Merge tag 'ovl-fixes-4.19-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/mszer...
[linux-2.6/btrfs-unstable.git] / mm / swapfile.c
blobd954b71c4f9c2e842e142713e1a921addb6a4c9d
1 /*
2 * linux/mm/swapfile.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
8 #include <linux/mm.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/task.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mman.h>
13 #include <linux/slab.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/swap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/pagemap.h>
18 #include <linux/namei.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/random.h>
22 #include <linux/writeback.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/init.h>
26 #include <linux/ksm.h>
27 #include <linux/rmap.h>
28 #include <linux/security.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mutex.h>
31 #include <linux/capability.h>
32 #include <linux/syscalls.h>
33 #include <linux/memcontrol.h>
34 #include <linux/poll.h>
35 #include <linux/oom.h>
36 #include <linux/frontswap.h>
37 #include <linux/swapfile.h>
38 #include <linux/export.h>
39 #include <linux/swap_slots.h>
40 #include <linux/sort.h>
42 #include <asm/pgtable.h>
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48 unsigned char);
49 static void free_swap_count_continuations(struct swap_info_struct *);
50 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
56 * Some modules use swappable objects and may try to swap them out under
57 * memory pressure (via the shrinker). Before doing so, they may wish to
58 * check to see if any swap space is available.
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
71 * all active swap_info_structs
72 * protected with swap_lock, and ordered by priority.
74 PLIST_HEAD(swap_active_head);
77 * all available (active, not full) swap_info_structs
78 * protected with swap_avail_lock, ordered by priority.
79 * This is used by get_swap_page() instead of swap_active_head
80 * because swap_active_head includes all swap_info_structs,
81 * but get_swap_page() doesn't need to look at full ones.
82 * This uses its own lock instead of swap_lock because when a
83 * swap_info_struct changes between not-full/full, it needs to
84 * add/remove itself to/from this list, but the swap_info_struct->lock
85 * is held and the locking order requires swap_lock to be taken
86 * before any swap_info_struct->lock.
88 static struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
93 static DEFINE_MUTEX(swapon_mutex);
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
101 static inline unsigned char swap_count(unsigned char ent)
103 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
106 /* returns 1 if swap entry is freed */
107 static int
108 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
110 swp_entry_t entry = swp_entry(si->type, offset);
111 struct page *page;
112 int ret = 0;
114 page = find_get_page(swap_address_space(entry), swp_offset(entry));
115 if (!page)
116 return 0;
118 * This function is called from scan_swap_map() and it's called
119 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
120 * We have to use trylock for avoiding deadlock. This is a special
121 * case and you should use try_to_free_swap() with explicit lock_page()
122 * in usual operations.
124 if (trylock_page(page)) {
125 ret = try_to_free_swap(page);
126 unlock_page(page);
128 put_page(page);
129 return ret;
133 * swapon tell device that all the old swap contents can be discarded,
134 * to allow the swap device to optimize its wear-levelling.
136 static int discard_swap(struct swap_info_struct *si)
138 struct swap_extent *se;
139 sector_t start_block;
140 sector_t nr_blocks;
141 int err = 0;
143 /* Do not discard the swap header page! */
144 se = &si->first_swap_extent;
145 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
146 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
147 if (nr_blocks) {
148 err = blkdev_issue_discard(si->bdev, start_block,
149 nr_blocks, GFP_KERNEL, 0);
150 if (err)
151 return err;
152 cond_resched();
155 list_for_each_entry(se, &si->first_swap_extent.list, list) {
156 start_block = se->start_block << (PAGE_SHIFT - 9);
157 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
159 err = blkdev_issue_discard(si->bdev, start_block,
160 nr_blocks, GFP_KERNEL, 0);
161 if (err)
162 break;
164 cond_resched();
166 return err; /* That will often be -EOPNOTSUPP */
170 * swap allocation tell device that a cluster of swap can now be discarded,
171 * to allow the swap device to optimize its wear-levelling.
173 static void discard_swap_cluster(struct swap_info_struct *si,
174 pgoff_t start_page, pgoff_t nr_pages)
176 struct swap_extent *se = si->curr_swap_extent;
177 int found_extent = 0;
179 while (nr_pages) {
180 if (se->start_page <= start_page &&
181 start_page < se->start_page + se->nr_pages) {
182 pgoff_t offset = start_page - se->start_page;
183 sector_t start_block = se->start_block + offset;
184 sector_t nr_blocks = se->nr_pages - offset;
186 if (nr_blocks > nr_pages)
187 nr_blocks = nr_pages;
188 start_page += nr_blocks;
189 nr_pages -= nr_blocks;
191 if (!found_extent++)
192 si->curr_swap_extent = se;
194 start_block <<= PAGE_SHIFT - 9;
195 nr_blocks <<= PAGE_SHIFT - 9;
196 if (blkdev_issue_discard(si->bdev, start_block,
197 nr_blocks, GFP_NOIO, 0))
198 break;
201 se = list_next_entry(se, list);
205 #ifdef CONFIG_THP_SWAP
206 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
208 #define swap_entry_size(size) (size)
209 #else
210 #define SWAPFILE_CLUSTER 256
213 * Define swap_entry_size() as constant to let compiler to optimize
214 * out some code if !CONFIG_THP_SWAP
216 #define swap_entry_size(size) 1
217 #endif
218 #define LATENCY_LIMIT 256
220 static inline void cluster_set_flag(struct swap_cluster_info *info,
221 unsigned int flag)
223 info->flags = flag;
226 static inline unsigned int cluster_count(struct swap_cluster_info *info)
228 return info->data;
231 static inline void cluster_set_count(struct swap_cluster_info *info,
232 unsigned int c)
234 info->data = c;
237 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
238 unsigned int c, unsigned int f)
240 info->flags = f;
241 info->data = c;
244 static inline unsigned int cluster_next(struct swap_cluster_info *info)
246 return info->data;
249 static inline void cluster_set_next(struct swap_cluster_info *info,
250 unsigned int n)
252 info->data = n;
255 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
256 unsigned int n, unsigned int f)
258 info->flags = f;
259 info->data = n;
262 static inline bool cluster_is_free(struct swap_cluster_info *info)
264 return info->flags & CLUSTER_FLAG_FREE;
267 static inline bool cluster_is_null(struct swap_cluster_info *info)
269 return info->flags & CLUSTER_FLAG_NEXT_NULL;
272 static inline void cluster_set_null(struct swap_cluster_info *info)
274 info->flags = CLUSTER_FLAG_NEXT_NULL;
275 info->data = 0;
278 static inline bool cluster_is_huge(struct swap_cluster_info *info)
280 if (IS_ENABLED(CONFIG_THP_SWAP))
281 return info->flags & CLUSTER_FLAG_HUGE;
282 return false;
285 static inline void cluster_clear_huge(struct swap_cluster_info *info)
287 info->flags &= ~CLUSTER_FLAG_HUGE;
290 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
291 unsigned long offset)
293 struct swap_cluster_info *ci;
295 ci = si->cluster_info;
296 if (ci) {
297 ci += offset / SWAPFILE_CLUSTER;
298 spin_lock(&ci->lock);
300 return ci;
303 static inline void unlock_cluster(struct swap_cluster_info *ci)
305 if (ci)
306 spin_unlock(&ci->lock);
310 * Determine the locking method in use for this device. Return
311 * swap_cluster_info if SSD-style cluster-based locking is in place.
313 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
314 struct swap_info_struct *si, unsigned long offset)
316 struct swap_cluster_info *ci;
318 /* Try to use fine-grained SSD-style locking if available: */
319 ci = lock_cluster(si, offset);
320 /* Otherwise, fall back to traditional, coarse locking: */
321 if (!ci)
322 spin_lock(&si->lock);
324 return ci;
327 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
328 struct swap_cluster_info *ci)
330 if (ci)
331 unlock_cluster(ci);
332 else
333 spin_unlock(&si->lock);
336 static inline bool cluster_list_empty(struct swap_cluster_list *list)
338 return cluster_is_null(&list->head);
341 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
343 return cluster_next(&list->head);
346 static void cluster_list_init(struct swap_cluster_list *list)
348 cluster_set_null(&list->head);
349 cluster_set_null(&list->tail);
352 static void cluster_list_add_tail(struct swap_cluster_list *list,
353 struct swap_cluster_info *ci,
354 unsigned int idx)
356 if (cluster_list_empty(list)) {
357 cluster_set_next_flag(&list->head, idx, 0);
358 cluster_set_next_flag(&list->tail, idx, 0);
359 } else {
360 struct swap_cluster_info *ci_tail;
361 unsigned int tail = cluster_next(&list->tail);
364 * Nested cluster lock, but both cluster locks are
365 * only acquired when we held swap_info_struct->lock
367 ci_tail = ci + tail;
368 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
369 cluster_set_next(ci_tail, idx);
370 spin_unlock(&ci_tail->lock);
371 cluster_set_next_flag(&list->tail, idx, 0);
375 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
376 struct swap_cluster_info *ci)
378 unsigned int idx;
380 idx = cluster_next(&list->head);
381 if (cluster_next(&list->tail) == idx) {
382 cluster_set_null(&list->head);
383 cluster_set_null(&list->tail);
384 } else
385 cluster_set_next_flag(&list->head,
386 cluster_next(&ci[idx]), 0);
388 return idx;
391 /* Add a cluster to discard list and schedule it to do discard */
392 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
393 unsigned int idx)
396 * If scan_swap_map() can't find a free cluster, it will check
397 * si->swap_map directly. To make sure the discarding cluster isn't
398 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
399 * will be cleared after discard
401 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
402 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
404 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
406 schedule_work(&si->discard_work);
409 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
411 struct swap_cluster_info *ci = si->cluster_info;
413 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
414 cluster_list_add_tail(&si->free_clusters, ci, idx);
418 * Doing discard actually. After a cluster discard is finished, the cluster
419 * will be added to free cluster list. caller should hold si->lock.
421 static void swap_do_scheduled_discard(struct swap_info_struct *si)
423 struct swap_cluster_info *info, *ci;
424 unsigned int idx;
426 info = si->cluster_info;
428 while (!cluster_list_empty(&si->discard_clusters)) {
429 idx = cluster_list_del_first(&si->discard_clusters, info);
430 spin_unlock(&si->lock);
432 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
433 SWAPFILE_CLUSTER);
435 spin_lock(&si->lock);
436 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
437 __free_cluster(si, idx);
438 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
439 0, SWAPFILE_CLUSTER);
440 unlock_cluster(ci);
444 static void swap_discard_work(struct work_struct *work)
446 struct swap_info_struct *si;
448 si = container_of(work, struct swap_info_struct, discard_work);
450 spin_lock(&si->lock);
451 swap_do_scheduled_discard(si);
452 spin_unlock(&si->lock);
455 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
457 struct swap_cluster_info *ci = si->cluster_info;
459 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
460 cluster_list_del_first(&si->free_clusters, ci);
461 cluster_set_count_flag(ci + idx, 0, 0);
464 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
466 struct swap_cluster_info *ci = si->cluster_info + idx;
468 VM_BUG_ON(cluster_count(ci) != 0);
470 * If the swap is discardable, prepare discard the cluster
471 * instead of free it immediately. The cluster will be freed
472 * after discard.
474 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
475 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
476 swap_cluster_schedule_discard(si, idx);
477 return;
480 __free_cluster(si, idx);
484 * The cluster corresponding to page_nr will be used. The cluster will be
485 * removed from free cluster list and its usage counter will be increased.
487 static void inc_cluster_info_page(struct swap_info_struct *p,
488 struct swap_cluster_info *cluster_info, unsigned long page_nr)
490 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
492 if (!cluster_info)
493 return;
494 if (cluster_is_free(&cluster_info[idx]))
495 alloc_cluster(p, idx);
497 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
498 cluster_set_count(&cluster_info[idx],
499 cluster_count(&cluster_info[idx]) + 1);
503 * The cluster corresponding to page_nr decreases one usage. If the usage
504 * counter becomes 0, which means no page in the cluster is in using, we can
505 * optionally discard the cluster and add it to free cluster list.
507 static void dec_cluster_info_page(struct swap_info_struct *p,
508 struct swap_cluster_info *cluster_info, unsigned long page_nr)
510 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
512 if (!cluster_info)
513 return;
515 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
516 cluster_set_count(&cluster_info[idx],
517 cluster_count(&cluster_info[idx]) - 1);
519 if (cluster_count(&cluster_info[idx]) == 0)
520 free_cluster(p, idx);
524 * It's possible scan_swap_map() uses a free cluster in the middle of free
525 * cluster list. Avoiding such abuse to avoid list corruption.
527 static bool
528 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
529 unsigned long offset)
531 struct percpu_cluster *percpu_cluster;
532 bool conflict;
534 offset /= SWAPFILE_CLUSTER;
535 conflict = !cluster_list_empty(&si->free_clusters) &&
536 offset != cluster_list_first(&si->free_clusters) &&
537 cluster_is_free(&si->cluster_info[offset]);
539 if (!conflict)
540 return false;
542 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
543 cluster_set_null(&percpu_cluster->index);
544 return true;
548 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
549 * might involve allocating a new cluster for current CPU too.
551 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
552 unsigned long *offset, unsigned long *scan_base)
554 struct percpu_cluster *cluster;
555 struct swap_cluster_info *ci;
556 bool found_free;
557 unsigned long tmp, max;
559 new_cluster:
560 cluster = this_cpu_ptr(si->percpu_cluster);
561 if (cluster_is_null(&cluster->index)) {
562 if (!cluster_list_empty(&si->free_clusters)) {
563 cluster->index = si->free_clusters.head;
564 cluster->next = cluster_next(&cluster->index) *
565 SWAPFILE_CLUSTER;
566 } else if (!cluster_list_empty(&si->discard_clusters)) {
568 * we don't have free cluster but have some clusters in
569 * discarding, do discard now and reclaim them
571 swap_do_scheduled_discard(si);
572 *scan_base = *offset = si->cluster_next;
573 goto new_cluster;
574 } else
575 return false;
578 found_free = false;
581 * Other CPUs can use our cluster if they can't find a free cluster,
582 * check if there is still free entry in the cluster
584 tmp = cluster->next;
585 max = min_t(unsigned long, si->max,
586 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
587 if (tmp >= max) {
588 cluster_set_null(&cluster->index);
589 goto new_cluster;
591 ci = lock_cluster(si, tmp);
592 while (tmp < max) {
593 if (!si->swap_map[tmp]) {
594 found_free = true;
595 break;
597 tmp++;
599 unlock_cluster(ci);
600 if (!found_free) {
601 cluster_set_null(&cluster->index);
602 goto new_cluster;
604 cluster->next = tmp + 1;
605 *offset = tmp;
606 *scan_base = tmp;
607 return found_free;
610 static void __del_from_avail_list(struct swap_info_struct *p)
612 int nid;
614 for_each_node(nid)
615 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
618 static void del_from_avail_list(struct swap_info_struct *p)
620 spin_lock(&swap_avail_lock);
621 __del_from_avail_list(p);
622 spin_unlock(&swap_avail_lock);
625 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
626 unsigned int nr_entries)
628 unsigned int end = offset + nr_entries - 1;
630 if (offset == si->lowest_bit)
631 si->lowest_bit += nr_entries;
632 if (end == si->highest_bit)
633 si->highest_bit -= nr_entries;
634 si->inuse_pages += nr_entries;
635 if (si->inuse_pages == si->pages) {
636 si->lowest_bit = si->max;
637 si->highest_bit = 0;
638 del_from_avail_list(si);
642 static void add_to_avail_list(struct swap_info_struct *p)
644 int nid;
646 spin_lock(&swap_avail_lock);
647 for_each_node(nid) {
648 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
649 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
651 spin_unlock(&swap_avail_lock);
654 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
655 unsigned int nr_entries)
657 unsigned long end = offset + nr_entries - 1;
658 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
660 if (offset < si->lowest_bit)
661 si->lowest_bit = offset;
662 if (end > si->highest_bit) {
663 bool was_full = !si->highest_bit;
665 si->highest_bit = end;
666 if (was_full && (si->flags & SWP_WRITEOK))
667 add_to_avail_list(si);
669 atomic_long_add(nr_entries, &nr_swap_pages);
670 si->inuse_pages -= nr_entries;
671 if (si->flags & SWP_BLKDEV)
672 swap_slot_free_notify =
673 si->bdev->bd_disk->fops->swap_slot_free_notify;
674 else
675 swap_slot_free_notify = NULL;
676 while (offset <= end) {
677 frontswap_invalidate_page(si->type, offset);
678 if (swap_slot_free_notify)
679 swap_slot_free_notify(si->bdev, offset);
680 offset++;
684 static int scan_swap_map_slots(struct swap_info_struct *si,
685 unsigned char usage, int nr,
686 swp_entry_t slots[])
688 struct swap_cluster_info *ci;
689 unsigned long offset;
690 unsigned long scan_base;
691 unsigned long last_in_cluster = 0;
692 int latency_ration = LATENCY_LIMIT;
693 int n_ret = 0;
695 if (nr > SWAP_BATCH)
696 nr = SWAP_BATCH;
699 * We try to cluster swap pages by allocating them sequentially
700 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
701 * way, however, we resort to first-free allocation, starting
702 * a new cluster. This prevents us from scattering swap pages
703 * all over the entire swap partition, so that we reduce
704 * overall disk seek times between swap pages. -- sct
705 * But we do now try to find an empty cluster. -Andrea
706 * And we let swap pages go all over an SSD partition. Hugh
709 si->flags += SWP_SCANNING;
710 scan_base = offset = si->cluster_next;
712 /* SSD algorithm */
713 if (si->cluster_info) {
714 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
715 goto checks;
716 else
717 goto scan;
720 if (unlikely(!si->cluster_nr--)) {
721 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
722 si->cluster_nr = SWAPFILE_CLUSTER - 1;
723 goto checks;
726 spin_unlock(&si->lock);
729 * If seek is expensive, start searching for new cluster from
730 * start of partition, to minimize the span of allocated swap.
731 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
732 * case, just handled by scan_swap_map_try_ssd_cluster() above.
734 scan_base = offset = si->lowest_bit;
735 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
737 /* Locate the first empty (unaligned) cluster */
738 for (; last_in_cluster <= si->highest_bit; offset++) {
739 if (si->swap_map[offset])
740 last_in_cluster = offset + SWAPFILE_CLUSTER;
741 else if (offset == last_in_cluster) {
742 spin_lock(&si->lock);
743 offset -= SWAPFILE_CLUSTER - 1;
744 si->cluster_next = offset;
745 si->cluster_nr = SWAPFILE_CLUSTER - 1;
746 goto checks;
748 if (unlikely(--latency_ration < 0)) {
749 cond_resched();
750 latency_ration = LATENCY_LIMIT;
754 offset = scan_base;
755 spin_lock(&si->lock);
756 si->cluster_nr = SWAPFILE_CLUSTER - 1;
759 checks:
760 if (si->cluster_info) {
761 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
762 /* take a break if we already got some slots */
763 if (n_ret)
764 goto done;
765 if (!scan_swap_map_try_ssd_cluster(si, &offset,
766 &scan_base))
767 goto scan;
770 if (!(si->flags & SWP_WRITEOK))
771 goto no_page;
772 if (!si->highest_bit)
773 goto no_page;
774 if (offset > si->highest_bit)
775 scan_base = offset = si->lowest_bit;
777 ci = lock_cluster(si, offset);
778 /* reuse swap entry of cache-only swap if not busy. */
779 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
780 int swap_was_freed;
781 unlock_cluster(ci);
782 spin_unlock(&si->lock);
783 swap_was_freed = __try_to_reclaim_swap(si, offset);
784 spin_lock(&si->lock);
785 /* entry was freed successfully, try to use this again */
786 if (swap_was_freed)
787 goto checks;
788 goto scan; /* check next one */
791 if (si->swap_map[offset]) {
792 unlock_cluster(ci);
793 if (!n_ret)
794 goto scan;
795 else
796 goto done;
798 si->swap_map[offset] = usage;
799 inc_cluster_info_page(si, si->cluster_info, offset);
800 unlock_cluster(ci);
802 swap_range_alloc(si, offset, 1);
803 si->cluster_next = offset + 1;
804 slots[n_ret++] = swp_entry(si->type, offset);
806 /* got enough slots or reach max slots? */
807 if ((n_ret == nr) || (offset >= si->highest_bit))
808 goto done;
810 /* search for next available slot */
812 /* time to take a break? */
813 if (unlikely(--latency_ration < 0)) {
814 if (n_ret)
815 goto done;
816 spin_unlock(&si->lock);
817 cond_resched();
818 spin_lock(&si->lock);
819 latency_ration = LATENCY_LIMIT;
822 /* try to get more slots in cluster */
823 if (si->cluster_info) {
824 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
825 goto checks;
826 else
827 goto done;
829 /* non-ssd case */
830 ++offset;
832 /* non-ssd case, still more slots in cluster? */
833 if (si->cluster_nr && !si->swap_map[offset]) {
834 --si->cluster_nr;
835 goto checks;
838 done:
839 si->flags -= SWP_SCANNING;
840 return n_ret;
842 scan:
843 spin_unlock(&si->lock);
844 while (++offset <= si->highest_bit) {
845 if (!si->swap_map[offset]) {
846 spin_lock(&si->lock);
847 goto checks;
849 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
850 spin_lock(&si->lock);
851 goto checks;
853 if (unlikely(--latency_ration < 0)) {
854 cond_resched();
855 latency_ration = LATENCY_LIMIT;
858 offset = si->lowest_bit;
859 while (offset < scan_base) {
860 if (!si->swap_map[offset]) {
861 spin_lock(&si->lock);
862 goto checks;
864 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
865 spin_lock(&si->lock);
866 goto checks;
868 if (unlikely(--latency_ration < 0)) {
869 cond_resched();
870 latency_ration = LATENCY_LIMIT;
872 offset++;
874 spin_lock(&si->lock);
876 no_page:
877 si->flags -= SWP_SCANNING;
878 return n_ret;
881 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
883 unsigned long idx;
884 struct swap_cluster_info *ci;
885 unsigned long offset, i;
886 unsigned char *map;
889 * Should not even be attempting cluster allocations when huge
890 * page swap is disabled. Warn and fail the allocation.
892 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
893 VM_WARN_ON_ONCE(1);
894 return 0;
897 if (cluster_list_empty(&si->free_clusters))
898 return 0;
900 idx = cluster_list_first(&si->free_clusters);
901 offset = idx * SWAPFILE_CLUSTER;
902 ci = lock_cluster(si, offset);
903 alloc_cluster(si, idx);
904 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
906 map = si->swap_map + offset;
907 for (i = 0; i < SWAPFILE_CLUSTER; i++)
908 map[i] = SWAP_HAS_CACHE;
909 unlock_cluster(ci);
910 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
911 *slot = swp_entry(si->type, offset);
913 return 1;
916 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
918 unsigned long offset = idx * SWAPFILE_CLUSTER;
919 struct swap_cluster_info *ci;
921 ci = lock_cluster(si, offset);
922 cluster_set_count_flag(ci, 0, 0);
923 free_cluster(si, idx);
924 unlock_cluster(ci);
925 swap_range_free(si, offset, SWAPFILE_CLUSTER);
928 static unsigned long scan_swap_map(struct swap_info_struct *si,
929 unsigned char usage)
931 swp_entry_t entry;
932 int n_ret;
934 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
936 if (n_ret)
937 return swp_offset(entry);
938 else
939 return 0;
943 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
945 unsigned long size = swap_entry_size(entry_size);
946 struct swap_info_struct *si, *next;
947 long avail_pgs;
948 int n_ret = 0;
949 int node;
951 /* Only single cluster request supported */
952 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
954 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
955 if (avail_pgs <= 0)
956 goto noswap;
958 if (n_goal > SWAP_BATCH)
959 n_goal = SWAP_BATCH;
961 if (n_goal > avail_pgs)
962 n_goal = avail_pgs;
964 atomic_long_sub(n_goal * size, &nr_swap_pages);
966 spin_lock(&swap_avail_lock);
968 start_over:
969 node = numa_node_id();
970 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
971 /* requeue si to after same-priority siblings */
972 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
973 spin_unlock(&swap_avail_lock);
974 spin_lock(&si->lock);
975 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
976 spin_lock(&swap_avail_lock);
977 if (plist_node_empty(&si->avail_lists[node])) {
978 spin_unlock(&si->lock);
979 goto nextsi;
981 WARN(!si->highest_bit,
982 "swap_info %d in list but !highest_bit\n",
983 si->type);
984 WARN(!(si->flags & SWP_WRITEOK),
985 "swap_info %d in list but !SWP_WRITEOK\n",
986 si->type);
987 __del_from_avail_list(si);
988 spin_unlock(&si->lock);
989 goto nextsi;
991 if (size == SWAPFILE_CLUSTER) {
992 if (!(si->flags & SWP_FILE))
993 n_ret = swap_alloc_cluster(si, swp_entries);
994 } else
995 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
996 n_goal, swp_entries);
997 spin_unlock(&si->lock);
998 if (n_ret || size == SWAPFILE_CLUSTER)
999 goto check_out;
1000 pr_debug("scan_swap_map of si %d failed to find offset\n",
1001 si->type);
1003 spin_lock(&swap_avail_lock);
1004 nextsi:
1006 * if we got here, it's likely that si was almost full before,
1007 * and since scan_swap_map() can drop the si->lock, multiple
1008 * callers probably all tried to get a page from the same si
1009 * and it filled up before we could get one; or, the si filled
1010 * up between us dropping swap_avail_lock and taking si->lock.
1011 * Since we dropped the swap_avail_lock, the swap_avail_head
1012 * list may have been modified; so if next is still in the
1013 * swap_avail_head list then try it, otherwise start over
1014 * if we have not gotten any slots.
1016 if (plist_node_empty(&next->avail_lists[node]))
1017 goto start_over;
1020 spin_unlock(&swap_avail_lock);
1022 check_out:
1023 if (n_ret < n_goal)
1024 atomic_long_add((long)(n_goal - n_ret) * size,
1025 &nr_swap_pages);
1026 noswap:
1027 return n_ret;
1030 /* The only caller of this function is now suspend routine */
1031 swp_entry_t get_swap_page_of_type(int type)
1033 struct swap_info_struct *si;
1034 pgoff_t offset;
1036 si = swap_info[type];
1037 spin_lock(&si->lock);
1038 if (si && (si->flags & SWP_WRITEOK)) {
1039 atomic_long_dec(&nr_swap_pages);
1040 /* This is called for allocating swap entry, not cache */
1041 offset = scan_swap_map(si, 1);
1042 if (offset) {
1043 spin_unlock(&si->lock);
1044 return swp_entry(type, offset);
1046 atomic_long_inc(&nr_swap_pages);
1048 spin_unlock(&si->lock);
1049 return (swp_entry_t) {0};
1052 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1054 struct swap_info_struct *p;
1055 unsigned long offset, type;
1057 if (!entry.val)
1058 goto out;
1059 type = swp_type(entry);
1060 if (type >= nr_swapfiles)
1061 goto bad_nofile;
1062 p = swap_info[type];
1063 if (!(p->flags & SWP_USED))
1064 goto bad_device;
1065 offset = swp_offset(entry);
1066 if (offset >= p->max)
1067 goto bad_offset;
1068 return p;
1070 bad_offset:
1071 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1072 goto out;
1073 bad_device:
1074 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1075 goto out;
1076 bad_nofile:
1077 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1078 out:
1079 return NULL;
1082 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1084 struct swap_info_struct *p;
1086 p = __swap_info_get(entry);
1087 if (!p)
1088 goto out;
1089 if (!p->swap_map[swp_offset(entry)])
1090 goto bad_free;
1091 return p;
1093 bad_free:
1094 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1095 goto out;
1096 out:
1097 return NULL;
1100 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1102 struct swap_info_struct *p;
1104 p = _swap_info_get(entry);
1105 if (p)
1106 spin_lock(&p->lock);
1107 return p;
1110 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1111 struct swap_info_struct *q)
1113 struct swap_info_struct *p;
1115 p = _swap_info_get(entry);
1117 if (p != q) {
1118 if (q != NULL)
1119 spin_unlock(&q->lock);
1120 if (p != NULL)
1121 spin_lock(&p->lock);
1123 return p;
1126 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1127 unsigned long offset,
1128 unsigned char usage)
1130 unsigned char count;
1131 unsigned char has_cache;
1133 count = p->swap_map[offset];
1135 has_cache = count & SWAP_HAS_CACHE;
1136 count &= ~SWAP_HAS_CACHE;
1138 if (usage == SWAP_HAS_CACHE) {
1139 VM_BUG_ON(!has_cache);
1140 has_cache = 0;
1141 } else if (count == SWAP_MAP_SHMEM) {
1143 * Or we could insist on shmem.c using a special
1144 * swap_shmem_free() and free_shmem_swap_and_cache()...
1146 count = 0;
1147 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1148 if (count == COUNT_CONTINUED) {
1149 if (swap_count_continued(p, offset, count))
1150 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1151 else
1152 count = SWAP_MAP_MAX;
1153 } else
1154 count--;
1157 usage = count | has_cache;
1158 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1160 return usage;
1163 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1164 swp_entry_t entry, unsigned char usage)
1166 struct swap_cluster_info *ci;
1167 unsigned long offset = swp_offset(entry);
1169 ci = lock_cluster_or_swap_info(p, offset);
1170 usage = __swap_entry_free_locked(p, offset, usage);
1171 unlock_cluster_or_swap_info(p, ci);
1173 return usage;
1176 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1178 struct swap_cluster_info *ci;
1179 unsigned long offset = swp_offset(entry);
1180 unsigned char count;
1182 ci = lock_cluster(p, offset);
1183 count = p->swap_map[offset];
1184 VM_BUG_ON(count != SWAP_HAS_CACHE);
1185 p->swap_map[offset] = 0;
1186 dec_cluster_info_page(p, p->cluster_info, offset);
1187 unlock_cluster(ci);
1189 mem_cgroup_uncharge_swap(entry, 1);
1190 swap_range_free(p, offset, 1);
1194 * Caller has made sure that the swap device corresponding to entry
1195 * is still around or has not been recycled.
1197 void swap_free(swp_entry_t entry)
1199 struct swap_info_struct *p;
1201 p = _swap_info_get(entry);
1202 if (p) {
1203 if (!__swap_entry_free(p, entry, 1))
1204 free_swap_slot(entry);
1209 * Called after dropping swapcache to decrease refcnt to swap entries.
1211 void put_swap_page(struct page *page, swp_entry_t entry)
1213 unsigned long offset = swp_offset(entry);
1214 unsigned long idx = offset / SWAPFILE_CLUSTER;
1215 struct swap_cluster_info *ci;
1216 struct swap_info_struct *si;
1217 unsigned char *map;
1218 unsigned int i, free_entries = 0;
1219 unsigned char val;
1220 int size = swap_entry_size(hpage_nr_pages(page));
1222 si = _swap_info_get(entry);
1223 if (!si)
1224 return;
1226 ci = lock_cluster_or_swap_info(si, offset);
1227 if (size == SWAPFILE_CLUSTER) {
1228 VM_BUG_ON(!cluster_is_huge(ci));
1229 map = si->swap_map + offset;
1230 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1231 val = map[i];
1232 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1233 if (val == SWAP_HAS_CACHE)
1234 free_entries++;
1236 cluster_clear_huge(ci);
1237 if (free_entries == SWAPFILE_CLUSTER) {
1238 unlock_cluster_or_swap_info(si, ci);
1239 spin_lock(&si->lock);
1240 ci = lock_cluster(si, offset);
1241 memset(map, 0, SWAPFILE_CLUSTER);
1242 unlock_cluster(ci);
1243 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1244 swap_free_cluster(si, idx);
1245 spin_unlock(&si->lock);
1246 return;
1249 for (i = 0; i < size; i++, entry.val++) {
1250 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1251 unlock_cluster_or_swap_info(si, ci);
1252 free_swap_slot(entry);
1253 if (i == size - 1)
1254 return;
1255 lock_cluster_or_swap_info(si, offset);
1258 unlock_cluster_or_swap_info(si, ci);
1261 #ifdef CONFIG_THP_SWAP
1262 int split_swap_cluster(swp_entry_t entry)
1264 struct swap_info_struct *si;
1265 struct swap_cluster_info *ci;
1266 unsigned long offset = swp_offset(entry);
1268 si = _swap_info_get(entry);
1269 if (!si)
1270 return -EBUSY;
1271 ci = lock_cluster(si, offset);
1272 cluster_clear_huge(ci);
1273 unlock_cluster(ci);
1274 return 0;
1276 #endif
1278 static int swp_entry_cmp(const void *ent1, const void *ent2)
1280 const swp_entry_t *e1 = ent1, *e2 = ent2;
1282 return (int)swp_type(*e1) - (int)swp_type(*e2);
1285 void swapcache_free_entries(swp_entry_t *entries, int n)
1287 struct swap_info_struct *p, *prev;
1288 int i;
1290 if (n <= 0)
1291 return;
1293 prev = NULL;
1294 p = NULL;
1297 * Sort swap entries by swap device, so each lock is only taken once.
1298 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1299 * so low that it isn't necessary to optimize further.
1301 if (nr_swapfiles > 1)
1302 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1303 for (i = 0; i < n; ++i) {
1304 p = swap_info_get_cont(entries[i], prev);
1305 if (p)
1306 swap_entry_free(p, entries[i]);
1307 prev = p;
1309 if (p)
1310 spin_unlock(&p->lock);
1314 * How many references to page are currently swapped out?
1315 * This does not give an exact answer when swap count is continued,
1316 * but does include the high COUNT_CONTINUED flag to allow for that.
1318 int page_swapcount(struct page *page)
1320 int count = 0;
1321 struct swap_info_struct *p;
1322 struct swap_cluster_info *ci;
1323 swp_entry_t entry;
1324 unsigned long offset;
1326 entry.val = page_private(page);
1327 p = _swap_info_get(entry);
1328 if (p) {
1329 offset = swp_offset(entry);
1330 ci = lock_cluster_or_swap_info(p, offset);
1331 count = swap_count(p->swap_map[offset]);
1332 unlock_cluster_or_swap_info(p, ci);
1334 return count;
1337 int __swap_count(struct swap_info_struct *si, swp_entry_t entry)
1339 pgoff_t offset = swp_offset(entry);
1341 return swap_count(si->swap_map[offset]);
1344 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1346 int count = 0;
1347 pgoff_t offset = swp_offset(entry);
1348 struct swap_cluster_info *ci;
1350 ci = lock_cluster_or_swap_info(si, offset);
1351 count = swap_count(si->swap_map[offset]);
1352 unlock_cluster_or_swap_info(si, ci);
1353 return count;
1357 * How many references to @entry are currently swapped out?
1358 * This does not give an exact answer when swap count is continued,
1359 * but does include the high COUNT_CONTINUED flag to allow for that.
1361 int __swp_swapcount(swp_entry_t entry)
1363 int count = 0;
1364 struct swap_info_struct *si;
1366 si = __swap_info_get(entry);
1367 if (si)
1368 count = swap_swapcount(si, entry);
1369 return count;
1373 * How many references to @entry are currently swapped out?
1374 * This considers COUNT_CONTINUED so it returns exact answer.
1376 int swp_swapcount(swp_entry_t entry)
1378 int count, tmp_count, n;
1379 struct swap_info_struct *p;
1380 struct swap_cluster_info *ci;
1381 struct page *page;
1382 pgoff_t offset;
1383 unsigned char *map;
1385 p = _swap_info_get(entry);
1386 if (!p)
1387 return 0;
1389 offset = swp_offset(entry);
1391 ci = lock_cluster_or_swap_info(p, offset);
1393 count = swap_count(p->swap_map[offset]);
1394 if (!(count & COUNT_CONTINUED))
1395 goto out;
1397 count &= ~COUNT_CONTINUED;
1398 n = SWAP_MAP_MAX + 1;
1400 page = vmalloc_to_page(p->swap_map + offset);
1401 offset &= ~PAGE_MASK;
1402 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1404 do {
1405 page = list_next_entry(page, lru);
1406 map = kmap_atomic(page);
1407 tmp_count = map[offset];
1408 kunmap_atomic(map);
1410 count += (tmp_count & ~COUNT_CONTINUED) * n;
1411 n *= (SWAP_CONT_MAX + 1);
1412 } while (tmp_count & COUNT_CONTINUED);
1413 out:
1414 unlock_cluster_or_swap_info(p, ci);
1415 return count;
1418 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1419 swp_entry_t entry)
1421 struct swap_cluster_info *ci;
1422 unsigned char *map = si->swap_map;
1423 unsigned long roffset = swp_offset(entry);
1424 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1425 int i;
1426 bool ret = false;
1428 ci = lock_cluster_or_swap_info(si, offset);
1429 if (!ci || !cluster_is_huge(ci)) {
1430 if (swap_count(map[roffset]))
1431 ret = true;
1432 goto unlock_out;
1434 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1435 if (swap_count(map[offset + i])) {
1436 ret = true;
1437 break;
1440 unlock_out:
1441 unlock_cluster_or_swap_info(si, ci);
1442 return ret;
1445 static bool page_swapped(struct page *page)
1447 swp_entry_t entry;
1448 struct swap_info_struct *si;
1450 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1451 return page_swapcount(page) != 0;
1453 page = compound_head(page);
1454 entry.val = page_private(page);
1455 si = _swap_info_get(entry);
1456 if (si)
1457 return swap_page_trans_huge_swapped(si, entry);
1458 return false;
1461 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1462 int *total_swapcount)
1464 int i, map_swapcount, _total_mapcount, _total_swapcount;
1465 unsigned long offset = 0;
1466 struct swap_info_struct *si;
1467 struct swap_cluster_info *ci = NULL;
1468 unsigned char *map = NULL;
1469 int mapcount, swapcount = 0;
1471 /* hugetlbfs shouldn't call it */
1472 VM_BUG_ON_PAGE(PageHuge(page), page);
1474 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1475 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1476 if (PageSwapCache(page))
1477 swapcount = page_swapcount(page);
1478 if (total_swapcount)
1479 *total_swapcount = swapcount;
1480 return mapcount + swapcount;
1483 page = compound_head(page);
1485 _total_mapcount = _total_swapcount = map_swapcount = 0;
1486 if (PageSwapCache(page)) {
1487 swp_entry_t entry;
1489 entry.val = page_private(page);
1490 si = _swap_info_get(entry);
1491 if (si) {
1492 map = si->swap_map;
1493 offset = swp_offset(entry);
1496 if (map)
1497 ci = lock_cluster(si, offset);
1498 for (i = 0; i < HPAGE_PMD_NR; i++) {
1499 mapcount = atomic_read(&page[i]._mapcount) + 1;
1500 _total_mapcount += mapcount;
1501 if (map) {
1502 swapcount = swap_count(map[offset + i]);
1503 _total_swapcount += swapcount;
1505 map_swapcount = max(map_swapcount, mapcount + swapcount);
1507 unlock_cluster(ci);
1508 if (PageDoubleMap(page)) {
1509 map_swapcount -= 1;
1510 _total_mapcount -= HPAGE_PMD_NR;
1512 mapcount = compound_mapcount(page);
1513 map_swapcount += mapcount;
1514 _total_mapcount += mapcount;
1515 if (total_mapcount)
1516 *total_mapcount = _total_mapcount;
1517 if (total_swapcount)
1518 *total_swapcount = _total_swapcount;
1520 return map_swapcount;
1524 * We can write to an anon page without COW if there are no other references
1525 * to it. And as a side-effect, free up its swap: because the old content
1526 * on disk will never be read, and seeking back there to write new content
1527 * later would only waste time away from clustering.
1529 * NOTE: total_map_swapcount should not be relied upon by the caller if
1530 * reuse_swap_page() returns false, but it may be always overwritten
1531 * (see the other implementation for CONFIG_SWAP=n).
1533 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1535 int count, total_mapcount, total_swapcount;
1537 VM_BUG_ON_PAGE(!PageLocked(page), page);
1538 if (unlikely(PageKsm(page)))
1539 return false;
1540 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1541 &total_swapcount);
1542 if (total_map_swapcount)
1543 *total_map_swapcount = total_mapcount + total_swapcount;
1544 if (count == 1 && PageSwapCache(page) &&
1545 (likely(!PageTransCompound(page)) ||
1546 /* The remaining swap count will be freed soon */
1547 total_swapcount == page_swapcount(page))) {
1548 if (!PageWriteback(page)) {
1549 page = compound_head(page);
1550 delete_from_swap_cache(page);
1551 SetPageDirty(page);
1552 } else {
1553 swp_entry_t entry;
1554 struct swap_info_struct *p;
1556 entry.val = page_private(page);
1557 p = swap_info_get(entry);
1558 if (p->flags & SWP_STABLE_WRITES) {
1559 spin_unlock(&p->lock);
1560 return false;
1562 spin_unlock(&p->lock);
1566 return count <= 1;
1570 * If swap is getting full, or if there are no more mappings of this page,
1571 * then try_to_free_swap is called to free its swap space.
1573 int try_to_free_swap(struct page *page)
1575 VM_BUG_ON_PAGE(!PageLocked(page), page);
1577 if (!PageSwapCache(page))
1578 return 0;
1579 if (PageWriteback(page))
1580 return 0;
1581 if (page_swapped(page))
1582 return 0;
1585 * Once hibernation has begun to create its image of memory,
1586 * there's a danger that one of the calls to try_to_free_swap()
1587 * - most probably a call from __try_to_reclaim_swap() while
1588 * hibernation is allocating its own swap pages for the image,
1589 * but conceivably even a call from memory reclaim - will free
1590 * the swap from a page which has already been recorded in the
1591 * image as a clean swapcache page, and then reuse its swap for
1592 * another page of the image. On waking from hibernation, the
1593 * original page might be freed under memory pressure, then
1594 * later read back in from swap, now with the wrong data.
1596 * Hibernation suspends storage while it is writing the image
1597 * to disk so check that here.
1599 if (pm_suspended_storage())
1600 return 0;
1602 page = compound_head(page);
1603 delete_from_swap_cache(page);
1604 SetPageDirty(page);
1605 return 1;
1609 * Free the swap entry like above, but also try to
1610 * free the page cache entry if it is the last user.
1612 int free_swap_and_cache(swp_entry_t entry)
1614 struct swap_info_struct *p;
1615 struct page *page = NULL;
1616 unsigned char count;
1618 if (non_swap_entry(entry))
1619 return 1;
1621 p = _swap_info_get(entry);
1622 if (p) {
1623 count = __swap_entry_free(p, entry, 1);
1624 if (count == SWAP_HAS_CACHE &&
1625 !swap_page_trans_huge_swapped(p, entry)) {
1626 page = find_get_page(swap_address_space(entry),
1627 swp_offset(entry));
1628 if (page && !trylock_page(page)) {
1629 put_page(page);
1630 page = NULL;
1632 } else if (!count)
1633 free_swap_slot(entry);
1635 if (page) {
1637 * Not mapped elsewhere, or swap space full? Free it!
1638 * Also recheck PageSwapCache now page is locked (above).
1640 if (PageSwapCache(page) && !PageWriteback(page) &&
1641 (!page_mapped(page) || mem_cgroup_swap_full(page)) &&
1642 !swap_page_trans_huge_swapped(p, entry)) {
1643 page = compound_head(page);
1644 delete_from_swap_cache(page);
1645 SetPageDirty(page);
1647 unlock_page(page);
1648 put_page(page);
1650 return p != NULL;
1653 #ifdef CONFIG_HIBERNATION
1655 * Find the swap type that corresponds to given device (if any).
1657 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1658 * from 0, in which the swap header is expected to be located.
1660 * This is needed for the suspend to disk (aka swsusp).
1662 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1664 struct block_device *bdev = NULL;
1665 int type;
1667 if (device)
1668 bdev = bdget(device);
1670 spin_lock(&swap_lock);
1671 for (type = 0; type < nr_swapfiles; type++) {
1672 struct swap_info_struct *sis = swap_info[type];
1674 if (!(sis->flags & SWP_WRITEOK))
1675 continue;
1677 if (!bdev) {
1678 if (bdev_p)
1679 *bdev_p = bdgrab(sis->bdev);
1681 spin_unlock(&swap_lock);
1682 return type;
1684 if (bdev == sis->bdev) {
1685 struct swap_extent *se = &sis->first_swap_extent;
1687 if (se->start_block == offset) {
1688 if (bdev_p)
1689 *bdev_p = bdgrab(sis->bdev);
1691 spin_unlock(&swap_lock);
1692 bdput(bdev);
1693 return type;
1697 spin_unlock(&swap_lock);
1698 if (bdev)
1699 bdput(bdev);
1701 return -ENODEV;
1705 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1706 * corresponding to given index in swap_info (swap type).
1708 sector_t swapdev_block(int type, pgoff_t offset)
1710 struct block_device *bdev;
1712 if ((unsigned int)type >= nr_swapfiles)
1713 return 0;
1714 if (!(swap_info[type]->flags & SWP_WRITEOK))
1715 return 0;
1716 return map_swap_entry(swp_entry(type, offset), &bdev);
1720 * Return either the total number of swap pages of given type, or the number
1721 * of free pages of that type (depending on @free)
1723 * This is needed for software suspend
1725 unsigned int count_swap_pages(int type, int free)
1727 unsigned int n = 0;
1729 spin_lock(&swap_lock);
1730 if ((unsigned int)type < nr_swapfiles) {
1731 struct swap_info_struct *sis = swap_info[type];
1733 spin_lock(&sis->lock);
1734 if (sis->flags & SWP_WRITEOK) {
1735 n = sis->pages;
1736 if (free)
1737 n -= sis->inuse_pages;
1739 spin_unlock(&sis->lock);
1741 spin_unlock(&swap_lock);
1742 return n;
1744 #endif /* CONFIG_HIBERNATION */
1746 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1748 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1752 * No need to decide whether this PTE shares the swap entry with others,
1753 * just let do_wp_page work it out if a write is requested later - to
1754 * force COW, vm_page_prot omits write permission from any private vma.
1756 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1757 unsigned long addr, swp_entry_t entry, struct page *page)
1759 struct page *swapcache;
1760 struct mem_cgroup *memcg;
1761 spinlock_t *ptl;
1762 pte_t *pte;
1763 int ret = 1;
1765 swapcache = page;
1766 page = ksm_might_need_to_copy(page, vma, addr);
1767 if (unlikely(!page))
1768 return -ENOMEM;
1770 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1771 &memcg, false)) {
1772 ret = -ENOMEM;
1773 goto out_nolock;
1776 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1777 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1778 mem_cgroup_cancel_charge(page, memcg, false);
1779 ret = 0;
1780 goto out;
1783 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1784 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1785 get_page(page);
1786 set_pte_at(vma->vm_mm, addr, pte,
1787 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1788 if (page == swapcache) {
1789 page_add_anon_rmap(page, vma, addr, false);
1790 mem_cgroup_commit_charge(page, memcg, true, false);
1791 } else { /* ksm created a completely new copy */
1792 page_add_new_anon_rmap(page, vma, addr, false);
1793 mem_cgroup_commit_charge(page, memcg, false, false);
1794 lru_cache_add_active_or_unevictable(page, vma);
1796 swap_free(entry);
1798 * Move the page to the active list so it is not
1799 * immediately swapped out again after swapon.
1801 activate_page(page);
1802 out:
1803 pte_unmap_unlock(pte, ptl);
1804 out_nolock:
1805 if (page != swapcache) {
1806 unlock_page(page);
1807 put_page(page);
1809 return ret;
1812 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1813 unsigned long addr, unsigned long end,
1814 swp_entry_t entry, struct page *page)
1816 pte_t swp_pte = swp_entry_to_pte(entry);
1817 pte_t *pte;
1818 int ret = 0;
1821 * We don't actually need pte lock while scanning for swp_pte: since
1822 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1823 * page table while we're scanning; though it could get zapped, and on
1824 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1825 * of unmatched parts which look like swp_pte, so unuse_pte must
1826 * recheck under pte lock. Scanning without pte lock lets it be
1827 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1829 pte = pte_offset_map(pmd, addr);
1830 do {
1832 * swapoff spends a _lot_ of time in this loop!
1833 * Test inline before going to call unuse_pte.
1835 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1836 pte_unmap(pte);
1837 ret = unuse_pte(vma, pmd, addr, entry, page);
1838 if (ret)
1839 goto out;
1840 pte = pte_offset_map(pmd, addr);
1842 } while (pte++, addr += PAGE_SIZE, addr != end);
1843 pte_unmap(pte - 1);
1844 out:
1845 return ret;
1848 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1849 unsigned long addr, unsigned long end,
1850 swp_entry_t entry, struct page *page)
1852 pmd_t *pmd;
1853 unsigned long next;
1854 int ret;
1856 pmd = pmd_offset(pud, addr);
1857 do {
1858 cond_resched();
1859 next = pmd_addr_end(addr, end);
1860 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1861 continue;
1862 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1863 if (ret)
1864 return ret;
1865 } while (pmd++, addr = next, addr != end);
1866 return 0;
1869 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1870 unsigned long addr, unsigned long end,
1871 swp_entry_t entry, struct page *page)
1873 pud_t *pud;
1874 unsigned long next;
1875 int ret;
1877 pud = pud_offset(p4d, addr);
1878 do {
1879 next = pud_addr_end(addr, end);
1880 if (pud_none_or_clear_bad(pud))
1881 continue;
1882 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1883 if (ret)
1884 return ret;
1885 } while (pud++, addr = next, addr != end);
1886 return 0;
1889 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1890 unsigned long addr, unsigned long end,
1891 swp_entry_t entry, struct page *page)
1893 p4d_t *p4d;
1894 unsigned long next;
1895 int ret;
1897 p4d = p4d_offset(pgd, addr);
1898 do {
1899 next = p4d_addr_end(addr, end);
1900 if (p4d_none_or_clear_bad(p4d))
1901 continue;
1902 ret = unuse_pud_range(vma, p4d, addr, next, entry, page);
1903 if (ret)
1904 return ret;
1905 } while (p4d++, addr = next, addr != end);
1906 return 0;
1909 static int unuse_vma(struct vm_area_struct *vma,
1910 swp_entry_t entry, struct page *page)
1912 pgd_t *pgd;
1913 unsigned long addr, end, next;
1914 int ret;
1916 if (page_anon_vma(page)) {
1917 addr = page_address_in_vma(page, vma);
1918 if (addr == -EFAULT)
1919 return 0;
1920 else
1921 end = addr + PAGE_SIZE;
1922 } else {
1923 addr = vma->vm_start;
1924 end = vma->vm_end;
1927 pgd = pgd_offset(vma->vm_mm, addr);
1928 do {
1929 next = pgd_addr_end(addr, end);
1930 if (pgd_none_or_clear_bad(pgd))
1931 continue;
1932 ret = unuse_p4d_range(vma, pgd, addr, next, entry, page);
1933 if (ret)
1934 return ret;
1935 } while (pgd++, addr = next, addr != end);
1936 return 0;
1939 static int unuse_mm(struct mm_struct *mm,
1940 swp_entry_t entry, struct page *page)
1942 struct vm_area_struct *vma;
1943 int ret = 0;
1945 if (!down_read_trylock(&mm->mmap_sem)) {
1947 * Activate page so shrink_inactive_list is unlikely to unmap
1948 * its ptes while lock is dropped, so swapoff can make progress.
1950 activate_page(page);
1951 unlock_page(page);
1952 down_read(&mm->mmap_sem);
1953 lock_page(page);
1955 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1956 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1957 break;
1958 cond_resched();
1960 up_read(&mm->mmap_sem);
1961 return (ret < 0)? ret: 0;
1965 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1966 * from current position to next entry still in use.
1967 * Recycle to start on reaching the end, returning 0 when empty.
1969 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1970 unsigned int prev, bool frontswap)
1972 unsigned int max = si->max;
1973 unsigned int i = prev;
1974 unsigned char count;
1977 * No need for swap_lock here: we're just looking
1978 * for whether an entry is in use, not modifying it; false
1979 * hits are okay, and sys_swapoff() has already prevented new
1980 * allocations from this area (while holding swap_lock).
1982 for (;;) {
1983 if (++i >= max) {
1984 if (!prev) {
1985 i = 0;
1986 break;
1989 * No entries in use at top of swap_map,
1990 * loop back to start and recheck there.
1992 max = prev + 1;
1993 prev = 0;
1994 i = 1;
1996 count = READ_ONCE(si->swap_map[i]);
1997 if (count && swap_count(count) != SWAP_MAP_BAD)
1998 if (!frontswap || frontswap_test(si, i))
1999 break;
2000 if ((i % LATENCY_LIMIT) == 0)
2001 cond_resched();
2003 return i;
2007 * We completely avoid races by reading each swap page in advance,
2008 * and then search for the process using it. All the necessary
2009 * page table adjustments can then be made atomically.
2011 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
2012 * pages_to_unuse==0 means all pages; ignored if frontswap is false
2014 int try_to_unuse(unsigned int type, bool frontswap,
2015 unsigned long pages_to_unuse)
2017 struct swap_info_struct *si = swap_info[type];
2018 struct mm_struct *start_mm;
2019 volatile unsigned char *swap_map; /* swap_map is accessed without
2020 * locking. Mark it as volatile
2021 * to prevent compiler doing
2022 * something odd.
2024 unsigned char swcount;
2025 struct page *page;
2026 swp_entry_t entry;
2027 unsigned int i = 0;
2028 int retval = 0;
2031 * When searching mms for an entry, a good strategy is to
2032 * start at the first mm we freed the previous entry from
2033 * (though actually we don't notice whether we or coincidence
2034 * freed the entry). Initialize this start_mm with a hold.
2036 * A simpler strategy would be to start at the last mm we
2037 * freed the previous entry from; but that would take less
2038 * advantage of mmlist ordering, which clusters forked mms
2039 * together, child after parent. If we race with dup_mmap(), we
2040 * prefer to resolve parent before child, lest we miss entries
2041 * duplicated after we scanned child: using last mm would invert
2042 * that.
2044 start_mm = &init_mm;
2045 mmget(&init_mm);
2048 * Keep on scanning until all entries have gone. Usually,
2049 * one pass through swap_map is enough, but not necessarily:
2050 * there are races when an instance of an entry might be missed.
2052 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
2053 if (signal_pending(current)) {
2054 retval = -EINTR;
2055 break;
2059 * Get a page for the entry, using the existing swap
2060 * cache page if there is one. Otherwise, get a clean
2061 * page and read the swap into it.
2063 swap_map = &si->swap_map[i];
2064 entry = swp_entry(type, i);
2065 page = read_swap_cache_async(entry,
2066 GFP_HIGHUSER_MOVABLE, NULL, 0, false);
2067 if (!page) {
2069 * Either swap_duplicate() failed because entry
2070 * has been freed independently, and will not be
2071 * reused since sys_swapoff() already disabled
2072 * allocation from here, or alloc_page() failed.
2074 swcount = *swap_map;
2076 * We don't hold lock here, so the swap entry could be
2077 * SWAP_MAP_BAD (when the cluster is discarding).
2078 * Instead of fail out, We can just skip the swap
2079 * entry because swapoff will wait for discarding
2080 * finish anyway.
2082 if (!swcount || swcount == SWAP_MAP_BAD)
2083 continue;
2084 retval = -ENOMEM;
2085 break;
2089 * Don't hold on to start_mm if it looks like exiting.
2091 if (atomic_read(&start_mm->mm_users) == 1) {
2092 mmput(start_mm);
2093 start_mm = &init_mm;
2094 mmget(&init_mm);
2098 * Wait for and lock page. When do_swap_page races with
2099 * try_to_unuse, do_swap_page can handle the fault much
2100 * faster than try_to_unuse can locate the entry. This
2101 * apparently redundant "wait_on_page_locked" lets try_to_unuse
2102 * defer to do_swap_page in such a case - in some tests,
2103 * do_swap_page and try_to_unuse repeatedly compete.
2105 wait_on_page_locked(page);
2106 wait_on_page_writeback(page);
2107 lock_page(page);
2108 wait_on_page_writeback(page);
2111 * Remove all references to entry.
2113 swcount = *swap_map;
2114 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
2115 retval = shmem_unuse(entry, page);
2116 /* page has already been unlocked and released */
2117 if (retval < 0)
2118 break;
2119 continue;
2121 if (swap_count(swcount) && start_mm != &init_mm)
2122 retval = unuse_mm(start_mm, entry, page);
2124 if (swap_count(*swap_map)) {
2125 int set_start_mm = (*swap_map >= swcount);
2126 struct list_head *p = &start_mm->mmlist;
2127 struct mm_struct *new_start_mm = start_mm;
2128 struct mm_struct *prev_mm = start_mm;
2129 struct mm_struct *mm;
2131 mmget(new_start_mm);
2132 mmget(prev_mm);
2133 spin_lock(&mmlist_lock);
2134 while (swap_count(*swap_map) && !retval &&
2135 (p = p->next) != &start_mm->mmlist) {
2136 mm = list_entry(p, struct mm_struct, mmlist);
2137 if (!mmget_not_zero(mm))
2138 continue;
2139 spin_unlock(&mmlist_lock);
2140 mmput(prev_mm);
2141 prev_mm = mm;
2143 cond_resched();
2145 swcount = *swap_map;
2146 if (!swap_count(swcount)) /* any usage ? */
2148 else if (mm == &init_mm)
2149 set_start_mm = 1;
2150 else
2151 retval = unuse_mm(mm, entry, page);
2153 if (set_start_mm && *swap_map < swcount) {
2154 mmput(new_start_mm);
2155 mmget(mm);
2156 new_start_mm = mm;
2157 set_start_mm = 0;
2159 spin_lock(&mmlist_lock);
2161 spin_unlock(&mmlist_lock);
2162 mmput(prev_mm);
2163 mmput(start_mm);
2164 start_mm = new_start_mm;
2166 if (retval) {
2167 unlock_page(page);
2168 put_page(page);
2169 break;
2173 * If a reference remains (rare), we would like to leave
2174 * the page in the swap cache; but try_to_unmap could
2175 * then re-duplicate the entry once we drop page lock,
2176 * so we might loop indefinitely; also, that page could
2177 * not be swapped out to other storage meanwhile. So:
2178 * delete from cache even if there's another reference,
2179 * after ensuring that the data has been saved to disk -
2180 * since if the reference remains (rarer), it will be
2181 * read from disk into another page. Splitting into two
2182 * pages would be incorrect if swap supported "shared
2183 * private" pages, but they are handled by tmpfs files.
2185 * Given how unuse_vma() targets one particular offset
2186 * in an anon_vma, once the anon_vma has been determined,
2187 * this splitting happens to be just what is needed to
2188 * handle where KSM pages have been swapped out: re-reading
2189 * is unnecessarily slow, but we can fix that later on.
2191 if (swap_count(*swap_map) &&
2192 PageDirty(page) && PageSwapCache(page)) {
2193 struct writeback_control wbc = {
2194 .sync_mode = WB_SYNC_NONE,
2197 swap_writepage(compound_head(page), &wbc);
2198 lock_page(page);
2199 wait_on_page_writeback(page);
2203 * It is conceivable that a racing task removed this page from
2204 * swap cache just before we acquired the page lock at the top,
2205 * or while we dropped it in unuse_mm(). The page might even
2206 * be back in swap cache on another swap area: that we must not
2207 * delete, since it may not have been written out to swap yet.
2209 if (PageSwapCache(page) &&
2210 likely(page_private(page) == entry.val) &&
2211 !page_swapped(page))
2212 delete_from_swap_cache(compound_head(page));
2215 * So we could skip searching mms once swap count went
2216 * to 1, we did not mark any present ptes as dirty: must
2217 * mark page dirty so shrink_page_list will preserve it.
2219 SetPageDirty(page);
2220 unlock_page(page);
2221 put_page(page);
2224 * Make sure that we aren't completely killing
2225 * interactive performance.
2227 cond_resched();
2228 if (frontswap && pages_to_unuse > 0) {
2229 if (!--pages_to_unuse)
2230 break;
2234 mmput(start_mm);
2235 return retval;
2239 * After a successful try_to_unuse, if no swap is now in use, we know
2240 * we can empty the mmlist. swap_lock must be held on entry and exit.
2241 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2242 * added to the mmlist just after page_duplicate - before would be racy.
2244 static void drain_mmlist(void)
2246 struct list_head *p, *next;
2247 unsigned int type;
2249 for (type = 0; type < nr_swapfiles; type++)
2250 if (swap_info[type]->inuse_pages)
2251 return;
2252 spin_lock(&mmlist_lock);
2253 list_for_each_safe(p, next, &init_mm.mmlist)
2254 list_del_init(p);
2255 spin_unlock(&mmlist_lock);
2259 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2260 * corresponds to page offset for the specified swap entry.
2261 * Note that the type of this function is sector_t, but it returns page offset
2262 * into the bdev, not sector offset.
2264 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2266 struct swap_info_struct *sis;
2267 struct swap_extent *start_se;
2268 struct swap_extent *se;
2269 pgoff_t offset;
2271 sis = swap_info[swp_type(entry)];
2272 *bdev = sis->bdev;
2274 offset = swp_offset(entry);
2275 start_se = sis->curr_swap_extent;
2276 se = start_se;
2278 for ( ; ; ) {
2279 if (se->start_page <= offset &&
2280 offset < (se->start_page + se->nr_pages)) {
2281 return se->start_block + (offset - se->start_page);
2283 se = list_next_entry(se, list);
2284 sis->curr_swap_extent = se;
2285 BUG_ON(se == start_se); /* It *must* be present */
2290 * Returns the page offset into bdev for the specified page's swap entry.
2292 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2294 swp_entry_t entry;
2295 entry.val = page_private(page);
2296 return map_swap_entry(entry, bdev);
2300 * Free all of a swapdev's extent information
2302 static void destroy_swap_extents(struct swap_info_struct *sis)
2304 while (!list_empty(&sis->first_swap_extent.list)) {
2305 struct swap_extent *se;
2307 se = list_first_entry(&sis->first_swap_extent.list,
2308 struct swap_extent, list);
2309 list_del(&se->list);
2310 kfree(se);
2313 if (sis->flags & SWP_FILE) {
2314 struct file *swap_file = sis->swap_file;
2315 struct address_space *mapping = swap_file->f_mapping;
2317 sis->flags &= ~SWP_FILE;
2318 mapping->a_ops->swap_deactivate(swap_file);
2323 * Add a block range (and the corresponding page range) into this swapdev's
2324 * extent list. The extent list is kept sorted in page order.
2326 * This function rather assumes that it is called in ascending page order.
2329 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2330 unsigned long nr_pages, sector_t start_block)
2332 struct swap_extent *se;
2333 struct swap_extent *new_se;
2334 struct list_head *lh;
2336 if (start_page == 0) {
2337 se = &sis->first_swap_extent;
2338 sis->curr_swap_extent = se;
2339 se->start_page = 0;
2340 se->nr_pages = nr_pages;
2341 se->start_block = start_block;
2342 return 1;
2343 } else {
2344 lh = sis->first_swap_extent.list.prev; /* Highest extent */
2345 se = list_entry(lh, struct swap_extent, list);
2346 BUG_ON(se->start_page + se->nr_pages != start_page);
2347 if (se->start_block + se->nr_pages == start_block) {
2348 /* Merge it */
2349 se->nr_pages += nr_pages;
2350 return 0;
2355 * No merge. Insert a new extent, preserving ordering.
2357 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2358 if (new_se == NULL)
2359 return -ENOMEM;
2360 new_se->start_page = start_page;
2361 new_se->nr_pages = nr_pages;
2362 new_se->start_block = start_block;
2364 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
2365 return 1;
2369 * A `swap extent' is a simple thing which maps a contiguous range of pages
2370 * onto a contiguous range of disk blocks. An ordered list of swap extents
2371 * is built at swapon time and is then used at swap_writepage/swap_readpage
2372 * time for locating where on disk a page belongs.
2374 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2375 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2376 * swap files identically.
2378 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2379 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2380 * swapfiles are handled *identically* after swapon time.
2382 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2383 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2384 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2385 * requirements, they are simply tossed out - we will never use those blocks
2386 * for swapping.
2388 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
2389 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2390 * which will scribble on the fs.
2392 * The amount of disk space which a single swap extent represents varies.
2393 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2394 * extents in the list. To avoid much list walking, we cache the previous
2395 * search location in `curr_swap_extent', and start new searches from there.
2396 * This is extremely effective. The average number of iterations in
2397 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2399 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2401 struct file *swap_file = sis->swap_file;
2402 struct address_space *mapping = swap_file->f_mapping;
2403 struct inode *inode = mapping->host;
2404 int ret;
2406 if (S_ISBLK(inode->i_mode)) {
2407 ret = add_swap_extent(sis, 0, sis->max, 0);
2408 *span = sis->pages;
2409 return ret;
2412 if (mapping->a_ops->swap_activate) {
2413 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2414 if (!ret) {
2415 sis->flags |= SWP_FILE;
2416 ret = add_swap_extent(sis, 0, sis->max, 0);
2417 *span = sis->pages;
2419 return ret;
2422 return generic_swapfile_activate(sis, swap_file, span);
2425 static int swap_node(struct swap_info_struct *p)
2427 struct block_device *bdev;
2429 if (p->bdev)
2430 bdev = p->bdev;
2431 else
2432 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2434 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2437 static void _enable_swap_info(struct swap_info_struct *p, int prio,
2438 unsigned char *swap_map,
2439 struct swap_cluster_info *cluster_info)
2441 int i;
2443 if (prio >= 0)
2444 p->prio = prio;
2445 else
2446 p->prio = --least_priority;
2448 * the plist prio is negated because plist ordering is
2449 * low-to-high, while swap ordering is high-to-low
2451 p->list.prio = -p->prio;
2452 for_each_node(i) {
2453 if (p->prio >= 0)
2454 p->avail_lists[i].prio = -p->prio;
2455 else {
2456 if (swap_node(p) == i)
2457 p->avail_lists[i].prio = 1;
2458 else
2459 p->avail_lists[i].prio = -p->prio;
2462 p->swap_map = swap_map;
2463 p->cluster_info = cluster_info;
2464 p->flags |= SWP_WRITEOK;
2465 atomic_long_add(p->pages, &nr_swap_pages);
2466 total_swap_pages += p->pages;
2468 assert_spin_locked(&swap_lock);
2470 * both lists are plists, and thus priority ordered.
2471 * swap_active_head needs to be priority ordered for swapoff(),
2472 * which on removal of any swap_info_struct with an auto-assigned
2473 * (i.e. negative) priority increments the auto-assigned priority
2474 * of any lower-priority swap_info_structs.
2475 * swap_avail_head needs to be priority ordered for get_swap_page(),
2476 * which allocates swap pages from the highest available priority
2477 * swap_info_struct.
2479 plist_add(&p->list, &swap_active_head);
2480 add_to_avail_list(p);
2483 static void enable_swap_info(struct swap_info_struct *p, int prio,
2484 unsigned char *swap_map,
2485 struct swap_cluster_info *cluster_info,
2486 unsigned long *frontswap_map)
2488 frontswap_init(p->type, frontswap_map);
2489 spin_lock(&swap_lock);
2490 spin_lock(&p->lock);
2491 _enable_swap_info(p, prio, swap_map, cluster_info);
2492 spin_unlock(&p->lock);
2493 spin_unlock(&swap_lock);
2496 static void reinsert_swap_info(struct swap_info_struct *p)
2498 spin_lock(&swap_lock);
2499 spin_lock(&p->lock);
2500 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2501 spin_unlock(&p->lock);
2502 spin_unlock(&swap_lock);
2505 bool has_usable_swap(void)
2507 bool ret = true;
2509 spin_lock(&swap_lock);
2510 if (plist_head_empty(&swap_active_head))
2511 ret = false;
2512 spin_unlock(&swap_lock);
2513 return ret;
2516 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2518 struct swap_info_struct *p = NULL;
2519 unsigned char *swap_map;
2520 struct swap_cluster_info *cluster_info;
2521 unsigned long *frontswap_map;
2522 struct file *swap_file, *victim;
2523 struct address_space *mapping;
2524 struct inode *inode;
2525 struct filename *pathname;
2526 int err, found = 0;
2527 unsigned int old_block_size;
2529 if (!capable(CAP_SYS_ADMIN))
2530 return -EPERM;
2532 BUG_ON(!current->mm);
2534 pathname = getname(specialfile);
2535 if (IS_ERR(pathname))
2536 return PTR_ERR(pathname);
2538 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2539 err = PTR_ERR(victim);
2540 if (IS_ERR(victim))
2541 goto out;
2543 mapping = victim->f_mapping;
2544 spin_lock(&swap_lock);
2545 plist_for_each_entry(p, &swap_active_head, list) {
2546 if (p->flags & SWP_WRITEOK) {
2547 if (p->swap_file->f_mapping == mapping) {
2548 found = 1;
2549 break;
2553 if (!found) {
2554 err = -EINVAL;
2555 spin_unlock(&swap_lock);
2556 goto out_dput;
2558 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2559 vm_unacct_memory(p->pages);
2560 else {
2561 err = -ENOMEM;
2562 spin_unlock(&swap_lock);
2563 goto out_dput;
2565 del_from_avail_list(p);
2566 spin_lock(&p->lock);
2567 if (p->prio < 0) {
2568 struct swap_info_struct *si = p;
2569 int nid;
2571 plist_for_each_entry_continue(si, &swap_active_head, list) {
2572 si->prio++;
2573 si->list.prio--;
2574 for_each_node(nid) {
2575 if (si->avail_lists[nid].prio != 1)
2576 si->avail_lists[nid].prio--;
2579 least_priority++;
2581 plist_del(&p->list, &swap_active_head);
2582 atomic_long_sub(p->pages, &nr_swap_pages);
2583 total_swap_pages -= p->pages;
2584 p->flags &= ~SWP_WRITEOK;
2585 spin_unlock(&p->lock);
2586 spin_unlock(&swap_lock);
2588 disable_swap_slots_cache_lock();
2590 set_current_oom_origin();
2591 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2592 clear_current_oom_origin();
2594 if (err) {
2595 /* re-insert swap space back into swap_list */
2596 reinsert_swap_info(p);
2597 reenable_swap_slots_cache_unlock();
2598 goto out_dput;
2601 reenable_swap_slots_cache_unlock();
2603 flush_work(&p->discard_work);
2605 destroy_swap_extents(p);
2606 if (p->flags & SWP_CONTINUED)
2607 free_swap_count_continuations(p);
2609 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2610 atomic_dec(&nr_rotate_swap);
2612 mutex_lock(&swapon_mutex);
2613 spin_lock(&swap_lock);
2614 spin_lock(&p->lock);
2615 drain_mmlist();
2617 /* wait for anyone still in scan_swap_map */
2618 p->highest_bit = 0; /* cuts scans short */
2619 while (p->flags >= SWP_SCANNING) {
2620 spin_unlock(&p->lock);
2621 spin_unlock(&swap_lock);
2622 schedule_timeout_uninterruptible(1);
2623 spin_lock(&swap_lock);
2624 spin_lock(&p->lock);
2627 swap_file = p->swap_file;
2628 old_block_size = p->old_block_size;
2629 p->swap_file = NULL;
2630 p->max = 0;
2631 swap_map = p->swap_map;
2632 p->swap_map = NULL;
2633 cluster_info = p->cluster_info;
2634 p->cluster_info = NULL;
2635 frontswap_map = frontswap_map_get(p);
2636 spin_unlock(&p->lock);
2637 spin_unlock(&swap_lock);
2638 frontswap_invalidate_area(p->type);
2639 frontswap_map_set(p, NULL);
2640 mutex_unlock(&swapon_mutex);
2641 free_percpu(p->percpu_cluster);
2642 p->percpu_cluster = NULL;
2643 vfree(swap_map);
2644 kvfree(cluster_info);
2645 kvfree(frontswap_map);
2646 /* Destroy swap account information */
2647 swap_cgroup_swapoff(p->type);
2648 exit_swap_address_space(p->type);
2650 inode = mapping->host;
2651 if (S_ISBLK(inode->i_mode)) {
2652 struct block_device *bdev = I_BDEV(inode);
2653 set_blocksize(bdev, old_block_size);
2654 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2655 } else {
2656 inode_lock(inode);
2657 inode->i_flags &= ~S_SWAPFILE;
2658 inode_unlock(inode);
2660 filp_close(swap_file, NULL);
2663 * Clear the SWP_USED flag after all resources are freed so that swapon
2664 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2665 * not hold p->lock after we cleared its SWP_WRITEOK.
2667 spin_lock(&swap_lock);
2668 p->flags = 0;
2669 spin_unlock(&swap_lock);
2671 err = 0;
2672 atomic_inc(&proc_poll_event);
2673 wake_up_interruptible(&proc_poll_wait);
2675 out_dput:
2676 filp_close(victim, NULL);
2677 out:
2678 putname(pathname);
2679 return err;
2682 #ifdef CONFIG_PROC_FS
2683 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2685 struct seq_file *seq = file->private_data;
2687 poll_wait(file, &proc_poll_wait, wait);
2689 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2690 seq->poll_event = atomic_read(&proc_poll_event);
2691 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2694 return EPOLLIN | EPOLLRDNORM;
2697 /* iterator */
2698 static void *swap_start(struct seq_file *swap, loff_t *pos)
2700 struct swap_info_struct *si;
2701 int type;
2702 loff_t l = *pos;
2704 mutex_lock(&swapon_mutex);
2706 if (!l)
2707 return SEQ_START_TOKEN;
2709 for (type = 0; type < nr_swapfiles; type++) {
2710 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2711 si = swap_info[type];
2712 if (!(si->flags & SWP_USED) || !si->swap_map)
2713 continue;
2714 if (!--l)
2715 return si;
2718 return NULL;
2721 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2723 struct swap_info_struct *si = v;
2724 int type;
2726 if (v == SEQ_START_TOKEN)
2727 type = 0;
2728 else
2729 type = si->type + 1;
2731 for (; type < nr_swapfiles; type++) {
2732 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2733 si = swap_info[type];
2734 if (!(si->flags & SWP_USED) || !si->swap_map)
2735 continue;
2736 ++*pos;
2737 return si;
2740 return NULL;
2743 static void swap_stop(struct seq_file *swap, void *v)
2745 mutex_unlock(&swapon_mutex);
2748 static int swap_show(struct seq_file *swap, void *v)
2750 struct swap_info_struct *si = v;
2751 struct file *file;
2752 int len;
2754 if (si == SEQ_START_TOKEN) {
2755 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2756 return 0;
2759 file = si->swap_file;
2760 len = seq_file_path(swap, file, " \t\n\\");
2761 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2762 len < 40 ? 40 - len : 1, " ",
2763 S_ISBLK(file_inode(file)->i_mode) ?
2764 "partition" : "file\t",
2765 si->pages << (PAGE_SHIFT - 10),
2766 si->inuse_pages << (PAGE_SHIFT - 10),
2767 si->prio);
2768 return 0;
2771 static const struct seq_operations swaps_op = {
2772 .start = swap_start,
2773 .next = swap_next,
2774 .stop = swap_stop,
2775 .show = swap_show
2778 static int swaps_open(struct inode *inode, struct file *file)
2780 struct seq_file *seq;
2781 int ret;
2783 ret = seq_open(file, &swaps_op);
2784 if (ret)
2785 return ret;
2787 seq = file->private_data;
2788 seq->poll_event = atomic_read(&proc_poll_event);
2789 return 0;
2792 static const struct file_operations proc_swaps_operations = {
2793 .open = swaps_open,
2794 .read = seq_read,
2795 .llseek = seq_lseek,
2796 .release = seq_release,
2797 .poll = swaps_poll,
2800 static int __init procswaps_init(void)
2802 proc_create("swaps", 0, NULL, &proc_swaps_operations);
2803 return 0;
2805 __initcall(procswaps_init);
2806 #endif /* CONFIG_PROC_FS */
2808 #ifdef MAX_SWAPFILES_CHECK
2809 static int __init max_swapfiles_check(void)
2811 MAX_SWAPFILES_CHECK();
2812 return 0;
2814 late_initcall(max_swapfiles_check);
2815 #endif
2817 static struct swap_info_struct *alloc_swap_info(void)
2819 struct swap_info_struct *p;
2820 unsigned int type;
2821 int i;
2823 p = kzalloc(sizeof(*p), GFP_KERNEL);
2824 if (!p)
2825 return ERR_PTR(-ENOMEM);
2827 spin_lock(&swap_lock);
2828 for (type = 0; type < nr_swapfiles; type++) {
2829 if (!(swap_info[type]->flags & SWP_USED))
2830 break;
2832 if (type >= MAX_SWAPFILES) {
2833 spin_unlock(&swap_lock);
2834 kfree(p);
2835 return ERR_PTR(-EPERM);
2837 if (type >= nr_swapfiles) {
2838 p->type = type;
2839 swap_info[type] = p;
2841 * Write swap_info[type] before nr_swapfiles, in case a
2842 * racing procfs swap_start() or swap_next() is reading them.
2843 * (We never shrink nr_swapfiles, we never free this entry.)
2845 smp_wmb();
2846 nr_swapfiles++;
2847 } else {
2848 kfree(p);
2849 p = swap_info[type];
2851 * Do not memset this entry: a racing procfs swap_next()
2852 * would be relying on p->type to remain valid.
2855 INIT_LIST_HEAD(&p->first_swap_extent.list);
2856 plist_node_init(&p->list, 0);
2857 for_each_node(i)
2858 plist_node_init(&p->avail_lists[i], 0);
2859 p->flags = SWP_USED;
2860 spin_unlock(&swap_lock);
2861 spin_lock_init(&p->lock);
2862 spin_lock_init(&p->cont_lock);
2864 return p;
2867 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2869 int error;
2871 if (S_ISBLK(inode->i_mode)) {
2872 p->bdev = bdgrab(I_BDEV(inode));
2873 error = blkdev_get(p->bdev,
2874 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2875 if (error < 0) {
2876 p->bdev = NULL;
2877 return error;
2879 p->old_block_size = block_size(p->bdev);
2880 error = set_blocksize(p->bdev, PAGE_SIZE);
2881 if (error < 0)
2882 return error;
2883 p->flags |= SWP_BLKDEV;
2884 } else if (S_ISREG(inode->i_mode)) {
2885 p->bdev = inode->i_sb->s_bdev;
2886 inode_lock(inode);
2887 if (IS_SWAPFILE(inode))
2888 return -EBUSY;
2889 } else
2890 return -EINVAL;
2892 return 0;
2897 * Find out how many pages are allowed for a single swap device. There
2898 * are two limiting factors:
2899 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2900 * 2) the number of bits in the swap pte, as defined by the different
2901 * architectures.
2903 * In order to find the largest possible bit mask, a swap entry with
2904 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2905 * decoded to a swp_entry_t again, and finally the swap offset is
2906 * extracted.
2908 * This will mask all the bits from the initial ~0UL mask that can't
2909 * be encoded in either the swp_entry_t or the architecture definition
2910 * of a swap pte.
2912 unsigned long generic_max_swapfile_size(void)
2914 return swp_offset(pte_to_swp_entry(
2915 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2918 /* Can be overridden by an architecture for additional checks. */
2919 __weak unsigned long max_swapfile_size(void)
2921 return generic_max_swapfile_size();
2924 static unsigned long read_swap_header(struct swap_info_struct *p,
2925 union swap_header *swap_header,
2926 struct inode *inode)
2928 int i;
2929 unsigned long maxpages;
2930 unsigned long swapfilepages;
2931 unsigned long last_page;
2933 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2934 pr_err("Unable to find swap-space signature\n");
2935 return 0;
2938 /* swap partition endianess hack... */
2939 if (swab32(swap_header->info.version) == 1) {
2940 swab32s(&swap_header->info.version);
2941 swab32s(&swap_header->info.last_page);
2942 swab32s(&swap_header->info.nr_badpages);
2943 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2944 return 0;
2945 for (i = 0; i < swap_header->info.nr_badpages; i++)
2946 swab32s(&swap_header->info.badpages[i]);
2948 /* Check the swap header's sub-version */
2949 if (swap_header->info.version != 1) {
2950 pr_warn("Unable to handle swap header version %d\n",
2951 swap_header->info.version);
2952 return 0;
2955 p->lowest_bit = 1;
2956 p->cluster_next = 1;
2957 p->cluster_nr = 0;
2959 maxpages = max_swapfile_size();
2960 last_page = swap_header->info.last_page;
2961 if (!last_page) {
2962 pr_warn("Empty swap-file\n");
2963 return 0;
2965 if (last_page > maxpages) {
2966 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2967 maxpages << (PAGE_SHIFT - 10),
2968 last_page << (PAGE_SHIFT - 10));
2970 if (maxpages > last_page) {
2971 maxpages = last_page + 1;
2972 /* p->max is an unsigned int: don't overflow it */
2973 if ((unsigned int)maxpages == 0)
2974 maxpages = UINT_MAX;
2976 p->highest_bit = maxpages - 1;
2978 if (!maxpages)
2979 return 0;
2980 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2981 if (swapfilepages && maxpages > swapfilepages) {
2982 pr_warn("Swap area shorter than signature indicates\n");
2983 return 0;
2985 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2986 return 0;
2987 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2988 return 0;
2990 return maxpages;
2993 #define SWAP_CLUSTER_INFO_COLS \
2994 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2995 #define SWAP_CLUSTER_SPACE_COLS \
2996 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2997 #define SWAP_CLUSTER_COLS \
2998 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3000 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3001 union swap_header *swap_header,
3002 unsigned char *swap_map,
3003 struct swap_cluster_info *cluster_info,
3004 unsigned long maxpages,
3005 sector_t *span)
3007 unsigned int j, k;
3008 unsigned int nr_good_pages;
3009 int nr_extents;
3010 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3011 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3012 unsigned long i, idx;
3014 nr_good_pages = maxpages - 1; /* omit header page */
3016 cluster_list_init(&p->free_clusters);
3017 cluster_list_init(&p->discard_clusters);
3019 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3020 unsigned int page_nr = swap_header->info.badpages[i];
3021 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3022 return -EINVAL;
3023 if (page_nr < maxpages) {
3024 swap_map[page_nr] = SWAP_MAP_BAD;
3025 nr_good_pages--;
3027 * Haven't marked the cluster free yet, no list
3028 * operation involved
3030 inc_cluster_info_page(p, cluster_info, page_nr);
3034 /* Haven't marked the cluster free yet, no list operation involved */
3035 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3036 inc_cluster_info_page(p, cluster_info, i);
3038 if (nr_good_pages) {
3039 swap_map[0] = SWAP_MAP_BAD;
3041 * Not mark the cluster free yet, no list
3042 * operation involved
3044 inc_cluster_info_page(p, cluster_info, 0);
3045 p->max = maxpages;
3046 p->pages = nr_good_pages;
3047 nr_extents = setup_swap_extents(p, span);
3048 if (nr_extents < 0)
3049 return nr_extents;
3050 nr_good_pages = p->pages;
3052 if (!nr_good_pages) {
3053 pr_warn("Empty swap-file\n");
3054 return -EINVAL;
3057 if (!cluster_info)
3058 return nr_extents;
3062 * Reduce false cache line sharing between cluster_info and
3063 * sharing same address space.
3065 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3066 j = (k + col) % SWAP_CLUSTER_COLS;
3067 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3068 idx = i * SWAP_CLUSTER_COLS + j;
3069 if (idx >= nr_clusters)
3070 continue;
3071 if (cluster_count(&cluster_info[idx]))
3072 continue;
3073 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3074 cluster_list_add_tail(&p->free_clusters, cluster_info,
3075 idx);
3078 return nr_extents;
3082 * Helper to sys_swapon determining if a given swap
3083 * backing device queue supports DISCARD operations.
3085 static bool swap_discardable(struct swap_info_struct *si)
3087 struct request_queue *q = bdev_get_queue(si->bdev);
3089 if (!q || !blk_queue_discard(q))
3090 return false;
3092 return true;
3095 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3097 struct swap_info_struct *p;
3098 struct filename *name;
3099 struct file *swap_file = NULL;
3100 struct address_space *mapping;
3101 int prio;
3102 int error;
3103 union swap_header *swap_header;
3104 int nr_extents;
3105 sector_t span;
3106 unsigned long maxpages;
3107 unsigned char *swap_map = NULL;
3108 struct swap_cluster_info *cluster_info = NULL;
3109 unsigned long *frontswap_map = NULL;
3110 struct page *page = NULL;
3111 struct inode *inode = NULL;
3112 bool inced_nr_rotate_swap = false;
3114 if (swap_flags & ~SWAP_FLAGS_VALID)
3115 return -EINVAL;
3117 if (!capable(CAP_SYS_ADMIN))
3118 return -EPERM;
3120 if (!swap_avail_heads)
3121 return -ENOMEM;
3123 p = alloc_swap_info();
3124 if (IS_ERR(p))
3125 return PTR_ERR(p);
3127 INIT_WORK(&p->discard_work, swap_discard_work);
3129 name = getname(specialfile);
3130 if (IS_ERR(name)) {
3131 error = PTR_ERR(name);
3132 name = NULL;
3133 goto bad_swap;
3135 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3136 if (IS_ERR(swap_file)) {
3137 error = PTR_ERR(swap_file);
3138 swap_file = NULL;
3139 goto bad_swap;
3142 p->swap_file = swap_file;
3143 mapping = swap_file->f_mapping;
3144 inode = mapping->host;
3146 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
3147 error = claim_swapfile(p, inode);
3148 if (unlikely(error))
3149 goto bad_swap;
3152 * Read the swap header.
3154 if (!mapping->a_ops->readpage) {
3155 error = -EINVAL;
3156 goto bad_swap;
3158 page = read_mapping_page(mapping, 0, swap_file);
3159 if (IS_ERR(page)) {
3160 error = PTR_ERR(page);
3161 goto bad_swap;
3163 swap_header = kmap(page);
3165 maxpages = read_swap_header(p, swap_header, inode);
3166 if (unlikely(!maxpages)) {
3167 error = -EINVAL;
3168 goto bad_swap;
3171 /* OK, set up the swap map and apply the bad block list */
3172 swap_map = vzalloc(maxpages);
3173 if (!swap_map) {
3174 error = -ENOMEM;
3175 goto bad_swap;
3178 if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3179 p->flags |= SWP_STABLE_WRITES;
3181 if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3182 p->flags |= SWP_SYNCHRONOUS_IO;
3184 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3185 int cpu;
3186 unsigned long ci, nr_cluster;
3188 p->flags |= SWP_SOLIDSTATE;
3190 * select a random position to start with to help wear leveling
3191 * SSD
3193 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
3194 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3196 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3197 GFP_KERNEL);
3198 if (!cluster_info) {
3199 error = -ENOMEM;
3200 goto bad_swap;
3203 for (ci = 0; ci < nr_cluster; ci++)
3204 spin_lock_init(&((cluster_info + ci)->lock));
3206 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3207 if (!p->percpu_cluster) {
3208 error = -ENOMEM;
3209 goto bad_swap;
3211 for_each_possible_cpu(cpu) {
3212 struct percpu_cluster *cluster;
3213 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3214 cluster_set_null(&cluster->index);
3216 } else {
3217 atomic_inc(&nr_rotate_swap);
3218 inced_nr_rotate_swap = true;
3221 error = swap_cgroup_swapon(p->type, maxpages);
3222 if (error)
3223 goto bad_swap;
3225 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3226 cluster_info, maxpages, &span);
3227 if (unlikely(nr_extents < 0)) {
3228 error = nr_extents;
3229 goto bad_swap;
3231 /* frontswap enabled? set up bit-per-page map for frontswap */
3232 if (IS_ENABLED(CONFIG_FRONTSWAP))
3233 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3234 sizeof(long),
3235 GFP_KERNEL);
3237 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3239 * When discard is enabled for swap with no particular
3240 * policy flagged, we set all swap discard flags here in
3241 * order to sustain backward compatibility with older
3242 * swapon(8) releases.
3244 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3245 SWP_PAGE_DISCARD);
3248 * By flagging sys_swapon, a sysadmin can tell us to
3249 * either do single-time area discards only, or to just
3250 * perform discards for released swap page-clusters.
3251 * Now it's time to adjust the p->flags accordingly.
3253 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3254 p->flags &= ~SWP_PAGE_DISCARD;
3255 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3256 p->flags &= ~SWP_AREA_DISCARD;
3258 /* issue a swapon-time discard if it's still required */
3259 if (p->flags & SWP_AREA_DISCARD) {
3260 int err = discard_swap(p);
3261 if (unlikely(err))
3262 pr_err("swapon: discard_swap(%p): %d\n",
3263 p, err);
3267 error = init_swap_address_space(p->type, maxpages);
3268 if (error)
3269 goto bad_swap;
3271 mutex_lock(&swapon_mutex);
3272 prio = -1;
3273 if (swap_flags & SWAP_FLAG_PREFER)
3274 prio =
3275 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3276 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3278 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3279 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3280 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3281 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3282 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3283 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3284 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3285 (frontswap_map) ? "FS" : "");
3287 mutex_unlock(&swapon_mutex);
3288 atomic_inc(&proc_poll_event);
3289 wake_up_interruptible(&proc_poll_wait);
3291 if (S_ISREG(inode->i_mode))
3292 inode->i_flags |= S_SWAPFILE;
3293 error = 0;
3294 goto out;
3295 bad_swap:
3296 free_percpu(p->percpu_cluster);
3297 p->percpu_cluster = NULL;
3298 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3299 set_blocksize(p->bdev, p->old_block_size);
3300 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3302 destroy_swap_extents(p);
3303 swap_cgroup_swapoff(p->type);
3304 spin_lock(&swap_lock);
3305 p->swap_file = NULL;
3306 p->flags = 0;
3307 spin_unlock(&swap_lock);
3308 vfree(swap_map);
3309 kvfree(cluster_info);
3310 kvfree(frontswap_map);
3311 if (inced_nr_rotate_swap)
3312 atomic_dec(&nr_rotate_swap);
3313 if (swap_file) {
3314 if (inode && S_ISREG(inode->i_mode)) {
3315 inode_unlock(inode);
3316 inode = NULL;
3318 filp_close(swap_file, NULL);
3320 out:
3321 if (page && !IS_ERR(page)) {
3322 kunmap(page);
3323 put_page(page);
3325 if (name)
3326 putname(name);
3327 if (inode && S_ISREG(inode->i_mode))
3328 inode_unlock(inode);
3329 if (!error)
3330 enable_swap_slots_cache();
3331 return error;
3334 void si_swapinfo(struct sysinfo *val)
3336 unsigned int type;
3337 unsigned long nr_to_be_unused = 0;
3339 spin_lock(&swap_lock);
3340 for (type = 0; type < nr_swapfiles; type++) {
3341 struct swap_info_struct *si = swap_info[type];
3343 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3344 nr_to_be_unused += si->inuse_pages;
3346 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3347 val->totalswap = total_swap_pages + nr_to_be_unused;
3348 spin_unlock(&swap_lock);
3352 * Verify that a swap entry is valid and increment its swap map count.
3354 * Returns error code in following case.
3355 * - success -> 0
3356 * - swp_entry is invalid -> EINVAL
3357 * - swp_entry is migration entry -> EINVAL
3358 * - swap-cache reference is requested but there is already one. -> EEXIST
3359 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3360 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3362 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3364 struct swap_info_struct *p;
3365 struct swap_cluster_info *ci;
3366 unsigned long offset, type;
3367 unsigned char count;
3368 unsigned char has_cache;
3369 int err = -EINVAL;
3371 if (non_swap_entry(entry))
3372 goto out;
3374 type = swp_type(entry);
3375 if (type >= nr_swapfiles)
3376 goto bad_file;
3377 p = swap_info[type];
3378 offset = swp_offset(entry);
3379 if (unlikely(offset >= p->max))
3380 goto out;
3382 ci = lock_cluster_or_swap_info(p, offset);
3384 count = p->swap_map[offset];
3387 * swapin_readahead() doesn't check if a swap entry is valid, so the
3388 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3390 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3391 err = -ENOENT;
3392 goto unlock_out;
3395 has_cache = count & SWAP_HAS_CACHE;
3396 count &= ~SWAP_HAS_CACHE;
3397 err = 0;
3399 if (usage == SWAP_HAS_CACHE) {
3401 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3402 if (!has_cache && count)
3403 has_cache = SWAP_HAS_CACHE;
3404 else if (has_cache) /* someone else added cache */
3405 err = -EEXIST;
3406 else /* no users remaining */
3407 err = -ENOENT;
3409 } else if (count || has_cache) {
3411 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3412 count += usage;
3413 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3414 err = -EINVAL;
3415 else if (swap_count_continued(p, offset, count))
3416 count = COUNT_CONTINUED;
3417 else
3418 err = -ENOMEM;
3419 } else
3420 err = -ENOENT; /* unused swap entry */
3422 p->swap_map[offset] = count | has_cache;
3424 unlock_out:
3425 unlock_cluster_or_swap_info(p, ci);
3426 out:
3427 return err;
3429 bad_file:
3430 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
3431 goto out;
3435 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3436 * (in which case its reference count is never incremented).
3438 void swap_shmem_alloc(swp_entry_t entry)
3440 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3444 * Increase reference count of swap entry by 1.
3445 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3446 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3447 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3448 * might occur if a page table entry has got corrupted.
3450 int swap_duplicate(swp_entry_t entry)
3452 int err = 0;
3454 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3455 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3456 return err;
3460 * @entry: swap entry for which we allocate swap cache.
3462 * Called when allocating swap cache for existing swap entry,
3463 * This can return error codes. Returns 0 at success.
3464 * -EBUSY means there is a swap cache.
3465 * Note: return code is different from swap_duplicate().
3467 int swapcache_prepare(swp_entry_t entry)
3469 return __swap_duplicate(entry, SWAP_HAS_CACHE);
3472 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3474 return swap_info[swp_type(entry)];
3477 struct swap_info_struct *page_swap_info(struct page *page)
3479 swp_entry_t entry = { .val = page_private(page) };
3480 return swp_swap_info(entry);
3484 * out-of-line __page_file_ methods to avoid include hell.
3486 struct address_space *__page_file_mapping(struct page *page)
3488 return page_swap_info(page)->swap_file->f_mapping;
3490 EXPORT_SYMBOL_GPL(__page_file_mapping);
3492 pgoff_t __page_file_index(struct page *page)
3494 swp_entry_t swap = { .val = page_private(page) };
3495 return swp_offset(swap);
3497 EXPORT_SYMBOL_GPL(__page_file_index);
3500 * add_swap_count_continuation - called when a swap count is duplicated
3501 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3502 * page of the original vmalloc'ed swap_map, to hold the continuation count
3503 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3504 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3506 * These continuation pages are seldom referenced: the common paths all work
3507 * on the original swap_map, only referring to a continuation page when the
3508 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3510 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3511 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3512 * can be called after dropping locks.
3514 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3516 struct swap_info_struct *si;
3517 struct swap_cluster_info *ci;
3518 struct page *head;
3519 struct page *page;
3520 struct page *list_page;
3521 pgoff_t offset;
3522 unsigned char count;
3525 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3526 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3528 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3530 si = swap_info_get(entry);
3531 if (!si) {
3533 * An acceptable race has occurred since the failing
3534 * __swap_duplicate(): the swap entry has been freed,
3535 * perhaps even the whole swap_map cleared for swapoff.
3537 goto outer;
3540 offset = swp_offset(entry);
3542 ci = lock_cluster(si, offset);
3544 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3546 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3548 * The higher the swap count, the more likely it is that tasks
3549 * will race to add swap count continuation: we need to avoid
3550 * over-provisioning.
3552 goto out;
3555 if (!page) {
3556 unlock_cluster(ci);
3557 spin_unlock(&si->lock);
3558 return -ENOMEM;
3562 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3563 * no architecture is using highmem pages for kernel page tables: so it
3564 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3566 head = vmalloc_to_page(si->swap_map + offset);
3567 offset &= ~PAGE_MASK;
3569 spin_lock(&si->cont_lock);
3571 * Page allocation does not initialize the page's lru field,
3572 * but it does always reset its private field.
3574 if (!page_private(head)) {
3575 BUG_ON(count & COUNT_CONTINUED);
3576 INIT_LIST_HEAD(&head->lru);
3577 set_page_private(head, SWP_CONTINUED);
3578 si->flags |= SWP_CONTINUED;
3581 list_for_each_entry(list_page, &head->lru, lru) {
3582 unsigned char *map;
3585 * If the previous map said no continuation, but we've found
3586 * a continuation page, free our allocation and use this one.
3588 if (!(count & COUNT_CONTINUED))
3589 goto out_unlock_cont;
3591 map = kmap_atomic(list_page) + offset;
3592 count = *map;
3593 kunmap_atomic(map);
3596 * If this continuation count now has some space in it,
3597 * free our allocation and use this one.
3599 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3600 goto out_unlock_cont;
3603 list_add_tail(&page->lru, &head->lru);
3604 page = NULL; /* now it's attached, don't free it */
3605 out_unlock_cont:
3606 spin_unlock(&si->cont_lock);
3607 out:
3608 unlock_cluster(ci);
3609 spin_unlock(&si->lock);
3610 outer:
3611 if (page)
3612 __free_page(page);
3613 return 0;
3617 * swap_count_continued - when the original swap_map count is incremented
3618 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3619 * into, carry if so, or else fail until a new continuation page is allocated;
3620 * when the original swap_map count is decremented from 0 with continuation,
3621 * borrow from the continuation and report whether it still holds more.
3622 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3623 * lock.
3625 static bool swap_count_continued(struct swap_info_struct *si,
3626 pgoff_t offset, unsigned char count)
3628 struct page *head;
3629 struct page *page;
3630 unsigned char *map;
3631 bool ret;
3633 head = vmalloc_to_page(si->swap_map + offset);
3634 if (page_private(head) != SWP_CONTINUED) {
3635 BUG_ON(count & COUNT_CONTINUED);
3636 return false; /* need to add count continuation */
3639 spin_lock(&si->cont_lock);
3640 offset &= ~PAGE_MASK;
3641 page = list_entry(head->lru.next, struct page, lru);
3642 map = kmap_atomic(page) + offset;
3644 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3645 goto init_map; /* jump over SWAP_CONT_MAX checks */
3647 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3649 * Think of how you add 1 to 999
3651 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3652 kunmap_atomic(map);
3653 page = list_entry(page->lru.next, struct page, lru);
3654 BUG_ON(page == head);
3655 map = kmap_atomic(page) + offset;
3657 if (*map == SWAP_CONT_MAX) {
3658 kunmap_atomic(map);
3659 page = list_entry(page->lru.next, struct page, lru);
3660 if (page == head) {
3661 ret = false; /* add count continuation */
3662 goto out;
3664 map = kmap_atomic(page) + offset;
3665 init_map: *map = 0; /* we didn't zero the page */
3667 *map += 1;
3668 kunmap_atomic(map);
3669 page = list_entry(page->lru.prev, struct page, lru);
3670 while (page != head) {
3671 map = kmap_atomic(page) + offset;
3672 *map = COUNT_CONTINUED;
3673 kunmap_atomic(map);
3674 page = list_entry(page->lru.prev, struct page, lru);
3676 ret = true; /* incremented */
3678 } else { /* decrementing */
3680 * Think of how you subtract 1 from 1000
3682 BUG_ON(count != COUNT_CONTINUED);
3683 while (*map == COUNT_CONTINUED) {
3684 kunmap_atomic(map);
3685 page = list_entry(page->lru.next, struct page, lru);
3686 BUG_ON(page == head);
3687 map = kmap_atomic(page) + offset;
3689 BUG_ON(*map == 0);
3690 *map -= 1;
3691 if (*map == 0)
3692 count = 0;
3693 kunmap_atomic(map);
3694 page = list_entry(page->lru.prev, struct page, lru);
3695 while (page != head) {
3696 map = kmap_atomic(page) + offset;
3697 *map = SWAP_CONT_MAX | count;
3698 count = COUNT_CONTINUED;
3699 kunmap_atomic(map);
3700 page = list_entry(page->lru.prev, struct page, lru);
3702 ret = count == COUNT_CONTINUED;
3704 out:
3705 spin_unlock(&si->cont_lock);
3706 return ret;
3710 * free_swap_count_continuations - swapoff free all the continuation pages
3711 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3713 static void free_swap_count_continuations(struct swap_info_struct *si)
3715 pgoff_t offset;
3717 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3718 struct page *head;
3719 head = vmalloc_to_page(si->swap_map + offset);
3720 if (page_private(head)) {
3721 struct page *page, *next;
3723 list_for_each_entry_safe(page, next, &head->lru, lru) {
3724 list_del(&page->lru);
3725 __free_page(page);
3731 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3732 void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node,
3733 gfp_t gfp_mask)
3735 struct swap_info_struct *si, *next;
3736 if (!(gfp_mask & __GFP_IO) || !memcg)
3737 return;
3739 if (!blk_cgroup_congested())
3740 return;
3743 * We've already scheduled a throttle, avoid taking the global swap
3744 * lock.
3746 if (current->throttle_queue)
3747 return;
3749 spin_lock(&swap_avail_lock);
3750 plist_for_each_entry_safe(si, next, &swap_avail_heads[node],
3751 avail_lists[node]) {
3752 if (si->bdev) {
3753 blkcg_schedule_throttle(bdev_get_queue(si->bdev),
3754 true);
3755 break;
3758 spin_unlock(&swap_avail_lock);
3760 #endif
3762 static int __init swapfile_init(void)
3764 int nid;
3766 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3767 GFP_KERNEL);
3768 if (!swap_avail_heads) {
3769 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3770 return -ENOMEM;
3773 for_each_node(nid)
3774 plist_head_init(&swap_avail_heads[nid]);
3776 return 0;
3778 subsys_initcall(swapfile_init);