pinctrl: make pinmux disable function optional
[linux-2.6/btrfs-unstable.git] / net / ipv4 / udp.c
blobfe141052a1beaf5c85376cfed0740c348c019dce
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The User Datagram Protocol (UDP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
12 * Hirokazu Takahashi, <taka@valinux.co.jp>
14 * Fixes:
15 * Alan Cox : verify_area() calls
16 * Alan Cox : stopped close while in use off icmp
17 * messages. Not a fix but a botch that
18 * for udp at least is 'valid'.
19 * Alan Cox : Fixed icmp handling properly
20 * Alan Cox : Correct error for oversized datagrams
21 * Alan Cox : Tidied select() semantics.
22 * Alan Cox : udp_err() fixed properly, also now
23 * select and read wake correctly on errors
24 * Alan Cox : udp_send verify_area moved to avoid mem leak
25 * Alan Cox : UDP can count its memory
26 * Alan Cox : send to an unknown connection causes
27 * an ECONNREFUSED off the icmp, but
28 * does NOT close.
29 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
31 * bug no longer crashes it.
32 * Fred Van Kempen : Net2e support for sk->broadcast.
33 * Alan Cox : Uses skb_free_datagram
34 * Alan Cox : Added get/set sockopt support.
35 * Alan Cox : Broadcasting without option set returns EACCES.
36 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
37 * Alan Cox : Use ip_tos and ip_ttl
38 * Alan Cox : SNMP Mibs
39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
40 * Matt Dillon : UDP length checks.
41 * Alan Cox : Smarter af_inet used properly.
42 * Alan Cox : Use new kernel side addressing.
43 * Alan Cox : Incorrect return on truncated datagram receive.
44 * Arnt Gulbrandsen : New udp_send and stuff
45 * Alan Cox : Cache last socket
46 * Alan Cox : Route cache
47 * Jon Peatfield : Minor efficiency fix to sendto().
48 * Mike Shaver : RFC1122 checks.
49 * Alan Cox : Nonblocking error fix.
50 * Willy Konynenberg : Transparent proxying support.
51 * Mike McLagan : Routing by source
52 * David S. Miller : New socket lookup architecture.
53 * Last socket cache retained as it
54 * does have a high hit rate.
55 * Olaf Kirch : Don't linearise iovec on sendmsg.
56 * Andi Kleen : Some cleanups, cache destination entry
57 * for connect.
58 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
59 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
60 * return ENOTCONN for unconnected sockets (POSIX)
61 * Janos Farkas : don't deliver multi/broadcasts to a different
62 * bound-to-device socket
63 * Hirokazu Takahashi : HW checksumming for outgoing UDP
64 * datagrams.
65 * Hirokazu Takahashi : sendfile() on UDP works now.
66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
69 * a single port at the same time.
70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71 * James Chapman : Add L2TP encapsulation type.
74 * This program is free software; you can redistribute it and/or
75 * modify it under the terms of the GNU General Public License
76 * as published by the Free Software Foundation; either version
77 * 2 of the License, or (at your option) any later version.
80 #define pr_fmt(fmt) "UDP: " fmt
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/in.h>
94 #include <linux/errno.h>
95 #include <linux/timer.h>
96 #include <linux/mm.h>
97 #include <linux/inet.h>
98 #include <linux/netdevice.h>
99 #include <linux/slab.h>
100 #include <net/tcp_states.h>
101 #include <linux/skbuff.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <net/net_namespace.h>
105 #include <net/icmp.h>
106 #include <net/route.h>
107 #include <net/checksum.h>
108 #include <net/xfrm.h>
109 #include <trace/events/udp.h>
110 #include "udp_impl.h"
112 struct udp_table udp_table __read_mostly;
113 EXPORT_SYMBOL(udp_table);
115 long sysctl_udp_mem[3] __read_mostly;
116 EXPORT_SYMBOL(sysctl_udp_mem);
118 int sysctl_udp_rmem_min __read_mostly;
119 EXPORT_SYMBOL(sysctl_udp_rmem_min);
121 int sysctl_udp_wmem_min __read_mostly;
122 EXPORT_SYMBOL(sysctl_udp_wmem_min);
124 atomic_long_t udp_memory_allocated;
125 EXPORT_SYMBOL(udp_memory_allocated);
127 #define MAX_UDP_PORTS 65536
128 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
130 static int udp_lib_lport_inuse(struct net *net, __u16 num,
131 const struct udp_hslot *hslot,
132 unsigned long *bitmap,
133 struct sock *sk,
134 int (*saddr_comp)(const struct sock *sk1,
135 const struct sock *sk2),
136 unsigned int log)
138 struct sock *sk2;
139 struct hlist_nulls_node *node;
141 sk_nulls_for_each(sk2, node, &hslot->head)
142 if (net_eq(sock_net(sk2), net) &&
143 sk2 != sk &&
144 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
145 (!sk2->sk_reuse || !sk->sk_reuse) &&
146 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
147 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
148 (*saddr_comp)(sk, sk2)) {
149 if (bitmap)
150 __set_bit(udp_sk(sk2)->udp_port_hash >> log,
151 bitmap);
152 else
153 return 1;
155 return 0;
159 * Note: we still hold spinlock of primary hash chain, so no other writer
160 * can insert/delete a socket with local_port == num
162 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
163 struct udp_hslot *hslot2,
164 struct sock *sk,
165 int (*saddr_comp)(const struct sock *sk1,
166 const struct sock *sk2))
168 struct sock *sk2;
169 struct hlist_nulls_node *node;
170 int res = 0;
172 spin_lock(&hslot2->lock);
173 udp_portaddr_for_each_entry(sk2, node, &hslot2->head)
174 if (net_eq(sock_net(sk2), net) &&
175 sk2 != sk &&
176 (udp_sk(sk2)->udp_port_hash == num) &&
177 (!sk2->sk_reuse || !sk->sk_reuse) &&
178 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
179 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
180 (*saddr_comp)(sk, sk2)) {
181 res = 1;
182 break;
184 spin_unlock(&hslot2->lock);
185 return res;
189 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
191 * @sk: socket struct in question
192 * @snum: port number to look up
193 * @saddr_comp: AF-dependent comparison of bound local IP addresses
194 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
195 * with NULL address
197 int udp_lib_get_port(struct sock *sk, unsigned short snum,
198 int (*saddr_comp)(const struct sock *sk1,
199 const struct sock *sk2),
200 unsigned int hash2_nulladdr)
202 struct udp_hslot *hslot, *hslot2;
203 struct udp_table *udptable = sk->sk_prot->h.udp_table;
204 int error = 1;
205 struct net *net = sock_net(sk);
207 if (!snum) {
208 int low, high, remaining;
209 unsigned rand;
210 unsigned short first, last;
211 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
213 inet_get_local_port_range(&low, &high);
214 remaining = (high - low) + 1;
216 rand = net_random();
217 first = (((u64)rand * remaining) >> 32) + low;
219 * force rand to be an odd multiple of UDP_HTABLE_SIZE
221 rand = (rand | 1) * (udptable->mask + 1);
222 last = first + udptable->mask + 1;
223 do {
224 hslot = udp_hashslot(udptable, net, first);
225 bitmap_zero(bitmap, PORTS_PER_CHAIN);
226 spin_lock_bh(&hslot->lock);
227 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
228 saddr_comp, udptable->log);
230 snum = first;
232 * Iterate on all possible values of snum for this hash.
233 * Using steps of an odd multiple of UDP_HTABLE_SIZE
234 * give us randomization and full range coverage.
236 do {
237 if (low <= snum && snum <= high &&
238 !test_bit(snum >> udptable->log, bitmap) &&
239 !inet_is_reserved_local_port(snum))
240 goto found;
241 snum += rand;
242 } while (snum != first);
243 spin_unlock_bh(&hslot->lock);
244 } while (++first != last);
245 goto fail;
246 } else {
247 hslot = udp_hashslot(udptable, net, snum);
248 spin_lock_bh(&hslot->lock);
249 if (hslot->count > 10) {
250 int exist;
251 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
253 slot2 &= udptable->mask;
254 hash2_nulladdr &= udptable->mask;
256 hslot2 = udp_hashslot2(udptable, slot2);
257 if (hslot->count < hslot2->count)
258 goto scan_primary_hash;
260 exist = udp_lib_lport_inuse2(net, snum, hslot2,
261 sk, saddr_comp);
262 if (!exist && (hash2_nulladdr != slot2)) {
263 hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
264 exist = udp_lib_lport_inuse2(net, snum, hslot2,
265 sk, saddr_comp);
267 if (exist)
268 goto fail_unlock;
269 else
270 goto found;
272 scan_primary_hash:
273 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
274 saddr_comp, 0))
275 goto fail_unlock;
277 found:
278 inet_sk(sk)->inet_num = snum;
279 udp_sk(sk)->udp_port_hash = snum;
280 udp_sk(sk)->udp_portaddr_hash ^= snum;
281 if (sk_unhashed(sk)) {
282 sk_nulls_add_node_rcu(sk, &hslot->head);
283 hslot->count++;
284 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
286 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
287 spin_lock(&hslot2->lock);
288 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
289 &hslot2->head);
290 hslot2->count++;
291 spin_unlock(&hslot2->lock);
293 error = 0;
294 fail_unlock:
295 spin_unlock_bh(&hslot->lock);
296 fail:
297 return error;
299 EXPORT_SYMBOL(udp_lib_get_port);
301 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
303 struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
305 return (!ipv6_only_sock(sk2) &&
306 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
307 inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
310 static unsigned int udp4_portaddr_hash(struct net *net, __be32 saddr,
311 unsigned int port)
313 return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
316 int udp_v4_get_port(struct sock *sk, unsigned short snum)
318 unsigned int hash2_nulladdr =
319 udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
320 unsigned int hash2_partial =
321 udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
323 /* precompute partial secondary hash */
324 udp_sk(sk)->udp_portaddr_hash = hash2_partial;
325 return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
328 static inline int compute_score(struct sock *sk, struct net *net, __be32 saddr,
329 unsigned short hnum,
330 __be16 sport, __be32 daddr, __be16 dport, int dif)
332 int score = -1;
334 if (net_eq(sock_net(sk), net) && udp_sk(sk)->udp_port_hash == hnum &&
335 !ipv6_only_sock(sk)) {
336 struct inet_sock *inet = inet_sk(sk);
338 score = (sk->sk_family == PF_INET ? 1 : 0);
339 if (inet->inet_rcv_saddr) {
340 if (inet->inet_rcv_saddr != daddr)
341 return -1;
342 score += 2;
344 if (inet->inet_daddr) {
345 if (inet->inet_daddr != saddr)
346 return -1;
347 score += 2;
349 if (inet->inet_dport) {
350 if (inet->inet_dport != sport)
351 return -1;
352 score += 2;
354 if (sk->sk_bound_dev_if) {
355 if (sk->sk_bound_dev_if != dif)
356 return -1;
357 score += 2;
360 return score;
364 * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
366 #define SCORE2_MAX (1 + 2 + 2 + 2)
367 static inline int compute_score2(struct sock *sk, struct net *net,
368 __be32 saddr, __be16 sport,
369 __be32 daddr, unsigned int hnum, int dif)
371 int score = -1;
373 if (net_eq(sock_net(sk), net) && !ipv6_only_sock(sk)) {
374 struct inet_sock *inet = inet_sk(sk);
376 if (inet->inet_rcv_saddr != daddr)
377 return -1;
378 if (inet->inet_num != hnum)
379 return -1;
381 score = (sk->sk_family == PF_INET ? 1 : 0);
382 if (inet->inet_daddr) {
383 if (inet->inet_daddr != saddr)
384 return -1;
385 score += 2;
387 if (inet->inet_dport) {
388 if (inet->inet_dport != sport)
389 return -1;
390 score += 2;
392 if (sk->sk_bound_dev_if) {
393 if (sk->sk_bound_dev_if != dif)
394 return -1;
395 score += 2;
398 return score;
402 /* called with read_rcu_lock() */
403 static struct sock *udp4_lib_lookup2(struct net *net,
404 __be32 saddr, __be16 sport,
405 __be32 daddr, unsigned int hnum, int dif,
406 struct udp_hslot *hslot2, unsigned int slot2)
408 struct sock *sk, *result;
409 struct hlist_nulls_node *node;
410 int score, badness;
412 begin:
413 result = NULL;
414 badness = -1;
415 udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
416 score = compute_score2(sk, net, saddr, sport,
417 daddr, hnum, dif);
418 if (score > badness) {
419 result = sk;
420 badness = score;
421 if (score == SCORE2_MAX)
422 goto exact_match;
426 * if the nulls value we got at the end of this lookup is
427 * not the expected one, we must restart lookup.
428 * We probably met an item that was moved to another chain.
430 if (get_nulls_value(node) != slot2)
431 goto begin;
433 if (result) {
434 exact_match:
435 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
436 result = NULL;
437 else if (unlikely(compute_score2(result, net, saddr, sport,
438 daddr, hnum, dif) < badness)) {
439 sock_put(result);
440 goto begin;
443 return result;
446 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
447 * harder than this. -DaveM
449 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
450 __be16 sport, __be32 daddr, __be16 dport,
451 int dif, struct udp_table *udptable)
453 struct sock *sk, *result;
454 struct hlist_nulls_node *node;
455 unsigned short hnum = ntohs(dport);
456 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
457 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
458 int score, badness;
460 rcu_read_lock();
461 if (hslot->count > 10) {
462 hash2 = udp4_portaddr_hash(net, daddr, hnum);
463 slot2 = hash2 & udptable->mask;
464 hslot2 = &udptable->hash2[slot2];
465 if (hslot->count < hslot2->count)
466 goto begin;
468 result = udp4_lib_lookup2(net, saddr, sport,
469 daddr, hnum, dif,
470 hslot2, slot2);
471 if (!result) {
472 hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
473 slot2 = hash2 & udptable->mask;
474 hslot2 = &udptable->hash2[slot2];
475 if (hslot->count < hslot2->count)
476 goto begin;
478 result = udp4_lib_lookup2(net, saddr, sport,
479 htonl(INADDR_ANY), hnum, dif,
480 hslot2, slot2);
482 rcu_read_unlock();
483 return result;
485 begin:
486 result = NULL;
487 badness = -1;
488 sk_nulls_for_each_rcu(sk, node, &hslot->head) {
489 score = compute_score(sk, net, saddr, hnum, sport,
490 daddr, dport, dif);
491 if (score > badness) {
492 result = sk;
493 badness = score;
497 * if the nulls value we got at the end of this lookup is
498 * not the expected one, we must restart lookup.
499 * We probably met an item that was moved to another chain.
501 if (get_nulls_value(node) != slot)
502 goto begin;
504 if (result) {
505 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
506 result = NULL;
507 else if (unlikely(compute_score(result, net, saddr, hnum, sport,
508 daddr, dport, dif) < badness)) {
509 sock_put(result);
510 goto begin;
513 rcu_read_unlock();
514 return result;
516 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
518 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
519 __be16 sport, __be16 dport,
520 struct udp_table *udptable)
522 struct sock *sk;
523 const struct iphdr *iph = ip_hdr(skb);
525 if (unlikely(sk = skb_steal_sock(skb)))
526 return sk;
527 else
528 return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
529 iph->daddr, dport, inet_iif(skb),
530 udptable);
533 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
534 __be32 daddr, __be16 dport, int dif)
536 return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
538 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
540 static inline struct sock *udp_v4_mcast_next(struct net *net, struct sock *sk,
541 __be16 loc_port, __be32 loc_addr,
542 __be16 rmt_port, __be32 rmt_addr,
543 int dif)
545 struct hlist_nulls_node *node;
546 struct sock *s = sk;
547 unsigned short hnum = ntohs(loc_port);
549 sk_nulls_for_each_from(s, node) {
550 struct inet_sock *inet = inet_sk(s);
552 if (!net_eq(sock_net(s), net) ||
553 udp_sk(s)->udp_port_hash != hnum ||
554 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
555 (inet->inet_dport != rmt_port && inet->inet_dport) ||
556 (inet->inet_rcv_saddr &&
557 inet->inet_rcv_saddr != loc_addr) ||
558 ipv6_only_sock(s) ||
559 (s->sk_bound_dev_if && s->sk_bound_dev_if != dif))
560 continue;
561 if (!ip_mc_sf_allow(s, loc_addr, rmt_addr, dif))
562 continue;
563 goto found;
565 s = NULL;
566 found:
567 return s;
571 * This routine is called by the ICMP module when it gets some
572 * sort of error condition. If err < 0 then the socket should
573 * be closed and the error returned to the user. If err > 0
574 * it's just the icmp type << 8 | icmp code.
575 * Header points to the ip header of the error packet. We move
576 * on past this. Then (as it used to claim before adjustment)
577 * header points to the first 8 bytes of the udp header. We need
578 * to find the appropriate port.
581 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
583 struct inet_sock *inet;
584 const struct iphdr *iph = (const struct iphdr *)skb->data;
585 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
586 const int type = icmp_hdr(skb)->type;
587 const int code = icmp_hdr(skb)->code;
588 struct sock *sk;
589 int harderr;
590 int err;
591 struct net *net = dev_net(skb->dev);
593 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
594 iph->saddr, uh->source, skb->dev->ifindex, udptable);
595 if (sk == NULL) {
596 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
597 return; /* No socket for error */
600 err = 0;
601 harderr = 0;
602 inet = inet_sk(sk);
604 switch (type) {
605 default:
606 case ICMP_TIME_EXCEEDED:
607 err = EHOSTUNREACH;
608 break;
609 case ICMP_SOURCE_QUENCH:
610 goto out;
611 case ICMP_PARAMETERPROB:
612 err = EPROTO;
613 harderr = 1;
614 break;
615 case ICMP_DEST_UNREACH:
616 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
617 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
618 err = EMSGSIZE;
619 harderr = 1;
620 break;
622 goto out;
624 err = EHOSTUNREACH;
625 if (code <= NR_ICMP_UNREACH) {
626 harderr = icmp_err_convert[code].fatal;
627 err = icmp_err_convert[code].errno;
629 break;
633 * RFC1122: OK. Passes ICMP errors back to application, as per
634 * 4.1.3.3.
636 if (!inet->recverr) {
637 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
638 goto out;
639 } else
640 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
642 sk->sk_err = err;
643 sk->sk_error_report(sk);
644 out:
645 sock_put(sk);
648 void udp_err(struct sk_buff *skb, u32 info)
650 __udp4_lib_err(skb, info, &udp_table);
654 * Throw away all pending data and cancel the corking. Socket is locked.
656 void udp_flush_pending_frames(struct sock *sk)
658 struct udp_sock *up = udp_sk(sk);
660 if (up->pending) {
661 up->len = 0;
662 up->pending = 0;
663 ip_flush_pending_frames(sk);
666 EXPORT_SYMBOL(udp_flush_pending_frames);
669 * udp4_hwcsum - handle outgoing HW checksumming
670 * @skb: sk_buff containing the filled-in UDP header
671 * (checksum field must be zeroed out)
672 * @src: source IP address
673 * @dst: destination IP address
675 static void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
677 struct udphdr *uh = udp_hdr(skb);
678 struct sk_buff *frags = skb_shinfo(skb)->frag_list;
679 int offset = skb_transport_offset(skb);
680 int len = skb->len - offset;
681 int hlen = len;
682 __wsum csum = 0;
684 if (!frags) {
686 * Only one fragment on the socket.
688 skb->csum_start = skb_transport_header(skb) - skb->head;
689 skb->csum_offset = offsetof(struct udphdr, check);
690 uh->check = ~csum_tcpudp_magic(src, dst, len,
691 IPPROTO_UDP, 0);
692 } else {
694 * HW-checksum won't work as there are two or more
695 * fragments on the socket so that all csums of sk_buffs
696 * should be together
698 do {
699 csum = csum_add(csum, frags->csum);
700 hlen -= frags->len;
701 } while ((frags = frags->next));
703 csum = skb_checksum(skb, offset, hlen, csum);
704 skb->ip_summed = CHECKSUM_NONE;
706 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
707 if (uh->check == 0)
708 uh->check = CSUM_MANGLED_0;
712 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
714 struct sock *sk = skb->sk;
715 struct inet_sock *inet = inet_sk(sk);
716 struct udphdr *uh;
717 int err = 0;
718 int is_udplite = IS_UDPLITE(sk);
719 int offset = skb_transport_offset(skb);
720 int len = skb->len - offset;
721 __wsum csum = 0;
724 * Create a UDP header
726 uh = udp_hdr(skb);
727 uh->source = inet->inet_sport;
728 uh->dest = fl4->fl4_dport;
729 uh->len = htons(len);
730 uh->check = 0;
732 if (is_udplite) /* UDP-Lite */
733 csum = udplite_csum(skb);
735 else if (sk->sk_no_check == UDP_CSUM_NOXMIT) { /* UDP csum disabled */
737 skb->ip_summed = CHECKSUM_NONE;
738 goto send;
740 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
742 udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
743 goto send;
745 } else
746 csum = udp_csum(skb);
748 /* add protocol-dependent pseudo-header */
749 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
750 sk->sk_protocol, csum);
751 if (uh->check == 0)
752 uh->check = CSUM_MANGLED_0;
754 send:
755 err = ip_send_skb(skb);
756 if (err) {
757 if (err == -ENOBUFS && !inet->recverr) {
758 UDP_INC_STATS_USER(sock_net(sk),
759 UDP_MIB_SNDBUFERRORS, is_udplite);
760 err = 0;
762 } else
763 UDP_INC_STATS_USER(sock_net(sk),
764 UDP_MIB_OUTDATAGRAMS, is_udplite);
765 return err;
769 * Push out all pending data as one UDP datagram. Socket is locked.
771 static int udp_push_pending_frames(struct sock *sk)
773 struct udp_sock *up = udp_sk(sk);
774 struct inet_sock *inet = inet_sk(sk);
775 struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
776 struct sk_buff *skb;
777 int err = 0;
779 skb = ip_finish_skb(sk, fl4);
780 if (!skb)
781 goto out;
783 err = udp_send_skb(skb, fl4);
785 out:
786 up->len = 0;
787 up->pending = 0;
788 return err;
791 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
792 size_t len)
794 struct inet_sock *inet = inet_sk(sk);
795 struct udp_sock *up = udp_sk(sk);
796 struct flowi4 fl4_stack;
797 struct flowi4 *fl4;
798 int ulen = len;
799 struct ipcm_cookie ipc;
800 struct rtable *rt = NULL;
801 int free = 0;
802 int connected = 0;
803 __be32 daddr, faddr, saddr;
804 __be16 dport;
805 u8 tos;
806 int err, is_udplite = IS_UDPLITE(sk);
807 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
808 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
809 struct sk_buff *skb;
810 struct ip_options_data opt_copy;
812 if (len > 0xFFFF)
813 return -EMSGSIZE;
816 * Check the flags.
819 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
820 return -EOPNOTSUPP;
822 ipc.opt = NULL;
823 ipc.tx_flags = 0;
825 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
827 fl4 = &inet->cork.fl.u.ip4;
828 if (up->pending) {
830 * There are pending frames.
831 * The socket lock must be held while it's corked.
833 lock_sock(sk);
834 if (likely(up->pending)) {
835 if (unlikely(up->pending != AF_INET)) {
836 release_sock(sk);
837 return -EINVAL;
839 goto do_append_data;
841 release_sock(sk);
843 ulen += sizeof(struct udphdr);
846 * Get and verify the address.
848 if (msg->msg_name) {
849 struct sockaddr_in * usin = (struct sockaddr_in *)msg->msg_name;
850 if (msg->msg_namelen < sizeof(*usin))
851 return -EINVAL;
852 if (usin->sin_family != AF_INET) {
853 if (usin->sin_family != AF_UNSPEC)
854 return -EAFNOSUPPORT;
857 daddr = usin->sin_addr.s_addr;
858 dport = usin->sin_port;
859 if (dport == 0)
860 return -EINVAL;
861 } else {
862 if (sk->sk_state != TCP_ESTABLISHED)
863 return -EDESTADDRREQ;
864 daddr = inet->inet_daddr;
865 dport = inet->inet_dport;
866 /* Open fast path for connected socket.
867 Route will not be used, if at least one option is set.
869 connected = 1;
871 ipc.addr = inet->inet_saddr;
873 ipc.oif = sk->sk_bound_dev_if;
874 err = sock_tx_timestamp(sk, &ipc.tx_flags);
875 if (err)
876 return err;
877 if (msg->msg_controllen) {
878 err = ip_cmsg_send(sock_net(sk), msg, &ipc);
879 if (err)
880 return err;
881 if (ipc.opt)
882 free = 1;
883 connected = 0;
885 if (!ipc.opt) {
886 struct ip_options_rcu *inet_opt;
888 rcu_read_lock();
889 inet_opt = rcu_dereference(inet->inet_opt);
890 if (inet_opt) {
891 memcpy(&opt_copy, inet_opt,
892 sizeof(*inet_opt) + inet_opt->opt.optlen);
893 ipc.opt = &opt_copy.opt;
895 rcu_read_unlock();
898 saddr = ipc.addr;
899 ipc.addr = faddr = daddr;
901 if (ipc.opt && ipc.opt->opt.srr) {
902 if (!daddr)
903 return -EINVAL;
904 faddr = ipc.opt->opt.faddr;
905 connected = 0;
907 tos = RT_TOS(inet->tos);
908 if (sock_flag(sk, SOCK_LOCALROUTE) ||
909 (msg->msg_flags & MSG_DONTROUTE) ||
910 (ipc.opt && ipc.opt->opt.is_strictroute)) {
911 tos |= RTO_ONLINK;
912 connected = 0;
915 if (ipv4_is_multicast(daddr)) {
916 if (!ipc.oif)
917 ipc.oif = inet->mc_index;
918 if (!saddr)
919 saddr = inet->mc_addr;
920 connected = 0;
921 } else if (!ipc.oif)
922 ipc.oif = inet->uc_index;
924 if (connected)
925 rt = (struct rtable *)sk_dst_check(sk, 0);
927 if (rt == NULL) {
928 struct net *net = sock_net(sk);
930 fl4 = &fl4_stack;
931 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
932 RT_SCOPE_UNIVERSE, sk->sk_protocol,
933 inet_sk_flowi_flags(sk)|FLOWI_FLAG_CAN_SLEEP,
934 faddr, saddr, dport, inet->inet_sport);
936 security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
937 rt = ip_route_output_flow(net, fl4, sk);
938 if (IS_ERR(rt)) {
939 err = PTR_ERR(rt);
940 rt = NULL;
941 if (err == -ENETUNREACH)
942 IP_INC_STATS_BH(net, IPSTATS_MIB_OUTNOROUTES);
943 goto out;
946 err = -EACCES;
947 if ((rt->rt_flags & RTCF_BROADCAST) &&
948 !sock_flag(sk, SOCK_BROADCAST))
949 goto out;
950 if (connected)
951 sk_dst_set(sk, dst_clone(&rt->dst));
954 if (msg->msg_flags&MSG_CONFIRM)
955 goto do_confirm;
956 back_from_confirm:
958 saddr = fl4->saddr;
959 if (!ipc.addr)
960 daddr = ipc.addr = fl4->daddr;
962 /* Lockless fast path for the non-corking case. */
963 if (!corkreq) {
964 skb = ip_make_skb(sk, fl4, getfrag, msg->msg_iov, ulen,
965 sizeof(struct udphdr), &ipc, &rt,
966 msg->msg_flags);
967 err = PTR_ERR(skb);
968 if (skb && !IS_ERR(skb))
969 err = udp_send_skb(skb, fl4);
970 goto out;
973 lock_sock(sk);
974 if (unlikely(up->pending)) {
975 /* The socket is already corked while preparing it. */
976 /* ... which is an evident application bug. --ANK */
977 release_sock(sk);
979 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("cork app bug 2\n"));
980 err = -EINVAL;
981 goto out;
984 * Now cork the socket to pend data.
986 fl4 = &inet->cork.fl.u.ip4;
987 fl4->daddr = daddr;
988 fl4->saddr = saddr;
989 fl4->fl4_dport = dport;
990 fl4->fl4_sport = inet->inet_sport;
991 up->pending = AF_INET;
993 do_append_data:
994 up->len += ulen;
995 err = ip_append_data(sk, fl4, getfrag, msg->msg_iov, ulen,
996 sizeof(struct udphdr), &ipc, &rt,
997 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
998 if (err)
999 udp_flush_pending_frames(sk);
1000 else if (!corkreq)
1001 err = udp_push_pending_frames(sk);
1002 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1003 up->pending = 0;
1004 release_sock(sk);
1006 out:
1007 ip_rt_put(rt);
1008 if (free)
1009 kfree(ipc.opt);
1010 if (!err)
1011 return len;
1013 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1014 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1015 * we don't have a good statistic (IpOutDiscards but it can be too many
1016 * things). We could add another new stat but at least for now that
1017 * seems like overkill.
1019 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1020 UDP_INC_STATS_USER(sock_net(sk),
1021 UDP_MIB_SNDBUFERRORS, is_udplite);
1023 return err;
1025 do_confirm:
1026 dst_confirm(&rt->dst);
1027 if (!(msg->msg_flags&MSG_PROBE) || len)
1028 goto back_from_confirm;
1029 err = 0;
1030 goto out;
1032 EXPORT_SYMBOL(udp_sendmsg);
1034 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1035 size_t size, int flags)
1037 struct inet_sock *inet = inet_sk(sk);
1038 struct udp_sock *up = udp_sk(sk);
1039 int ret;
1041 if (!up->pending) {
1042 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
1044 /* Call udp_sendmsg to specify destination address which
1045 * sendpage interface can't pass.
1046 * This will succeed only when the socket is connected.
1048 ret = udp_sendmsg(NULL, sk, &msg, 0);
1049 if (ret < 0)
1050 return ret;
1053 lock_sock(sk);
1055 if (unlikely(!up->pending)) {
1056 release_sock(sk);
1058 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("udp cork app bug 3\n"));
1059 return -EINVAL;
1062 ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1063 page, offset, size, flags);
1064 if (ret == -EOPNOTSUPP) {
1065 release_sock(sk);
1066 return sock_no_sendpage(sk->sk_socket, page, offset,
1067 size, flags);
1069 if (ret < 0) {
1070 udp_flush_pending_frames(sk);
1071 goto out;
1074 up->len += size;
1075 if (!(up->corkflag || (flags&MSG_MORE)))
1076 ret = udp_push_pending_frames(sk);
1077 if (!ret)
1078 ret = size;
1079 out:
1080 release_sock(sk);
1081 return ret;
1086 * first_packet_length - return length of first packet in receive queue
1087 * @sk: socket
1089 * Drops all bad checksum frames, until a valid one is found.
1090 * Returns the length of found skb, or 0 if none is found.
1092 static unsigned int first_packet_length(struct sock *sk)
1094 struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1095 struct sk_buff *skb;
1096 unsigned int res;
1098 __skb_queue_head_init(&list_kill);
1100 spin_lock_bh(&rcvq->lock);
1101 while ((skb = skb_peek(rcvq)) != NULL &&
1102 udp_lib_checksum_complete(skb)) {
1103 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1104 IS_UDPLITE(sk));
1105 atomic_inc(&sk->sk_drops);
1106 __skb_unlink(skb, rcvq);
1107 __skb_queue_tail(&list_kill, skb);
1109 res = skb ? skb->len : 0;
1110 spin_unlock_bh(&rcvq->lock);
1112 if (!skb_queue_empty(&list_kill)) {
1113 bool slow = lock_sock_fast(sk);
1115 __skb_queue_purge(&list_kill);
1116 sk_mem_reclaim_partial(sk);
1117 unlock_sock_fast(sk, slow);
1119 return res;
1123 * IOCTL requests applicable to the UDP protocol
1126 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1128 switch (cmd) {
1129 case SIOCOUTQ:
1131 int amount = sk_wmem_alloc_get(sk);
1133 return put_user(amount, (int __user *)arg);
1136 case SIOCINQ:
1138 unsigned int amount = first_packet_length(sk);
1140 if (amount)
1142 * We will only return the amount
1143 * of this packet since that is all
1144 * that will be read.
1146 amount -= sizeof(struct udphdr);
1148 return put_user(amount, (int __user *)arg);
1151 default:
1152 return -ENOIOCTLCMD;
1155 return 0;
1157 EXPORT_SYMBOL(udp_ioctl);
1160 * This should be easy, if there is something there we
1161 * return it, otherwise we block.
1164 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1165 size_t len, int noblock, int flags, int *addr_len)
1167 struct inet_sock *inet = inet_sk(sk);
1168 struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name;
1169 struct sk_buff *skb;
1170 unsigned int ulen, copied;
1171 int peeked, off = 0;
1172 int err;
1173 int is_udplite = IS_UDPLITE(sk);
1174 bool slow;
1177 * Check any passed addresses
1179 if (addr_len)
1180 *addr_len = sizeof(*sin);
1182 if (flags & MSG_ERRQUEUE)
1183 return ip_recv_error(sk, msg, len);
1185 try_again:
1186 skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1187 &peeked, &off, &err);
1188 if (!skb)
1189 goto out;
1191 ulen = skb->len - sizeof(struct udphdr);
1192 copied = len;
1193 if (copied > ulen)
1194 copied = ulen;
1195 else if (copied < ulen)
1196 msg->msg_flags |= MSG_TRUNC;
1199 * If checksum is needed at all, try to do it while copying the
1200 * data. If the data is truncated, or if we only want a partial
1201 * coverage checksum (UDP-Lite), do it before the copy.
1204 if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
1205 if (udp_lib_checksum_complete(skb))
1206 goto csum_copy_err;
1209 if (skb_csum_unnecessary(skb))
1210 err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
1211 msg->msg_iov, copied);
1212 else {
1213 err = skb_copy_and_csum_datagram_iovec(skb,
1214 sizeof(struct udphdr),
1215 msg->msg_iov);
1217 if (err == -EINVAL)
1218 goto csum_copy_err;
1221 if (err)
1222 goto out_free;
1224 if (!peeked)
1225 UDP_INC_STATS_USER(sock_net(sk),
1226 UDP_MIB_INDATAGRAMS, is_udplite);
1228 sock_recv_ts_and_drops(msg, sk, skb);
1230 /* Copy the address. */
1231 if (sin) {
1232 sin->sin_family = AF_INET;
1233 sin->sin_port = udp_hdr(skb)->source;
1234 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1235 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1237 if (inet->cmsg_flags)
1238 ip_cmsg_recv(msg, skb);
1240 err = copied;
1241 if (flags & MSG_TRUNC)
1242 err = ulen;
1244 out_free:
1245 skb_free_datagram_locked(sk, skb);
1246 out:
1247 return err;
1249 csum_copy_err:
1250 slow = lock_sock_fast(sk);
1251 if (!skb_kill_datagram(sk, skb, flags))
1252 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1253 unlock_sock_fast(sk, slow);
1255 if (noblock)
1256 return -EAGAIN;
1258 /* starting over for a new packet */
1259 msg->msg_flags &= ~MSG_TRUNC;
1260 goto try_again;
1264 int udp_disconnect(struct sock *sk, int flags)
1266 struct inet_sock *inet = inet_sk(sk);
1268 * 1003.1g - break association.
1271 sk->sk_state = TCP_CLOSE;
1272 inet->inet_daddr = 0;
1273 inet->inet_dport = 0;
1274 sock_rps_reset_rxhash(sk);
1275 sk->sk_bound_dev_if = 0;
1276 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1277 inet_reset_saddr(sk);
1279 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1280 sk->sk_prot->unhash(sk);
1281 inet->inet_sport = 0;
1283 sk_dst_reset(sk);
1284 return 0;
1286 EXPORT_SYMBOL(udp_disconnect);
1288 void udp_lib_unhash(struct sock *sk)
1290 if (sk_hashed(sk)) {
1291 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1292 struct udp_hslot *hslot, *hslot2;
1294 hslot = udp_hashslot(udptable, sock_net(sk),
1295 udp_sk(sk)->udp_port_hash);
1296 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1298 spin_lock_bh(&hslot->lock);
1299 if (sk_nulls_del_node_init_rcu(sk)) {
1300 hslot->count--;
1301 inet_sk(sk)->inet_num = 0;
1302 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1304 spin_lock(&hslot2->lock);
1305 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1306 hslot2->count--;
1307 spin_unlock(&hslot2->lock);
1309 spin_unlock_bh(&hslot->lock);
1312 EXPORT_SYMBOL(udp_lib_unhash);
1315 * inet_rcv_saddr was changed, we must rehash secondary hash
1317 void udp_lib_rehash(struct sock *sk, u16 newhash)
1319 if (sk_hashed(sk)) {
1320 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1321 struct udp_hslot *hslot, *hslot2, *nhslot2;
1323 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1324 nhslot2 = udp_hashslot2(udptable, newhash);
1325 udp_sk(sk)->udp_portaddr_hash = newhash;
1326 if (hslot2 != nhslot2) {
1327 hslot = udp_hashslot(udptable, sock_net(sk),
1328 udp_sk(sk)->udp_port_hash);
1329 /* we must lock primary chain too */
1330 spin_lock_bh(&hslot->lock);
1332 spin_lock(&hslot2->lock);
1333 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1334 hslot2->count--;
1335 spin_unlock(&hslot2->lock);
1337 spin_lock(&nhslot2->lock);
1338 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1339 &nhslot2->head);
1340 nhslot2->count++;
1341 spin_unlock(&nhslot2->lock);
1343 spin_unlock_bh(&hslot->lock);
1347 EXPORT_SYMBOL(udp_lib_rehash);
1349 static void udp_v4_rehash(struct sock *sk)
1351 u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1352 inet_sk(sk)->inet_rcv_saddr,
1353 inet_sk(sk)->inet_num);
1354 udp_lib_rehash(sk, new_hash);
1357 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1359 int rc;
1361 if (inet_sk(sk)->inet_daddr)
1362 sock_rps_save_rxhash(sk, skb);
1364 rc = sock_queue_rcv_skb(sk, skb);
1365 if (rc < 0) {
1366 int is_udplite = IS_UDPLITE(sk);
1368 /* Note that an ENOMEM error is charged twice */
1369 if (rc == -ENOMEM)
1370 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1371 is_udplite);
1372 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1373 kfree_skb(skb);
1374 trace_udp_fail_queue_rcv_skb(rc, sk);
1375 return -1;
1378 return 0;
1382 /* returns:
1383 * -1: error
1384 * 0: success
1385 * >0: "udp encap" protocol resubmission
1387 * Note that in the success and error cases, the skb is assumed to
1388 * have either been requeued or freed.
1390 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1392 struct udp_sock *up = udp_sk(sk);
1393 int rc;
1394 int is_udplite = IS_UDPLITE(sk);
1397 * Charge it to the socket, dropping if the queue is full.
1399 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1400 goto drop;
1401 nf_reset(skb);
1403 if (up->encap_type) {
1404 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1407 * This is an encapsulation socket so pass the skb to
1408 * the socket's udp_encap_rcv() hook. Otherwise, just
1409 * fall through and pass this up the UDP socket.
1410 * up->encap_rcv() returns the following value:
1411 * =0 if skb was successfully passed to the encap
1412 * handler or was discarded by it.
1413 * >0 if skb should be passed on to UDP.
1414 * <0 if skb should be resubmitted as proto -N
1417 /* if we're overly short, let UDP handle it */
1418 encap_rcv = ACCESS_ONCE(up->encap_rcv);
1419 if (skb->len > sizeof(struct udphdr) && encap_rcv != NULL) {
1420 int ret;
1422 ret = encap_rcv(sk, skb);
1423 if (ret <= 0) {
1424 UDP_INC_STATS_BH(sock_net(sk),
1425 UDP_MIB_INDATAGRAMS,
1426 is_udplite);
1427 return -ret;
1431 /* FALLTHROUGH -- it's a UDP Packet */
1435 * UDP-Lite specific tests, ignored on UDP sockets
1437 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
1440 * MIB statistics other than incrementing the error count are
1441 * disabled for the following two types of errors: these depend
1442 * on the application settings, not on the functioning of the
1443 * protocol stack as such.
1445 * RFC 3828 here recommends (sec 3.3): "There should also be a
1446 * way ... to ... at least let the receiving application block
1447 * delivery of packets with coverage values less than a value
1448 * provided by the application."
1450 if (up->pcrlen == 0) { /* full coverage was set */
1451 LIMIT_NETDEBUG(KERN_WARNING "UDPLite: partial coverage %d while full coverage %d requested\n",
1452 UDP_SKB_CB(skb)->cscov, skb->len);
1453 goto drop;
1455 /* The next case involves violating the min. coverage requested
1456 * by the receiver. This is subtle: if receiver wants x and x is
1457 * greater than the buffersize/MTU then receiver will complain
1458 * that it wants x while sender emits packets of smaller size y.
1459 * Therefore the above ...()->partial_cov statement is essential.
1461 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
1462 LIMIT_NETDEBUG(KERN_WARNING "UDPLite: coverage %d too small, need min %d\n",
1463 UDP_SKB_CB(skb)->cscov, up->pcrlen);
1464 goto drop;
1468 if (rcu_access_pointer(sk->sk_filter) &&
1469 udp_lib_checksum_complete(skb))
1470 goto drop;
1473 if (sk_rcvqueues_full(sk, skb))
1474 goto drop;
1476 rc = 0;
1478 ipv4_pktinfo_prepare(skb);
1479 bh_lock_sock(sk);
1480 if (!sock_owned_by_user(sk))
1481 rc = __udp_queue_rcv_skb(sk, skb);
1482 else if (sk_add_backlog(sk, skb)) {
1483 bh_unlock_sock(sk);
1484 goto drop;
1486 bh_unlock_sock(sk);
1488 return rc;
1490 drop:
1491 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1492 atomic_inc(&sk->sk_drops);
1493 kfree_skb(skb);
1494 return -1;
1498 static void flush_stack(struct sock **stack, unsigned int count,
1499 struct sk_buff *skb, unsigned int final)
1501 unsigned int i;
1502 struct sk_buff *skb1 = NULL;
1503 struct sock *sk;
1505 for (i = 0; i < count; i++) {
1506 sk = stack[i];
1507 if (likely(skb1 == NULL))
1508 skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1510 if (!skb1) {
1511 atomic_inc(&sk->sk_drops);
1512 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1513 IS_UDPLITE(sk));
1514 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1515 IS_UDPLITE(sk));
1518 if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1519 skb1 = NULL;
1521 if (unlikely(skb1))
1522 kfree_skb(skb1);
1526 * Multicasts and broadcasts go to each listener.
1528 * Note: called only from the BH handler context.
1530 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1531 struct udphdr *uh,
1532 __be32 saddr, __be32 daddr,
1533 struct udp_table *udptable)
1535 struct sock *sk, *stack[256 / sizeof(struct sock *)];
1536 struct udp_hslot *hslot = udp_hashslot(udptable, net, ntohs(uh->dest));
1537 int dif;
1538 unsigned int i, count = 0;
1540 spin_lock(&hslot->lock);
1541 sk = sk_nulls_head(&hslot->head);
1542 dif = skb->dev->ifindex;
1543 sk = udp_v4_mcast_next(net, sk, uh->dest, daddr, uh->source, saddr, dif);
1544 while (sk) {
1545 stack[count++] = sk;
1546 sk = udp_v4_mcast_next(net, sk_nulls_next(sk), uh->dest,
1547 daddr, uh->source, saddr, dif);
1548 if (unlikely(count == ARRAY_SIZE(stack))) {
1549 if (!sk)
1550 break;
1551 flush_stack(stack, count, skb, ~0);
1552 count = 0;
1556 * before releasing chain lock, we must take a reference on sockets
1558 for (i = 0; i < count; i++)
1559 sock_hold(stack[i]);
1561 spin_unlock(&hslot->lock);
1564 * do the slow work with no lock held
1566 if (count) {
1567 flush_stack(stack, count, skb, count - 1);
1569 for (i = 0; i < count; i++)
1570 sock_put(stack[i]);
1571 } else {
1572 kfree_skb(skb);
1574 return 0;
1577 /* Initialize UDP checksum. If exited with zero value (success),
1578 * CHECKSUM_UNNECESSARY means, that no more checks are required.
1579 * Otherwise, csum completion requires chacksumming packet body,
1580 * including udp header and folding it to skb->csum.
1582 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1583 int proto)
1585 const struct iphdr *iph;
1586 int err;
1588 UDP_SKB_CB(skb)->partial_cov = 0;
1589 UDP_SKB_CB(skb)->cscov = skb->len;
1591 if (proto == IPPROTO_UDPLITE) {
1592 err = udplite_checksum_init(skb, uh);
1593 if (err)
1594 return err;
1597 iph = ip_hdr(skb);
1598 if (uh->check == 0) {
1599 skb->ip_summed = CHECKSUM_UNNECESSARY;
1600 } else if (skb->ip_summed == CHECKSUM_COMPLETE) {
1601 if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
1602 proto, skb->csum))
1603 skb->ip_summed = CHECKSUM_UNNECESSARY;
1605 if (!skb_csum_unnecessary(skb))
1606 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1607 skb->len, proto, 0);
1608 /* Probably, we should checksum udp header (it should be in cache
1609 * in any case) and data in tiny packets (< rx copybreak).
1612 return 0;
1616 * All we need to do is get the socket, and then do a checksum.
1619 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1620 int proto)
1622 struct sock *sk;
1623 struct udphdr *uh;
1624 unsigned short ulen;
1625 struct rtable *rt = skb_rtable(skb);
1626 __be32 saddr, daddr;
1627 struct net *net = dev_net(skb->dev);
1630 * Validate the packet.
1632 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1633 goto drop; /* No space for header. */
1635 uh = udp_hdr(skb);
1636 ulen = ntohs(uh->len);
1637 saddr = ip_hdr(skb)->saddr;
1638 daddr = ip_hdr(skb)->daddr;
1640 if (ulen > skb->len)
1641 goto short_packet;
1643 if (proto == IPPROTO_UDP) {
1644 /* UDP validates ulen. */
1645 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1646 goto short_packet;
1647 uh = udp_hdr(skb);
1650 if (udp4_csum_init(skb, uh, proto))
1651 goto csum_error;
1653 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1654 return __udp4_lib_mcast_deliver(net, skb, uh,
1655 saddr, daddr, udptable);
1657 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1659 if (sk != NULL) {
1660 int ret = udp_queue_rcv_skb(sk, skb);
1661 sock_put(sk);
1663 /* a return value > 0 means to resubmit the input, but
1664 * it wants the return to be -protocol, or 0
1666 if (ret > 0)
1667 return -ret;
1668 return 0;
1671 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1672 goto drop;
1673 nf_reset(skb);
1675 /* No socket. Drop packet silently, if checksum is wrong */
1676 if (udp_lib_checksum_complete(skb))
1677 goto csum_error;
1679 UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1680 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1683 * Hmm. We got an UDP packet to a port to which we
1684 * don't wanna listen. Ignore it.
1686 kfree_skb(skb);
1687 return 0;
1689 short_packet:
1690 LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1691 proto == IPPROTO_UDPLITE ? "Lite" : "",
1692 &saddr, ntohs(uh->source),
1693 ulen, skb->len,
1694 &daddr, ntohs(uh->dest));
1695 goto drop;
1697 csum_error:
1699 * RFC1122: OK. Discards the bad packet silently (as far as
1700 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1702 LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1703 proto == IPPROTO_UDPLITE ? "Lite" : "",
1704 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1705 ulen);
1706 drop:
1707 UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1708 kfree_skb(skb);
1709 return 0;
1712 int udp_rcv(struct sk_buff *skb)
1714 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
1717 void udp_destroy_sock(struct sock *sk)
1719 bool slow = lock_sock_fast(sk);
1720 udp_flush_pending_frames(sk);
1721 unlock_sock_fast(sk, slow);
1725 * Socket option code for UDP
1727 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
1728 char __user *optval, unsigned int optlen,
1729 int (*push_pending_frames)(struct sock *))
1731 struct udp_sock *up = udp_sk(sk);
1732 int val;
1733 int err = 0;
1734 int is_udplite = IS_UDPLITE(sk);
1736 if (optlen < sizeof(int))
1737 return -EINVAL;
1739 if (get_user(val, (int __user *)optval))
1740 return -EFAULT;
1742 switch (optname) {
1743 case UDP_CORK:
1744 if (val != 0) {
1745 up->corkflag = 1;
1746 } else {
1747 up->corkflag = 0;
1748 lock_sock(sk);
1749 (*push_pending_frames)(sk);
1750 release_sock(sk);
1752 break;
1754 case UDP_ENCAP:
1755 switch (val) {
1756 case 0:
1757 case UDP_ENCAP_ESPINUDP:
1758 case UDP_ENCAP_ESPINUDP_NON_IKE:
1759 up->encap_rcv = xfrm4_udp_encap_rcv;
1760 /* FALLTHROUGH */
1761 case UDP_ENCAP_L2TPINUDP:
1762 up->encap_type = val;
1763 break;
1764 default:
1765 err = -ENOPROTOOPT;
1766 break;
1768 break;
1771 * UDP-Lite's partial checksum coverage (RFC 3828).
1773 /* The sender sets actual checksum coverage length via this option.
1774 * The case coverage > packet length is handled by send module. */
1775 case UDPLITE_SEND_CSCOV:
1776 if (!is_udplite) /* Disable the option on UDP sockets */
1777 return -ENOPROTOOPT;
1778 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
1779 val = 8;
1780 else if (val > USHRT_MAX)
1781 val = USHRT_MAX;
1782 up->pcslen = val;
1783 up->pcflag |= UDPLITE_SEND_CC;
1784 break;
1786 /* The receiver specifies a minimum checksum coverage value. To make
1787 * sense, this should be set to at least 8 (as done below). If zero is
1788 * used, this again means full checksum coverage. */
1789 case UDPLITE_RECV_CSCOV:
1790 if (!is_udplite) /* Disable the option on UDP sockets */
1791 return -ENOPROTOOPT;
1792 if (val != 0 && val < 8) /* Avoid silly minimal values. */
1793 val = 8;
1794 else if (val > USHRT_MAX)
1795 val = USHRT_MAX;
1796 up->pcrlen = val;
1797 up->pcflag |= UDPLITE_RECV_CC;
1798 break;
1800 default:
1801 err = -ENOPROTOOPT;
1802 break;
1805 return err;
1807 EXPORT_SYMBOL(udp_lib_setsockopt);
1809 int udp_setsockopt(struct sock *sk, int level, int optname,
1810 char __user *optval, unsigned int optlen)
1812 if (level == SOL_UDP || level == SOL_UDPLITE)
1813 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1814 udp_push_pending_frames);
1815 return ip_setsockopt(sk, level, optname, optval, optlen);
1818 #ifdef CONFIG_COMPAT
1819 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
1820 char __user *optval, unsigned int optlen)
1822 if (level == SOL_UDP || level == SOL_UDPLITE)
1823 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1824 udp_push_pending_frames);
1825 return compat_ip_setsockopt(sk, level, optname, optval, optlen);
1827 #endif
1829 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
1830 char __user *optval, int __user *optlen)
1832 struct udp_sock *up = udp_sk(sk);
1833 int val, len;
1835 if (get_user(len, optlen))
1836 return -EFAULT;
1838 len = min_t(unsigned int, len, sizeof(int));
1840 if (len < 0)
1841 return -EINVAL;
1843 switch (optname) {
1844 case UDP_CORK:
1845 val = up->corkflag;
1846 break;
1848 case UDP_ENCAP:
1849 val = up->encap_type;
1850 break;
1852 /* The following two cannot be changed on UDP sockets, the return is
1853 * always 0 (which corresponds to the full checksum coverage of UDP). */
1854 case UDPLITE_SEND_CSCOV:
1855 val = up->pcslen;
1856 break;
1858 case UDPLITE_RECV_CSCOV:
1859 val = up->pcrlen;
1860 break;
1862 default:
1863 return -ENOPROTOOPT;
1866 if (put_user(len, optlen))
1867 return -EFAULT;
1868 if (copy_to_user(optval, &val, len))
1869 return -EFAULT;
1870 return 0;
1872 EXPORT_SYMBOL(udp_lib_getsockopt);
1874 int udp_getsockopt(struct sock *sk, int level, int optname,
1875 char __user *optval, int __user *optlen)
1877 if (level == SOL_UDP || level == SOL_UDPLITE)
1878 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1879 return ip_getsockopt(sk, level, optname, optval, optlen);
1882 #ifdef CONFIG_COMPAT
1883 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
1884 char __user *optval, int __user *optlen)
1886 if (level == SOL_UDP || level == SOL_UDPLITE)
1887 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1888 return compat_ip_getsockopt(sk, level, optname, optval, optlen);
1890 #endif
1892 * udp_poll - wait for a UDP event.
1893 * @file - file struct
1894 * @sock - socket
1895 * @wait - poll table
1897 * This is same as datagram poll, except for the special case of
1898 * blocking sockets. If application is using a blocking fd
1899 * and a packet with checksum error is in the queue;
1900 * then it could get return from select indicating data available
1901 * but then block when reading it. Add special case code
1902 * to work around these arguably broken applications.
1904 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
1906 unsigned int mask = datagram_poll(file, sock, wait);
1907 struct sock *sk = sock->sk;
1909 /* Check for false positives due to checksum errors */
1910 if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
1911 !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
1912 mask &= ~(POLLIN | POLLRDNORM);
1914 return mask;
1917 EXPORT_SYMBOL(udp_poll);
1919 struct proto udp_prot = {
1920 .name = "UDP",
1921 .owner = THIS_MODULE,
1922 .close = udp_lib_close,
1923 .connect = ip4_datagram_connect,
1924 .disconnect = udp_disconnect,
1925 .ioctl = udp_ioctl,
1926 .destroy = udp_destroy_sock,
1927 .setsockopt = udp_setsockopt,
1928 .getsockopt = udp_getsockopt,
1929 .sendmsg = udp_sendmsg,
1930 .recvmsg = udp_recvmsg,
1931 .sendpage = udp_sendpage,
1932 .backlog_rcv = __udp_queue_rcv_skb,
1933 .hash = udp_lib_hash,
1934 .unhash = udp_lib_unhash,
1935 .rehash = udp_v4_rehash,
1936 .get_port = udp_v4_get_port,
1937 .memory_allocated = &udp_memory_allocated,
1938 .sysctl_mem = sysctl_udp_mem,
1939 .sysctl_wmem = &sysctl_udp_wmem_min,
1940 .sysctl_rmem = &sysctl_udp_rmem_min,
1941 .obj_size = sizeof(struct udp_sock),
1942 .slab_flags = SLAB_DESTROY_BY_RCU,
1943 .h.udp_table = &udp_table,
1944 #ifdef CONFIG_COMPAT
1945 .compat_setsockopt = compat_udp_setsockopt,
1946 .compat_getsockopt = compat_udp_getsockopt,
1947 #endif
1948 .clear_sk = sk_prot_clear_portaddr_nulls,
1950 EXPORT_SYMBOL(udp_prot);
1952 /* ------------------------------------------------------------------------ */
1953 #ifdef CONFIG_PROC_FS
1955 static struct sock *udp_get_first(struct seq_file *seq, int start)
1957 struct sock *sk;
1958 struct udp_iter_state *state = seq->private;
1959 struct net *net = seq_file_net(seq);
1961 for (state->bucket = start; state->bucket <= state->udp_table->mask;
1962 ++state->bucket) {
1963 struct hlist_nulls_node *node;
1964 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
1966 if (hlist_nulls_empty(&hslot->head))
1967 continue;
1969 spin_lock_bh(&hslot->lock);
1970 sk_nulls_for_each(sk, node, &hslot->head) {
1971 if (!net_eq(sock_net(sk), net))
1972 continue;
1973 if (sk->sk_family == state->family)
1974 goto found;
1976 spin_unlock_bh(&hslot->lock);
1978 sk = NULL;
1979 found:
1980 return sk;
1983 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
1985 struct udp_iter_state *state = seq->private;
1986 struct net *net = seq_file_net(seq);
1988 do {
1989 sk = sk_nulls_next(sk);
1990 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
1992 if (!sk) {
1993 if (state->bucket <= state->udp_table->mask)
1994 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
1995 return udp_get_first(seq, state->bucket + 1);
1997 return sk;
2000 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2002 struct sock *sk = udp_get_first(seq, 0);
2004 if (sk)
2005 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2006 --pos;
2007 return pos ? NULL : sk;
2010 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2012 struct udp_iter_state *state = seq->private;
2013 state->bucket = MAX_UDP_PORTS;
2015 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2018 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2020 struct sock *sk;
2022 if (v == SEQ_START_TOKEN)
2023 sk = udp_get_idx(seq, 0);
2024 else
2025 sk = udp_get_next(seq, v);
2027 ++*pos;
2028 return sk;
2031 static void udp_seq_stop(struct seq_file *seq, void *v)
2033 struct udp_iter_state *state = seq->private;
2035 if (state->bucket <= state->udp_table->mask)
2036 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2039 int udp_seq_open(struct inode *inode, struct file *file)
2041 struct udp_seq_afinfo *afinfo = PDE(inode)->data;
2042 struct udp_iter_state *s;
2043 int err;
2045 err = seq_open_net(inode, file, &afinfo->seq_ops,
2046 sizeof(struct udp_iter_state));
2047 if (err < 0)
2048 return err;
2050 s = ((struct seq_file *)file->private_data)->private;
2051 s->family = afinfo->family;
2052 s->udp_table = afinfo->udp_table;
2053 return err;
2055 EXPORT_SYMBOL(udp_seq_open);
2057 /* ------------------------------------------------------------------------ */
2058 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2060 struct proc_dir_entry *p;
2061 int rc = 0;
2063 afinfo->seq_ops.start = udp_seq_start;
2064 afinfo->seq_ops.next = udp_seq_next;
2065 afinfo->seq_ops.stop = udp_seq_stop;
2067 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2068 afinfo->seq_fops, afinfo);
2069 if (!p)
2070 rc = -ENOMEM;
2071 return rc;
2073 EXPORT_SYMBOL(udp_proc_register);
2075 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2077 proc_net_remove(net, afinfo->name);
2079 EXPORT_SYMBOL(udp_proc_unregister);
2081 /* ------------------------------------------------------------------------ */
2082 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2083 int bucket, int *len)
2085 struct inet_sock *inet = inet_sk(sp);
2086 __be32 dest = inet->inet_daddr;
2087 __be32 src = inet->inet_rcv_saddr;
2088 __u16 destp = ntohs(inet->inet_dport);
2089 __u16 srcp = ntohs(inet->inet_sport);
2091 seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2092 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %pK %d%n",
2093 bucket, src, srcp, dest, destp, sp->sk_state,
2094 sk_wmem_alloc_get(sp),
2095 sk_rmem_alloc_get(sp),
2096 0, 0L, 0, sock_i_uid(sp), 0, sock_i_ino(sp),
2097 atomic_read(&sp->sk_refcnt), sp,
2098 atomic_read(&sp->sk_drops), len);
2101 int udp4_seq_show(struct seq_file *seq, void *v)
2103 if (v == SEQ_START_TOKEN)
2104 seq_printf(seq, "%-127s\n",
2105 " sl local_address rem_address st tx_queue "
2106 "rx_queue tr tm->when retrnsmt uid timeout "
2107 "inode ref pointer drops");
2108 else {
2109 struct udp_iter_state *state = seq->private;
2110 int len;
2112 udp4_format_sock(v, seq, state->bucket, &len);
2113 seq_printf(seq, "%*s\n", 127 - len, "");
2115 return 0;
2118 static const struct file_operations udp_afinfo_seq_fops = {
2119 .owner = THIS_MODULE,
2120 .open = udp_seq_open,
2121 .read = seq_read,
2122 .llseek = seq_lseek,
2123 .release = seq_release_net
2126 /* ------------------------------------------------------------------------ */
2127 static struct udp_seq_afinfo udp4_seq_afinfo = {
2128 .name = "udp",
2129 .family = AF_INET,
2130 .udp_table = &udp_table,
2131 .seq_fops = &udp_afinfo_seq_fops,
2132 .seq_ops = {
2133 .show = udp4_seq_show,
2137 static int __net_init udp4_proc_init_net(struct net *net)
2139 return udp_proc_register(net, &udp4_seq_afinfo);
2142 static void __net_exit udp4_proc_exit_net(struct net *net)
2144 udp_proc_unregister(net, &udp4_seq_afinfo);
2147 static struct pernet_operations udp4_net_ops = {
2148 .init = udp4_proc_init_net,
2149 .exit = udp4_proc_exit_net,
2152 int __init udp4_proc_init(void)
2154 return register_pernet_subsys(&udp4_net_ops);
2157 void udp4_proc_exit(void)
2159 unregister_pernet_subsys(&udp4_net_ops);
2161 #endif /* CONFIG_PROC_FS */
2163 static __initdata unsigned long uhash_entries;
2164 static int __init set_uhash_entries(char *str)
2166 if (!str)
2167 return 0;
2168 uhash_entries = simple_strtoul(str, &str, 0);
2169 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2170 uhash_entries = UDP_HTABLE_SIZE_MIN;
2171 return 1;
2173 __setup("uhash_entries=", set_uhash_entries);
2175 void __init udp_table_init(struct udp_table *table, const char *name)
2177 unsigned int i;
2179 if (!CONFIG_BASE_SMALL)
2180 table->hash = alloc_large_system_hash(name,
2181 2 * sizeof(struct udp_hslot),
2182 uhash_entries,
2183 21, /* one slot per 2 MB */
2185 &table->log,
2186 &table->mask,
2187 64 * 1024);
2189 * Make sure hash table has the minimum size
2191 if (CONFIG_BASE_SMALL || table->mask < UDP_HTABLE_SIZE_MIN - 1) {
2192 table->hash = kmalloc(UDP_HTABLE_SIZE_MIN *
2193 2 * sizeof(struct udp_hslot), GFP_KERNEL);
2194 if (!table->hash)
2195 panic(name);
2196 table->log = ilog2(UDP_HTABLE_SIZE_MIN);
2197 table->mask = UDP_HTABLE_SIZE_MIN - 1;
2199 table->hash2 = table->hash + (table->mask + 1);
2200 for (i = 0; i <= table->mask; i++) {
2201 INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2202 table->hash[i].count = 0;
2203 spin_lock_init(&table->hash[i].lock);
2205 for (i = 0; i <= table->mask; i++) {
2206 INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2207 table->hash2[i].count = 0;
2208 spin_lock_init(&table->hash2[i].lock);
2212 void __init udp_init(void)
2214 unsigned long limit;
2216 udp_table_init(&udp_table, "UDP");
2217 limit = nr_free_buffer_pages() / 8;
2218 limit = max(limit, 128UL);
2219 sysctl_udp_mem[0] = limit / 4 * 3;
2220 sysctl_udp_mem[1] = limit;
2221 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2223 sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2224 sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2227 int udp4_ufo_send_check(struct sk_buff *skb)
2229 const struct iphdr *iph;
2230 struct udphdr *uh;
2232 if (!pskb_may_pull(skb, sizeof(*uh)))
2233 return -EINVAL;
2235 iph = ip_hdr(skb);
2236 uh = udp_hdr(skb);
2238 uh->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
2239 IPPROTO_UDP, 0);
2240 skb->csum_start = skb_transport_header(skb) - skb->head;
2241 skb->csum_offset = offsetof(struct udphdr, check);
2242 skb->ip_summed = CHECKSUM_PARTIAL;
2243 return 0;
2246 struct sk_buff *udp4_ufo_fragment(struct sk_buff *skb,
2247 netdev_features_t features)
2249 struct sk_buff *segs = ERR_PTR(-EINVAL);
2250 unsigned int mss;
2251 int offset;
2252 __wsum csum;
2254 mss = skb_shinfo(skb)->gso_size;
2255 if (unlikely(skb->len <= mss))
2256 goto out;
2258 if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2259 /* Packet is from an untrusted source, reset gso_segs. */
2260 int type = skb_shinfo(skb)->gso_type;
2262 if (unlikely(type & ~(SKB_GSO_UDP | SKB_GSO_DODGY) ||
2263 !(type & (SKB_GSO_UDP))))
2264 goto out;
2266 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2268 segs = NULL;
2269 goto out;
2272 /* Do software UFO. Complete and fill in the UDP checksum as HW cannot
2273 * do checksum of UDP packets sent as multiple IP fragments.
2275 offset = skb_checksum_start_offset(skb);
2276 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2277 offset += skb->csum_offset;
2278 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2279 skb->ip_summed = CHECKSUM_NONE;
2281 /* Fragment the skb. IP headers of the fragments are updated in
2282 * inet_gso_segment()
2284 segs = skb_segment(skb, features);
2285 out:
2286 return segs;