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED
,
3365 &inode
->runtime_flags
);
3366 btrfs_orphan_release_metadata(inode
);
3368 if (ret
!= -EEXIST
) {
3369 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3370 &inode
->runtime_flags
);
3371 btrfs_abort_transaction(trans
, ret
);
3378 /* insert an orphan item to track subvolume contains orphan files */
3380 ret
= btrfs_insert_orphan_item(trans
, fs_info
->tree_root
,
3381 root
->root_key
.objectid
);
3382 if (ret
&& ret
!= -EEXIST
) {
3383 btrfs_abort_transaction(trans
, ret
);
3391 * We have done the truncate/delete so we can go ahead and remove the orphan
3392 * item for this particular inode.
3394 static int btrfs_orphan_del(struct btrfs_trans_handle
*trans
,
3395 struct btrfs_inode
*inode
)
3397 struct btrfs_root
*root
= inode
->root
;
3398 int delete_item
= 0;
3399 int release_rsv
= 0;
3402 spin_lock(&root
->orphan_lock
);
3403 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3404 &inode
->runtime_flags
))
3407 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED
,
3408 &inode
->runtime_flags
))
3410 spin_unlock(&root
->orphan_lock
);
3413 atomic_dec(&root
->orphan_inodes
);
3415 ret
= btrfs_del_orphan_item(trans
, root
,
3420 btrfs_orphan_release_metadata(inode
);
3426 * this cleans up any orphans that may be left on the list from the last use
3429 int btrfs_orphan_cleanup(struct btrfs_root
*root
)
3431 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3432 struct btrfs_path
*path
;
3433 struct extent_buffer
*leaf
;
3434 struct btrfs_key key
, found_key
;
3435 struct btrfs_trans_handle
*trans
;
3436 struct inode
*inode
;
3437 u64 last_objectid
= 0;
3438 int ret
= 0, nr_unlink
= 0, nr_truncate
= 0;
3440 if (cmpxchg(&root
->orphan_cleanup_state
, 0, ORPHAN_CLEANUP_STARTED
))
3443 path
= btrfs_alloc_path();
3448 path
->reada
= READA_BACK
;
3450 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
3451 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
3452 key
.offset
= (u64
)-1;
3455 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3460 * if ret == 0 means we found what we were searching for, which
3461 * is weird, but possible, so only screw with path if we didn't
3462 * find the key and see if we have stuff that matches
3466 if (path
->slots
[0] == 0)
3471 /* pull out the item */
3472 leaf
= path
->nodes
[0];
3473 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3475 /* make sure the item matches what we want */
3476 if (found_key
.objectid
!= BTRFS_ORPHAN_OBJECTID
)
3478 if (found_key
.type
!= BTRFS_ORPHAN_ITEM_KEY
)
3481 /* release the path since we're done with it */
3482 btrfs_release_path(path
);
3485 * this is where we are basically btrfs_lookup, without the
3486 * crossing root thing. we store the inode number in the
3487 * offset of the orphan item.
3490 if (found_key
.offset
== last_objectid
) {
3492 "Error removing orphan entry, stopping orphan cleanup");
3497 last_objectid
= found_key
.offset
;
3499 found_key
.objectid
= found_key
.offset
;
3500 found_key
.type
= BTRFS_INODE_ITEM_KEY
;
3501 found_key
.offset
= 0;
3502 inode
= btrfs_iget(fs_info
->sb
, &found_key
, root
, NULL
);
3503 ret
= PTR_ERR_OR_ZERO(inode
);
3504 if (ret
&& ret
!= -ENOENT
)
3507 if (ret
== -ENOENT
&& root
== fs_info
->tree_root
) {
3508 struct btrfs_root
*dead_root
;
3509 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3510 int is_dead_root
= 0;
3513 * this is an orphan in the tree root. Currently these
3514 * could come from 2 sources:
3515 * a) a snapshot deletion in progress
3516 * b) a free space cache inode
3517 * We need to distinguish those two, as the snapshot
3518 * orphan must not get deleted.
3519 * find_dead_roots already ran before us, so if this
3520 * is a snapshot deletion, we should find the root
3521 * in the dead_roots list
3523 spin_lock(&fs_info
->trans_lock
);
3524 list_for_each_entry(dead_root
, &fs_info
->dead_roots
,
3526 if (dead_root
->root_key
.objectid
==
3527 found_key
.objectid
) {
3532 spin_unlock(&fs_info
->trans_lock
);
3534 /* prevent this orphan from being found again */
3535 key
.offset
= found_key
.objectid
- 1;
3540 * Inode is already gone but the orphan item is still there,
3541 * kill the orphan item.
3543 if (ret
== -ENOENT
) {
3544 trans
= btrfs_start_transaction(root
, 1);
3545 if (IS_ERR(trans
)) {
3546 ret
= PTR_ERR(trans
);
3549 btrfs_debug(fs_info
, "auto deleting %Lu",
3550 found_key
.objectid
);
3551 ret
= btrfs_del_orphan_item(trans
, root
,
3552 found_key
.objectid
);
3553 btrfs_end_transaction(trans
);
3560 * add this inode to the orphan list so btrfs_orphan_del does
3561 * the proper thing when we hit it
3563 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3564 &BTRFS_I(inode
)->runtime_flags
);
3565 atomic_inc(&root
->orphan_inodes
);
3567 /* if we have links, this was a truncate, lets do that */
3568 if (inode
->i_nlink
) {
3569 if (WARN_ON(!S_ISREG(inode
->i_mode
))) {
3575 /* 1 for the orphan item deletion. */
3576 trans
= btrfs_start_transaction(root
, 1);
3577 if (IS_ERR(trans
)) {
3579 ret
= PTR_ERR(trans
);
3582 ret
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
3583 btrfs_end_transaction(trans
);
3589 ret
= btrfs_truncate(inode
);
3591 btrfs_orphan_del(NULL
, BTRFS_I(inode
));
3596 /* this will do delete_inode and everything for us */
3601 /* release the path since we're done with it */
3602 btrfs_release_path(path
);
3604 root
->orphan_cleanup_state
= ORPHAN_CLEANUP_DONE
;
3606 if (root
->orphan_block_rsv
)
3607 btrfs_block_rsv_release(fs_info
, root
->orphan_block_rsv
,
3610 if (root
->orphan_block_rsv
||
3611 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &root
->state
)) {
3612 trans
= btrfs_join_transaction(root
);
3614 btrfs_end_transaction(trans
);
3618 btrfs_debug(fs_info
, "unlinked %d orphans", nr_unlink
);
3620 btrfs_debug(fs_info
, "truncated %d orphans", nr_truncate
);
3624 btrfs_err(fs_info
, "could not do orphan cleanup %d", ret
);
3625 btrfs_free_path(path
);
3630 * very simple check to peek ahead in the leaf looking for xattrs. If we
3631 * don't find any xattrs, we know there can't be any acls.
3633 * slot is the slot the inode is in, objectid is the objectid of the inode
3635 static noinline
int acls_after_inode_item(struct extent_buffer
*leaf
,
3636 int slot
, u64 objectid
,
3637 int *first_xattr_slot
)
3639 u32 nritems
= btrfs_header_nritems(leaf
);
3640 struct btrfs_key found_key
;
3641 static u64 xattr_access
= 0;
3642 static u64 xattr_default
= 0;
3645 if (!xattr_access
) {
3646 xattr_access
= btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS
,
3647 strlen(XATTR_NAME_POSIX_ACL_ACCESS
));
3648 xattr_default
= btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT
,
3649 strlen(XATTR_NAME_POSIX_ACL_DEFAULT
));
3653 *first_xattr_slot
= -1;
3654 while (slot
< nritems
) {
3655 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3657 /* we found a different objectid, there must not be acls */
3658 if (found_key
.objectid
!= objectid
)
3661 /* we found an xattr, assume we've got an acl */
3662 if (found_key
.type
== BTRFS_XATTR_ITEM_KEY
) {
3663 if (*first_xattr_slot
== -1)
3664 *first_xattr_slot
= slot
;
3665 if (found_key
.offset
== xattr_access
||
3666 found_key
.offset
== xattr_default
)
3671 * we found a key greater than an xattr key, there can't
3672 * be any acls later on
3674 if (found_key
.type
> BTRFS_XATTR_ITEM_KEY
)
3681 * it goes inode, inode backrefs, xattrs, extents,
3682 * so if there are a ton of hard links to an inode there can
3683 * be a lot of backrefs. Don't waste time searching too hard,
3684 * this is just an optimization
3689 /* we hit the end of the leaf before we found an xattr or
3690 * something larger than an xattr. We have to assume the inode
3693 if (*first_xattr_slot
== -1)
3694 *first_xattr_slot
= slot
;
3699 * read an inode from the btree into the in-memory inode
3701 static int btrfs_read_locked_inode(struct inode
*inode
)
3703 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3704 struct btrfs_path
*path
;
3705 struct extent_buffer
*leaf
;
3706 struct btrfs_inode_item
*inode_item
;
3707 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3708 struct btrfs_key location
;
3713 bool filled
= false;
3714 int first_xattr_slot
;
3716 ret
= btrfs_fill_inode(inode
, &rdev
);
3720 path
= btrfs_alloc_path();
3726 memcpy(&location
, &BTRFS_I(inode
)->location
, sizeof(location
));
3728 ret
= btrfs_lookup_inode(NULL
, root
, path
, &location
, 0);
3735 leaf
= path
->nodes
[0];
3740 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
3741 struct btrfs_inode_item
);
3742 inode
->i_mode
= btrfs_inode_mode(leaf
, inode_item
);
3743 set_nlink(inode
, btrfs_inode_nlink(leaf
, inode_item
));
3744 i_uid_write(inode
, btrfs_inode_uid(leaf
, inode_item
));
3745 i_gid_write(inode
, btrfs_inode_gid(leaf
, inode_item
));
3746 btrfs_i_size_write(BTRFS_I(inode
), btrfs_inode_size(leaf
, inode_item
));
3748 inode
->i_atime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->atime
);
3749 inode
->i_atime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->atime
);
3751 inode
->i_mtime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->mtime
);
3752 inode
->i_mtime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->mtime
);
3754 inode
->i_ctime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->ctime
);
3755 inode
->i_ctime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->ctime
);
3757 BTRFS_I(inode
)->i_otime
.tv_sec
=
3758 btrfs_timespec_sec(leaf
, &inode_item
->otime
);
3759 BTRFS_I(inode
)->i_otime
.tv_nsec
=
3760 btrfs_timespec_nsec(leaf
, &inode_item
->otime
);
3762 inode_set_bytes(inode
, btrfs_inode_nbytes(leaf
, inode_item
));
3763 BTRFS_I(inode
)->generation
= btrfs_inode_generation(leaf
, inode_item
);
3764 BTRFS_I(inode
)->last_trans
= btrfs_inode_transid(leaf
, inode_item
);
3766 inode
->i_version
= btrfs_inode_sequence(leaf
, inode_item
);
3767 inode
->i_generation
= BTRFS_I(inode
)->generation
;
3769 rdev
= btrfs_inode_rdev(leaf
, inode_item
);
3771 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
3772 BTRFS_I(inode
)->flags
= btrfs_inode_flags(leaf
, inode_item
);
3776 * If we were modified in the current generation and evicted from memory
3777 * and then re-read we need to do a full sync since we don't have any
3778 * idea about which extents were modified before we were evicted from
3781 * This is required for both inode re-read from disk and delayed inode
3782 * in delayed_nodes_tree.
3784 if (BTRFS_I(inode
)->last_trans
== fs_info
->generation
)
3785 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
3786 &BTRFS_I(inode
)->runtime_flags
);
3789 * We don't persist the id of the transaction where an unlink operation
3790 * against the inode was last made. So here we assume the inode might
3791 * have been evicted, and therefore the exact value of last_unlink_trans
3792 * lost, and set it to last_trans to avoid metadata inconsistencies
3793 * between the inode and its parent if the inode is fsync'ed and the log
3794 * replayed. For example, in the scenario:
3797 * ln mydir/foo mydir/bar
3800 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3801 * xfs_io -c fsync mydir/foo
3803 * mount fs, triggers fsync log replay
3805 * We must make sure that when we fsync our inode foo we also log its
3806 * parent inode, otherwise after log replay the parent still has the
3807 * dentry with the "bar" name but our inode foo has a link count of 1
3808 * and doesn't have an inode ref with the name "bar" anymore.
3810 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3811 * but it guarantees correctness at the expense of occasional full
3812 * transaction commits on fsync if our inode is a directory, or if our
3813 * inode is not a directory, logging its parent unnecessarily.
3815 BTRFS_I(inode
)->last_unlink_trans
= BTRFS_I(inode
)->last_trans
;
3818 if (inode
->i_nlink
!= 1 ||
3819 path
->slots
[0] >= btrfs_header_nritems(leaf
))
3822 btrfs_item_key_to_cpu(leaf
, &location
, path
->slots
[0]);
3823 if (location
.objectid
!= btrfs_ino(BTRFS_I(inode
)))
3826 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
3827 if (location
.type
== BTRFS_INODE_REF_KEY
) {
3828 struct btrfs_inode_ref
*ref
;
3830 ref
= (struct btrfs_inode_ref
*)ptr
;
3831 BTRFS_I(inode
)->dir_index
= btrfs_inode_ref_index(leaf
, ref
);
3832 } else if (location
.type
== BTRFS_INODE_EXTREF_KEY
) {
3833 struct btrfs_inode_extref
*extref
;
3835 extref
= (struct btrfs_inode_extref
*)ptr
;
3836 BTRFS_I(inode
)->dir_index
= btrfs_inode_extref_index(leaf
,
3841 * try to precache a NULL acl entry for files that don't have
3842 * any xattrs or acls
3844 maybe_acls
= acls_after_inode_item(leaf
, path
->slots
[0],
3845 btrfs_ino(BTRFS_I(inode
)), &first_xattr_slot
);
3846 if (first_xattr_slot
!= -1) {
3847 path
->slots
[0] = first_xattr_slot
;
3848 ret
= btrfs_load_inode_props(inode
, path
);
3851 "error loading props for ino %llu (root %llu): %d",
3852 btrfs_ino(BTRFS_I(inode
)),
3853 root
->root_key
.objectid
, ret
);
3855 btrfs_free_path(path
);
3858 cache_no_acl(inode
);
3860 switch (inode
->i_mode
& S_IFMT
) {
3862 inode
->i_mapping
->a_ops
= &btrfs_aops
;
3863 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
3864 inode
->i_fop
= &btrfs_file_operations
;
3865 inode
->i_op
= &btrfs_file_inode_operations
;
3868 inode
->i_fop
= &btrfs_dir_file_operations
;
3869 inode
->i_op
= &btrfs_dir_inode_operations
;
3872 inode
->i_op
= &btrfs_symlink_inode_operations
;
3873 inode_nohighmem(inode
);
3874 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
3877 inode
->i_op
= &btrfs_special_inode_operations
;
3878 init_special_inode(inode
, inode
->i_mode
, rdev
);
3882 btrfs_update_iflags(inode
);
3886 btrfs_free_path(path
);
3887 make_bad_inode(inode
);
3892 * given a leaf and an inode, copy the inode fields into the leaf
3894 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
3895 struct extent_buffer
*leaf
,
3896 struct btrfs_inode_item
*item
,
3897 struct inode
*inode
)
3899 struct btrfs_map_token token
;
3901 btrfs_init_map_token(&token
);
3903 btrfs_set_token_inode_uid(leaf
, item
, i_uid_read(inode
), &token
);
3904 btrfs_set_token_inode_gid(leaf
, item
, i_gid_read(inode
), &token
);
3905 btrfs_set_token_inode_size(leaf
, item
, BTRFS_I(inode
)->disk_i_size
,
3907 btrfs_set_token_inode_mode(leaf
, item
, inode
->i_mode
, &token
);
3908 btrfs_set_token_inode_nlink(leaf
, item
, inode
->i_nlink
, &token
);
3910 btrfs_set_token_timespec_sec(leaf
, &item
->atime
,
3911 inode
->i_atime
.tv_sec
, &token
);
3912 btrfs_set_token_timespec_nsec(leaf
, &item
->atime
,
3913 inode
->i_atime
.tv_nsec
, &token
);
3915 btrfs_set_token_timespec_sec(leaf
, &item
->mtime
,
3916 inode
->i_mtime
.tv_sec
, &token
);
3917 btrfs_set_token_timespec_nsec(leaf
, &item
->mtime
,
3918 inode
->i_mtime
.tv_nsec
, &token
);
3920 btrfs_set_token_timespec_sec(leaf
, &item
->ctime
,
3921 inode
->i_ctime
.tv_sec
, &token
);
3922 btrfs_set_token_timespec_nsec(leaf
, &item
->ctime
,
3923 inode
->i_ctime
.tv_nsec
, &token
);
3925 btrfs_set_token_timespec_sec(leaf
, &item
->otime
,
3926 BTRFS_I(inode
)->i_otime
.tv_sec
, &token
);
3927 btrfs_set_token_timespec_nsec(leaf
, &item
->otime
,
3928 BTRFS_I(inode
)->i_otime
.tv_nsec
, &token
);
3930 btrfs_set_token_inode_nbytes(leaf
, item
, inode_get_bytes(inode
),
3932 btrfs_set_token_inode_generation(leaf
, item
, BTRFS_I(inode
)->generation
,
3934 btrfs_set_token_inode_sequence(leaf
, item
, inode
->i_version
, &token
);
3935 btrfs_set_token_inode_transid(leaf
, item
, trans
->transid
, &token
);
3936 btrfs_set_token_inode_rdev(leaf
, item
, inode
->i_rdev
, &token
);
3937 btrfs_set_token_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
, &token
);
3938 btrfs_set_token_inode_block_group(leaf
, item
, 0, &token
);
3942 * copy everything in the in-memory inode into the btree.
3944 static noinline
int btrfs_update_inode_item(struct btrfs_trans_handle
*trans
,
3945 struct btrfs_root
*root
, struct inode
*inode
)
3947 struct btrfs_inode_item
*inode_item
;
3948 struct btrfs_path
*path
;
3949 struct extent_buffer
*leaf
;
3952 path
= btrfs_alloc_path();
3956 path
->leave_spinning
= 1;
3957 ret
= btrfs_lookup_inode(trans
, root
, path
, &BTRFS_I(inode
)->location
,
3965 leaf
= path
->nodes
[0];
3966 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
3967 struct btrfs_inode_item
);
3969 fill_inode_item(trans
, leaf
, inode_item
, inode
);
3970 btrfs_mark_buffer_dirty(leaf
);
3971 btrfs_set_inode_last_trans(trans
, inode
);
3974 btrfs_free_path(path
);
3979 * copy everything in the in-memory inode into the btree.
3981 noinline
int btrfs_update_inode(struct btrfs_trans_handle
*trans
,
3982 struct btrfs_root
*root
, struct inode
*inode
)
3984 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3988 * If the inode is a free space inode, we can deadlock during commit
3989 * if we put it into the delayed code.
3991 * The data relocation inode should also be directly updated
3994 if (!btrfs_is_free_space_inode(BTRFS_I(inode
))
3995 && root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
3996 && !test_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
)) {
3997 btrfs_update_root_times(trans
, root
);
3999 ret
= btrfs_delayed_update_inode(trans
, root
, inode
);
4001 btrfs_set_inode_last_trans(trans
, inode
);
4005 return btrfs_update_inode_item(trans
, root
, inode
);
4008 noinline
int btrfs_update_inode_fallback(struct btrfs_trans_handle
*trans
,
4009 struct btrfs_root
*root
,
4010 struct inode
*inode
)
4014 ret
= btrfs_update_inode(trans
, root
, inode
);
4016 return btrfs_update_inode_item(trans
, root
, inode
);
4021 * unlink helper that gets used here in inode.c and in the tree logging
4022 * recovery code. It remove a link in a directory with a given name, and
4023 * also drops the back refs in the inode to the directory
4025 static int __btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
4026 struct btrfs_root
*root
,
4027 struct btrfs_inode
*dir
,
4028 struct btrfs_inode
*inode
,
4029 const char *name
, int name_len
)
4031 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4032 struct btrfs_path
*path
;
4034 struct extent_buffer
*leaf
;
4035 struct btrfs_dir_item
*di
;
4036 struct btrfs_key key
;
4038 u64 ino
= btrfs_ino(inode
);
4039 u64 dir_ino
= btrfs_ino(dir
);
4041 path
= btrfs_alloc_path();
4047 path
->leave_spinning
= 1;
4048 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
4049 name
, name_len
, -1);
4058 leaf
= path
->nodes
[0];
4059 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
4060 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
4063 btrfs_release_path(path
);
4066 * If we don't have dir index, we have to get it by looking up
4067 * the inode ref, since we get the inode ref, remove it directly,
4068 * it is unnecessary to do delayed deletion.
4070 * But if we have dir index, needn't search inode ref to get it.
4071 * Since the inode ref is close to the inode item, it is better
4072 * that we delay to delete it, and just do this deletion when
4073 * we update the inode item.
4075 if (inode
->dir_index
) {
4076 ret
= btrfs_delayed_delete_inode_ref(inode
);
4078 index
= inode
->dir_index
;
4083 ret
= btrfs_del_inode_ref(trans
, root
, name
, name_len
, ino
,
4087 "failed to delete reference to %.*s, inode %llu parent %llu",
4088 name_len
, name
, ino
, dir_ino
);
4089 btrfs_abort_transaction(trans
, ret
);
4093 ret
= btrfs_delete_delayed_dir_index(trans
, fs_info
, dir
, index
);
4095 btrfs_abort_transaction(trans
, ret
);
4099 ret
= btrfs_del_inode_ref_in_log(trans
, root
, name
, name_len
, inode
,
4101 if (ret
!= 0 && ret
!= -ENOENT
) {
4102 btrfs_abort_transaction(trans
, ret
);
4106 ret
= btrfs_del_dir_entries_in_log(trans
, root
, name
, name_len
, dir
,
4111 btrfs_abort_transaction(trans
, ret
);
4113 btrfs_free_path(path
);
4117 btrfs_i_size_write(dir
, dir
->vfs_inode
.i_size
- name_len
* 2);
4118 inode_inc_iversion(&inode
->vfs_inode
);
4119 inode_inc_iversion(&dir
->vfs_inode
);
4120 inode
->vfs_inode
.i_ctime
= dir
->vfs_inode
.i_mtime
=
4121 dir
->vfs_inode
.i_ctime
= current_time(&inode
->vfs_inode
);
4122 ret
= btrfs_update_inode(trans
, root
, &dir
->vfs_inode
);
4127 int btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
4128 struct btrfs_root
*root
,
4129 struct btrfs_inode
*dir
, struct btrfs_inode
*inode
,
4130 const char *name
, int name_len
)
4133 ret
= __btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
4135 drop_nlink(&inode
->vfs_inode
);
4136 ret
= btrfs_update_inode(trans
, root
, &inode
->vfs_inode
);
4142 * helper to start transaction for unlink and rmdir.
4144 * unlink and rmdir are special in btrfs, they do not always free space, so
4145 * if we cannot make our reservations the normal way try and see if there is
4146 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4147 * allow the unlink to occur.
4149 static struct btrfs_trans_handle
*__unlink_start_trans(struct inode
*dir
)
4151 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4154 * 1 for the possible orphan item
4155 * 1 for the dir item
4156 * 1 for the dir index
4157 * 1 for the inode ref
4160 return btrfs_start_transaction_fallback_global_rsv(root
, 5, 5);
4163 static int btrfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
4165 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4166 struct btrfs_trans_handle
*trans
;
4167 struct inode
*inode
= d_inode(dentry
);
4170 trans
= __unlink_start_trans(dir
);
4172 return PTR_ERR(trans
);
4174 btrfs_record_unlink_dir(trans
, BTRFS_I(dir
), BTRFS_I(d_inode(dentry
)),
4177 ret
= btrfs_unlink_inode(trans
, root
, BTRFS_I(dir
),
4178 BTRFS_I(d_inode(dentry
)), dentry
->d_name
.name
,
4179 dentry
->d_name
.len
);
4183 if (inode
->i_nlink
== 0) {
4184 ret
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
4190 btrfs_end_transaction(trans
);
4191 btrfs_btree_balance_dirty(root
->fs_info
);
4195 int btrfs_unlink_subvol(struct btrfs_trans_handle
*trans
,
4196 struct btrfs_root
*root
,
4197 struct inode
*dir
, u64 objectid
,
4198 const char *name
, int name_len
)
4200 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4201 struct btrfs_path
*path
;
4202 struct extent_buffer
*leaf
;
4203 struct btrfs_dir_item
*di
;
4204 struct btrfs_key key
;
4207 u64 dir_ino
= btrfs_ino(BTRFS_I(dir
));
4209 path
= btrfs_alloc_path();
4213 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
4214 name
, name_len
, -1);
4215 if (IS_ERR_OR_NULL(di
)) {
4223 leaf
= path
->nodes
[0];
4224 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
4225 WARN_ON(key
.type
!= BTRFS_ROOT_ITEM_KEY
|| key
.objectid
!= objectid
);
4226 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
4228 btrfs_abort_transaction(trans
, ret
);
4231 btrfs_release_path(path
);
4233 ret
= btrfs_del_root_ref(trans
, fs_info
, objectid
,
4234 root
->root_key
.objectid
, dir_ino
,
4235 &index
, name
, name_len
);
4237 if (ret
!= -ENOENT
) {
4238 btrfs_abort_transaction(trans
, ret
);
4241 di
= btrfs_search_dir_index_item(root
, path
, dir_ino
,
4243 if (IS_ERR_OR_NULL(di
)) {
4248 btrfs_abort_transaction(trans
, ret
);
4252 leaf
= path
->nodes
[0];
4253 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
4254 btrfs_release_path(path
);
4257 btrfs_release_path(path
);
4259 ret
= btrfs_delete_delayed_dir_index(trans
, fs_info
, BTRFS_I(dir
), index
);
4261 btrfs_abort_transaction(trans
, ret
);
4265 btrfs_i_size_write(BTRFS_I(dir
), dir
->i_size
- name_len
* 2);
4266 inode_inc_iversion(dir
);
4267 dir
->i_mtime
= dir
->i_ctime
= current_time(dir
);
4268 ret
= btrfs_update_inode_fallback(trans
, root
, dir
);
4270 btrfs_abort_transaction(trans
, ret
);
4272 btrfs_free_path(path
);
4276 static int btrfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
4278 struct inode
*inode
= d_inode(dentry
);
4280 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4281 struct btrfs_trans_handle
*trans
;
4282 u64 last_unlink_trans
;
4284 if (inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
4286 if (btrfs_ino(BTRFS_I(inode
)) == BTRFS_FIRST_FREE_OBJECTID
)
4289 trans
= __unlink_start_trans(dir
);
4291 return PTR_ERR(trans
);
4293 if (unlikely(btrfs_ino(BTRFS_I(inode
)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
4294 err
= btrfs_unlink_subvol(trans
, root
, dir
,
4295 BTRFS_I(inode
)->location
.objectid
,
4296 dentry
->d_name
.name
,
4297 dentry
->d_name
.len
);
4301 err
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
4305 last_unlink_trans
= BTRFS_I(inode
)->last_unlink_trans
;
4307 /* now the directory is empty */
4308 err
= btrfs_unlink_inode(trans
, root
, BTRFS_I(dir
),
4309 BTRFS_I(d_inode(dentry
)), dentry
->d_name
.name
,
4310 dentry
->d_name
.len
);
4312 btrfs_i_size_write(BTRFS_I(inode
), 0);
4314 * Propagate the last_unlink_trans value of the deleted dir to
4315 * its parent directory. This is to prevent an unrecoverable
4316 * log tree in the case we do something like this:
4318 * 2) create snapshot under dir foo
4319 * 3) delete the snapshot
4322 * 6) fsync foo or some file inside foo
4324 if (last_unlink_trans
>= trans
->transid
)
4325 BTRFS_I(dir
)->last_unlink_trans
= last_unlink_trans
;
4328 btrfs_end_transaction(trans
);
4329 btrfs_btree_balance_dirty(root
->fs_info
);
4334 static int truncate_space_check(struct btrfs_trans_handle
*trans
,
4335 struct btrfs_root
*root
,
4338 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4342 * This is only used to apply pressure to the enospc system, we don't
4343 * intend to use this reservation at all.
4345 bytes_deleted
= btrfs_csum_bytes_to_leaves(fs_info
, bytes_deleted
);
4346 bytes_deleted
*= fs_info
->nodesize
;
4347 ret
= btrfs_block_rsv_add(root
, &fs_info
->trans_block_rsv
,
4348 bytes_deleted
, BTRFS_RESERVE_NO_FLUSH
);
4350 trace_btrfs_space_reservation(fs_info
, "transaction",
4353 trans
->bytes_reserved
+= bytes_deleted
;
4359 static int truncate_inline_extent(struct inode
*inode
,
4360 struct btrfs_path
*path
,
4361 struct btrfs_key
*found_key
,
4365 struct extent_buffer
*leaf
= path
->nodes
[0];
4366 int slot
= path
->slots
[0];
4367 struct btrfs_file_extent_item
*fi
;
4368 u32 size
= (u32
)(new_size
- found_key
->offset
);
4369 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4371 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
4373 if (btrfs_file_extent_compression(leaf
, fi
) != BTRFS_COMPRESS_NONE
) {
4374 loff_t offset
= new_size
;
4375 loff_t page_end
= ALIGN(offset
, PAGE_SIZE
);
4378 * Zero out the remaining of the last page of our inline extent,
4379 * instead of directly truncating our inline extent here - that
4380 * would be much more complex (decompressing all the data, then
4381 * compressing the truncated data, which might be bigger than
4382 * the size of the inline extent, resize the extent, etc).
4383 * We release the path because to get the page we might need to
4384 * read the extent item from disk (data not in the page cache).
4386 btrfs_release_path(path
);
4387 return btrfs_truncate_block(inode
, offset
, page_end
- offset
,
4391 btrfs_set_file_extent_ram_bytes(leaf
, fi
, size
);
4392 size
= btrfs_file_extent_calc_inline_size(size
);
4393 btrfs_truncate_item(root
->fs_info
, path
, size
, 1);
4395 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
4396 inode_sub_bytes(inode
, item_end
+ 1 - new_size
);
4402 * this can truncate away extent items, csum items and directory items.
4403 * It starts at a high offset and removes keys until it can't find
4404 * any higher than new_size
4406 * csum items that cross the new i_size are truncated to the new size
4409 * min_type is the minimum key type to truncate down to. If set to 0, this
4410 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4412 int btrfs_truncate_inode_items(struct btrfs_trans_handle
*trans
,
4413 struct btrfs_root
*root
,
4414 struct inode
*inode
,
4415 u64 new_size
, u32 min_type
)
4417 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4418 struct btrfs_path
*path
;
4419 struct extent_buffer
*leaf
;
4420 struct btrfs_file_extent_item
*fi
;
4421 struct btrfs_key key
;
4422 struct btrfs_key found_key
;
4423 u64 extent_start
= 0;
4424 u64 extent_num_bytes
= 0;
4425 u64 extent_offset
= 0;
4427 u64 last_size
= new_size
;
4428 u32 found_type
= (u8
)-1;
4431 int pending_del_nr
= 0;
4432 int pending_del_slot
= 0;
4433 int extent_type
= -1;
4436 u64 ino
= btrfs_ino(BTRFS_I(inode
));
4437 u64 bytes_deleted
= 0;
4439 bool should_throttle
= 0;
4440 bool should_end
= 0;
4442 BUG_ON(new_size
> 0 && min_type
!= BTRFS_EXTENT_DATA_KEY
);
4445 * for non-free space inodes and ref cows, we want to back off from
4448 if (!btrfs_is_free_space_inode(BTRFS_I(inode
)) &&
4449 test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
4452 path
= btrfs_alloc_path();
4455 path
->reada
= READA_BACK
;
4458 * We want to drop from the next block forward in case this new size is
4459 * not block aligned since we will be keeping the last block of the
4460 * extent just the way it is.
4462 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
4463 root
== fs_info
->tree_root
)
4464 btrfs_drop_extent_cache(BTRFS_I(inode
), ALIGN(new_size
,
4465 fs_info
->sectorsize
),
4469 * This function is also used to drop the items in the log tree before
4470 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4471 * it is used to drop the loged items. So we shouldn't kill the delayed
4474 if (min_type
== 0 && root
== BTRFS_I(inode
)->root
)
4475 btrfs_kill_delayed_inode_items(BTRFS_I(inode
));
4478 key
.offset
= (u64
)-1;
4483 * with a 16K leaf size and 128MB extents, you can actually queue
4484 * up a huge file in a single leaf. Most of the time that
4485 * bytes_deleted is > 0, it will be huge by the time we get here
4487 if (be_nice
&& bytes_deleted
> SZ_32M
) {
4488 if (btrfs_should_end_transaction(trans
)) {
4495 path
->leave_spinning
= 1;
4496 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
4503 /* there are no items in the tree for us to truncate, we're
4506 if (path
->slots
[0] == 0)
4513 leaf
= path
->nodes
[0];
4514 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4515 found_type
= found_key
.type
;
4517 if (found_key
.objectid
!= ino
)
4520 if (found_type
< min_type
)
4523 item_end
= found_key
.offset
;
4524 if (found_type
== BTRFS_EXTENT_DATA_KEY
) {
4525 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4526 struct btrfs_file_extent_item
);
4527 extent_type
= btrfs_file_extent_type(leaf
, fi
);
4528 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
4530 btrfs_file_extent_num_bytes(leaf
, fi
);
4532 trace_btrfs_truncate_show_fi_regular(
4533 BTRFS_I(inode
), leaf
, fi
,
4535 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
4536 item_end
+= btrfs_file_extent_inline_len(leaf
,
4537 path
->slots
[0], fi
);
4539 trace_btrfs_truncate_show_fi_inline(
4540 BTRFS_I(inode
), leaf
, fi
, path
->slots
[0],
4545 if (found_type
> min_type
) {
4548 if (item_end
< new_size
)
4550 if (found_key
.offset
>= new_size
)
4556 /* FIXME, shrink the extent if the ref count is only 1 */
4557 if (found_type
!= BTRFS_EXTENT_DATA_KEY
)
4561 last_size
= found_key
.offset
;
4563 last_size
= new_size
;
4565 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
4567 extent_start
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
4569 u64 orig_num_bytes
=
4570 btrfs_file_extent_num_bytes(leaf
, fi
);
4571 extent_num_bytes
= ALIGN(new_size
-
4573 fs_info
->sectorsize
);
4574 btrfs_set_file_extent_num_bytes(leaf
, fi
,
4576 num_dec
= (orig_num_bytes
-
4578 if (test_bit(BTRFS_ROOT_REF_COWS
,
4581 inode_sub_bytes(inode
, num_dec
);
4582 btrfs_mark_buffer_dirty(leaf
);
4585 btrfs_file_extent_disk_num_bytes(leaf
,
4587 extent_offset
= found_key
.offset
-
4588 btrfs_file_extent_offset(leaf
, fi
);
4590 /* FIXME blocksize != 4096 */
4591 num_dec
= btrfs_file_extent_num_bytes(leaf
, fi
);
4592 if (extent_start
!= 0) {
4594 if (test_bit(BTRFS_ROOT_REF_COWS
,
4596 inode_sub_bytes(inode
, num_dec
);
4599 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
4601 * we can't truncate inline items that have had
4605 btrfs_file_extent_encryption(leaf
, fi
) == 0 &&
4606 btrfs_file_extent_other_encoding(leaf
, fi
) == 0) {
4609 * Need to release path in order to truncate a
4610 * compressed extent. So delete any accumulated
4611 * extent items so far.
4613 if (btrfs_file_extent_compression(leaf
, fi
) !=
4614 BTRFS_COMPRESS_NONE
&& pending_del_nr
) {
4615 err
= btrfs_del_items(trans
, root
, path
,
4619 btrfs_abort_transaction(trans
,
4626 err
= truncate_inline_extent(inode
, path
,
4631 btrfs_abort_transaction(trans
, err
);
4634 } else if (test_bit(BTRFS_ROOT_REF_COWS
,
4636 inode_sub_bytes(inode
, item_end
+ 1 - new_size
);
4641 if (!pending_del_nr
) {
4642 /* no pending yet, add ourselves */
4643 pending_del_slot
= path
->slots
[0];
4645 } else if (pending_del_nr
&&
4646 path
->slots
[0] + 1 == pending_del_slot
) {
4647 /* hop on the pending chunk */
4649 pending_del_slot
= path
->slots
[0];
4656 should_throttle
= 0;
4659 (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
4660 root
== fs_info
->tree_root
)) {
4661 btrfs_set_path_blocking(path
);
4662 bytes_deleted
+= extent_num_bytes
;
4663 ret
= btrfs_free_extent(trans
, fs_info
, extent_start
,
4664 extent_num_bytes
, 0,
4665 btrfs_header_owner(leaf
),
4666 ino
, extent_offset
);
4668 if (btrfs_should_throttle_delayed_refs(trans
, fs_info
))
4669 btrfs_async_run_delayed_refs(fs_info
,
4670 trans
->delayed_ref_updates
* 2,
4673 if (truncate_space_check(trans
, root
,
4674 extent_num_bytes
)) {
4677 if (btrfs_should_throttle_delayed_refs(trans
,
4679 should_throttle
= 1;
4683 if (found_type
== BTRFS_INODE_ITEM_KEY
)
4686 if (path
->slots
[0] == 0 ||
4687 path
->slots
[0] != pending_del_slot
||
4688 should_throttle
|| should_end
) {
4689 if (pending_del_nr
) {
4690 ret
= btrfs_del_items(trans
, root
, path
,
4694 btrfs_abort_transaction(trans
, ret
);
4699 btrfs_release_path(path
);
4700 if (should_throttle
) {
4701 unsigned long updates
= trans
->delayed_ref_updates
;
4703 trans
->delayed_ref_updates
= 0;
4704 ret
= btrfs_run_delayed_refs(trans
,
4712 * if we failed to refill our space rsv, bail out
4713 * and let the transaction restart
4725 if (pending_del_nr
) {
4726 ret
= btrfs_del_items(trans
, root
, path
, pending_del_slot
,
4729 btrfs_abort_transaction(trans
, ret
);
4732 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
4733 ASSERT(last_size
>= new_size
);
4734 if (!err
&& last_size
> new_size
)
4735 last_size
= new_size
;
4736 btrfs_ordered_update_i_size(inode
, last_size
, NULL
);
4739 btrfs_free_path(path
);
4741 if (be_nice
&& bytes_deleted
> SZ_32M
) {
4742 unsigned long updates
= trans
->delayed_ref_updates
;
4744 trans
->delayed_ref_updates
= 0;
4745 ret
= btrfs_run_delayed_refs(trans
, fs_info
,
4755 * btrfs_truncate_block - read, zero a chunk and write a block
4756 * @inode - inode that we're zeroing
4757 * @from - the offset to start zeroing
4758 * @len - the length to zero, 0 to zero the entire range respective to the
4760 * @front - zero up to the offset instead of from the offset on
4762 * This will find the block for the "from" offset and cow the block and zero the
4763 * part we want to zero. This is used with truncate and hole punching.
4765 int btrfs_truncate_block(struct inode
*inode
, loff_t from
, loff_t len
,
4768 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4769 struct address_space
*mapping
= inode
->i_mapping
;
4770 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4771 struct btrfs_ordered_extent
*ordered
;
4772 struct extent_state
*cached_state
= NULL
;
4773 struct extent_changeset
*data_reserved
= NULL
;
4775 u32 blocksize
= fs_info
->sectorsize
;
4776 pgoff_t index
= from
>> PAGE_SHIFT
;
4777 unsigned offset
= from
& (blocksize
- 1);
4779 gfp_t mask
= btrfs_alloc_write_mask(mapping
);
4784 if ((offset
& (blocksize
- 1)) == 0 &&
4785 (!len
|| ((len
& (blocksize
- 1)) == 0)))
4788 ret
= btrfs_delalloc_reserve_space(inode
, &data_reserved
,
4789 round_down(from
, blocksize
), blocksize
);
4794 page
= find_or_create_page(mapping
, index
, mask
);
4796 btrfs_delalloc_release_space(inode
, data_reserved
,
4797 round_down(from
, blocksize
),
4803 block_start
= round_down(from
, blocksize
);
4804 block_end
= block_start
+ blocksize
- 1;
4806 if (!PageUptodate(page
)) {
4807 ret
= btrfs_readpage(NULL
, page
);
4809 if (page
->mapping
!= mapping
) {
4814 if (!PageUptodate(page
)) {
4819 wait_on_page_writeback(page
);
4821 lock_extent_bits(io_tree
, block_start
, block_end
, &cached_state
);
4822 set_page_extent_mapped(page
);
4824 ordered
= btrfs_lookup_ordered_extent(inode
, block_start
);
4826 unlock_extent_cached(io_tree
, block_start
, block_end
,
4827 &cached_state
, GFP_NOFS
);
4830 btrfs_start_ordered_extent(inode
, ordered
, 1);
4831 btrfs_put_ordered_extent(ordered
);
4835 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, block_start
, block_end
,
4836 EXTENT_DIRTY
| EXTENT_DELALLOC
|
4837 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
,
4838 0, 0, &cached_state
, GFP_NOFS
);
4840 ret
= btrfs_set_extent_delalloc(inode
, block_start
, block_end
,
4843 unlock_extent_cached(io_tree
, block_start
, block_end
,
4844 &cached_state
, GFP_NOFS
);
4848 if (offset
!= blocksize
) {
4850 len
= blocksize
- offset
;
4853 memset(kaddr
+ (block_start
- page_offset(page
)),
4856 memset(kaddr
+ (block_start
- page_offset(page
)) + offset
,
4858 flush_dcache_page(page
);
4861 ClearPageChecked(page
);
4862 set_page_dirty(page
);
4863 unlock_extent_cached(io_tree
, block_start
, block_end
, &cached_state
,
4868 btrfs_delalloc_release_space(inode
, data_reserved
, block_start
,
4873 extent_changeset_free(data_reserved
);
4877 static int maybe_insert_hole(struct btrfs_root
*root
, struct inode
*inode
,
4878 u64 offset
, u64 len
)
4880 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4881 struct btrfs_trans_handle
*trans
;
4885 * Still need to make sure the inode looks like it's been updated so
4886 * that any holes get logged if we fsync.
4888 if (btrfs_fs_incompat(fs_info
, NO_HOLES
)) {
4889 BTRFS_I(inode
)->last_trans
= fs_info
->generation
;
4890 BTRFS_I(inode
)->last_sub_trans
= root
->log_transid
;
4891 BTRFS_I(inode
)->last_log_commit
= root
->last_log_commit
;
4896 * 1 - for the one we're dropping
4897 * 1 - for the one we're adding
4898 * 1 - for updating the inode.
4900 trans
= btrfs_start_transaction(root
, 3);
4902 return PTR_ERR(trans
);
4904 ret
= btrfs_drop_extents(trans
, root
, inode
, offset
, offset
+ len
, 1);
4906 btrfs_abort_transaction(trans
, ret
);
4907 btrfs_end_transaction(trans
);
4911 ret
= btrfs_insert_file_extent(trans
, root
, btrfs_ino(BTRFS_I(inode
)),
4912 offset
, 0, 0, len
, 0, len
, 0, 0, 0);
4914 btrfs_abort_transaction(trans
, ret
);
4916 btrfs_update_inode(trans
, root
, inode
);
4917 btrfs_end_transaction(trans
);
4922 * This function puts in dummy file extents for the area we're creating a hole
4923 * for. So if we are truncating this file to a larger size we need to insert
4924 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4925 * the range between oldsize and size
4927 int btrfs_cont_expand(struct inode
*inode
, loff_t oldsize
, loff_t size
)
4929 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4930 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4931 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4932 struct extent_map
*em
= NULL
;
4933 struct extent_state
*cached_state
= NULL
;
4934 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
4935 u64 hole_start
= ALIGN(oldsize
, fs_info
->sectorsize
);
4936 u64 block_end
= ALIGN(size
, fs_info
->sectorsize
);
4943 * If our size started in the middle of a block we need to zero out the
4944 * rest of the block before we expand the i_size, otherwise we could
4945 * expose stale data.
4947 err
= btrfs_truncate_block(inode
, oldsize
, 0, 0);
4951 if (size
<= hole_start
)
4955 struct btrfs_ordered_extent
*ordered
;
4957 lock_extent_bits(io_tree
, hole_start
, block_end
- 1,
4959 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), hole_start
,
4960 block_end
- hole_start
);
4963 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1,
4964 &cached_state
, GFP_NOFS
);
4965 btrfs_start_ordered_extent(inode
, ordered
, 1);
4966 btrfs_put_ordered_extent(ordered
);
4969 cur_offset
= hole_start
;
4971 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0, cur_offset
,
4972 block_end
- cur_offset
, 0);
4978 last_byte
= min(extent_map_end(em
), block_end
);
4979 last_byte
= ALIGN(last_byte
, fs_info
->sectorsize
);
4980 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)) {
4981 struct extent_map
*hole_em
;
4982 hole_size
= last_byte
- cur_offset
;
4984 err
= maybe_insert_hole(root
, inode
, cur_offset
,
4988 btrfs_drop_extent_cache(BTRFS_I(inode
), cur_offset
,
4989 cur_offset
+ hole_size
- 1, 0);
4990 hole_em
= alloc_extent_map();
4992 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4993 &BTRFS_I(inode
)->runtime_flags
);
4996 hole_em
->start
= cur_offset
;
4997 hole_em
->len
= hole_size
;
4998 hole_em
->orig_start
= cur_offset
;
5000 hole_em
->block_start
= EXTENT_MAP_HOLE
;
5001 hole_em
->block_len
= 0;
5002 hole_em
->orig_block_len
= 0;
5003 hole_em
->ram_bytes
= hole_size
;
5004 hole_em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
5005 hole_em
->compress_type
= BTRFS_COMPRESS_NONE
;
5006 hole_em
->generation
= fs_info
->generation
;
5009 write_lock(&em_tree
->lock
);
5010 err
= add_extent_mapping(em_tree
, hole_em
, 1);
5011 write_unlock(&em_tree
->lock
);
5014 btrfs_drop_extent_cache(BTRFS_I(inode
),
5019 free_extent_map(hole_em
);
5022 free_extent_map(em
);
5024 cur_offset
= last_byte
;
5025 if (cur_offset
>= block_end
)
5028 free_extent_map(em
);
5029 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1, &cached_state
,
5034 static int btrfs_setsize(struct inode
*inode
, struct iattr
*attr
)
5036 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5037 struct btrfs_trans_handle
*trans
;
5038 loff_t oldsize
= i_size_read(inode
);
5039 loff_t newsize
= attr
->ia_size
;
5040 int mask
= attr
->ia_valid
;
5044 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5045 * special case where we need to update the times despite not having
5046 * these flags set. For all other operations the VFS set these flags
5047 * explicitly if it wants a timestamp update.
5049 if (newsize
!= oldsize
) {
5050 inode_inc_iversion(inode
);
5051 if (!(mask
& (ATTR_CTIME
| ATTR_MTIME
)))
5052 inode
->i_ctime
= inode
->i_mtime
=
5053 current_time(inode
);
5056 if (newsize
> oldsize
) {
5058 * Don't do an expanding truncate while snapshoting is ongoing.
5059 * This is to ensure the snapshot captures a fully consistent
5060 * state of this file - if the snapshot captures this expanding
5061 * truncation, it must capture all writes that happened before
5064 btrfs_wait_for_snapshot_creation(root
);
5065 ret
= btrfs_cont_expand(inode
, oldsize
, newsize
);
5067 btrfs_end_write_no_snapshoting(root
);
5071 trans
= btrfs_start_transaction(root
, 1);
5072 if (IS_ERR(trans
)) {
5073 btrfs_end_write_no_snapshoting(root
);
5074 return PTR_ERR(trans
);
5077 i_size_write(inode
, newsize
);
5078 btrfs_ordered_update_i_size(inode
, i_size_read(inode
), NULL
);
5079 pagecache_isize_extended(inode
, oldsize
, newsize
);
5080 ret
= btrfs_update_inode(trans
, root
, inode
);
5081 btrfs_end_write_no_snapshoting(root
);
5082 btrfs_end_transaction(trans
);
5086 * We're truncating a file that used to have good data down to
5087 * zero. Make sure it gets into the ordered flush list so that
5088 * any new writes get down to disk quickly.
5091 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE
,
5092 &BTRFS_I(inode
)->runtime_flags
);
5095 * 1 for the orphan item we're going to add
5096 * 1 for the orphan item deletion.
5098 trans
= btrfs_start_transaction(root
, 2);
5100 return PTR_ERR(trans
);
5103 * We need to do this in case we fail at _any_ point during the
5104 * actual truncate. Once we do the truncate_setsize we could
5105 * invalidate pages which forces any outstanding ordered io to
5106 * be instantly completed which will give us extents that need
5107 * to be truncated. If we fail to get an orphan inode down we
5108 * could have left over extents that were never meant to live,
5109 * so we need to guarantee from this point on that everything
5110 * will be consistent.
5112 ret
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
5113 btrfs_end_transaction(trans
);
5117 /* we don't support swapfiles, so vmtruncate shouldn't fail */
5118 truncate_setsize(inode
, newsize
);
5120 /* Disable nonlocked read DIO to avoid the end less truncate */
5121 btrfs_inode_block_unlocked_dio(BTRFS_I(inode
));
5122 inode_dio_wait(inode
);
5123 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode
));
5125 ret
= btrfs_truncate(inode
);
5126 if (ret
&& inode
->i_nlink
) {
5129 /* To get a stable disk_i_size */
5130 err
= btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
5132 btrfs_orphan_del(NULL
, BTRFS_I(inode
));
5137 * failed to truncate, disk_i_size is only adjusted down
5138 * as we remove extents, so it should represent the true
5139 * size of the inode, so reset the in memory size and
5140 * delete our orphan entry.
5142 trans
= btrfs_join_transaction(root
);
5143 if (IS_ERR(trans
)) {
5144 btrfs_orphan_del(NULL
, BTRFS_I(inode
));
5147 i_size_write(inode
, BTRFS_I(inode
)->disk_i_size
);
5148 err
= btrfs_orphan_del(trans
, BTRFS_I(inode
));
5150 btrfs_abort_transaction(trans
, err
);
5151 btrfs_end_transaction(trans
);
5158 static int btrfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
5160 struct inode
*inode
= d_inode(dentry
);
5161 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5164 if (btrfs_root_readonly(root
))
5167 err
= setattr_prepare(dentry
, attr
);
5171 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
5172 err
= btrfs_setsize(inode
, attr
);
5177 if (attr
->ia_valid
) {
5178 setattr_copy(inode
, attr
);
5179 inode_inc_iversion(inode
);
5180 err
= btrfs_dirty_inode(inode
);
5182 if (!err
&& attr
->ia_valid
& ATTR_MODE
)
5183 err
= posix_acl_chmod(inode
, inode
->i_mode
);
5190 * While truncating the inode pages during eviction, we get the VFS calling
5191 * btrfs_invalidatepage() against each page of the inode. This is slow because
5192 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5193 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5194 * extent_state structures over and over, wasting lots of time.
5196 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5197 * those expensive operations on a per page basis and do only the ordered io
5198 * finishing, while we release here the extent_map and extent_state structures,
5199 * without the excessive merging and splitting.
5201 static void evict_inode_truncate_pages(struct inode
*inode
)
5203 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
5204 struct extent_map_tree
*map_tree
= &BTRFS_I(inode
)->extent_tree
;
5205 struct rb_node
*node
;
5207 ASSERT(inode
->i_state
& I_FREEING
);
5208 truncate_inode_pages_final(&inode
->i_data
);
5210 write_lock(&map_tree
->lock
);
5211 while (!RB_EMPTY_ROOT(&map_tree
->map
)) {
5212 struct extent_map
*em
;
5214 node
= rb_first(&map_tree
->map
);
5215 em
= rb_entry(node
, struct extent_map
, rb_node
);
5216 clear_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
5217 clear_bit(EXTENT_FLAG_LOGGING
, &em
->flags
);
5218 remove_extent_mapping(map_tree
, em
);
5219 free_extent_map(em
);
5220 if (need_resched()) {
5221 write_unlock(&map_tree
->lock
);
5223 write_lock(&map_tree
->lock
);
5226 write_unlock(&map_tree
->lock
);
5229 * Keep looping until we have no more ranges in the io tree.
5230 * We can have ongoing bios started by readpages (called from readahead)
5231 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5232 * still in progress (unlocked the pages in the bio but did not yet
5233 * unlocked the ranges in the io tree). Therefore this means some
5234 * ranges can still be locked and eviction started because before
5235 * submitting those bios, which are executed by a separate task (work
5236 * queue kthread), inode references (inode->i_count) were not taken
5237 * (which would be dropped in the end io callback of each bio).
5238 * Therefore here we effectively end up waiting for those bios and
5239 * anyone else holding locked ranges without having bumped the inode's
5240 * reference count - if we don't do it, when they access the inode's
5241 * io_tree to unlock a range it may be too late, leading to an
5242 * use-after-free issue.
5244 spin_lock(&io_tree
->lock
);
5245 while (!RB_EMPTY_ROOT(&io_tree
->state
)) {
5246 struct extent_state
*state
;
5247 struct extent_state
*cached_state
= NULL
;
5251 node
= rb_first(&io_tree
->state
);
5252 state
= rb_entry(node
, struct extent_state
, rb_node
);
5253 start
= state
->start
;
5255 spin_unlock(&io_tree
->lock
);
5257 lock_extent_bits(io_tree
, start
, end
, &cached_state
);
5260 * If still has DELALLOC flag, the extent didn't reach disk,
5261 * and its reserved space won't be freed by delayed_ref.
5262 * So we need to free its reserved space here.
5263 * (Refer to comment in btrfs_invalidatepage, case 2)
5265 * Note, end is the bytenr of last byte, so we need + 1 here.
5267 if (state
->state
& EXTENT_DELALLOC
)
5268 btrfs_qgroup_free_data(inode
, NULL
, start
, end
- start
+ 1);
5270 clear_extent_bit(io_tree
, start
, end
,
5271 EXTENT_LOCKED
| EXTENT_DIRTY
|
5272 EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
|
5273 EXTENT_DEFRAG
, 1, 1,
5274 &cached_state
, GFP_NOFS
);
5277 spin_lock(&io_tree
->lock
);
5279 spin_unlock(&io_tree
->lock
);
5282 void btrfs_evict_inode(struct inode
*inode
)
5284 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5285 struct btrfs_trans_handle
*trans
;
5286 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5287 struct btrfs_block_rsv
*rsv
, *global_rsv
;
5288 int steal_from_global
= 0;
5292 trace_btrfs_inode_evict(inode
);
5295 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
5299 min_size
= btrfs_calc_trunc_metadata_size(fs_info
, 1);
5301 evict_inode_truncate_pages(inode
);
5303 if (inode
->i_nlink
&&
5304 ((btrfs_root_refs(&root
->root_item
) != 0 &&
5305 root
->root_key
.objectid
!= BTRFS_ROOT_TREE_OBJECTID
) ||
5306 btrfs_is_free_space_inode(BTRFS_I(inode
))))
5309 if (is_bad_inode(inode
)) {
5310 btrfs_orphan_del(NULL
, BTRFS_I(inode
));
5313 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5314 if (!special_file(inode
->i_mode
))
5315 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
5317 btrfs_free_io_failure_record(BTRFS_I(inode
), 0, (u64
)-1);
5319 if (test_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
)) {
5320 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
5321 &BTRFS_I(inode
)->runtime_flags
));
5325 if (inode
->i_nlink
> 0) {
5326 BUG_ON(btrfs_root_refs(&root
->root_item
) != 0 &&
5327 root
->root_key
.objectid
!= BTRFS_ROOT_TREE_OBJECTID
);
5331 ret
= btrfs_commit_inode_delayed_inode(BTRFS_I(inode
));
5333 btrfs_orphan_del(NULL
, BTRFS_I(inode
));
5337 rsv
= btrfs_alloc_block_rsv(fs_info
, BTRFS_BLOCK_RSV_TEMP
);
5339 btrfs_orphan_del(NULL
, BTRFS_I(inode
));
5342 rsv
->size
= min_size
;
5344 global_rsv
= &fs_info
->global_block_rsv
;
5346 btrfs_i_size_write(BTRFS_I(inode
), 0);
5349 * This is a bit simpler than btrfs_truncate since we've already
5350 * reserved our space for our orphan item in the unlink, so we just
5351 * need to reserve some slack space in case we add bytes and update
5352 * inode item when doing the truncate.
5355 ret
= btrfs_block_rsv_refill(root
, rsv
, min_size
,
5356 BTRFS_RESERVE_FLUSH_LIMIT
);
5359 * Try and steal from the global reserve since we will
5360 * likely not use this space anyway, we want to try as
5361 * hard as possible to get this to work.
5364 steal_from_global
++;
5366 steal_from_global
= 0;
5370 * steal_from_global == 0: we reserved stuff, hooray!
5371 * steal_from_global == 1: we didn't reserve stuff, boo!
5372 * steal_from_global == 2: we've committed, still not a lot of
5373 * room but maybe we'll have room in the global reserve this
5375 * steal_from_global == 3: abandon all hope!
5377 if (steal_from_global
> 2) {
5379 "Could not get space for a delete, will truncate on mount %d",
5381 btrfs_orphan_del(NULL
, BTRFS_I(inode
));
5382 btrfs_free_block_rsv(fs_info
, rsv
);
5386 trans
= btrfs_join_transaction(root
);
5387 if (IS_ERR(trans
)) {
5388 btrfs_orphan_del(NULL
, BTRFS_I(inode
));
5389 btrfs_free_block_rsv(fs_info
, rsv
);
5394 * We can't just steal from the global reserve, we need to make
5395 * sure there is room to do it, if not we need to commit and try
5398 if (steal_from_global
) {
5399 if (!btrfs_check_space_for_delayed_refs(trans
, fs_info
))
5400 ret
= btrfs_block_rsv_migrate(global_rsv
, rsv
,
5407 * Couldn't steal from the global reserve, we have too much
5408 * pending stuff built up, commit the transaction and try it
5412 ret
= btrfs_commit_transaction(trans
);
5414 btrfs_orphan_del(NULL
, BTRFS_I(inode
));
5415 btrfs_free_block_rsv(fs_info
, rsv
);
5420 steal_from_global
= 0;
5423 trans
->block_rsv
= rsv
;
5425 ret
= btrfs_truncate_inode_items(trans
, root
, inode
, 0, 0);
5426 if (ret
!= -ENOSPC
&& ret
!= -EAGAIN
)
5429 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
5430 btrfs_end_transaction(trans
);
5432 btrfs_btree_balance_dirty(fs_info
);
5435 btrfs_free_block_rsv(fs_info
, rsv
);
5438 * Errors here aren't a big deal, it just means we leave orphan items
5439 * in the tree. They will be cleaned up on the next mount.
5442 trans
->block_rsv
= root
->orphan_block_rsv
;
5443 btrfs_orphan_del(trans
, BTRFS_I(inode
));
5445 btrfs_orphan_del(NULL
, BTRFS_I(inode
));
5448 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
5449 if (!(root
== fs_info
->tree_root
||
5450 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
))
5451 btrfs_return_ino(root
, btrfs_ino(BTRFS_I(inode
)));
5453 btrfs_end_transaction(trans
);
5454 btrfs_btree_balance_dirty(fs_info
);
5456 btrfs_remove_delayed_node(BTRFS_I(inode
));
5461 * this returns the key found in the dir entry in the location pointer.
5462 * If no dir entries were found, location->objectid is 0.
5464 static int btrfs_inode_by_name(struct inode
*dir
, struct dentry
*dentry
,
5465 struct btrfs_key
*location
)
5467 const char *name
= dentry
->d_name
.name
;
5468 int namelen
= dentry
->d_name
.len
;
5469 struct btrfs_dir_item
*di
;
5470 struct btrfs_path
*path
;
5471 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5474 path
= btrfs_alloc_path();
5478 di
= btrfs_lookup_dir_item(NULL
, root
, path
, btrfs_ino(BTRFS_I(dir
)),
5483 if (IS_ERR_OR_NULL(di
))
5486 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, location
);
5488 btrfs_free_path(path
);
5491 location
->objectid
= 0;
5496 * when we hit a tree root in a directory, the btrfs part of the inode
5497 * needs to be changed to reflect the root directory of the tree root. This
5498 * is kind of like crossing a mount point.
5500 static int fixup_tree_root_location(struct btrfs_fs_info
*fs_info
,
5502 struct dentry
*dentry
,
5503 struct btrfs_key
*location
,
5504 struct btrfs_root
**sub_root
)
5506 struct btrfs_path
*path
;
5507 struct btrfs_root
*new_root
;
5508 struct btrfs_root_ref
*ref
;
5509 struct extent_buffer
*leaf
;
5510 struct btrfs_key key
;
5514 path
= btrfs_alloc_path();
5521 key
.objectid
= BTRFS_I(dir
)->root
->root_key
.objectid
;
5522 key
.type
= BTRFS_ROOT_REF_KEY
;
5523 key
.offset
= location
->objectid
;
5525 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
5532 leaf
= path
->nodes
[0];
5533 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
5534 if (btrfs_root_ref_dirid(leaf
, ref
) != btrfs_ino(BTRFS_I(dir
)) ||
5535 btrfs_root_ref_name_len(leaf
, ref
) != dentry
->d_name
.len
)
5538 ret
= memcmp_extent_buffer(leaf
, dentry
->d_name
.name
,
5539 (unsigned long)(ref
+ 1),
5540 dentry
->d_name
.len
);
5544 btrfs_release_path(path
);
5546 new_root
= btrfs_read_fs_root_no_name(fs_info
, location
);
5547 if (IS_ERR(new_root
)) {
5548 err
= PTR_ERR(new_root
);
5552 *sub_root
= new_root
;
5553 location
->objectid
= btrfs_root_dirid(&new_root
->root_item
);
5554 location
->type
= BTRFS_INODE_ITEM_KEY
;
5555 location
->offset
= 0;
5558 btrfs_free_path(path
);
5562 static void inode_tree_add(struct inode
*inode
)
5564 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5565 struct btrfs_inode
*entry
;
5567 struct rb_node
*parent
;
5568 struct rb_node
*new = &BTRFS_I(inode
)->rb_node
;
5569 u64 ino
= btrfs_ino(BTRFS_I(inode
));
5571 if (inode_unhashed(inode
))
5574 spin_lock(&root
->inode_lock
);
5575 p
= &root
->inode_tree
.rb_node
;
5578 entry
= rb_entry(parent
, struct btrfs_inode
, rb_node
);
5580 if (ino
< btrfs_ino(BTRFS_I(&entry
->vfs_inode
)))
5581 p
= &parent
->rb_left
;
5582 else if (ino
> btrfs_ino(BTRFS_I(&entry
->vfs_inode
)))
5583 p
= &parent
->rb_right
;
5585 WARN_ON(!(entry
->vfs_inode
.i_state
&
5586 (I_WILL_FREE
| I_FREEING
)));
5587 rb_replace_node(parent
, new, &root
->inode_tree
);
5588 RB_CLEAR_NODE(parent
);
5589 spin_unlock(&root
->inode_lock
);
5593 rb_link_node(new, parent
, p
);
5594 rb_insert_color(new, &root
->inode_tree
);
5595 spin_unlock(&root
->inode_lock
);
5598 static void inode_tree_del(struct inode
*inode
)
5600 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5601 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5604 spin_lock(&root
->inode_lock
);
5605 if (!RB_EMPTY_NODE(&BTRFS_I(inode
)->rb_node
)) {
5606 rb_erase(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
5607 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
5608 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
5610 spin_unlock(&root
->inode_lock
);
5612 if (empty
&& btrfs_root_refs(&root
->root_item
) == 0) {
5613 synchronize_srcu(&fs_info
->subvol_srcu
);
5614 spin_lock(&root
->inode_lock
);
5615 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
5616 spin_unlock(&root
->inode_lock
);
5618 btrfs_add_dead_root(root
);
5622 void btrfs_invalidate_inodes(struct btrfs_root
*root
)
5624 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5625 struct rb_node
*node
;
5626 struct rb_node
*prev
;
5627 struct btrfs_inode
*entry
;
5628 struct inode
*inode
;
5631 if (!test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
5632 WARN_ON(btrfs_root_refs(&root
->root_item
) != 0);
5634 spin_lock(&root
->inode_lock
);
5636 node
= root
->inode_tree
.rb_node
;
5640 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
5642 if (objectid
< btrfs_ino(BTRFS_I(&entry
->vfs_inode
)))
5643 node
= node
->rb_left
;
5644 else if (objectid
> btrfs_ino(BTRFS_I(&entry
->vfs_inode
)))
5645 node
= node
->rb_right
;
5651 entry
= rb_entry(prev
, struct btrfs_inode
, rb_node
);
5652 if (objectid
<= btrfs_ino(BTRFS_I(&entry
->vfs_inode
))) {
5656 prev
= rb_next(prev
);
5660 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
5661 objectid
= btrfs_ino(BTRFS_I(&entry
->vfs_inode
)) + 1;
5662 inode
= igrab(&entry
->vfs_inode
);
5664 spin_unlock(&root
->inode_lock
);
5665 if (atomic_read(&inode
->i_count
) > 1)
5666 d_prune_aliases(inode
);
5668 * btrfs_drop_inode will have it removed from
5669 * the inode cache when its usage count
5674 spin_lock(&root
->inode_lock
);
5678 if (cond_resched_lock(&root
->inode_lock
))
5681 node
= rb_next(node
);
5683 spin_unlock(&root
->inode_lock
);
5686 static int btrfs_init_locked_inode(struct inode
*inode
, void *p
)
5688 struct btrfs_iget_args
*args
= p
;
5689 inode
->i_ino
= args
->location
->objectid
;
5690 memcpy(&BTRFS_I(inode
)->location
, args
->location
,
5691 sizeof(*args
->location
));
5692 BTRFS_I(inode
)->root
= args
->root
;
5696 static int btrfs_find_actor(struct inode
*inode
, void *opaque
)
5698 struct btrfs_iget_args
*args
= opaque
;
5699 return args
->location
->objectid
== BTRFS_I(inode
)->location
.objectid
&&
5700 args
->root
== BTRFS_I(inode
)->root
;
5703 static struct inode
*btrfs_iget_locked(struct super_block
*s
,
5704 struct btrfs_key
*location
,
5705 struct btrfs_root
*root
)
5707 struct inode
*inode
;
5708 struct btrfs_iget_args args
;
5709 unsigned long hashval
= btrfs_inode_hash(location
->objectid
, root
);
5711 args
.location
= location
;
5714 inode
= iget5_locked(s
, hashval
, btrfs_find_actor
,
5715 btrfs_init_locked_inode
,
5720 /* Get an inode object given its location and corresponding root.
5721 * Returns in *is_new if the inode was read from disk
5723 struct inode
*btrfs_iget(struct super_block
*s
, struct btrfs_key
*location
,
5724 struct btrfs_root
*root
, int *new)
5726 struct inode
*inode
;
5728 inode
= btrfs_iget_locked(s
, location
, root
);
5730 return ERR_PTR(-ENOMEM
);
5732 if (inode
->i_state
& I_NEW
) {
5735 ret
= btrfs_read_locked_inode(inode
);
5736 if (!is_bad_inode(inode
)) {
5737 inode_tree_add(inode
);
5738 unlock_new_inode(inode
);
5742 unlock_new_inode(inode
);
5745 inode
= ERR_PTR(ret
< 0 ? ret
: -ESTALE
);
5752 static struct inode
*new_simple_dir(struct super_block
*s
,
5753 struct btrfs_key
*key
,
5754 struct btrfs_root
*root
)
5756 struct inode
*inode
= new_inode(s
);
5759 return ERR_PTR(-ENOMEM
);
5761 BTRFS_I(inode
)->root
= root
;
5762 memcpy(&BTRFS_I(inode
)->location
, key
, sizeof(*key
));
5763 set_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
);
5765 inode
->i_ino
= BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
;
5766 inode
->i_op
= &btrfs_dir_ro_inode_operations
;
5767 inode
->i_opflags
&= ~IOP_XATTR
;
5768 inode
->i_fop
= &simple_dir_operations
;
5769 inode
->i_mode
= S_IFDIR
| S_IRUGO
| S_IWUSR
| S_IXUGO
;
5770 inode
->i_mtime
= current_time(inode
);
5771 inode
->i_atime
= inode
->i_mtime
;
5772 inode
->i_ctime
= inode
->i_mtime
;
5773 BTRFS_I(inode
)->i_otime
= inode
->i_mtime
;
5778 struct inode
*btrfs_lookup_dentry(struct inode
*dir
, struct dentry
*dentry
)
5780 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
5781 struct inode
*inode
;
5782 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5783 struct btrfs_root
*sub_root
= root
;
5784 struct btrfs_key location
;
5788 if (dentry
->d_name
.len
> BTRFS_NAME_LEN
)
5789 return ERR_PTR(-ENAMETOOLONG
);
5791 ret
= btrfs_inode_by_name(dir
, dentry
, &location
);
5793 return ERR_PTR(ret
);
5795 if (location
.objectid
== 0)
5796 return ERR_PTR(-ENOENT
);
5798 if (location
.type
== BTRFS_INODE_ITEM_KEY
) {
5799 inode
= btrfs_iget(dir
->i_sb
, &location
, root
, NULL
);
5803 BUG_ON(location
.type
!= BTRFS_ROOT_ITEM_KEY
);
5805 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
5806 ret
= fixup_tree_root_location(fs_info
, dir
, dentry
,
5807 &location
, &sub_root
);
5810 inode
= ERR_PTR(ret
);
5812 inode
= new_simple_dir(dir
->i_sb
, &location
, sub_root
);
5814 inode
= btrfs_iget(dir
->i_sb
, &location
, sub_root
, NULL
);
5816 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
5818 if (!IS_ERR(inode
) && root
!= sub_root
) {
5819 down_read(&fs_info
->cleanup_work_sem
);
5820 if (!(inode
->i_sb
->s_flags
& MS_RDONLY
))
5821 ret
= btrfs_orphan_cleanup(sub_root
);
5822 up_read(&fs_info
->cleanup_work_sem
);
5825 inode
= ERR_PTR(ret
);
5832 static int btrfs_dentry_delete(const struct dentry
*dentry
)
5834 struct btrfs_root
*root
;
5835 struct inode
*inode
= d_inode(dentry
);
5837 if (!inode
&& !IS_ROOT(dentry
))
5838 inode
= d_inode(dentry
->d_parent
);
5841 root
= BTRFS_I(inode
)->root
;
5842 if (btrfs_root_refs(&root
->root_item
) == 0)
5845 if (btrfs_ino(BTRFS_I(inode
)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
5851 static void btrfs_dentry_release(struct dentry
*dentry
)
5853 kfree(dentry
->d_fsdata
);
5856 static struct dentry
*btrfs_lookup(struct inode
*dir
, struct dentry
*dentry
,
5859 struct inode
*inode
;
5861 inode
= btrfs_lookup_dentry(dir
, dentry
);
5862 if (IS_ERR(inode
)) {
5863 if (PTR_ERR(inode
) == -ENOENT
)
5866 return ERR_CAST(inode
);
5869 return d_splice_alias(inode
, dentry
);
5872 unsigned char btrfs_filetype_table
[] = {
5873 DT_UNKNOWN
, DT_REG
, DT_DIR
, DT_CHR
, DT_BLK
, DT_FIFO
, DT_SOCK
, DT_LNK
5876 static int btrfs_real_readdir(struct file
*file
, struct dir_context
*ctx
)
5878 struct inode
*inode
= file_inode(file
);
5879 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5880 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5881 struct btrfs_dir_item
*di
;
5882 struct btrfs_key key
;
5883 struct btrfs_key found_key
;
5884 struct btrfs_path
*path
;
5885 struct list_head ins_list
;
5886 struct list_head del_list
;
5888 struct extent_buffer
*leaf
;
5890 unsigned char d_type
;
5896 struct btrfs_key location
;
5898 if (!dir_emit_dots(file
, ctx
))
5901 path
= btrfs_alloc_path();
5905 path
->reada
= READA_FORWARD
;
5907 INIT_LIST_HEAD(&ins_list
);
5908 INIT_LIST_HEAD(&del_list
);
5909 put
= btrfs_readdir_get_delayed_items(inode
, &ins_list
, &del_list
);
5911 key
.type
= BTRFS_DIR_INDEX_KEY
;
5912 key
.offset
= ctx
->pos
;
5913 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
5915 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5920 leaf
= path
->nodes
[0];
5921 slot
= path
->slots
[0];
5922 if (slot
>= btrfs_header_nritems(leaf
)) {
5923 ret
= btrfs_next_leaf(root
, path
);
5931 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
5933 if (found_key
.objectid
!= key
.objectid
)
5935 if (found_key
.type
!= BTRFS_DIR_INDEX_KEY
)
5937 if (found_key
.offset
< ctx
->pos
)
5939 if (btrfs_should_delete_dir_index(&del_list
, found_key
.offset
))
5942 ctx
->pos
= found_key
.offset
;
5944 di
= btrfs_item_ptr(leaf
, slot
, struct btrfs_dir_item
);
5945 if (verify_dir_item(fs_info
, leaf
, slot
, di
))
5948 name_len
= btrfs_dir_name_len(leaf
, di
);
5949 if (name_len
<= sizeof(tmp_name
)) {
5950 name_ptr
= tmp_name
;
5952 name_ptr
= kmalloc(name_len
, GFP_KERNEL
);
5958 read_extent_buffer(leaf
, name_ptr
, (unsigned long)(di
+ 1),
5961 d_type
= btrfs_filetype_table
[btrfs_dir_type(leaf
, di
)];
5962 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
5964 over
= !dir_emit(ctx
, name_ptr
, name_len
, location
.objectid
,
5967 if (name_ptr
!= tmp_name
)
5977 ret
= btrfs_readdir_delayed_dir_index(ctx
, &ins_list
);
5982 * Stop new entries from being returned after we return the last
5985 * New directory entries are assigned a strictly increasing
5986 * offset. This means that new entries created during readdir
5987 * are *guaranteed* to be seen in the future by that readdir.
5988 * This has broken buggy programs which operate on names as
5989 * they're returned by readdir. Until we re-use freed offsets
5990 * we have this hack to stop new entries from being returned
5991 * under the assumption that they'll never reach this huge
5994 * This is being careful not to overflow 32bit loff_t unless the
5995 * last entry requires it because doing so has broken 32bit apps
5998 if (ctx
->pos
>= INT_MAX
)
5999 ctx
->pos
= LLONG_MAX
;
6006 btrfs_readdir_put_delayed_items(inode
, &ins_list
, &del_list
);
6007 btrfs_free_path(path
);
6011 int btrfs_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
6013 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6014 struct btrfs_trans_handle
*trans
;
6016 bool nolock
= false;
6018 if (test_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
))
6021 if (btrfs_fs_closing(root
->fs_info
) &&
6022 btrfs_is_free_space_inode(BTRFS_I(inode
)))
6025 if (wbc
->sync_mode
== WB_SYNC_ALL
) {
6027 trans
= btrfs_join_transaction_nolock(root
);
6029 trans
= btrfs_join_transaction(root
);
6031 return PTR_ERR(trans
);
6032 ret
= btrfs_commit_transaction(trans
);
6038 * This is somewhat expensive, updating the tree every time the
6039 * inode changes. But, it is most likely to find the inode in cache.
6040 * FIXME, needs more benchmarking...there are no reasons other than performance
6041 * to keep or drop this code.
6043 static int btrfs_dirty_inode(struct inode
*inode
)
6045 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
6046 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6047 struct btrfs_trans_handle
*trans
;
6050 if (test_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
))
6053 trans
= btrfs_join_transaction(root
);
6055 return PTR_ERR(trans
);
6057 ret
= btrfs_update_inode(trans
, root
, inode
);
6058 if (ret
&& ret
== -ENOSPC
) {
6059 /* whoops, lets try again with the full transaction */
6060 btrfs_end_transaction(trans
);
6061 trans
= btrfs_start_transaction(root
, 1);
6063 return PTR_ERR(trans
);
6065 ret
= btrfs_update_inode(trans
, root
, inode
);
6067 btrfs_end_transaction(trans
);
6068 if (BTRFS_I(inode
)->delayed_node
)
6069 btrfs_balance_delayed_items(fs_info
);
6075 * This is a copy of file_update_time. We need this so we can return error on
6076 * ENOSPC for updating the inode in the case of file write and mmap writes.
6078 static int btrfs_update_time(struct inode
*inode
, struct timespec
*now
,
6081 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6083 if (btrfs_root_readonly(root
))
6086 if (flags
& S_VERSION
)
6087 inode_inc_iversion(inode
);
6088 if (flags
& S_CTIME
)
6089 inode
->i_ctime
= *now
;
6090 if (flags
& S_MTIME
)
6091 inode
->i_mtime
= *now
;
6092 if (flags
& S_ATIME
)
6093 inode
->i_atime
= *now
;
6094 return btrfs_dirty_inode(inode
);
6098 * find the highest existing sequence number in a directory
6099 * and then set the in-memory index_cnt variable to reflect
6100 * free sequence numbers
6102 static int btrfs_set_inode_index_count(struct btrfs_inode
*inode
)
6104 struct btrfs_root
*root
= inode
->root
;
6105 struct btrfs_key key
, found_key
;
6106 struct btrfs_path
*path
;
6107 struct extent_buffer
*leaf
;
6110 key
.objectid
= btrfs_ino(inode
);
6111 key
.type
= BTRFS_DIR_INDEX_KEY
;
6112 key
.offset
= (u64
)-1;
6114 path
= btrfs_alloc_path();
6118 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
6121 /* FIXME: we should be able to handle this */
6127 * MAGIC NUMBER EXPLANATION:
6128 * since we search a directory based on f_pos we have to start at 2
6129 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6130 * else has to start at 2
6132 if (path
->slots
[0] == 0) {
6133 inode
->index_cnt
= 2;
6139 leaf
= path
->nodes
[0];
6140 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6142 if (found_key
.objectid
!= btrfs_ino(inode
) ||
6143 found_key
.type
!= BTRFS_DIR_INDEX_KEY
) {
6144 inode
->index_cnt
= 2;
6148 inode
->index_cnt
= found_key
.offset
+ 1;
6150 btrfs_free_path(path
);
6155 * helper to find a free sequence number in a given directory. This current
6156 * code is very simple, later versions will do smarter things in the btree
6158 int btrfs_set_inode_index(struct btrfs_inode
*dir
, u64
*index
)
6162 if (dir
->index_cnt
== (u64
)-1) {
6163 ret
= btrfs_inode_delayed_dir_index_count(dir
);
6165 ret
= btrfs_set_inode_index_count(dir
);
6171 *index
= dir
->index_cnt
;
6177 static int btrfs_insert_inode_locked(struct inode
*inode
)
6179 struct btrfs_iget_args args
;
6180 args
.location
= &BTRFS_I(inode
)->location
;
6181 args
.root
= BTRFS_I(inode
)->root
;
6183 return insert_inode_locked4(inode
,
6184 btrfs_inode_hash(inode
->i_ino
, BTRFS_I(inode
)->root
),
6185 btrfs_find_actor
, &args
);
6188 static struct inode
*btrfs_new_inode(struct btrfs_trans_handle
*trans
,
6189 struct btrfs_root
*root
,
6191 const char *name
, int name_len
,
6192 u64 ref_objectid
, u64 objectid
,
6193 umode_t mode
, u64
*index
)
6195 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
6196 struct inode
*inode
;
6197 struct btrfs_inode_item
*inode_item
;
6198 struct btrfs_key
*location
;
6199 struct btrfs_path
*path
;
6200 struct btrfs_inode_ref
*ref
;
6201 struct btrfs_key key
[2];
6203 int nitems
= name
? 2 : 1;
6207 path
= btrfs_alloc_path();
6209 return ERR_PTR(-ENOMEM
);
6211 inode
= new_inode(fs_info
->sb
);
6213 btrfs_free_path(path
);
6214 return ERR_PTR(-ENOMEM
);
6218 * O_TMPFILE, set link count to 0, so that after this point,
6219 * we fill in an inode item with the correct link count.
6222 set_nlink(inode
, 0);
6225 * we have to initialize this early, so we can reclaim the inode
6226 * number if we fail afterwards in this function.
6228 inode
->i_ino
= objectid
;
6231 trace_btrfs_inode_request(dir
);
6233 ret
= btrfs_set_inode_index(BTRFS_I(dir
), index
);
6235 btrfs_free_path(path
);
6237 return ERR_PTR(ret
);
6243 * index_cnt is ignored for everything but a dir,
6244 * btrfs_get_inode_index_count has an explanation for the magic
6247 BTRFS_I(inode
)->index_cnt
= 2;
6248 BTRFS_I(inode
)->dir_index
= *index
;
6249 BTRFS_I(inode
)->root
= root
;
6250 BTRFS_I(inode
)->generation
= trans
->transid
;
6251 inode
->i_generation
= BTRFS_I(inode
)->generation
;
6254 * We could have gotten an inode number from somebody who was fsynced
6255 * and then removed in this same transaction, so let's just set full
6256 * sync since it will be a full sync anyway and this will blow away the
6257 * old info in the log.
6259 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
6261 key
[0].objectid
= objectid
;
6262 key
[0].type
= BTRFS_INODE_ITEM_KEY
;
6265 sizes
[0] = sizeof(struct btrfs_inode_item
);
6269 * Start new inodes with an inode_ref. This is slightly more
6270 * efficient for small numbers of hard links since they will
6271 * be packed into one item. Extended refs will kick in if we
6272 * add more hard links than can fit in the ref item.
6274 key
[1].objectid
= objectid
;
6275 key
[1].type
= BTRFS_INODE_REF_KEY
;
6276 key
[1].offset
= ref_objectid
;
6278 sizes
[1] = name_len
+ sizeof(*ref
);
6281 location
= &BTRFS_I(inode
)->location
;
6282 location
->objectid
= objectid
;
6283 location
->offset
= 0;
6284 location
->type
= BTRFS_INODE_ITEM_KEY
;
6286 ret
= btrfs_insert_inode_locked(inode
);
6290 path
->leave_spinning
= 1;
6291 ret
= btrfs_insert_empty_items(trans
, root
, path
, key
, sizes
, nitems
);
6295 inode_init_owner(inode
, dir
, mode
);
6296 inode_set_bytes(inode
, 0);
6298 inode
->i_mtime
= current_time(inode
);
6299 inode
->i_atime
= inode
->i_mtime
;
6300 inode
->i_ctime
= inode
->i_mtime
;
6301 BTRFS_I(inode
)->i_otime
= inode
->i_mtime
;
6303 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
6304 struct btrfs_inode_item
);
6305 memzero_extent_buffer(path
->nodes
[0], (unsigned long)inode_item
,
6306 sizeof(*inode_item
));
6307 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
);
6310 ref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0] + 1,
6311 struct btrfs_inode_ref
);
6312 btrfs_set_inode_ref_name_len(path
->nodes
[0], ref
, name_len
);
6313 btrfs_set_inode_ref_index(path
->nodes
[0], ref
, *index
);
6314 ptr
= (unsigned long)(ref
+ 1);
6315 write_extent_buffer(path
->nodes
[0], name
, ptr
, name_len
);
6318 btrfs_mark_buffer_dirty(path
->nodes
[0]);
6319 btrfs_free_path(path
);
6321 btrfs_inherit_iflags(inode
, dir
);
6323 if (S_ISREG(mode
)) {
6324 if (btrfs_test_opt(fs_info
, NODATASUM
))
6325 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
6326 if (btrfs_test_opt(fs_info
, NODATACOW
))
6327 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
|
6328 BTRFS_INODE_NODATASUM
;
6331 inode_tree_add(inode
);
6333 trace_btrfs_inode_new(inode
);
6334 btrfs_set_inode_last_trans(trans
, inode
);
6336 btrfs_update_root_times(trans
, root
);
6338 ret
= btrfs_inode_inherit_props(trans
, inode
, dir
);
6341 "error inheriting props for ino %llu (root %llu): %d",
6342 btrfs_ino(BTRFS_I(inode
)), root
->root_key
.objectid
, ret
);
6347 unlock_new_inode(inode
);
6350 BTRFS_I(dir
)->index_cnt
--;
6351 btrfs_free_path(path
);
6353 return ERR_PTR(ret
);
6356 static inline u8
btrfs_inode_type(struct inode
*inode
)
6358 return btrfs_type_by_mode
[(inode
->i_mode
& S_IFMT
) >> S_SHIFT
];
6362 * utility function to add 'inode' into 'parent_inode' with
6363 * a give name and a given sequence number.
6364 * if 'add_backref' is true, also insert a backref from the
6365 * inode to the parent directory.
6367 int btrfs_add_link(struct btrfs_trans_handle
*trans
,
6368 struct btrfs_inode
*parent_inode
, struct btrfs_inode
*inode
,
6369 const char *name
, int name_len
, int add_backref
, u64 index
)
6371 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
6373 struct btrfs_key key
;
6374 struct btrfs_root
*root
= parent_inode
->root
;
6375 u64 ino
= btrfs_ino(inode
);
6376 u64 parent_ino
= btrfs_ino(parent_inode
);
6378 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6379 memcpy(&key
, &inode
->root
->root_key
, sizeof(key
));
6382 key
.type
= BTRFS_INODE_ITEM_KEY
;
6386 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6387 ret
= btrfs_add_root_ref(trans
, fs_info
, key
.objectid
,
6388 root
->root_key
.objectid
, parent_ino
,
6389 index
, name
, name_len
);
6390 } else if (add_backref
) {
6391 ret
= btrfs_insert_inode_ref(trans
, root
, name
, name_len
, ino
,
6395 /* Nothing to clean up yet */
6399 ret
= btrfs_insert_dir_item(trans
, root
, name
, name_len
,
6401 btrfs_inode_type(&inode
->vfs_inode
), index
);
6402 if (ret
== -EEXIST
|| ret
== -EOVERFLOW
)
6405 btrfs_abort_transaction(trans
, ret
);
6409 btrfs_i_size_write(parent_inode
, parent_inode
->vfs_inode
.i_size
+
6411 inode_inc_iversion(&parent_inode
->vfs_inode
);
6412 parent_inode
->vfs_inode
.i_mtime
= parent_inode
->vfs_inode
.i_ctime
=
6413 current_time(&parent_inode
->vfs_inode
);
6414 ret
= btrfs_update_inode(trans
, root
, &parent_inode
->vfs_inode
);
6416 btrfs_abort_transaction(trans
, ret
);
6420 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6423 err
= btrfs_del_root_ref(trans
, fs_info
, key
.objectid
,
6424 root
->root_key
.objectid
, parent_ino
,
6425 &local_index
, name
, name_len
);
6427 } else if (add_backref
) {
6431 err
= btrfs_del_inode_ref(trans
, root
, name
, name_len
,
6432 ino
, parent_ino
, &local_index
);
6437 static int btrfs_add_nondir(struct btrfs_trans_handle
*trans
,
6438 struct btrfs_inode
*dir
, struct dentry
*dentry
,
6439 struct btrfs_inode
*inode
, int backref
, u64 index
)
6441 int err
= btrfs_add_link(trans
, dir
, inode
,
6442 dentry
->d_name
.name
, dentry
->d_name
.len
,
6449 static int btrfs_mknod(struct inode
*dir
, struct dentry
*dentry
,
6450 umode_t mode
, dev_t rdev
)
6452 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
6453 struct btrfs_trans_handle
*trans
;
6454 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6455 struct inode
*inode
= NULL
;
6462 * 2 for inode item and ref
6464 * 1 for xattr if selinux is on
6466 trans
= btrfs_start_transaction(root
, 5);
6468 return PTR_ERR(trans
);
6470 err
= btrfs_find_free_ino(root
, &objectid
);
6474 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6475 dentry
->d_name
.len
, btrfs_ino(BTRFS_I(dir
)), objectid
,
6477 if (IS_ERR(inode
)) {
6478 err
= PTR_ERR(inode
);
6483 * If the active LSM wants to access the inode during
6484 * d_instantiate it needs these. Smack checks to see
6485 * if the filesystem supports xattrs by looking at the
6488 inode
->i_op
= &btrfs_special_inode_operations
;
6489 init_special_inode(inode
, inode
->i_mode
, rdev
);
6491 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6493 goto out_unlock_inode
;
6495 err
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
, BTRFS_I(inode
),
6498 goto out_unlock_inode
;
6500 btrfs_update_inode(trans
, root
, inode
);
6501 unlock_new_inode(inode
);
6502 d_instantiate(dentry
, inode
);
6506 btrfs_end_transaction(trans
);
6507 btrfs_balance_delayed_items(fs_info
);
6508 btrfs_btree_balance_dirty(fs_info
);
6510 inode_dec_link_count(inode
);
6517 unlock_new_inode(inode
);
6522 static int btrfs_create(struct inode
*dir
, struct dentry
*dentry
,
6523 umode_t mode
, bool excl
)
6525 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
6526 struct btrfs_trans_handle
*trans
;
6527 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6528 struct inode
*inode
= NULL
;
6529 int drop_inode_on_err
= 0;
6535 * 2 for inode item and ref
6537 * 1 for xattr if selinux is on
6539 trans
= btrfs_start_transaction(root
, 5);
6541 return PTR_ERR(trans
);
6543 err
= btrfs_find_free_ino(root
, &objectid
);
6547 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6548 dentry
->d_name
.len
, btrfs_ino(BTRFS_I(dir
)), objectid
,
6550 if (IS_ERR(inode
)) {
6551 err
= PTR_ERR(inode
);
6554 drop_inode_on_err
= 1;
6556 * If the active LSM wants to access the inode during
6557 * d_instantiate it needs these. Smack checks to see
6558 * if the filesystem supports xattrs by looking at the
6561 inode
->i_fop
= &btrfs_file_operations
;
6562 inode
->i_op
= &btrfs_file_inode_operations
;
6563 inode
->i_mapping
->a_ops
= &btrfs_aops
;
6565 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6567 goto out_unlock_inode
;
6569 err
= btrfs_update_inode(trans
, root
, inode
);
6571 goto out_unlock_inode
;
6573 err
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
, BTRFS_I(inode
),
6576 goto out_unlock_inode
;
6578 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
6579 unlock_new_inode(inode
);
6580 d_instantiate(dentry
, inode
);
6583 btrfs_end_transaction(trans
);
6584 if (err
&& drop_inode_on_err
) {
6585 inode_dec_link_count(inode
);
6588 btrfs_balance_delayed_items(fs_info
);
6589 btrfs_btree_balance_dirty(fs_info
);
6593 unlock_new_inode(inode
);
6598 static int btrfs_link(struct dentry
*old_dentry
, struct inode
*dir
,
6599 struct dentry
*dentry
)
6601 struct btrfs_trans_handle
*trans
= NULL
;
6602 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6603 struct inode
*inode
= d_inode(old_dentry
);
6604 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
6609 /* do not allow sys_link's with other subvols of the same device */
6610 if (root
->objectid
!= BTRFS_I(inode
)->root
->objectid
)
6613 if (inode
->i_nlink
>= BTRFS_LINK_MAX
)
6616 err
= btrfs_set_inode_index(BTRFS_I(dir
), &index
);
6621 * 2 items for inode and inode ref
6622 * 2 items for dir items
6623 * 1 item for parent inode
6625 trans
= btrfs_start_transaction(root
, 5);
6626 if (IS_ERR(trans
)) {
6627 err
= PTR_ERR(trans
);
6632 /* There are several dir indexes for this inode, clear the cache. */
6633 BTRFS_I(inode
)->dir_index
= 0ULL;
6635 inode_inc_iversion(inode
);
6636 inode
->i_ctime
= current_time(inode
);
6638 set_bit(BTRFS_INODE_COPY_EVERYTHING
, &BTRFS_I(inode
)->runtime_flags
);
6640 err
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
, BTRFS_I(inode
),
6646 struct dentry
*parent
= dentry
->d_parent
;
6647 err
= btrfs_update_inode(trans
, root
, inode
);
6650 if (inode
->i_nlink
== 1) {
6652 * If new hard link count is 1, it's a file created
6653 * with open(2) O_TMPFILE flag.
6655 err
= btrfs_orphan_del(trans
, BTRFS_I(inode
));
6659 d_instantiate(dentry
, inode
);
6660 btrfs_log_new_name(trans
, BTRFS_I(inode
), NULL
, parent
);
6663 btrfs_balance_delayed_items(fs_info
);
6666 btrfs_end_transaction(trans
);
6668 inode_dec_link_count(inode
);
6671 btrfs_btree_balance_dirty(fs_info
);
6675 static int btrfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
6677 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
6678 struct inode
*inode
= NULL
;
6679 struct btrfs_trans_handle
*trans
;
6680 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6682 int drop_on_err
= 0;
6687 * 2 items for inode and ref
6688 * 2 items for dir items
6689 * 1 for xattr if selinux is on
6691 trans
= btrfs_start_transaction(root
, 5);
6693 return PTR_ERR(trans
);
6695 err
= btrfs_find_free_ino(root
, &objectid
);
6699 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6700 dentry
->d_name
.len
, btrfs_ino(BTRFS_I(dir
)), objectid
,
6701 S_IFDIR
| mode
, &index
);
6702 if (IS_ERR(inode
)) {
6703 err
= PTR_ERR(inode
);
6708 /* these must be set before we unlock the inode */
6709 inode
->i_op
= &btrfs_dir_inode_operations
;
6710 inode
->i_fop
= &btrfs_dir_file_operations
;
6712 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6714 goto out_fail_inode
;
6716 btrfs_i_size_write(BTRFS_I(inode
), 0);
6717 err
= btrfs_update_inode(trans
, root
, inode
);
6719 goto out_fail_inode
;
6721 err
= btrfs_add_link(trans
, BTRFS_I(dir
), BTRFS_I(inode
),
6722 dentry
->d_name
.name
,
6723 dentry
->d_name
.len
, 0, index
);
6725 goto out_fail_inode
;
6727 d_instantiate(dentry
, inode
);
6729 * mkdir is special. We're unlocking after we call d_instantiate
6730 * to avoid a race with nfsd calling d_instantiate.
6732 unlock_new_inode(inode
);
6736 btrfs_end_transaction(trans
);
6738 inode_dec_link_count(inode
);
6741 btrfs_balance_delayed_items(fs_info
);
6742 btrfs_btree_balance_dirty(fs_info
);
6746 unlock_new_inode(inode
);
6750 /* Find next extent map of a given extent map, caller needs to ensure locks */
6751 static struct extent_map
*next_extent_map(struct extent_map
*em
)
6753 struct rb_node
*next
;
6755 next
= rb_next(&em
->rb_node
);
6758 return container_of(next
, struct extent_map
, rb_node
);
6761 static struct extent_map
*prev_extent_map(struct extent_map
*em
)
6763 struct rb_node
*prev
;
6765 prev
= rb_prev(&em
->rb_node
);
6768 return container_of(prev
, struct extent_map
, rb_node
);
6771 /* helper for btfs_get_extent. Given an existing extent in the tree,
6772 * the existing extent is the nearest extent to map_start,
6773 * and an extent that you want to insert, deal with overlap and insert
6774 * the best fitted new extent into the tree.
6776 static int merge_extent_mapping(struct extent_map_tree
*em_tree
,
6777 struct extent_map
*existing
,
6778 struct extent_map
*em
,
6781 struct extent_map
*prev
;
6782 struct extent_map
*next
;
6787 BUG_ON(map_start
< em
->start
|| map_start
>= extent_map_end(em
));
6789 if (existing
->start
> map_start
) {
6791 prev
= prev_extent_map(next
);
6794 next
= next_extent_map(prev
);
6797 start
= prev
? extent_map_end(prev
) : em
->start
;
6798 start
= max_t(u64
, start
, em
->start
);
6799 end
= next
? next
->start
: extent_map_end(em
);
6800 end
= min_t(u64
, end
, extent_map_end(em
));
6801 start_diff
= start
- em
->start
;
6803 em
->len
= end
- start
;
6804 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
&&
6805 !test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
6806 em
->block_start
+= start_diff
;
6807 em
->block_len
-= start_diff
;
6809 return add_extent_mapping(em_tree
, em
, 0);
6812 static noinline
int uncompress_inline(struct btrfs_path
*path
,
6814 size_t pg_offset
, u64 extent_offset
,
6815 struct btrfs_file_extent_item
*item
)
6818 struct extent_buffer
*leaf
= path
->nodes
[0];
6821 unsigned long inline_size
;
6825 WARN_ON(pg_offset
!= 0);
6826 compress_type
= btrfs_file_extent_compression(leaf
, item
);
6827 max_size
= btrfs_file_extent_ram_bytes(leaf
, item
);
6828 inline_size
= btrfs_file_extent_inline_item_len(leaf
,
6829 btrfs_item_nr(path
->slots
[0]));
6830 tmp
= kmalloc(inline_size
, GFP_NOFS
);
6833 ptr
= btrfs_file_extent_inline_start(item
);
6835 read_extent_buffer(leaf
, tmp
, ptr
, inline_size
);
6837 max_size
= min_t(unsigned long, PAGE_SIZE
, max_size
);
6838 ret
= btrfs_decompress(compress_type
, tmp
, page
,
6839 extent_offset
, inline_size
, max_size
);
6842 * decompression code contains a memset to fill in any space between the end
6843 * of the uncompressed data and the end of max_size in case the decompressed
6844 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6845 * the end of an inline extent and the beginning of the next block, so we
6846 * cover that region here.
6849 if (max_size
+ pg_offset
< PAGE_SIZE
) {
6850 char *map
= kmap(page
);
6851 memset(map
+ pg_offset
+ max_size
, 0, PAGE_SIZE
- max_size
- pg_offset
);
6859 * a bit scary, this does extent mapping from logical file offset to the disk.
6860 * the ugly parts come from merging extents from the disk with the in-ram
6861 * representation. This gets more complex because of the data=ordered code,
6862 * where the in-ram extents might be locked pending data=ordered completion.
6864 * This also copies inline extents directly into the page.
6866 struct extent_map
*btrfs_get_extent(struct btrfs_inode
*inode
,
6868 size_t pg_offset
, u64 start
, u64 len
,
6871 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
6874 u64 extent_start
= 0;
6876 u64 objectid
= btrfs_ino(inode
);
6878 struct btrfs_path
*path
= NULL
;
6879 struct btrfs_root
*root
= inode
->root
;
6880 struct btrfs_file_extent_item
*item
;
6881 struct extent_buffer
*leaf
;
6882 struct btrfs_key found_key
;
6883 struct extent_map
*em
= NULL
;
6884 struct extent_map_tree
*em_tree
= &inode
->extent_tree
;
6885 struct extent_io_tree
*io_tree
= &inode
->io_tree
;
6886 struct btrfs_trans_handle
*trans
= NULL
;
6887 const bool new_inline
= !page
|| create
;
6890 read_lock(&em_tree
->lock
);
6891 em
= lookup_extent_mapping(em_tree
, start
, len
);
6893 em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
6894 read_unlock(&em_tree
->lock
);
6897 if (em
->start
> start
|| em
->start
+ em
->len
<= start
)
6898 free_extent_map(em
);
6899 else if (em
->block_start
== EXTENT_MAP_INLINE
&& page
)
6900 free_extent_map(em
);
6904 em
= alloc_extent_map();
6909 em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
6910 em
->start
= EXTENT_MAP_HOLE
;
6911 em
->orig_start
= EXTENT_MAP_HOLE
;
6913 em
->block_len
= (u64
)-1;
6916 path
= btrfs_alloc_path();
6922 * Chances are we'll be called again, so go ahead and do
6925 path
->reada
= READA_FORWARD
;
6928 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
6929 objectid
, start
, trans
!= NULL
);
6936 if (path
->slots
[0] == 0)
6941 leaf
= path
->nodes
[0];
6942 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
6943 struct btrfs_file_extent_item
);
6944 /* are we inside the extent that was found? */
6945 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6946 found_type
= found_key
.type
;
6947 if (found_key
.objectid
!= objectid
||
6948 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
6950 * If we backup past the first extent we want to move forward
6951 * and see if there is an extent in front of us, otherwise we'll
6952 * say there is a hole for our whole search range which can
6959 found_type
= btrfs_file_extent_type(leaf
, item
);
6960 extent_start
= found_key
.offset
;
6961 if (found_type
== BTRFS_FILE_EXTENT_REG
||
6962 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
6963 extent_end
= extent_start
+
6964 btrfs_file_extent_num_bytes(leaf
, item
);
6966 trace_btrfs_get_extent_show_fi_regular(inode
, leaf
, item
,
6968 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
6970 size
= btrfs_file_extent_inline_len(leaf
, path
->slots
[0], item
);
6971 extent_end
= ALIGN(extent_start
+ size
,
6972 fs_info
->sectorsize
);
6974 trace_btrfs_get_extent_show_fi_inline(inode
, leaf
, item
,
6979 if (start
>= extent_end
) {
6981 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
6982 ret
= btrfs_next_leaf(root
, path
);
6989 leaf
= path
->nodes
[0];
6991 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6992 if (found_key
.objectid
!= objectid
||
6993 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
6995 if (start
+ len
<= found_key
.offset
)
6997 if (start
> found_key
.offset
)
7000 em
->orig_start
= start
;
7001 em
->len
= found_key
.offset
- start
;
7005 btrfs_extent_item_to_extent_map(inode
, path
, item
,
7008 if (found_type
== BTRFS_FILE_EXTENT_REG
||
7009 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
7011 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
7015 size_t extent_offset
;
7021 size
= btrfs_file_extent_inline_len(leaf
, path
->slots
[0], item
);
7022 extent_offset
= page_offset(page
) + pg_offset
- extent_start
;
7023 copy_size
= min_t(u64
, PAGE_SIZE
- pg_offset
,
7024 size
- extent_offset
);
7025 em
->start
= extent_start
+ extent_offset
;
7026 em
->len
= ALIGN(copy_size
, fs_info
->sectorsize
);
7027 em
->orig_block_len
= em
->len
;
7028 em
->orig_start
= em
->start
;
7029 ptr
= btrfs_file_extent_inline_start(item
) + extent_offset
;
7030 if (create
== 0 && !PageUptodate(page
)) {
7031 if (btrfs_file_extent_compression(leaf
, item
) !=
7032 BTRFS_COMPRESS_NONE
) {
7033 ret
= uncompress_inline(path
, page
, pg_offset
,
7034 extent_offset
, item
);
7041 read_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
7043 if (pg_offset
+ copy_size
< PAGE_SIZE
) {
7044 memset(map
+ pg_offset
+ copy_size
, 0,
7045 PAGE_SIZE
- pg_offset
-
7050 flush_dcache_page(page
);
7051 } else if (create
&& PageUptodate(page
)) {
7055 free_extent_map(em
);
7058 btrfs_release_path(path
);
7059 trans
= btrfs_join_transaction(root
);
7062 return ERR_CAST(trans
);
7066 write_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
7069 btrfs_mark_buffer_dirty(leaf
);
7071 set_extent_uptodate(io_tree
, em
->start
,
7072 extent_map_end(em
) - 1, NULL
, GFP_NOFS
);
7077 em
->orig_start
= start
;
7080 em
->block_start
= EXTENT_MAP_HOLE
;
7081 set_bit(EXTENT_FLAG_VACANCY
, &em
->flags
);
7083 btrfs_release_path(path
);
7084 if (em
->start
> start
|| extent_map_end(em
) <= start
) {
7086 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7087 em
->start
, em
->len
, start
, len
);
7093 write_lock(&em_tree
->lock
);
7094 ret
= add_extent_mapping(em_tree
, em
, 0);
7095 /* it is possible that someone inserted the extent into the tree
7096 * while we had the lock dropped. It is also possible that
7097 * an overlapping map exists in the tree
7099 if (ret
== -EEXIST
) {
7100 struct extent_map
*existing
;
7104 existing
= search_extent_mapping(em_tree
, start
, len
);
7106 * existing will always be non-NULL, since there must be
7107 * extent causing the -EEXIST.
7109 if (existing
->start
== em
->start
&&
7110 extent_map_end(existing
) >= extent_map_end(em
) &&
7111 em
->block_start
== existing
->block_start
) {
7113 * The existing extent map already encompasses the
7114 * entire extent map we tried to add.
7116 free_extent_map(em
);
7120 } else if (start
>= extent_map_end(existing
) ||
7121 start
<= existing
->start
) {
7123 * The existing extent map is the one nearest to
7124 * the [start, start + len) range which overlaps
7126 err
= merge_extent_mapping(em_tree
, existing
,
7128 free_extent_map(existing
);
7130 free_extent_map(em
);
7134 free_extent_map(em
);
7139 write_unlock(&em_tree
->lock
);
7142 trace_btrfs_get_extent(root
, inode
, em
);
7144 btrfs_free_path(path
);
7146 ret
= btrfs_end_transaction(trans
);
7151 free_extent_map(em
);
7152 return ERR_PTR(err
);
7154 BUG_ON(!em
); /* Error is always set */
7158 struct extent_map
*btrfs_get_extent_fiemap(struct btrfs_inode
*inode
,
7160 size_t pg_offset
, u64 start
, u64 len
,
7163 struct extent_map
*em
;
7164 struct extent_map
*hole_em
= NULL
;
7165 u64 range_start
= start
;
7171 em
= btrfs_get_extent(inode
, page
, pg_offset
, start
, len
, create
);
7175 * If our em maps to:
7177 * - a pre-alloc extent,
7178 * there might actually be delalloc bytes behind it.
7180 if (em
->block_start
!= EXTENT_MAP_HOLE
&&
7181 !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7186 /* check to see if we've wrapped (len == -1 or similar) */
7195 /* ok, we didn't find anything, lets look for delalloc */
7196 found
= count_range_bits(&inode
->io_tree
, &range_start
,
7197 end
, len
, EXTENT_DELALLOC
, 1);
7198 found_end
= range_start
+ found
;
7199 if (found_end
< range_start
)
7200 found_end
= (u64
)-1;
7203 * we didn't find anything useful, return
7204 * the original results from get_extent()
7206 if (range_start
> end
|| found_end
<= start
) {
7212 /* adjust the range_start to make sure it doesn't
7213 * go backwards from the start they passed in
7215 range_start
= max(start
, range_start
);
7216 found
= found_end
- range_start
;
7219 u64 hole_start
= start
;
7222 em
= alloc_extent_map();
7228 * when btrfs_get_extent can't find anything it
7229 * returns one huge hole
7231 * make sure what it found really fits our range, and
7232 * adjust to make sure it is based on the start from
7236 u64 calc_end
= extent_map_end(hole_em
);
7238 if (calc_end
<= start
|| (hole_em
->start
> end
)) {
7239 free_extent_map(hole_em
);
7242 hole_start
= max(hole_em
->start
, start
);
7243 hole_len
= calc_end
- hole_start
;
7247 if (hole_em
&& range_start
> hole_start
) {
7248 /* our hole starts before our delalloc, so we
7249 * have to return just the parts of the hole
7250 * that go until the delalloc starts
7252 em
->len
= min(hole_len
,
7253 range_start
- hole_start
);
7254 em
->start
= hole_start
;
7255 em
->orig_start
= hole_start
;
7257 * don't adjust block start at all,
7258 * it is fixed at EXTENT_MAP_HOLE
7260 em
->block_start
= hole_em
->block_start
;
7261 em
->block_len
= hole_len
;
7262 if (test_bit(EXTENT_FLAG_PREALLOC
, &hole_em
->flags
))
7263 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
7265 em
->start
= range_start
;
7267 em
->orig_start
= range_start
;
7268 em
->block_start
= EXTENT_MAP_DELALLOC
;
7269 em
->block_len
= found
;
7271 } else if (hole_em
) {
7276 free_extent_map(hole_em
);
7278 free_extent_map(em
);
7279 return ERR_PTR(err
);
7284 static struct extent_map
*btrfs_create_dio_extent(struct inode
*inode
,
7287 const u64 orig_start
,
7288 const u64 block_start
,
7289 const u64 block_len
,
7290 const u64 orig_block_len
,
7291 const u64 ram_bytes
,
7294 struct extent_map
*em
= NULL
;
7297 if (type
!= BTRFS_ORDERED_NOCOW
) {
7298 em
= create_io_em(inode
, start
, len
, orig_start
,
7299 block_start
, block_len
, orig_block_len
,
7301 BTRFS_COMPRESS_NONE
, /* compress_type */
7306 ret
= btrfs_add_ordered_extent_dio(inode
, start
, block_start
,
7307 len
, block_len
, type
);
7310 free_extent_map(em
);
7311 btrfs_drop_extent_cache(BTRFS_I(inode
), start
,
7312 start
+ len
- 1, 0);
7321 static struct extent_map
*btrfs_new_extent_direct(struct inode
*inode
,
7324 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7325 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7326 struct extent_map
*em
;
7327 struct btrfs_key ins
;
7331 alloc_hint
= get_extent_allocation_hint(inode
, start
, len
);
7332 ret
= btrfs_reserve_extent(root
, len
, len
, fs_info
->sectorsize
,
7333 0, alloc_hint
, &ins
, 1, 1);
7335 return ERR_PTR(ret
);
7337 em
= btrfs_create_dio_extent(inode
, start
, ins
.offset
, start
,
7338 ins
.objectid
, ins
.offset
, ins
.offset
,
7339 ins
.offset
, BTRFS_ORDERED_REGULAR
);
7340 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
7342 btrfs_free_reserved_extent(fs_info
, ins
.objectid
,
7349 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7350 * block must be cow'd
7352 noinline
int can_nocow_extent(struct inode
*inode
, u64 offset
, u64
*len
,
7353 u64
*orig_start
, u64
*orig_block_len
,
7356 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7357 struct btrfs_path
*path
;
7359 struct extent_buffer
*leaf
;
7360 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7361 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
7362 struct btrfs_file_extent_item
*fi
;
7363 struct btrfs_key key
;
7370 bool nocow
= (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
);
7372 path
= btrfs_alloc_path();
7376 ret
= btrfs_lookup_file_extent(NULL
, root
, path
,
7377 btrfs_ino(BTRFS_I(inode
)), offset
, 0);
7381 slot
= path
->slots
[0];
7384 /* can't find the item, must cow */
7391 leaf
= path
->nodes
[0];
7392 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
7393 if (key
.objectid
!= btrfs_ino(BTRFS_I(inode
)) ||
7394 key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
7395 /* not our file or wrong item type, must cow */
7399 if (key
.offset
> offset
) {
7400 /* Wrong offset, must cow */
7404 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
7405 found_type
= btrfs_file_extent_type(leaf
, fi
);
7406 if (found_type
!= BTRFS_FILE_EXTENT_REG
&&
7407 found_type
!= BTRFS_FILE_EXTENT_PREALLOC
) {
7408 /* not a regular extent, must cow */
7412 if (!nocow
&& found_type
== BTRFS_FILE_EXTENT_REG
)
7415 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
7416 if (extent_end
<= offset
)
7419 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
7420 if (disk_bytenr
== 0)
7423 if (btrfs_file_extent_compression(leaf
, fi
) ||
7424 btrfs_file_extent_encryption(leaf
, fi
) ||
7425 btrfs_file_extent_other_encoding(leaf
, fi
))
7428 backref_offset
= btrfs_file_extent_offset(leaf
, fi
);
7431 *orig_start
= key
.offset
- backref_offset
;
7432 *orig_block_len
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
7433 *ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, fi
);
7436 if (btrfs_extent_readonly(fs_info
, disk_bytenr
))
7439 num_bytes
= min(offset
+ *len
, extent_end
) - offset
;
7440 if (!nocow
&& found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
7443 range_end
= round_up(offset
+ num_bytes
,
7444 root
->fs_info
->sectorsize
) - 1;
7445 ret
= test_range_bit(io_tree
, offset
, range_end
,
7446 EXTENT_DELALLOC
, 0, NULL
);
7453 btrfs_release_path(path
);
7456 * look for other files referencing this extent, if we
7457 * find any we must cow
7460 ret
= btrfs_cross_ref_exist(root
, btrfs_ino(BTRFS_I(inode
)),
7461 key
.offset
- backref_offset
, disk_bytenr
);
7468 * adjust disk_bytenr and num_bytes to cover just the bytes
7469 * in this extent we are about to write. If there
7470 * are any csums in that range we have to cow in order
7471 * to keep the csums correct
7473 disk_bytenr
+= backref_offset
;
7474 disk_bytenr
+= offset
- key
.offset
;
7475 if (csum_exist_in_range(fs_info
, disk_bytenr
, num_bytes
))
7478 * all of the above have passed, it is safe to overwrite this extent
7484 btrfs_free_path(path
);
7488 bool btrfs_page_exists_in_range(struct inode
*inode
, loff_t start
, loff_t end
)
7490 struct radix_tree_root
*root
= &inode
->i_mapping
->page_tree
;
7492 void **pagep
= NULL
;
7493 struct page
*page
= NULL
;
7494 unsigned long start_idx
;
7495 unsigned long end_idx
;
7497 start_idx
= start
>> PAGE_SHIFT
;
7500 * end is the last byte in the last page. end == start is legal
7502 end_idx
= end
>> PAGE_SHIFT
;
7506 /* Most of the code in this while loop is lifted from
7507 * find_get_page. It's been modified to begin searching from a
7508 * page and return just the first page found in that range. If the
7509 * found idx is less than or equal to the end idx then we know that
7510 * a page exists. If no pages are found or if those pages are
7511 * outside of the range then we're fine (yay!) */
7512 while (page
== NULL
&&
7513 radix_tree_gang_lookup_slot(root
, &pagep
, NULL
, start_idx
, 1)) {
7514 page
= radix_tree_deref_slot(pagep
);
7515 if (unlikely(!page
))
7518 if (radix_tree_exception(page
)) {
7519 if (radix_tree_deref_retry(page
)) {
7524 * Otherwise, shmem/tmpfs must be storing a swap entry
7525 * here as an exceptional entry: so return it without
7526 * attempting to raise page count.
7529 break; /* TODO: Is this relevant for this use case? */
7532 if (!page_cache_get_speculative(page
)) {
7538 * Has the page moved?
7539 * This is part of the lockless pagecache protocol. See
7540 * include/linux/pagemap.h for details.
7542 if (unlikely(page
!= *pagep
)) {
7549 if (page
->index
<= end_idx
)
7558 static int lock_extent_direct(struct inode
*inode
, u64 lockstart
, u64 lockend
,
7559 struct extent_state
**cached_state
, int writing
)
7561 struct btrfs_ordered_extent
*ordered
;
7565 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7568 * We're concerned with the entire range that we're going to be
7569 * doing DIO to, so we need to make sure there's no ordered
7570 * extents in this range.
7572 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), lockstart
,
7573 lockend
- lockstart
+ 1);
7576 * We need to make sure there are no buffered pages in this
7577 * range either, we could have raced between the invalidate in
7578 * generic_file_direct_write and locking the extent. The
7579 * invalidate needs to happen so that reads after a write do not
7584 !btrfs_page_exists_in_range(inode
, lockstart
, lockend
)))
7587 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7588 cached_state
, GFP_NOFS
);
7592 * If we are doing a DIO read and the ordered extent we
7593 * found is for a buffered write, we can not wait for it
7594 * to complete and retry, because if we do so we can
7595 * deadlock with concurrent buffered writes on page
7596 * locks. This happens only if our DIO read covers more
7597 * than one extent map, if at this point has already
7598 * created an ordered extent for a previous extent map
7599 * and locked its range in the inode's io tree, and a
7600 * concurrent write against that previous extent map's
7601 * range and this range started (we unlock the ranges
7602 * in the io tree only when the bios complete and
7603 * buffered writes always lock pages before attempting
7604 * to lock range in the io tree).
7607 test_bit(BTRFS_ORDERED_DIRECT
, &ordered
->flags
))
7608 btrfs_start_ordered_extent(inode
, ordered
, 1);
7611 btrfs_put_ordered_extent(ordered
);
7614 * We could trigger writeback for this range (and wait
7615 * for it to complete) and then invalidate the pages for
7616 * this range (through invalidate_inode_pages2_range()),
7617 * but that can lead us to a deadlock with a concurrent
7618 * call to readpages() (a buffered read or a defrag call
7619 * triggered a readahead) on a page lock due to an
7620 * ordered dio extent we created before but did not have
7621 * yet a corresponding bio submitted (whence it can not
7622 * complete), which makes readpages() wait for that
7623 * ordered extent to complete while holding a lock on
7638 /* The callers of this must take lock_extent() */
7639 static struct extent_map
*create_io_em(struct inode
*inode
, u64 start
, u64 len
,
7640 u64 orig_start
, u64 block_start
,
7641 u64 block_len
, u64 orig_block_len
,
7642 u64 ram_bytes
, int compress_type
,
7645 struct extent_map_tree
*em_tree
;
7646 struct extent_map
*em
;
7647 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7650 ASSERT(type
== BTRFS_ORDERED_PREALLOC
||
7651 type
== BTRFS_ORDERED_COMPRESSED
||
7652 type
== BTRFS_ORDERED_NOCOW
||
7653 type
== BTRFS_ORDERED_REGULAR
);
7655 em_tree
= &BTRFS_I(inode
)->extent_tree
;
7656 em
= alloc_extent_map();
7658 return ERR_PTR(-ENOMEM
);
7661 em
->orig_start
= orig_start
;
7663 em
->block_len
= block_len
;
7664 em
->block_start
= block_start
;
7665 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
7666 em
->orig_block_len
= orig_block_len
;
7667 em
->ram_bytes
= ram_bytes
;
7668 em
->generation
= -1;
7669 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
7670 if (type
== BTRFS_ORDERED_PREALLOC
) {
7671 set_bit(EXTENT_FLAG_FILLING
, &em
->flags
);
7672 } else if (type
== BTRFS_ORDERED_COMPRESSED
) {
7673 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
7674 em
->compress_type
= compress_type
;
7678 btrfs_drop_extent_cache(BTRFS_I(inode
), em
->start
,
7679 em
->start
+ em
->len
- 1, 0);
7680 write_lock(&em_tree
->lock
);
7681 ret
= add_extent_mapping(em_tree
, em
, 1);
7682 write_unlock(&em_tree
->lock
);
7684 * The caller has taken lock_extent(), who could race with us
7687 } while (ret
== -EEXIST
);
7690 free_extent_map(em
);
7691 return ERR_PTR(ret
);
7694 /* em got 2 refs now, callers needs to do free_extent_map once. */
7698 static void adjust_dio_outstanding_extents(struct inode
*inode
,
7699 struct btrfs_dio_data
*dio_data
,
7702 unsigned num_extents
= count_max_extents(len
);
7705 * If we have an outstanding_extents count still set then we're
7706 * within our reservation, otherwise we need to adjust our inode
7707 * counter appropriately.
7709 if (dio_data
->outstanding_extents
>= num_extents
) {
7710 dio_data
->outstanding_extents
-= num_extents
;
7713 * If dio write length has been split due to no large enough
7714 * contiguous space, we need to compensate our inode counter
7717 u64 num_needed
= num_extents
- dio_data
->outstanding_extents
;
7719 spin_lock(&BTRFS_I(inode
)->lock
);
7720 BTRFS_I(inode
)->outstanding_extents
+= num_needed
;
7721 spin_unlock(&BTRFS_I(inode
)->lock
);
7725 static int btrfs_get_blocks_direct(struct inode
*inode
, sector_t iblock
,
7726 struct buffer_head
*bh_result
, int create
)
7728 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7729 struct extent_map
*em
;
7730 struct extent_state
*cached_state
= NULL
;
7731 struct btrfs_dio_data
*dio_data
= NULL
;
7732 u64 start
= iblock
<< inode
->i_blkbits
;
7733 u64 lockstart
, lockend
;
7734 u64 len
= bh_result
->b_size
;
7735 int unlock_bits
= EXTENT_LOCKED
;
7739 unlock_bits
|= EXTENT_DIRTY
;
7741 len
= min_t(u64
, len
, fs_info
->sectorsize
);
7744 lockend
= start
+ len
- 1;
7746 if (current
->journal_info
) {
7748 * Need to pull our outstanding extents and set journal_info to NULL so
7749 * that anything that needs to check if there's a transaction doesn't get
7752 dio_data
= current
->journal_info
;
7753 current
->journal_info
= NULL
;
7757 * If this errors out it's because we couldn't invalidate pagecache for
7758 * this range and we need to fallback to buffered.
7760 if (lock_extent_direct(inode
, lockstart
, lockend
, &cached_state
,
7766 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0, start
, len
, 0);
7773 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7774 * io. INLINE is special, and we could probably kludge it in here, but
7775 * it's still buffered so for safety lets just fall back to the generic
7778 * For COMPRESSED we _have_ to read the entire extent in so we can
7779 * decompress it, so there will be buffering required no matter what we
7780 * do, so go ahead and fallback to buffered.
7782 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7783 * to buffered IO. Don't blame me, this is the price we pay for using
7786 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
) ||
7787 em
->block_start
== EXTENT_MAP_INLINE
) {
7788 free_extent_map(em
);
7793 /* Just a good old fashioned hole, return */
7794 if (!create
&& (em
->block_start
== EXTENT_MAP_HOLE
||
7795 test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))) {
7796 free_extent_map(em
);
7801 * We don't allocate a new extent in the following cases
7803 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7805 * 2) The extent is marked as PREALLOC. We're good to go here and can
7806 * just use the extent.
7810 len
= min(len
, em
->len
- (start
- em
->start
));
7811 lockstart
= start
+ len
;
7815 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) ||
7816 ((BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
7817 em
->block_start
!= EXTENT_MAP_HOLE
)) {
7819 u64 block_start
, orig_start
, orig_block_len
, ram_bytes
;
7821 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7822 type
= BTRFS_ORDERED_PREALLOC
;
7824 type
= BTRFS_ORDERED_NOCOW
;
7825 len
= min(len
, em
->len
- (start
- em
->start
));
7826 block_start
= em
->block_start
+ (start
- em
->start
);
7828 if (can_nocow_extent(inode
, start
, &len
, &orig_start
,
7829 &orig_block_len
, &ram_bytes
) == 1 &&
7830 btrfs_inc_nocow_writers(fs_info
, block_start
)) {
7831 struct extent_map
*em2
;
7833 em2
= btrfs_create_dio_extent(inode
, start
, len
,
7834 orig_start
, block_start
,
7835 len
, orig_block_len
,
7837 btrfs_dec_nocow_writers(fs_info
, block_start
);
7838 if (type
== BTRFS_ORDERED_PREALLOC
) {
7839 free_extent_map(em
);
7842 if (em2
&& IS_ERR(em2
)) {
7847 * For inode marked NODATACOW or extent marked PREALLOC,
7848 * use the existing or preallocated extent, so does not
7849 * need to adjust btrfs_space_info's bytes_may_use.
7851 btrfs_free_reserved_data_space_noquota(inode
,
7858 * this will cow the extent, reset the len in case we changed
7861 len
= bh_result
->b_size
;
7862 free_extent_map(em
);
7863 em
= btrfs_new_extent_direct(inode
, start
, len
);
7868 len
= min(len
, em
->len
- (start
- em
->start
));
7870 bh_result
->b_blocknr
= (em
->block_start
+ (start
- em
->start
)) >>
7872 bh_result
->b_size
= len
;
7873 bh_result
->b_bdev
= em
->bdev
;
7874 set_buffer_mapped(bh_result
);
7876 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7877 set_buffer_new(bh_result
);
7880 * Need to update the i_size under the extent lock so buffered
7881 * readers will get the updated i_size when we unlock.
7883 if (!dio_data
->overwrite
&& start
+ len
> i_size_read(inode
))
7884 i_size_write(inode
, start
+ len
);
7886 adjust_dio_outstanding_extents(inode
, dio_data
, len
);
7887 WARN_ON(dio_data
->reserve
< len
);
7888 dio_data
->reserve
-= len
;
7889 dio_data
->unsubmitted_oe_range_end
= start
+ len
;
7890 current
->journal_info
= dio_data
;
7894 * In the case of write we need to clear and unlock the entire range,
7895 * in the case of read we need to unlock only the end area that we
7896 * aren't using if there is any left over space.
7898 if (lockstart
< lockend
) {
7899 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
,
7900 lockend
, unlock_bits
, 1, 0,
7901 &cached_state
, GFP_NOFS
);
7903 free_extent_state(cached_state
);
7906 free_extent_map(em
);
7911 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7912 unlock_bits
, 1, 0, &cached_state
, GFP_NOFS
);
7915 current
->journal_info
= dio_data
;
7917 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7918 * write less data then expected, so that we don't underflow our inode's
7919 * outstanding extents counter.
7921 if (create
&& dio_data
)
7922 adjust_dio_outstanding_extents(inode
, dio_data
, len
);
7927 static inline int submit_dio_repair_bio(struct inode
*inode
, struct bio
*bio
,
7930 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7933 BUG_ON(bio_op(bio
) == REQ_OP_WRITE
);
7937 ret
= btrfs_bio_wq_end_io(fs_info
, bio
, BTRFS_WQ_ENDIO_DIO_REPAIR
);
7941 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
, 0);
7947 static int btrfs_check_dio_repairable(struct inode
*inode
,
7948 struct bio
*failed_bio
,
7949 struct io_failure_record
*failrec
,
7952 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7955 num_copies
= btrfs_num_copies(fs_info
, failrec
->logical
, failrec
->len
);
7956 if (num_copies
== 1) {
7958 * we only have a single copy of the data, so don't bother with
7959 * all the retry and error correction code that follows. no
7960 * matter what the error is, it is very likely to persist.
7962 btrfs_debug(fs_info
,
7963 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7964 num_copies
, failrec
->this_mirror
, failed_mirror
);
7968 failrec
->failed_mirror
= failed_mirror
;
7969 failrec
->this_mirror
++;
7970 if (failrec
->this_mirror
== failed_mirror
)
7971 failrec
->this_mirror
++;
7973 if (failrec
->this_mirror
> num_copies
) {
7974 btrfs_debug(fs_info
,
7975 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7976 num_copies
, failrec
->this_mirror
, failed_mirror
);
7983 static int dio_read_error(struct inode
*inode
, struct bio
*failed_bio
,
7984 struct page
*page
, unsigned int pgoff
,
7985 u64 start
, u64 end
, int failed_mirror
,
7986 bio_end_io_t
*repair_endio
, void *repair_arg
)
7988 struct io_failure_record
*failrec
;
7989 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
7990 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
7997 BUG_ON(bio_op(failed_bio
) == REQ_OP_WRITE
);
7999 ret
= btrfs_get_io_failure_record(inode
, start
, end
, &failrec
);
8003 ret
= btrfs_check_dio_repairable(inode
, failed_bio
, failrec
,
8006 free_io_failure(failure_tree
, io_tree
, failrec
);
8010 segs
= bio_segments(failed_bio
);
8012 (failed_bio
->bi_io_vec
->bv_len
> btrfs_inode_sectorsize(inode
)))
8013 read_mode
|= REQ_FAILFAST_DEV
;
8015 isector
= start
- btrfs_io_bio(failed_bio
)->logical
;
8016 isector
>>= inode
->i_sb
->s_blocksize_bits
;
8017 bio
= btrfs_create_repair_bio(inode
, failed_bio
, failrec
, page
,
8018 pgoff
, isector
, repair_endio
, repair_arg
);
8019 bio_set_op_attrs(bio
, REQ_OP_READ
, read_mode
);
8021 btrfs_debug(BTRFS_I(inode
)->root
->fs_info
,
8022 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
8023 read_mode
, failrec
->this_mirror
, failrec
->in_validation
);
8025 ret
= submit_dio_repair_bio(inode
, bio
, failrec
->this_mirror
);
8027 free_io_failure(failure_tree
, io_tree
, failrec
);
8034 struct btrfs_retry_complete
{
8035 struct completion done
;
8036 struct inode
*inode
;
8041 static void btrfs_retry_endio_nocsum(struct bio
*bio
)
8043 struct btrfs_retry_complete
*done
= bio
->bi_private
;
8044 struct inode
*inode
= done
->inode
;
8045 struct bio_vec
*bvec
;
8046 struct extent_io_tree
*io_tree
, *failure_tree
;
8052 ASSERT(bio
->bi_vcnt
== 1);
8053 io_tree
= &BTRFS_I(inode
)->io_tree
;
8054 failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
8055 ASSERT(bio
->bi_io_vec
->bv_len
== btrfs_inode_sectorsize(inode
));
8058 ASSERT(!bio_flagged(bio
, BIO_CLONED
));
8059 bio_for_each_segment_all(bvec
, bio
, i
)
8060 clean_io_failure(BTRFS_I(inode
)->root
->fs_info
, failure_tree
,
8061 io_tree
, done
->start
, bvec
->bv_page
,
8062 btrfs_ino(BTRFS_I(inode
)), 0);
8064 complete(&done
->done
);
8068 static int __btrfs_correct_data_nocsum(struct inode
*inode
,
8069 struct btrfs_io_bio
*io_bio
)
8071 struct btrfs_fs_info
*fs_info
;
8072 struct bio_vec bvec
;
8073 struct bvec_iter iter
;
8074 struct btrfs_retry_complete done
;
8082 fs_info
= BTRFS_I(inode
)->root
->fs_info
;
8083 sectorsize
= fs_info
->sectorsize
;
8085 start
= io_bio
->logical
;
8087 io_bio
->bio
.bi_iter
= io_bio
->iter
;
8089 bio_for_each_segment(bvec
, &io_bio
->bio
, iter
) {
8090 nr_sectors
= BTRFS_BYTES_TO_BLKS(fs_info
, bvec
.bv_len
);
8091 pgoff
= bvec
.bv_offset
;
8093 next_block_or_try_again
:
8096 init_completion(&done
.done
);
8098 ret
= dio_read_error(inode
, &io_bio
->bio
, bvec
.bv_page
,
8099 pgoff
, start
, start
+ sectorsize
- 1,
8101 btrfs_retry_endio_nocsum
, &done
);
8107 wait_for_completion(&done
.done
);
8109 if (!done
.uptodate
) {
8110 /* We might have another mirror, so try again */
8111 goto next_block_or_try_again
;
8115 start
+= sectorsize
;
8119 pgoff
+= sectorsize
;
8120 ASSERT(pgoff
< PAGE_SIZE
);
8121 goto next_block_or_try_again
;
8128 static void btrfs_retry_endio(struct bio
*bio
)
8130 struct btrfs_retry_complete
*done
= bio
->bi_private
;
8131 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
8132 struct extent_io_tree
*io_tree
, *failure_tree
;
8133 struct inode
*inode
= done
->inode
;
8134 struct bio_vec
*bvec
;
8144 ASSERT(bio
->bi_vcnt
== 1);
8145 ASSERT(bio
->bi_io_vec
->bv_len
== btrfs_inode_sectorsize(done
->inode
));
8147 io_tree
= &BTRFS_I(inode
)->io_tree
;
8148 failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
8150 ASSERT(!bio_flagged(bio
, BIO_CLONED
));
8151 bio_for_each_segment_all(bvec
, bio
, i
) {
8152 ret
= __readpage_endio_check(inode
, io_bio
, i
, bvec
->bv_page
,
8153 bvec
->bv_offset
, done
->start
,
8156 clean_io_failure(BTRFS_I(inode
)->root
->fs_info
,
8157 failure_tree
, io_tree
, done
->start
,
8159 btrfs_ino(BTRFS_I(inode
)),
8165 done
->uptodate
= uptodate
;
8167 complete(&done
->done
);
8171 static blk_status_t
__btrfs_subio_endio_read(struct inode
*inode
,
8172 struct btrfs_io_bio
*io_bio
, blk_status_t err
)
8174 struct btrfs_fs_info
*fs_info
;
8175 struct bio_vec bvec
;
8176 struct bvec_iter iter
;
8177 struct btrfs_retry_complete done
;
8184 bool uptodate
= (err
== 0);
8187 fs_info
= BTRFS_I(inode
)->root
->fs_info
;
8188 sectorsize
= fs_info
->sectorsize
;
8191 start
= io_bio
->logical
;
8193 io_bio
->bio
.bi_iter
= io_bio
->iter
;
8195 bio_for_each_segment(bvec
, &io_bio
->bio
, iter
) {
8196 nr_sectors
= BTRFS_BYTES_TO_BLKS(fs_info
, bvec
.bv_len
);
8198 pgoff
= bvec
.bv_offset
;
8201 csum_pos
= BTRFS_BYTES_TO_BLKS(fs_info
, offset
);
8202 ret
= __readpage_endio_check(inode
, io_bio
, csum_pos
,
8203 bvec
.bv_page
, pgoff
, start
, sectorsize
);
8210 init_completion(&done
.done
);
8212 ret
= dio_read_error(inode
, &io_bio
->bio
, bvec
.bv_page
,
8213 pgoff
, start
, start
+ sectorsize
- 1,
8215 btrfs_retry_endio
, &done
);
8217 err
= errno_to_blk_status(ret
);
8221 wait_for_completion(&done
.done
);
8223 if (!done
.uptodate
) {
8224 /* We might have another mirror, so try again */
8228 offset
+= sectorsize
;
8229 start
+= sectorsize
;
8235 pgoff
+= sectorsize
;
8236 ASSERT(pgoff
< PAGE_SIZE
);
8244 static blk_status_t
btrfs_subio_endio_read(struct inode
*inode
,
8245 struct btrfs_io_bio
*io_bio
, blk_status_t err
)
8247 bool skip_csum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
8251 return __btrfs_correct_data_nocsum(inode
, io_bio
);
8255 return __btrfs_subio_endio_read(inode
, io_bio
, err
);
8259 static void btrfs_endio_direct_read(struct bio
*bio
)
8261 struct btrfs_dio_private
*dip
= bio
->bi_private
;
8262 struct inode
*inode
= dip
->inode
;
8263 struct bio
*dio_bio
;
8264 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
8265 blk_status_t err
= bio
->bi_status
;
8267 if (dip
->flags
& BTRFS_DIO_ORIG_BIO_SUBMITTED
) {
8268 err
= btrfs_subio_endio_read(inode
, io_bio
, err
);
8273 unlock_extent(&BTRFS_I(inode
)->io_tree
, dip
->logical_offset
,
8274 dip
->logical_offset
+ dip
->bytes
- 1);
8275 dio_bio
= dip
->dio_bio
;
8279 dio_bio
->bi_status
= bio
->bi_status
;
8280 dio_end_io(dio_bio
);
8283 io_bio
->end_io(io_bio
, blk_status_to_errno(err
));
8287 static void __endio_write_update_ordered(struct inode
*inode
,
8288 const u64 offset
, const u64 bytes
,
8289 const bool uptodate
)
8291 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8292 struct btrfs_ordered_extent
*ordered
= NULL
;
8293 struct btrfs_workqueue
*wq
;
8294 btrfs_work_func_t func
;
8295 u64 ordered_offset
= offset
;
8296 u64 ordered_bytes
= bytes
;
8299 if (btrfs_is_free_space_inode(BTRFS_I(inode
))) {
8300 wq
= fs_info
->endio_freespace_worker
;
8301 func
= btrfs_freespace_write_helper
;
8303 wq
= fs_info
->endio_write_workers
;
8304 func
= btrfs_endio_write_helper
;
8308 ret
= btrfs_dec_test_first_ordered_pending(inode
, &ordered
,
8315 btrfs_init_work(&ordered
->work
, func
, finish_ordered_fn
, NULL
, NULL
);
8316 btrfs_queue_work(wq
, &ordered
->work
);
8319 * our bio might span multiple ordered extents. If we haven't
8320 * completed the accounting for the whole dio, go back and try again
8322 if (ordered_offset
< offset
+ bytes
) {
8323 ordered_bytes
= offset
+ bytes
- ordered_offset
;
8329 static void btrfs_endio_direct_write(struct bio
*bio
)
8331 struct btrfs_dio_private
*dip
= bio
->bi_private
;
8332 struct bio
*dio_bio
= dip
->dio_bio
;
8334 __endio_write_update_ordered(dip
->inode
, dip
->logical_offset
,
8335 dip
->bytes
, !bio
->bi_status
);
8339 dio_bio
->bi_status
= bio
->bi_status
;
8340 dio_end_io(dio_bio
);
8344 static blk_status_t
__btrfs_submit_bio_start_direct_io(void *private_data
,
8345 struct bio
*bio
, int mirror_num
,
8346 unsigned long bio_flags
, u64 offset
)
8348 struct inode
*inode
= private_data
;
8350 ret
= btrfs_csum_one_bio(inode
, bio
, offset
, 1);
8351 BUG_ON(ret
); /* -ENOMEM */
8355 static void btrfs_end_dio_bio(struct bio
*bio
)
8357 struct btrfs_dio_private
*dip
= bio
->bi_private
;
8358 blk_status_t err
= bio
->bi_status
;
8361 btrfs_warn(BTRFS_I(dip
->inode
)->root
->fs_info
,
8362 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8363 btrfs_ino(BTRFS_I(dip
->inode
)), bio_op(bio
),
8365 (unsigned long long)bio
->bi_iter
.bi_sector
,
8366 bio
->bi_iter
.bi_size
, err
);
8368 if (dip
->subio_endio
)
8369 err
= dip
->subio_endio(dip
->inode
, btrfs_io_bio(bio
), err
);
8375 * before atomic variable goto zero, we must make sure
8376 * dip->errors is perceived to be set.
8378 smp_mb__before_atomic();
8381 /* if there are more bios still pending for this dio, just exit */
8382 if (!atomic_dec_and_test(&dip
->pending_bios
))
8386 bio_io_error(dip
->orig_bio
);
8388 dip
->dio_bio
->bi_status
= 0;
8389 bio_endio(dip
->orig_bio
);
8395 static inline blk_status_t
btrfs_lookup_and_bind_dio_csum(struct inode
*inode
,
8396 struct btrfs_dio_private
*dip
,
8400 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
8401 struct btrfs_io_bio
*orig_io_bio
= btrfs_io_bio(dip
->orig_bio
);
8405 * We load all the csum data we need when we submit
8406 * the first bio to reduce the csum tree search and
8409 if (dip
->logical_offset
== file_offset
) {
8410 ret
= btrfs_lookup_bio_sums_dio(inode
, dip
->orig_bio
,
8416 if (bio
== dip
->orig_bio
)
8419 file_offset
-= dip
->logical_offset
;
8420 file_offset
>>= inode
->i_sb
->s_blocksize_bits
;
8421 io_bio
->csum
= (u8
*)(((u32
*)orig_io_bio
->csum
) + file_offset
);
8426 static inline int __btrfs_submit_dio_bio(struct bio
*bio
, struct inode
*inode
,
8427 u64 file_offset
, int skip_sum
,
8430 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8431 struct btrfs_dio_private
*dip
= bio
->bi_private
;
8432 bool write
= bio_op(bio
) == REQ_OP_WRITE
;
8436 async_submit
= !atomic_read(&BTRFS_I(inode
)->sync_writers
);
8441 ret
= btrfs_bio_wq_end_io(fs_info
, bio
, BTRFS_WQ_ENDIO_DATA
);
8449 if (write
&& async_submit
) {
8450 ret
= btrfs_wq_submit_bio(fs_info
, bio
, 0, 0,
8452 __btrfs_submit_bio_start_direct_io
,
8453 __btrfs_submit_bio_done
);
8457 * If we aren't doing async submit, calculate the csum of the
8460 ret
= btrfs_csum_one_bio(inode
, bio
, file_offset
, 1);
8464 ret
= btrfs_lookup_and_bind_dio_csum(inode
, dip
, bio
,
8470 ret
= btrfs_map_bio(fs_info
, bio
, 0, async_submit
);
8476 static int btrfs_submit_direct_hook(struct btrfs_dio_private
*dip
,
8479 struct inode
*inode
= dip
->inode
;
8480 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8482 struct bio
*orig_bio
= dip
->orig_bio
;
8483 u64 start_sector
= orig_bio
->bi_iter
.bi_sector
;
8484 u64 file_offset
= dip
->logical_offset
;
8486 int async_submit
= 0;
8488 int clone_offset
= 0;
8492 map_length
= orig_bio
->bi_iter
.bi_size
;
8493 submit_len
= map_length
;
8494 ret
= btrfs_map_block(fs_info
, btrfs_op(orig_bio
), start_sector
<< 9,
8495 &map_length
, NULL
, 0);
8499 if (map_length
>= submit_len
) {
8501 dip
->flags
|= BTRFS_DIO_ORIG_BIO_SUBMITTED
;
8505 /* async crcs make it difficult to collect full stripe writes. */
8506 if (btrfs_data_alloc_profile(fs_info
) & BTRFS_BLOCK_GROUP_RAID56_MASK
)
8512 ASSERT(map_length
<= INT_MAX
);
8513 atomic_inc(&dip
->pending_bios
);
8515 clone_len
= min_t(int, submit_len
, map_length
);
8518 * This will never fail as it's passing GPF_NOFS and
8519 * the allocation is backed by btrfs_bioset.
8521 bio
= btrfs_bio_clone_partial(orig_bio
, clone_offset
,
8523 bio
->bi_private
= dip
;
8524 bio
->bi_end_io
= btrfs_end_dio_bio
;
8525 btrfs_io_bio(bio
)->logical
= file_offset
;
8527 ASSERT(submit_len
>= clone_len
);
8528 submit_len
-= clone_len
;
8529 if (submit_len
== 0)
8533 * Increase the count before we submit the bio so we know
8534 * the end IO handler won't happen before we increase the
8535 * count. Otherwise, the dip might get freed before we're
8536 * done setting it up.
8538 atomic_inc(&dip
->pending_bios
);
8540 ret
= __btrfs_submit_dio_bio(bio
, inode
, file_offset
, skip_sum
,
8544 atomic_dec(&dip
->pending_bios
);
8548 clone_offset
+= clone_len
;
8549 start_sector
+= clone_len
>> 9;
8550 file_offset
+= clone_len
;
8552 map_length
= submit_len
;
8553 ret
= btrfs_map_block(fs_info
, btrfs_op(orig_bio
),
8554 start_sector
<< 9, &map_length
, NULL
, 0);
8557 } while (submit_len
> 0);
8560 ret
= __btrfs_submit_dio_bio(bio
, inode
, file_offset
, skip_sum
,
8569 * before atomic variable goto zero, we must
8570 * make sure dip->errors is perceived to be set.
8572 smp_mb__before_atomic();
8573 if (atomic_dec_and_test(&dip
->pending_bios
))
8574 bio_io_error(dip
->orig_bio
);
8576 /* bio_end_io() will handle error, so we needn't return it */
8580 static void btrfs_submit_direct(struct bio
*dio_bio
, struct inode
*inode
,
8583 struct btrfs_dio_private
*dip
= NULL
;
8584 struct bio
*bio
= NULL
;
8585 struct btrfs_io_bio
*io_bio
;
8587 bool write
= (bio_op(dio_bio
) == REQ_OP_WRITE
);
8590 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
8592 bio
= btrfs_bio_clone(dio_bio
);
8594 dip
= kzalloc(sizeof(*dip
), GFP_NOFS
);
8600 dip
->private = dio_bio
->bi_private
;
8602 dip
->logical_offset
= file_offset
;
8603 dip
->bytes
= dio_bio
->bi_iter
.bi_size
;
8604 dip
->disk_bytenr
= (u64
)dio_bio
->bi_iter
.bi_sector
<< 9;
8605 bio
->bi_private
= dip
;
8606 dip
->orig_bio
= bio
;
8607 dip
->dio_bio
= dio_bio
;
8608 atomic_set(&dip
->pending_bios
, 0);
8609 io_bio
= btrfs_io_bio(bio
);
8610 io_bio
->logical
= file_offset
;
8613 bio
->bi_end_io
= btrfs_endio_direct_write
;
8615 bio
->bi_end_io
= btrfs_endio_direct_read
;
8616 dip
->subio_endio
= btrfs_subio_endio_read
;
8620 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8621 * even if we fail to submit a bio, because in such case we do the
8622 * corresponding error handling below and it must not be done a second
8623 * time by btrfs_direct_IO().
8626 struct btrfs_dio_data
*dio_data
= current
->journal_info
;
8628 dio_data
->unsubmitted_oe_range_end
= dip
->logical_offset
+
8630 dio_data
->unsubmitted_oe_range_start
=
8631 dio_data
->unsubmitted_oe_range_end
;
8634 ret
= btrfs_submit_direct_hook(dip
, skip_sum
);
8639 io_bio
->end_io(io_bio
, ret
);
8643 * If we arrived here it means either we failed to submit the dip
8644 * or we either failed to clone the dio_bio or failed to allocate the
8645 * dip. If we cloned the dio_bio and allocated the dip, we can just
8646 * call bio_endio against our io_bio so that we get proper resource
8647 * cleanup if we fail to submit the dip, otherwise, we must do the
8648 * same as btrfs_endio_direct_[write|read] because we can't call these
8649 * callbacks - they require an allocated dip and a clone of dio_bio.
8654 * The end io callbacks free our dip, do the final put on bio
8655 * and all the cleanup and final put for dio_bio (through
8662 __endio_write_update_ordered(inode
,
8664 dio_bio
->bi_iter
.bi_size
,
8667 unlock_extent(&BTRFS_I(inode
)->io_tree
, file_offset
,
8668 file_offset
+ dio_bio
->bi_iter
.bi_size
- 1);
8670 dio_bio
->bi_status
= BLK_STS_IOERR
;
8672 * Releases and cleans up our dio_bio, no need to bio_put()
8673 * nor bio_endio()/bio_io_error() against dio_bio.
8675 dio_end_io(dio_bio
);
8682 static ssize_t
check_direct_IO(struct btrfs_fs_info
*fs_info
,
8684 const struct iov_iter
*iter
, loff_t offset
)
8688 unsigned int blocksize_mask
= fs_info
->sectorsize
- 1;
8689 ssize_t retval
= -EINVAL
;
8691 if (offset
& blocksize_mask
)
8694 if (iov_iter_alignment(iter
) & blocksize_mask
)
8697 /* If this is a write we don't need to check anymore */
8698 if (iov_iter_rw(iter
) != READ
|| !iter_is_iovec(iter
))
8701 * Check to make sure we don't have duplicate iov_base's in this
8702 * iovec, if so return EINVAL, otherwise we'll get csum errors
8703 * when reading back.
8705 for (seg
= 0; seg
< iter
->nr_segs
; seg
++) {
8706 for (i
= seg
+ 1; i
< iter
->nr_segs
; i
++) {
8707 if (iter
->iov
[seg
].iov_base
== iter
->iov
[i
].iov_base
)
8716 static ssize_t
btrfs_direct_IO(struct kiocb
*iocb
, struct iov_iter
*iter
)
8718 struct file
*file
= iocb
->ki_filp
;
8719 struct inode
*inode
= file
->f_mapping
->host
;
8720 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8721 struct btrfs_dio_data dio_data
= { 0 };
8722 struct extent_changeset
*data_reserved
= NULL
;
8723 loff_t offset
= iocb
->ki_pos
;
8727 bool relock
= false;
8730 if (check_direct_IO(fs_info
, iocb
, iter
, offset
))
8733 inode_dio_begin(inode
);
8734 smp_mb__after_atomic();
8737 * The generic stuff only does filemap_write_and_wait_range, which
8738 * isn't enough if we've written compressed pages to this area, so
8739 * we need to flush the dirty pages again to make absolutely sure
8740 * that any outstanding dirty pages are on disk.
8742 count
= iov_iter_count(iter
);
8743 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
8744 &BTRFS_I(inode
)->runtime_flags
))
8745 filemap_fdatawrite_range(inode
->i_mapping
, offset
,
8746 offset
+ count
- 1);
8748 if (iov_iter_rw(iter
) == WRITE
) {
8750 * If the write DIO is beyond the EOF, we need update
8751 * the isize, but it is protected by i_mutex. So we can
8752 * not unlock the i_mutex at this case.
8754 if (offset
+ count
<= inode
->i_size
) {
8755 dio_data
.overwrite
= 1;
8756 inode_unlock(inode
);
8758 } else if (iocb
->ki_flags
& IOCB_NOWAIT
) {
8762 ret
= btrfs_delalloc_reserve_space(inode
, &data_reserved
,
8766 dio_data
.outstanding_extents
= count_max_extents(count
);
8769 * We need to know how many extents we reserved so that we can
8770 * do the accounting properly if we go over the number we
8771 * originally calculated. Abuse current->journal_info for this.
8773 dio_data
.reserve
= round_up(count
,
8774 fs_info
->sectorsize
);
8775 dio_data
.unsubmitted_oe_range_start
= (u64
)offset
;
8776 dio_data
.unsubmitted_oe_range_end
= (u64
)offset
;
8777 current
->journal_info
= &dio_data
;
8778 down_read(&BTRFS_I(inode
)->dio_sem
);
8779 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK
,
8780 &BTRFS_I(inode
)->runtime_flags
)) {
8781 inode_dio_end(inode
);
8782 flags
= DIO_LOCKING
| DIO_SKIP_HOLES
;
8786 ret
= __blockdev_direct_IO(iocb
, inode
,
8787 fs_info
->fs_devices
->latest_bdev
,
8788 iter
, btrfs_get_blocks_direct
, NULL
,
8789 btrfs_submit_direct
, flags
);
8790 if (iov_iter_rw(iter
) == WRITE
) {
8791 up_read(&BTRFS_I(inode
)->dio_sem
);
8792 current
->journal_info
= NULL
;
8793 if (ret
< 0 && ret
!= -EIOCBQUEUED
) {
8794 if (dio_data
.reserve
)
8795 btrfs_delalloc_release_space(inode
, data_reserved
,
8796 offset
, dio_data
.reserve
);
8798 * On error we might have left some ordered extents
8799 * without submitting corresponding bios for them, so
8800 * cleanup them up to avoid other tasks getting them
8801 * and waiting for them to complete forever.
8803 if (dio_data
.unsubmitted_oe_range_start
<
8804 dio_data
.unsubmitted_oe_range_end
)
8805 __endio_write_update_ordered(inode
,
8806 dio_data
.unsubmitted_oe_range_start
,
8807 dio_data
.unsubmitted_oe_range_end
-
8808 dio_data
.unsubmitted_oe_range_start
,
8810 } else if (ret
>= 0 && (size_t)ret
< count
)
8811 btrfs_delalloc_release_space(inode
, data_reserved
,
8812 offset
, count
- (size_t)ret
);
8816 inode_dio_end(inode
);
8820 extent_changeset_free(data_reserved
);
8824 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8826 static int btrfs_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
8827 __u64 start
, __u64 len
)
8831 ret
= fiemap_check_flags(fieinfo
, BTRFS_FIEMAP_FLAGS
);
8835 return extent_fiemap(inode
, fieinfo
, start
, len
, btrfs_get_extent_fiemap
);
8838 int btrfs_readpage(struct file
*file
, struct page
*page
)
8840 struct extent_io_tree
*tree
;
8841 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
8842 return extent_read_full_page(tree
, page
, btrfs_get_extent
, 0);
8845 static int btrfs_writepage(struct page
*page
, struct writeback_control
*wbc
)
8847 struct extent_io_tree
*tree
;
8848 struct inode
*inode
= page
->mapping
->host
;
8851 if (current
->flags
& PF_MEMALLOC
) {
8852 redirty_page_for_writepage(wbc
, page
);
8858 * If we are under memory pressure we will call this directly from the
8859 * VM, we need to make sure we have the inode referenced for the ordered
8860 * extent. If not just return like we didn't do anything.
8862 if (!igrab(inode
)) {
8863 redirty_page_for_writepage(wbc
, page
);
8864 return AOP_WRITEPAGE_ACTIVATE
;
8866 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
8867 ret
= extent_write_full_page(tree
, page
, btrfs_get_extent
, wbc
);
8868 btrfs_add_delayed_iput(inode
);
8872 static int btrfs_writepages(struct address_space
*mapping
,
8873 struct writeback_control
*wbc
)
8875 struct extent_io_tree
*tree
;
8877 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
8878 return extent_writepages(tree
, mapping
, btrfs_get_extent
, wbc
);
8882 btrfs_readpages(struct file
*file
, struct address_space
*mapping
,
8883 struct list_head
*pages
, unsigned nr_pages
)
8885 struct extent_io_tree
*tree
;
8886 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
8887 return extent_readpages(tree
, mapping
, pages
, nr_pages
,
8890 static int __btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
8892 struct extent_io_tree
*tree
;
8893 struct extent_map_tree
*map
;
8896 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
8897 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
8898 ret
= try_release_extent_mapping(map
, tree
, page
, gfp_flags
);
8900 ClearPagePrivate(page
);
8901 set_page_private(page
, 0);
8907 static int btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
8909 if (PageWriteback(page
) || PageDirty(page
))
8911 return __btrfs_releasepage(page
, gfp_flags
);
8914 static void btrfs_invalidatepage(struct page
*page
, unsigned int offset
,
8915 unsigned int length
)
8917 struct inode
*inode
= page
->mapping
->host
;
8918 struct extent_io_tree
*tree
;
8919 struct btrfs_ordered_extent
*ordered
;
8920 struct extent_state
*cached_state
= NULL
;
8921 u64 page_start
= page_offset(page
);
8922 u64 page_end
= page_start
+ PAGE_SIZE
- 1;
8925 int inode_evicting
= inode
->i_state
& I_FREEING
;
8928 * we have the page locked, so new writeback can't start,
8929 * and the dirty bit won't be cleared while we are here.
8931 * Wait for IO on this page so that we can safely clear
8932 * the PagePrivate2 bit and do ordered accounting
8934 wait_on_page_writeback(page
);
8936 tree
= &BTRFS_I(inode
)->io_tree
;
8938 btrfs_releasepage(page
, GFP_NOFS
);
8942 if (!inode_evicting
)
8943 lock_extent_bits(tree
, page_start
, page_end
, &cached_state
);
8946 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), start
,
8947 page_end
- start
+ 1);
8949 end
= min(page_end
, ordered
->file_offset
+ ordered
->len
- 1);
8951 * IO on this page will never be started, so we need
8952 * to account for any ordered extents now
8954 if (!inode_evicting
)
8955 clear_extent_bit(tree
, start
, end
,
8956 EXTENT_DIRTY
| EXTENT_DELALLOC
|
8957 EXTENT_DELALLOC_NEW
|
8958 EXTENT_LOCKED
| EXTENT_DO_ACCOUNTING
|
8959 EXTENT_DEFRAG
, 1, 0, &cached_state
,
8962 * whoever cleared the private bit is responsible
8963 * for the finish_ordered_io
8965 if (TestClearPagePrivate2(page
)) {
8966 struct btrfs_ordered_inode_tree
*tree
;
8969 tree
= &BTRFS_I(inode
)->ordered_tree
;
8971 spin_lock_irq(&tree
->lock
);
8972 set_bit(BTRFS_ORDERED_TRUNCATED
, &ordered
->flags
);
8973 new_len
= start
- ordered
->file_offset
;
8974 if (new_len
< ordered
->truncated_len
)
8975 ordered
->truncated_len
= new_len
;
8976 spin_unlock_irq(&tree
->lock
);
8978 if (btrfs_dec_test_ordered_pending(inode
, &ordered
,
8980 end
- start
+ 1, 1))
8981 btrfs_finish_ordered_io(ordered
);
8983 btrfs_put_ordered_extent(ordered
);
8984 if (!inode_evicting
) {
8985 cached_state
= NULL
;
8986 lock_extent_bits(tree
, start
, end
,
8991 if (start
< page_end
)
8996 * Qgroup reserved space handler
8997 * Page here will be either
8998 * 1) Already written to disk
8999 * In this case, its reserved space is released from data rsv map
9000 * and will be freed by delayed_ref handler finally.
9001 * So even we call qgroup_free_data(), it won't decrease reserved
9003 * 2) Not written to disk
9004 * This means the reserved space should be freed here. However,
9005 * if a truncate invalidates the page (by clearing PageDirty)
9006 * and the page is accounted for while allocating extent
9007 * in btrfs_check_data_free_space() we let delayed_ref to
9008 * free the entire extent.
9010 if (PageDirty(page
))
9011 btrfs_qgroup_free_data(inode
, NULL
, page_start
, PAGE_SIZE
);
9012 if (!inode_evicting
) {
9013 clear_extent_bit(tree
, page_start
, page_end
,
9014 EXTENT_LOCKED
| EXTENT_DIRTY
|
9015 EXTENT_DELALLOC
| EXTENT_DELALLOC_NEW
|
9016 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
, 1, 1,
9017 &cached_state
, GFP_NOFS
);
9019 __btrfs_releasepage(page
, GFP_NOFS
);
9022 ClearPageChecked(page
);
9023 if (PagePrivate(page
)) {
9024 ClearPagePrivate(page
);
9025 set_page_private(page
, 0);
9031 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
9032 * called from a page fault handler when a page is first dirtied. Hence we must
9033 * be careful to check for EOF conditions here. We set the page up correctly
9034 * for a written page which means we get ENOSPC checking when writing into
9035 * holes and correct delalloc and unwritten extent mapping on filesystems that
9036 * support these features.
9038 * We are not allowed to take the i_mutex here so we have to play games to
9039 * protect against truncate races as the page could now be beyond EOF. Because
9040 * vmtruncate() writes the inode size before removing pages, once we have the
9041 * page lock we can determine safely if the page is beyond EOF. If it is not
9042 * beyond EOF, then the page is guaranteed safe against truncation until we
9045 int btrfs_page_mkwrite(struct vm_fault
*vmf
)
9047 struct page
*page
= vmf
->page
;
9048 struct inode
*inode
= file_inode(vmf
->vma
->vm_file
);
9049 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
9050 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
9051 struct btrfs_ordered_extent
*ordered
;
9052 struct extent_state
*cached_state
= NULL
;
9053 struct extent_changeset
*data_reserved
= NULL
;
9055 unsigned long zero_start
;
9064 reserved_space
= PAGE_SIZE
;
9066 sb_start_pagefault(inode
->i_sb
);
9067 page_start
= page_offset(page
);
9068 page_end
= page_start
+ PAGE_SIZE
- 1;
9072 * Reserving delalloc space after obtaining the page lock can lead to
9073 * deadlock. For example, if a dirty page is locked by this function
9074 * and the call to btrfs_delalloc_reserve_space() ends up triggering
9075 * dirty page write out, then the btrfs_writepage() function could
9076 * end up waiting indefinitely to get a lock on the page currently
9077 * being processed by btrfs_page_mkwrite() function.
9079 ret
= btrfs_delalloc_reserve_space(inode
, &data_reserved
, page_start
,
9082 ret
= file_update_time(vmf
->vma
->vm_file
);
9088 else /* -ENOSPC, -EIO, etc */
9089 ret
= VM_FAULT_SIGBUS
;
9095 ret
= VM_FAULT_NOPAGE
; /* make the VM retry the fault */
9098 size
= i_size_read(inode
);
9100 if ((page
->mapping
!= inode
->i_mapping
) ||
9101 (page_start
>= size
)) {
9102 /* page got truncated out from underneath us */
9105 wait_on_page_writeback(page
);
9107 lock_extent_bits(io_tree
, page_start
, page_end
, &cached_state
);
9108 set_page_extent_mapped(page
);
9111 * we can't set the delalloc bits if there are pending ordered
9112 * extents. Drop our locks and wait for them to finish
9114 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), page_start
,
9117 unlock_extent_cached(io_tree
, page_start
, page_end
,
9118 &cached_state
, GFP_NOFS
);
9120 btrfs_start_ordered_extent(inode
, ordered
, 1);
9121 btrfs_put_ordered_extent(ordered
);
9125 if (page
->index
== ((size
- 1) >> PAGE_SHIFT
)) {
9126 reserved_space
= round_up(size
- page_start
,
9127 fs_info
->sectorsize
);
9128 if (reserved_space
< PAGE_SIZE
) {
9129 end
= page_start
+ reserved_space
- 1;
9130 spin_lock(&BTRFS_I(inode
)->lock
);
9131 BTRFS_I(inode
)->outstanding_extents
++;
9132 spin_unlock(&BTRFS_I(inode
)->lock
);
9133 btrfs_delalloc_release_space(inode
, data_reserved
,
9134 page_start
, PAGE_SIZE
- reserved_space
);
9139 * page_mkwrite gets called when the page is firstly dirtied after it's
9140 * faulted in, but write(2) could also dirty a page and set delalloc
9141 * bits, thus in this case for space account reason, we still need to
9142 * clear any delalloc bits within this page range since we have to
9143 * reserve data&meta space before lock_page() (see above comments).
9145 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, end
,
9146 EXTENT_DIRTY
| EXTENT_DELALLOC
|
9147 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
,
9148 0, 0, &cached_state
, GFP_NOFS
);
9150 ret
= btrfs_set_extent_delalloc(inode
, page_start
, end
,
9153 unlock_extent_cached(io_tree
, page_start
, page_end
,
9154 &cached_state
, GFP_NOFS
);
9155 ret
= VM_FAULT_SIGBUS
;
9160 /* page is wholly or partially inside EOF */
9161 if (page_start
+ PAGE_SIZE
> size
)
9162 zero_start
= size
& ~PAGE_MASK
;
9164 zero_start
= PAGE_SIZE
;
9166 if (zero_start
!= PAGE_SIZE
) {
9168 memset(kaddr
+ zero_start
, 0, PAGE_SIZE
- zero_start
);
9169 flush_dcache_page(page
);
9172 ClearPageChecked(page
);
9173 set_page_dirty(page
);
9174 SetPageUptodate(page
);
9176 BTRFS_I(inode
)->last_trans
= fs_info
->generation
;
9177 BTRFS_I(inode
)->last_sub_trans
= BTRFS_I(inode
)->root
->log_transid
;
9178 BTRFS_I(inode
)->last_log_commit
= BTRFS_I(inode
)->root
->last_log_commit
;
9180 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
, GFP_NOFS
);
9184 sb_end_pagefault(inode
->i_sb
);
9185 extent_changeset_free(data_reserved
);
9186 return VM_FAULT_LOCKED
;
9190 btrfs_delalloc_release_space(inode
, data_reserved
, page_start
,
9193 sb_end_pagefault(inode
->i_sb
);
9194 extent_changeset_free(data_reserved
);
9198 static int btrfs_truncate(struct inode
*inode
)
9200 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
9201 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
9202 struct btrfs_block_rsv
*rsv
;
9205 struct btrfs_trans_handle
*trans
;
9206 u64 mask
= fs_info
->sectorsize
- 1;
9207 u64 min_size
= btrfs_calc_trunc_metadata_size(fs_info
, 1);
9209 ret
= btrfs_wait_ordered_range(inode
, inode
->i_size
& (~mask
),
9215 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have
9216 * 3 things going on here
9218 * 1) We need to reserve space for our orphan item and the space to
9219 * delete our orphan item. Lord knows we don't want to have a dangling
9220 * orphan item because we didn't reserve space to remove it.
9222 * 2) We need to reserve space to update our inode.
9224 * 3) We need to have something to cache all the space that is going to
9225 * be free'd up by the truncate operation, but also have some slack
9226 * space reserved in case it uses space during the truncate (thank you
9227 * very much snapshotting).
9229 * And we need these to all be separate. The fact is we can use a lot of
9230 * space doing the truncate, and we have no earthly idea how much space
9231 * we will use, so we need the truncate reservation to be separate so it
9232 * doesn't end up using space reserved for updating the inode or
9233 * removing the orphan item. We also need to be able to stop the
9234 * transaction and start a new one, which means we need to be able to
9235 * update the inode several times, and we have no idea of knowing how
9236 * many times that will be, so we can't just reserve 1 item for the
9237 * entirety of the operation, so that has to be done separately as well.
9238 * Then there is the orphan item, which does indeed need to be held on
9239 * to for the whole operation, and we need nobody to touch this reserved
9240 * space except the orphan code.
9242 * So that leaves us with
9244 * 1) root->orphan_block_rsv - for the orphan deletion.
9245 * 2) rsv - for the truncate reservation, which we will steal from the
9246 * transaction reservation.
9247 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9248 * updating the inode.
9250 rsv
= btrfs_alloc_block_rsv(fs_info
, BTRFS_BLOCK_RSV_TEMP
);
9253 rsv
->size
= min_size
;
9257 * 1 for the truncate slack space
9258 * 1 for updating the inode.
9260 trans
= btrfs_start_transaction(root
, 2);
9261 if (IS_ERR(trans
)) {
9262 err
= PTR_ERR(trans
);
9266 /* Migrate the slack space for the truncate to our reserve */
9267 ret
= btrfs_block_rsv_migrate(&fs_info
->trans_block_rsv
, rsv
,
9272 * So if we truncate and then write and fsync we normally would just
9273 * write the extents that changed, which is a problem if we need to
9274 * first truncate that entire inode. So set this flag so we write out
9275 * all of the extents in the inode to the sync log so we're completely
9278 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
9279 trans
->block_rsv
= rsv
;
9282 ret
= btrfs_truncate_inode_items(trans
, root
, inode
,
9284 BTRFS_EXTENT_DATA_KEY
);
9285 if (ret
!= -ENOSPC
&& ret
!= -EAGAIN
) {
9290 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
9291 ret
= btrfs_update_inode(trans
, root
, inode
);
9297 btrfs_end_transaction(trans
);
9298 btrfs_btree_balance_dirty(fs_info
);
9300 trans
= btrfs_start_transaction(root
, 2);
9301 if (IS_ERR(trans
)) {
9302 ret
= err
= PTR_ERR(trans
);
9307 btrfs_block_rsv_release(fs_info
, rsv
, -1);
9308 ret
= btrfs_block_rsv_migrate(&fs_info
->trans_block_rsv
,
9310 BUG_ON(ret
); /* shouldn't happen */
9311 trans
->block_rsv
= rsv
;
9314 if (ret
== 0 && inode
->i_nlink
> 0) {
9315 trans
->block_rsv
= root
->orphan_block_rsv
;
9316 ret
= btrfs_orphan_del(trans
, BTRFS_I(inode
));
9322 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
9323 ret
= btrfs_update_inode(trans
, root
, inode
);
9327 ret
= btrfs_end_transaction(trans
);
9328 btrfs_btree_balance_dirty(fs_info
);
9331 btrfs_free_block_rsv(fs_info
, rsv
);
9340 * create a new subvolume directory/inode (helper for the ioctl).
9342 int btrfs_create_subvol_root(struct btrfs_trans_handle
*trans
,
9343 struct btrfs_root
*new_root
,
9344 struct btrfs_root
*parent_root
,
9347 struct inode
*inode
;
9351 inode
= btrfs_new_inode(trans
, new_root
, NULL
, "..", 2,
9352 new_dirid
, new_dirid
,
9353 S_IFDIR
| (~current_umask() & S_IRWXUGO
),
9356 return PTR_ERR(inode
);
9357 inode
->i_op
= &btrfs_dir_inode_operations
;
9358 inode
->i_fop
= &btrfs_dir_file_operations
;
9360 set_nlink(inode
, 1);
9361 btrfs_i_size_write(BTRFS_I(inode
), 0);
9362 unlock_new_inode(inode
);
9364 err
= btrfs_subvol_inherit_props(trans
, new_root
, parent_root
);
9366 btrfs_err(new_root
->fs_info
,
9367 "error inheriting subvolume %llu properties: %d",
9368 new_root
->root_key
.objectid
, err
);
9370 err
= btrfs_update_inode(trans
, new_root
, inode
);
9376 struct inode
*btrfs_alloc_inode(struct super_block
*sb
)
9378 struct btrfs_inode
*ei
;
9379 struct inode
*inode
;
9381 ei
= kmem_cache_alloc(btrfs_inode_cachep
, GFP_NOFS
);
9388 ei
->last_sub_trans
= 0;
9389 ei
->logged_trans
= 0;
9390 ei
->delalloc_bytes
= 0;
9391 ei
->new_delalloc_bytes
= 0;
9392 ei
->defrag_bytes
= 0;
9393 ei
->disk_i_size
= 0;
9396 ei
->index_cnt
= (u64
)-1;
9398 ei
->last_unlink_trans
= 0;
9399 ei
->last_log_commit
= 0;
9400 ei
->delayed_iput_count
= 0;
9402 spin_lock_init(&ei
->lock
);
9403 ei
->outstanding_extents
= 0;
9404 ei
->reserved_extents
= 0;
9406 ei
->runtime_flags
= 0;
9407 ei
->force_compress
= BTRFS_COMPRESS_NONE
;
9409 ei
->delayed_node
= NULL
;
9411 ei
->i_otime
.tv_sec
= 0;
9412 ei
->i_otime
.tv_nsec
= 0;
9414 inode
= &ei
->vfs_inode
;
9415 extent_map_tree_init(&ei
->extent_tree
);
9416 extent_io_tree_init(&ei
->io_tree
, inode
);
9417 extent_io_tree_init(&ei
->io_failure_tree
, inode
);
9418 ei
->io_tree
.track_uptodate
= 1;
9419 ei
->io_failure_tree
.track_uptodate
= 1;
9420 atomic_set(&ei
->sync_writers
, 0);
9421 mutex_init(&ei
->log_mutex
);
9422 mutex_init(&ei
->delalloc_mutex
);
9423 btrfs_ordered_inode_tree_init(&ei
->ordered_tree
);
9424 INIT_LIST_HEAD(&ei
->delalloc_inodes
);
9425 INIT_LIST_HEAD(&ei
->delayed_iput
);
9426 RB_CLEAR_NODE(&ei
->rb_node
);
9427 init_rwsem(&ei
->dio_sem
);
9432 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9433 void btrfs_test_destroy_inode(struct inode
*inode
)
9435 btrfs_drop_extent_cache(BTRFS_I(inode
), 0, (u64
)-1, 0);
9436 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
9440 static void btrfs_i_callback(struct rcu_head
*head
)
9442 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
9443 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
9446 void btrfs_destroy_inode(struct inode
*inode
)
9448 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
9449 struct btrfs_ordered_extent
*ordered
;
9450 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
9452 WARN_ON(!hlist_empty(&inode
->i_dentry
));
9453 WARN_ON(inode
->i_data
.nrpages
);
9454 WARN_ON(BTRFS_I(inode
)->outstanding_extents
);
9455 WARN_ON(BTRFS_I(inode
)->reserved_extents
);
9456 WARN_ON(BTRFS_I(inode
)->delalloc_bytes
);
9457 WARN_ON(BTRFS_I(inode
)->new_delalloc_bytes
);
9458 WARN_ON(BTRFS_I(inode
)->csum_bytes
);
9459 WARN_ON(BTRFS_I(inode
)->defrag_bytes
);
9462 * This can happen where we create an inode, but somebody else also
9463 * created the same inode and we need to destroy the one we already
9469 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
9470 &BTRFS_I(inode
)->runtime_flags
)) {
9471 btrfs_info(fs_info
, "inode %llu still on the orphan list",
9472 btrfs_ino(BTRFS_I(inode
)));
9473 atomic_dec(&root
->orphan_inodes
);
9477 ordered
= btrfs_lookup_first_ordered_extent(inode
, (u64
)-1);
9482 "found ordered extent %llu %llu on inode cleanup",
9483 ordered
->file_offset
, ordered
->len
);
9484 btrfs_remove_ordered_extent(inode
, ordered
);
9485 btrfs_put_ordered_extent(ordered
);
9486 btrfs_put_ordered_extent(ordered
);
9489 btrfs_qgroup_check_reserved_leak(inode
);
9490 inode_tree_del(inode
);
9491 btrfs_drop_extent_cache(BTRFS_I(inode
), 0, (u64
)-1, 0);
9493 call_rcu(&inode
->i_rcu
, btrfs_i_callback
);
9496 int btrfs_drop_inode(struct inode
*inode
)
9498 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
9503 /* the snap/subvol tree is on deleting */
9504 if (btrfs_root_refs(&root
->root_item
) == 0)
9507 return generic_drop_inode(inode
);
9510 static void init_once(void *foo
)
9512 struct btrfs_inode
*ei
= (struct btrfs_inode
*) foo
;
9514 inode_init_once(&ei
->vfs_inode
);
9517 void btrfs_destroy_cachep(void)
9520 * Make sure all delayed rcu free inodes are flushed before we
9524 kmem_cache_destroy(btrfs_inode_cachep
);
9525 kmem_cache_destroy(btrfs_trans_handle_cachep
);
9526 kmem_cache_destroy(btrfs_path_cachep
);
9527 kmem_cache_destroy(btrfs_free_space_cachep
);
9530 int btrfs_init_cachep(void)
9532 btrfs_inode_cachep
= kmem_cache_create("btrfs_inode",
9533 sizeof(struct btrfs_inode
), 0,
9534 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
| SLAB_ACCOUNT
,
9536 if (!btrfs_inode_cachep
)
9539 btrfs_trans_handle_cachep
= kmem_cache_create("btrfs_trans_handle",
9540 sizeof(struct btrfs_trans_handle
), 0,
9541 SLAB_TEMPORARY
| SLAB_MEM_SPREAD
, NULL
);
9542 if (!btrfs_trans_handle_cachep
)
9545 btrfs_path_cachep
= kmem_cache_create("btrfs_path",
9546 sizeof(struct btrfs_path
), 0,
9547 SLAB_MEM_SPREAD
, NULL
);
9548 if (!btrfs_path_cachep
)
9551 btrfs_free_space_cachep
= kmem_cache_create("btrfs_free_space",
9552 sizeof(struct btrfs_free_space
), 0,
9553 SLAB_MEM_SPREAD
, NULL
);
9554 if (!btrfs_free_space_cachep
)
9559 btrfs_destroy_cachep();
9563 static int btrfs_getattr(const struct path
*path
, struct kstat
*stat
,
9564 u32 request_mask
, unsigned int flags
)
9567 struct inode
*inode
= d_inode(path
->dentry
);
9568 u32 blocksize
= inode
->i_sb
->s_blocksize
;
9569 u32 bi_flags
= BTRFS_I(inode
)->flags
;
9571 stat
->result_mask
|= STATX_BTIME
;
9572 stat
->btime
.tv_sec
= BTRFS_I(inode
)->i_otime
.tv_sec
;
9573 stat
->btime
.tv_nsec
= BTRFS_I(inode
)->i_otime
.tv_nsec
;
9574 if (bi_flags
& BTRFS_INODE_APPEND
)
9575 stat
->attributes
|= STATX_ATTR_APPEND
;
9576 if (bi_flags
& BTRFS_INODE_COMPRESS
)
9577 stat
->attributes
|= STATX_ATTR_COMPRESSED
;
9578 if (bi_flags
& BTRFS_INODE_IMMUTABLE
)
9579 stat
->attributes
|= STATX_ATTR_IMMUTABLE
;
9580 if (bi_flags
& BTRFS_INODE_NODUMP
)
9581 stat
->attributes
|= STATX_ATTR_NODUMP
;
9583 stat
->attributes_mask
|= (STATX_ATTR_APPEND
|
9584 STATX_ATTR_COMPRESSED
|
9585 STATX_ATTR_IMMUTABLE
|
9588 generic_fillattr(inode
, stat
);
9589 stat
->dev
= BTRFS_I(inode
)->root
->anon_dev
;
9591 spin_lock(&BTRFS_I(inode
)->lock
);
9592 delalloc_bytes
= BTRFS_I(inode
)->new_delalloc_bytes
;
9593 spin_unlock(&BTRFS_I(inode
)->lock
);
9594 stat
->blocks
= (ALIGN(inode_get_bytes(inode
), blocksize
) +
9595 ALIGN(delalloc_bytes
, blocksize
)) >> 9;
9599 static int btrfs_rename_exchange(struct inode
*old_dir
,
9600 struct dentry
*old_dentry
,
9601 struct inode
*new_dir
,
9602 struct dentry
*new_dentry
)
9604 struct btrfs_fs_info
*fs_info
= btrfs_sb(old_dir
->i_sb
);
9605 struct btrfs_trans_handle
*trans
;
9606 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
9607 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
9608 struct inode
*new_inode
= new_dentry
->d_inode
;
9609 struct inode
*old_inode
= old_dentry
->d_inode
;
9610 struct timespec ctime
= current_time(old_inode
);
9611 struct dentry
*parent
;
9612 u64 old_ino
= btrfs_ino(BTRFS_I(old_inode
));
9613 u64 new_ino
= btrfs_ino(BTRFS_I(new_inode
));
9618 bool root_log_pinned
= false;
9619 bool dest_log_pinned
= false;
9621 /* we only allow rename subvolume link between subvolumes */
9622 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
9625 /* close the race window with snapshot create/destroy ioctl */
9626 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9627 down_read(&fs_info
->subvol_sem
);
9628 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9629 down_read(&fs_info
->subvol_sem
);
9632 * We want to reserve the absolute worst case amount of items. So if
9633 * both inodes are subvols and we need to unlink them then that would
9634 * require 4 item modifications, but if they are both normal inodes it
9635 * would require 5 item modifications, so we'll assume their normal
9636 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9637 * should cover the worst case number of items we'll modify.
9639 trans
= btrfs_start_transaction(root
, 12);
9640 if (IS_ERR(trans
)) {
9641 ret
= PTR_ERR(trans
);
9646 * We need to find a free sequence number both in the source and
9647 * in the destination directory for the exchange.
9649 ret
= btrfs_set_inode_index(BTRFS_I(new_dir
), &old_idx
);
9652 ret
= btrfs_set_inode_index(BTRFS_I(old_dir
), &new_idx
);
9656 BTRFS_I(old_inode
)->dir_index
= 0ULL;
9657 BTRFS_I(new_inode
)->dir_index
= 0ULL;
9659 /* Reference for the source. */
9660 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9661 /* force full log commit if subvolume involved. */
9662 btrfs_set_log_full_commit(fs_info
, trans
);
9664 btrfs_pin_log_trans(root
);
9665 root_log_pinned
= true;
9666 ret
= btrfs_insert_inode_ref(trans
, dest
,
9667 new_dentry
->d_name
.name
,
9668 new_dentry
->d_name
.len
,
9670 btrfs_ino(BTRFS_I(new_dir
)),
9676 /* And now for the dest. */
9677 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9678 /* force full log commit if subvolume involved. */
9679 btrfs_set_log_full_commit(fs_info
, trans
);
9681 btrfs_pin_log_trans(dest
);
9682 dest_log_pinned
= true;
9683 ret
= btrfs_insert_inode_ref(trans
, root
,
9684 old_dentry
->d_name
.name
,
9685 old_dentry
->d_name
.len
,
9687 btrfs_ino(BTRFS_I(old_dir
)),
9693 /* Update inode version and ctime/mtime. */
9694 inode_inc_iversion(old_dir
);
9695 inode_inc_iversion(new_dir
);
9696 inode_inc_iversion(old_inode
);
9697 inode_inc_iversion(new_inode
);
9698 old_dir
->i_ctime
= old_dir
->i_mtime
= ctime
;
9699 new_dir
->i_ctime
= new_dir
->i_mtime
= ctime
;
9700 old_inode
->i_ctime
= ctime
;
9701 new_inode
->i_ctime
= ctime
;
9703 if (old_dentry
->d_parent
!= new_dentry
->d_parent
) {
9704 btrfs_record_unlink_dir(trans
, BTRFS_I(old_dir
),
9705 BTRFS_I(old_inode
), 1);
9706 btrfs_record_unlink_dir(trans
, BTRFS_I(new_dir
),
9707 BTRFS_I(new_inode
), 1);
9710 /* src is a subvolume */
9711 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9712 root_objectid
= BTRFS_I(old_inode
)->root
->root_key
.objectid
;
9713 ret
= btrfs_unlink_subvol(trans
, root
, old_dir
,
9715 old_dentry
->d_name
.name
,
9716 old_dentry
->d_name
.len
);
9717 } else { /* src is an inode */
9718 ret
= __btrfs_unlink_inode(trans
, root
, BTRFS_I(old_dir
),
9719 BTRFS_I(old_dentry
->d_inode
),
9720 old_dentry
->d_name
.name
,
9721 old_dentry
->d_name
.len
);
9723 ret
= btrfs_update_inode(trans
, root
, old_inode
);
9726 btrfs_abort_transaction(trans
, ret
);
9730 /* dest is a subvolume */
9731 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9732 root_objectid
= BTRFS_I(new_inode
)->root
->root_key
.objectid
;
9733 ret
= btrfs_unlink_subvol(trans
, dest
, new_dir
,
9735 new_dentry
->d_name
.name
,
9736 new_dentry
->d_name
.len
);
9737 } else { /* dest is an inode */
9738 ret
= __btrfs_unlink_inode(trans
, dest
, BTRFS_I(new_dir
),
9739 BTRFS_I(new_dentry
->d_inode
),
9740 new_dentry
->d_name
.name
,
9741 new_dentry
->d_name
.len
);
9743 ret
= btrfs_update_inode(trans
, dest
, new_inode
);
9746 btrfs_abort_transaction(trans
, ret
);
9750 ret
= btrfs_add_link(trans
, BTRFS_I(new_dir
), BTRFS_I(old_inode
),
9751 new_dentry
->d_name
.name
,
9752 new_dentry
->d_name
.len
, 0, old_idx
);
9754 btrfs_abort_transaction(trans
, ret
);
9758 ret
= btrfs_add_link(trans
, BTRFS_I(old_dir
), BTRFS_I(new_inode
),
9759 old_dentry
->d_name
.name
,
9760 old_dentry
->d_name
.len
, 0, new_idx
);
9762 btrfs_abort_transaction(trans
, ret
);
9766 if (old_inode
->i_nlink
== 1)
9767 BTRFS_I(old_inode
)->dir_index
= old_idx
;
9768 if (new_inode
->i_nlink
== 1)
9769 BTRFS_I(new_inode
)->dir_index
= new_idx
;
9771 if (root_log_pinned
) {
9772 parent
= new_dentry
->d_parent
;
9773 btrfs_log_new_name(trans
, BTRFS_I(old_inode
), BTRFS_I(old_dir
),
9775 btrfs_end_log_trans(root
);
9776 root_log_pinned
= false;
9778 if (dest_log_pinned
) {
9779 parent
= old_dentry
->d_parent
;
9780 btrfs_log_new_name(trans
, BTRFS_I(new_inode
), BTRFS_I(new_dir
),
9782 btrfs_end_log_trans(dest
);
9783 dest_log_pinned
= false;
9787 * If we have pinned a log and an error happened, we unpin tasks
9788 * trying to sync the log and force them to fallback to a transaction
9789 * commit if the log currently contains any of the inodes involved in
9790 * this rename operation (to ensure we do not persist a log with an
9791 * inconsistent state for any of these inodes or leading to any
9792 * inconsistencies when replayed). If the transaction was aborted, the
9793 * abortion reason is propagated to userspace when attempting to commit
9794 * the transaction. If the log does not contain any of these inodes, we
9795 * allow the tasks to sync it.
9797 if (ret
&& (root_log_pinned
|| dest_log_pinned
)) {
9798 if (btrfs_inode_in_log(BTRFS_I(old_dir
), fs_info
->generation
) ||
9799 btrfs_inode_in_log(BTRFS_I(new_dir
), fs_info
->generation
) ||
9800 btrfs_inode_in_log(BTRFS_I(old_inode
), fs_info
->generation
) ||
9802 btrfs_inode_in_log(BTRFS_I(new_inode
), fs_info
->generation
)))
9803 btrfs_set_log_full_commit(fs_info
, trans
);
9805 if (root_log_pinned
) {
9806 btrfs_end_log_trans(root
);
9807 root_log_pinned
= false;
9809 if (dest_log_pinned
) {
9810 btrfs_end_log_trans(dest
);
9811 dest_log_pinned
= false;
9814 ret
= btrfs_end_transaction(trans
);
9816 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9817 up_read(&fs_info
->subvol_sem
);
9818 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9819 up_read(&fs_info
->subvol_sem
);
9824 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle
*trans
,
9825 struct btrfs_root
*root
,
9827 struct dentry
*dentry
)
9830 struct inode
*inode
;
9834 ret
= btrfs_find_free_ino(root
, &objectid
);
9838 inode
= btrfs_new_inode(trans
, root
, dir
,
9839 dentry
->d_name
.name
,
9841 btrfs_ino(BTRFS_I(dir
)),
9843 S_IFCHR
| WHITEOUT_MODE
,
9846 if (IS_ERR(inode
)) {
9847 ret
= PTR_ERR(inode
);
9851 inode
->i_op
= &btrfs_special_inode_operations
;
9852 init_special_inode(inode
, inode
->i_mode
,
9855 ret
= btrfs_init_inode_security(trans
, inode
, dir
,
9860 ret
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
,
9861 BTRFS_I(inode
), 0, index
);
9865 ret
= btrfs_update_inode(trans
, root
, inode
);
9867 unlock_new_inode(inode
);
9869 inode_dec_link_count(inode
);
9875 static int btrfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
9876 struct inode
*new_dir
, struct dentry
*new_dentry
,
9879 struct btrfs_fs_info
*fs_info
= btrfs_sb(old_dir
->i_sb
);
9880 struct btrfs_trans_handle
*trans
;
9881 unsigned int trans_num_items
;
9882 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
9883 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
9884 struct inode
*new_inode
= d_inode(new_dentry
);
9885 struct inode
*old_inode
= d_inode(old_dentry
);
9889 u64 old_ino
= btrfs_ino(BTRFS_I(old_inode
));
9890 bool log_pinned
= false;
9892 if (btrfs_ino(BTRFS_I(new_dir
)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
9895 /* we only allow rename subvolume link between subvolumes */
9896 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
9899 if (old_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
||
9900 (new_inode
&& btrfs_ino(BTRFS_I(new_inode
)) == BTRFS_FIRST_FREE_OBJECTID
))
9903 if (S_ISDIR(old_inode
->i_mode
) && new_inode
&&
9904 new_inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
9908 /* check for collisions, even if the name isn't there */
9909 ret
= btrfs_check_dir_item_collision(dest
, new_dir
->i_ino
,
9910 new_dentry
->d_name
.name
,
9911 new_dentry
->d_name
.len
);
9914 if (ret
== -EEXIST
) {
9916 * eexist without a new_inode */
9917 if (WARN_ON(!new_inode
)) {
9921 /* maybe -EOVERFLOW */
9928 * we're using rename to replace one file with another. Start IO on it
9929 * now so we don't add too much work to the end of the transaction
9931 if (new_inode
&& S_ISREG(old_inode
->i_mode
) && new_inode
->i_size
)
9932 filemap_flush(old_inode
->i_mapping
);
9934 /* close the racy window with snapshot create/destroy ioctl */
9935 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9936 down_read(&fs_info
->subvol_sem
);
9938 * We want to reserve the absolute worst case amount of items. So if
9939 * both inodes are subvols and we need to unlink them then that would
9940 * require 4 item modifications, but if they are both normal inodes it
9941 * would require 5 item modifications, so we'll assume they are normal
9942 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9943 * should cover the worst case number of items we'll modify.
9944 * If our rename has the whiteout flag, we need more 5 units for the
9945 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9946 * when selinux is enabled).
9948 trans_num_items
= 11;
9949 if (flags
& RENAME_WHITEOUT
)
9950 trans_num_items
+= 5;
9951 trans
= btrfs_start_transaction(root
, trans_num_items
);
9952 if (IS_ERR(trans
)) {
9953 ret
= PTR_ERR(trans
);
9958 btrfs_record_root_in_trans(trans
, dest
);
9960 ret
= btrfs_set_inode_index(BTRFS_I(new_dir
), &index
);
9964 BTRFS_I(old_inode
)->dir_index
= 0ULL;
9965 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
9966 /* force full log commit if subvolume involved. */
9967 btrfs_set_log_full_commit(fs_info
, trans
);
9969 btrfs_pin_log_trans(root
);
9971 ret
= btrfs_insert_inode_ref(trans
, dest
,
9972 new_dentry
->d_name
.name
,
9973 new_dentry
->d_name
.len
,
9975 btrfs_ino(BTRFS_I(new_dir
)), index
);
9980 inode_inc_iversion(old_dir
);
9981 inode_inc_iversion(new_dir
);
9982 inode_inc_iversion(old_inode
);
9983 old_dir
->i_ctime
= old_dir
->i_mtime
=
9984 new_dir
->i_ctime
= new_dir
->i_mtime
=
9985 old_inode
->i_ctime
= current_time(old_dir
);
9987 if (old_dentry
->d_parent
!= new_dentry
->d_parent
)
9988 btrfs_record_unlink_dir(trans
, BTRFS_I(old_dir
),
9989 BTRFS_I(old_inode
), 1);
9991 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
9992 root_objectid
= BTRFS_I(old_inode
)->root
->root_key
.objectid
;
9993 ret
= btrfs_unlink_subvol(trans
, root
, old_dir
, root_objectid
,
9994 old_dentry
->d_name
.name
,
9995 old_dentry
->d_name
.len
);
9997 ret
= __btrfs_unlink_inode(trans
, root
, BTRFS_I(old_dir
),
9998 BTRFS_I(d_inode(old_dentry
)),
9999 old_dentry
->d_name
.name
,
10000 old_dentry
->d_name
.len
);
10002 ret
= btrfs_update_inode(trans
, root
, old_inode
);
10005 btrfs_abort_transaction(trans
, ret
);
10010 inode_inc_iversion(new_inode
);
10011 new_inode
->i_ctime
= current_time(new_inode
);
10012 if (unlikely(btrfs_ino(BTRFS_I(new_inode
)) ==
10013 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
10014 root_objectid
= BTRFS_I(new_inode
)->location
.objectid
;
10015 ret
= btrfs_unlink_subvol(trans
, dest
, new_dir
,
10017 new_dentry
->d_name
.name
,
10018 new_dentry
->d_name
.len
);
10019 BUG_ON(new_inode
->i_nlink
== 0);
10021 ret
= btrfs_unlink_inode(trans
, dest
, BTRFS_I(new_dir
),
10022 BTRFS_I(d_inode(new_dentry
)),
10023 new_dentry
->d_name
.name
,
10024 new_dentry
->d_name
.len
);
10026 if (!ret
&& new_inode
->i_nlink
== 0)
10027 ret
= btrfs_orphan_add(trans
,
10028 BTRFS_I(d_inode(new_dentry
)));
10030 btrfs_abort_transaction(trans
, ret
);
10035 ret
= btrfs_add_link(trans
, BTRFS_I(new_dir
), BTRFS_I(old_inode
),
10036 new_dentry
->d_name
.name
,
10037 new_dentry
->d_name
.len
, 0, index
);
10039 btrfs_abort_transaction(trans
, ret
);
10043 if (old_inode
->i_nlink
== 1)
10044 BTRFS_I(old_inode
)->dir_index
= index
;
10047 struct dentry
*parent
= new_dentry
->d_parent
;
10049 btrfs_log_new_name(trans
, BTRFS_I(old_inode
), BTRFS_I(old_dir
),
10051 btrfs_end_log_trans(root
);
10052 log_pinned
= false;
10055 if (flags
& RENAME_WHITEOUT
) {
10056 ret
= btrfs_whiteout_for_rename(trans
, root
, old_dir
,
10060 btrfs_abort_transaction(trans
, ret
);
10066 * If we have pinned the log and an error happened, we unpin tasks
10067 * trying to sync the log and force them to fallback to a transaction
10068 * commit if the log currently contains any of the inodes involved in
10069 * this rename operation (to ensure we do not persist a log with an
10070 * inconsistent state for any of these inodes or leading to any
10071 * inconsistencies when replayed). If the transaction was aborted, the
10072 * abortion reason is propagated to userspace when attempting to commit
10073 * the transaction. If the log does not contain any of these inodes, we
10074 * allow the tasks to sync it.
10076 if (ret
&& log_pinned
) {
10077 if (btrfs_inode_in_log(BTRFS_I(old_dir
), fs_info
->generation
) ||
10078 btrfs_inode_in_log(BTRFS_I(new_dir
), fs_info
->generation
) ||
10079 btrfs_inode_in_log(BTRFS_I(old_inode
), fs_info
->generation
) ||
10081 btrfs_inode_in_log(BTRFS_I(new_inode
), fs_info
->generation
)))
10082 btrfs_set_log_full_commit(fs_info
, trans
);
10084 btrfs_end_log_trans(root
);
10085 log_pinned
= false;
10087 btrfs_end_transaction(trans
);
10089 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
10090 up_read(&fs_info
->subvol_sem
);
10095 static int btrfs_rename2(struct inode
*old_dir
, struct dentry
*old_dentry
,
10096 struct inode
*new_dir
, struct dentry
*new_dentry
,
10097 unsigned int flags
)
10099 if (flags
& ~(RENAME_NOREPLACE
| RENAME_EXCHANGE
| RENAME_WHITEOUT
))
10102 if (flags
& RENAME_EXCHANGE
)
10103 return btrfs_rename_exchange(old_dir
, old_dentry
, new_dir
,
10106 return btrfs_rename(old_dir
, old_dentry
, new_dir
, new_dentry
, flags
);
10109 static void btrfs_run_delalloc_work(struct btrfs_work
*work
)
10111 struct btrfs_delalloc_work
*delalloc_work
;
10112 struct inode
*inode
;
10114 delalloc_work
= container_of(work
, struct btrfs_delalloc_work
,
10116 inode
= delalloc_work
->inode
;
10117 filemap_flush(inode
->i_mapping
);
10118 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
10119 &BTRFS_I(inode
)->runtime_flags
))
10120 filemap_flush(inode
->i_mapping
);
10122 if (delalloc_work
->delay_iput
)
10123 btrfs_add_delayed_iput(inode
);
10126 complete(&delalloc_work
->completion
);
10129 struct btrfs_delalloc_work
*btrfs_alloc_delalloc_work(struct inode
*inode
,
10132 struct btrfs_delalloc_work
*work
;
10134 work
= kmalloc(sizeof(*work
), GFP_NOFS
);
10138 init_completion(&work
->completion
);
10139 INIT_LIST_HEAD(&work
->list
);
10140 work
->inode
= inode
;
10141 work
->delay_iput
= delay_iput
;
10142 WARN_ON_ONCE(!inode
);
10143 btrfs_init_work(&work
->work
, btrfs_flush_delalloc_helper
,
10144 btrfs_run_delalloc_work
, NULL
, NULL
);
10149 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work
*work
)
10151 wait_for_completion(&work
->completion
);
10156 * some fairly slow code that needs optimization. This walks the list
10157 * of all the inodes with pending delalloc and forces them to disk.
10159 static int __start_delalloc_inodes(struct btrfs_root
*root
, int delay_iput
,
10162 struct btrfs_inode
*binode
;
10163 struct inode
*inode
;
10164 struct btrfs_delalloc_work
*work
, *next
;
10165 struct list_head works
;
10166 struct list_head splice
;
10169 INIT_LIST_HEAD(&works
);
10170 INIT_LIST_HEAD(&splice
);
10172 mutex_lock(&root
->delalloc_mutex
);
10173 spin_lock(&root
->delalloc_lock
);
10174 list_splice_init(&root
->delalloc_inodes
, &splice
);
10175 while (!list_empty(&splice
)) {
10176 binode
= list_entry(splice
.next
, struct btrfs_inode
,
10179 list_move_tail(&binode
->delalloc_inodes
,
10180 &root
->delalloc_inodes
);
10181 inode
= igrab(&binode
->vfs_inode
);
10183 cond_resched_lock(&root
->delalloc_lock
);
10186 spin_unlock(&root
->delalloc_lock
);
10188 work
= btrfs_alloc_delalloc_work(inode
, delay_iput
);
10191 btrfs_add_delayed_iput(inode
);
10197 list_add_tail(&work
->list
, &works
);
10198 btrfs_queue_work(root
->fs_info
->flush_workers
,
10201 if (nr
!= -1 && ret
>= nr
)
10204 spin_lock(&root
->delalloc_lock
);
10206 spin_unlock(&root
->delalloc_lock
);
10209 list_for_each_entry_safe(work
, next
, &works
, list
) {
10210 list_del_init(&work
->list
);
10211 btrfs_wait_and_free_delalloc_work(work
);
10214 if (!list_empty_careful(&splice
)) {
10215 spin_lock(&root
->delalloc_lock
);
10216 list_splice_tail(&splice
, &root
->delalloc_inodes
);
10217 spin_unlock(&root
->delalloc_lock
);
10219 mutex_unlock(&root
->delalloc_mutex
);
10223 int btrfs_start_delalloc_inodes(struct btrfs_root
*root
, int delay_iput
)
10225 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
10228 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
10231 ret
= __start_delalloc_inodes(root
, delay_iput
, -1);
10235 * the filemap_flush will queue IO into the worker threads, but
10236 * we have to make sure the IO is actually started and that
10237 * ordered extents get created before we return
10239 atomic_inc(&fs_info
->async_submit_draining
);
10240 while (atomic_read(&fs_info
->nr_async_submits
) ||
10241 atomic_read(&fs_info
->async_delalloc_pages
)) {
10242 wait_event(fs_info
->async_submit_wait
,
10243 (atomic_read(&fs_info
->nr_async_submits
) == 0 &&
10244 atomic_read(&fs_info
->async_delalloc_pages
) == 0));
10246 atomic_dec(&fs_info
->async_submit_draining
);
10250 int btrfs_start_delalloc_roots(struct btrfs_fs_info
*fs_info
, int delay_iput
,
10253 struct btrfs_root
*root
;
10254 struct list_head splice
;
10257 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
10260 INIT_LIST_HEAD(&splice
);
10262 mutex_lock(&fs_info
->delalloc_root_mutex
);
10263 spin_lock(&fs_info
->delalloc_root_lock
);
10264 list_splice_init(&fs_info
->delalloc_roots
, &splice
);
10265 while (!list_empty(&splice
) && nr
) {
10266 root
= list_first_entry(&splice
, struct btrfs_root
,
10268 root
= btrfs_grab_fs_root(root
);
10270 list_move_tail(&root
->delalloc_root
,
10271 &fs_info
->delalloc_roots
);
10272 spin_unlock(&fs_info
->delalloc_root_lock
);
10274 ret
= __start_delalloc_inodes(root
, delay_iput
, nr
);
10275 btrfs_put_fs_root(root
);
10283 spin_lock(&fs_info
->delalloc_root_lock
);
10285 spin_unlock(&fs_info
->delalloc_root_lock
);
10288 atomic_inc(&fs_info
->async_submit_draining
);
10289 while (atomic_read(&fs_info
->nr_async_submits
) ||
10290 atomic_read(&fs_info
->async_delalloc_pages
)) {
10291 wait_event(fs_info
->async_submit_wait
,
10292 (atomic_read(&fs_info
->nr_async_submits
) == 0 &&
10293 atomic_read(&fs_info
->async_delalloc_pages
) == 0));
10295 atomic_dec(&fs_info
->async_submit_draining
);
10297 if (!list_empty_careful(&splice
)) {
10298 spin_lock(&fs_info
->delalloc_root_lock
);
10299 list_splice_tail(&splice
, &fs_info
->delalloc_roots
);
10300 spin_unlock(&fs_info
->delalloc_root_lock
);
10302 mutex_unlock(&fs_info
->delalloc_root_mutex
);
10306 static int btrfs_symlink(struct inode
*dir
, struct dentry
*dentry
,
10307 const char *symname
)
10309 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
10310 struct btrfs_trans_handle
*trans
;
10311 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
10312 struct btrfs_path
*path
;
10313 struct btrfs_key key
;
10314 struct inode
*inode
= NULL
;
10316 int drop_inode
= 0;
10322 struct btrfs_file_extent_item
*ei
;
10323 struct extent_buffer
*leaf
;
10325 name_len
= strlen(symname
);
10326 if (name_len
> BTRFS_MAX_INLINE_DATA_SIZE(fs_info
))
10327 return -ENAMETOOLONG
;
10330 * 2 items for inode item and ref
10331 * 2 items for dir items
10332 * 1 item for updating parent inode item
10333 * 1 item for the inline extent item
10334 * 1 item for xattr if selinux is on
10336 trans
= btrfs_start_transaction(root
, 7);
10338 return PTR_ERR(trans
);
10340 err
= btrfs_find_free_ino(root
, &objectid
);
10344 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
10345 dentry
->d_name
.len
, btrfs_ino(BTRFS_I(dir
)),
10346 objectid
, S_IFLNK
|S_IRWXUGO
, &index
);
10347 if (IS_ERR(inode
)) {
10348 err
= PTR_ERR(inode
);
10353 * If the active LSM wants to access the inode during
10354 * d_instantiate it needs these. Smack checks to see
10355 * if the filesystem supports xattrs by looking at the
10358 inode
->i_fop
= &btrfs_file_operations
;
10359 inode
->i_op
= &btrfs_file_inode_operations
;
10360 inode
->i_mapping
->a_ops
= &btrfs_aops
;
10361 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
10363 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
10365 goto out_unlock_inode
;
10367 path
= btrfs_alloc_path();
10370 goto out_unlock_inode
;
10372 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
10374 key
.type
= BTRFS_EXTENT_DATA_KEY
;
10375 datasize
= btrfs_file_extent_calc_inline_size(name_len
);
10376 err
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
10379 btrfs_free_path(path
);
10380 goto out_unlock_inode
;
10382 leaf
= path
->nodes
[0];
10383 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
10384 struct btrfs_file_extent_item
);
10385 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
10386 btrfs_set_file_extent_type(leaf
, ei
,
10387 BTRFS_FILE_EXTENT_INLINE
);
10388 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
10389 btrfs_set_file_extent_compression(leaf
, ei
, 0);
10390 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
10391 btrfs_set_file_extent_ram_bytes(leaf
, ei
, name_len
);
10393 ptr
= btrfs_file_extent_inline_start(ei
);
10394 write_extent_buffer(leaf
, symname
, ptr
, name_len
);
10395 btrfs_mark_buffer_dirty(leaf
);
10396 btrfs_free_path(path
);
10398 inode
->i_op
= &btrfs_symlink_inode_operations
;
10399 inode_nohighmem(inode
);
10400 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
10401 inode_set_bytes(inode
, name_len
);
10402 btrfs_i_size_write(BTRFS_I(inode
), name_len
);
10403 err
= btrfs_update_inode(trans
, root
, inode
);
10405 * Last step, add directory indexes for our symlink inode. This is the
10406 * last step to avoid extra cleanup of these indexes if an error happens
10410 err
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
,
10411 BTRFS_I(inode
), 0, index
);
10414 goto out_unlock_inode
;
10417 unlock_new_inode(inode
);
10418 d_instantiate(dentry
, inode
);
10421 btrfs_end_transaction(trans
);
10423 inode_dec_link_count(inode
);
10426 btrfs_btree_balance_dirty(fs_info
);
10431 unlock_new_inode(inode
);
10435 static int __btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
10436 u64 start
, u64 num_bytes
, u64 min_size
,
10437 loff_t actual_len
, u64
*alloc_hint
,
10438 struct btrfs_trans_handle
*trans
)
10440 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
10441 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
10442 struct extent_map
*em
;
10443 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
10444 struct btrfs_key ins
;
10445 u64 cur_offset
= start
;
10448 u64 last_alloc
= (u64
)-1;
10450 bool own_trans
= true;
10451 u64 end
= start
+ num_bytes
- 1;
10455 while (num_bytes
> 0) {
10457 trans
= btrfs_start_transaction(root
, 3);
10458 if (IS_ERR(trans
)) {
10459 ret
= PTR_ERR(trans
);
10464 cur_bytes
= min_t(u64
, num_bytes
, SZ_256M
);
10465 cur_bytes
= max(cur_bytes
, min_size
);
10467 * If we are severely fragmented we could end up with really
10468 * small allocations, so if the allocator is returning small
10469 * chunks lets make its job easier by only searching for those
10472 cur_bytes
= min(cur_bytes
, last_alloc
);
10473 ret
= btrfs_reserve_extent(root
, cur_bytes
, cur_bytes
,
10474 min_size
, 0, *alloc_hint
, &ins
, 1, 0);
10477 btrfs_end_transaction(trans
);
10480 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
10482 last_alloc
= ins
.offset
;
10483 ret
= insert_reserved_file_extent(trans
, inode
,
10484 cur_offset
, ins
.objectid
,
10485 ins
.offset
, ins
.offset
,
10486 ins
.offset
, 0, 0, 0,
10487 BTRFS_FILE_EXTENT_PREALLOC
);
10489 btrfs_free_reserved_extent(fs_info
, ins
.objectid
,
10491 btrfs_abort_transaction(trans
, ret
);
10493 btrfs_end_transaction(trans
);
10497 btrfs_drop_extent_cache(BTRFS_I(inode
), cur_offset
,
10498 cur_offset
+ ins
.offset
-1, 0);
10500 em
= alloc_extent_map();
10502 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
10503 &BTRFS_I(inode
)->runtime_flags
);
10507 em
->start
= cur_offset
;
10508 em
->orig_start
= cur_offset
;
10509 em
->len
= ins
.offset
;
10510 em
->block_start
= ins
.objectid
;
10511 em
->block_len
= ins
.offset
;
10512 em
->orig_block_len
= ins
.offset
;
10513 em
->ram_bytes
= ins
.offset
;
10514 em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
10515 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
10516 em
->generation
= trans
->transid
;
10519 write_lock(&em_tree
->lock
);
10520 ret
= add_extent_mapping(em_tree
, em
, 1);
10521 write_unlock(&em_tree
->lock
);
10522 if (ret
!= -EEXIST
)
10524 btrfs_drop_extent_cache(BTRFS_I(inode
), cur_offset
,
10525 cur_offset
+ ins
.offset
- 1,
10528 free_extent_map(em
);
10530 num_bytes
-= ins
.offset
;
10531 cur_offset
+= ins
.offset
;
10532 *alloc_hint
= ins
.objectid
+ ins
.offset
;
10534 inode_inc_iversion(inode
);
10535 inode
->i_ctime
= current_time(inode
);
10536 BTRFS_I(inode
)->flags
|= BTRFS_INODE_PREALLOC
;
10537 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
10538 (actual_len
> inode
->i_size
) &&
10539 (cur_offset
> inode
->i_size
)) {
10540 if (cur_offset
> actual_len
)
10541 i_size
= actual_len
;
10543 i_size
= cur_offset
;
10544 i_size_write(inode
, i_size
);
10545 btrfs_ordered_update_i_size(inode
, i_size
, NULL
);
10548 ret
= btrfs_update_inode(trans
, root
, inode
);
10551 btrfs_abort_transaction(trans
, ret
);
10553 btrfs_end_transaction(trans
);
10558 btrfs_end_transaction(trans
);
10560 if (cur_offset
< end
)
10561 btrfs_free_reserved_data_space(inode
, NULL
, cur_offset
,
10562 end
- cur_offset
+ 1);
10566 int btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
10567 u64 start
, u64 num_bytes
, u64 min_size
,
10568 loff_t actual_len
, u64
*alloc_hint
)
10570 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
10571 min_size
, actual_len
, alloc_hint
,
10575 int btrfs_prealloc_file_range_trans(struct inode
*inode
,
10576 struct btrfs_trans_handle
*trans
, int mode
,
10577 u64 start
, u64 num_bytes
, u64 min_size
,
10578 loff_t actual_len
, u64
*alloc_hint
)
10580 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
10581 min_size
, actual_len
, alloc_hint
, trans
);
10584 static int btrfs_set_page_dirty(struct page
*page
)
10586 return __set_page_dirty_nobuffers(page
);
10589 static int btrfs_permission(struct inode
*inode
, int mask
)
10591 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
10592 umode_t mode
= inode
->i_mode
;
10594 if (mask
& MAY_WRITE
&&
10595 (S_ISREG(mode
) || S_ISDIR(mode
) || S_ISLNK(mode
))) {
10596 if (btrfs_root_readonly(root
))
10598 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_READONLY
)
10601 return generic_permission(inode
, mask
);
10604 static int btrfs_tmpfile(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
10606 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
10607 struct btrfs_trans_handle
*trans
;
10608 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
10609 struct inode
*inode
= NULL
;
10615 * 5 units required for adding orphan entry
10617 trans
= btrfs_start_transaction(root
, 5);
10619 return PTR_ERR(trans
);
10621 ret
= btrfs_find_free_ino(root
, &objectid
);
10625 inode
= btrfs_new_inode(trans
, root
, dir
, NULL
, 0,
10626 btrfs_ino(BTRFS_I(dir
)), objectid
, mode
, &index
);
10627 if (IS_ERR(inode
)) {
10628 ret
= PTR_ERR(inode
);
10633 inode
->i_fop
= &btrfs_file_operations
;
10634 inode
->i_op
= &btrfs_file_inode_operations
;
10636 inode
->i_mapping
->a_ops
= &btrfs_aops
;
10637 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
10639 ret
= btrfs_init_inode_security(trans
, inode
, dir
, NULL
);
10643 ret
= btrfs_update_inode(trans
, root
, inode
);
10646 ret
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
10651 * We set number of links to 0 in btrfs_new_inode(), and here we set
10652 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10655 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10657 set_nlink(inode
, 1);
10658 unlock_new_inode(inode
);
10659 d_tmpfile(dentry
, inode
);
10660 mark_inode_dirty(inode
);
10663 btrfs_end_transaction(trans
);
10666 btrfs_balance_delayed_items(fs_info
);
10667 btrfs_btree_balance_dirty(fs_info
);
10671 unlock_new_inode(inode
);
10676 __attribute__((const))
10677 static int btrfs_readpage_io_failed_hook(struct page
*page
, int failed_mirror
)
10682 static struct btrfs_fs_info
*iotree_fs_info(void *private_data
)
10684 struct inode
*inode
= private_data
;
10685 return btrfs_sb(inode
->i_sb
);
10688 static void btrfs_check_extent_io_range(void *private_data
, const char *caller
,
10689 u64 start
, u64 end
)
10691 struct inode
*inode
= private_data
;
10694 isize
= i_size_read(inode
);
10695 if (end
>= PAGE_SIZE
&& (end
% 2) == 0 && end
!= isize
- 1) {
10696 btrfs_debug_rl(BTRFS_I(inode
)->root
->fs_info
,
10697 "%s: ino %llu isize %llu odd range [%llu,%llu]",
10698 caller
, btrfs_ino(BTRFS_I(inode
)), isize
, start
, end
);
10702 void btrfs_set_range_writeback(void *private_data
, u64 start
, u64 end
)
10704 struct inode
*inode
= private_data
;
10705 unsigned long index
= start
>> PAGE_SHIFT
;
10706 unsigned long end_index
= end
>> PAGE_SHIFT
;
10709 while (index
<= end_index
) {
10710 page
= find_get_page(inode
->i_mapping
, index
);
10711 ASSERT(page
); /* Pages should be in the extent_io_tree */
10712 set_page_writeback(page
);
10718 static const struct inode_operations btrfs_dir_inode_operations
= {
10719 .getattr
= btrfs_getattr
,
10720 .lookup
= btrfs_lookup
,
10721 .create
= btrfs_create
,
10722 .unlink
= btrfs_unlink
,
10723 .link
= btrfs_link
,
10724 .mkdir
= btrfs_mkdir
,
10725 .rmdir
= btrfs_rmdir
,
10726 .rename
= btrfs_rename2
,
10727 .symlink
= btrfs_symlink
,
10728 .setattr
= btrfs_setattr
,
10729 .mknod
= btrfs_mknod
,
10730 .listxattr
= btrfs_listxattr
,
10731 .permission
= btrfs_permission
,
10732 .get_acl
= btrfs_get_acl
,
10733 .set_acl
= btrfs_set_acl
,
10734 .update_time
= btrfs_update_time
,
10735 .tmpfile
= btrfs_tmpfile
,
10737 static const struct inode_operations btrfs_dir_ro_inode_operations
= {
10738 .lookup
= btrfs_lookup
,
10739 .permission
= btrfs_permission
,
10740 .update_time
= btrfs_update_time
,
10743 static const struct file_operations btrfs_dir_file_operations
= {
10744 .llseek
= generic_file_llseek
,
10745 .read
= generic_read_dir
,
10746 .iterate_shared
= btrfs_real_readdir
,
10747 .unlocked_ioctl
= btrfs_ioctl
,
10748 #ifdef CONFIG_COMPAT
10749 .compat_ioctl
= btrfs_compat_ioctl
,
10751 .release
= btrfs_release_file
,
10752 .fsync
= btrfs_sync_file
,
10755 static const struct extent_io_ops btrfs_extent_io_ops
= {
10756 /* mandatory callbacks */
10757 .submit_bio_hook
= btrfs_submit_bio_hook
,
10758 .readpage_end_io_hook
= btrfs_readpage_end_io_hook
,
10759 .merge_bio_hook
= btrfs_merge_bio_hook
,
10760 .readpage_io_failed_hook
= btrfs_readpage_io_failed_hook
,
10761 .tree_fs_info
= iotree_fs_info
,
10762 .set_range_writeback
= btrfs_set_range_writeback
,
10764 /* optional callbacks */
10765 .fill_delalloc
= run_delalloc_range
,
10766 .writepage_end_io_hook
= btrfs_writepage_end_io_hook
,
10767 .writepage_start_hook
= btrfs_writepage_start_hook
,
10768 .set_bit_hook
= btrfs_set_bit_hook
,
10769 .clear_bit_hook
= btrfs_clear_bit_hook
,
10770 .merge_extent_hook
= btrfs_merge_extent_hook
,
10771 .split_extent_hook
= btrfs_split_extent_hook
,
10772 .check_extent_io_range
= btrfs_check_extent_io_range
,
10776 * btrfs doesn't support the bmap operation because swapfiles
10777 * use bmap to make a mapping of extents in the file. They assume
10778 * these extents won't change over the life of the file and they
10779 * use the bmap result to do IO directly to the drive.
10781 * the btrfs bmap call would return logical addresses that aren't
10782 * suitable for IO and they also will change frequently as COW
10783 * operations happen. So, swapfile + btrfs == corruption.
10785 * For now we're avoiding this by dropping bmap.
10787 static const struct address_space_operations btrfs_aops
= {
10788 .readpage
= btrfs_readpage
,
10789 .writepage
= btrfs_writepage
,
10790 .writepages
= btrfs_writepages
,
10791 .readpages
= btrfs_readpages
,
10792 .direct_IO
= btrfs_direct_IO
,
10793 .invalidatepage
= btrfs_invalidatepage
,
10794 .releasepage
= btrfs_releasepage
,
10795 .set_page_dirty
= btrfs_set_page_dirty
,
10796 .error_remove_page
= generic_error_remove_page
,
10799 static const struct address_space_operations btrfs_symlink_aops
= {
10800 .readpage
= btrfs_readpage
,
10801 .writepage
= btrfs_writepage
,
10802 .invalidatepage
= btrfs_invalidatepage
,
10803 .releasepage
= btrfs_releasepage
,
10806 static const struct inode_operations btrfs_file_inode_operations
= {
10807 .getattr
= btrfs_getattr
,
10808 .setattr
= btrfs_setattr
,
10809 .listxattr
= btrfs_listxattr
,
10810 .permission
= btrfs_permission
,
10811 .fiemap
= btrfs_fiemap
,
10812 .get_acl
= btrfs_get_acl
,
10813 .set_acl
= btrfs_set_acl
,
10814 .update_time
= btrfs_update_time
,
10816 static const struct inode_operations btrfs_special_inode_operations
= {
10817 .getattr
= btrfs_getattr
,
10818 .setattr
= btrfs_setattr
,
10819 .permission
= btrfs_permission
,
10820 .listxattr
= btrfs_listxattr
,
10821 .get_acl
= btrfs_get_acl
,
10822 .set_acl
= btrfs_set_acl
,
10823 .update_time
= btrfs_update_time
,
10825 static const struct inode_operations btrfs_symlink_inode_operations
= {
10826 .get_link
= page_get_link
,
10827 .getattr
= btrfs_getattr
,
10828 .setattr
= btrfs_setattr
,
10829 .permission
= btrfs_permission
,
10830 .listxattr
= btrfs_listxattr
,
10831 .update_time
= btrfs_update_time
,
10834 const struct dentry_operations btrfs_dentry_operations
= {
10835 .d_delete
= btrfs_dentry_delete
,
10836 .d_release
= btrfs_dentry_release
,