Merge tag 'ovl-fixes-4.19-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/mszer...
[linux-2.6/btrfs-unstable.git] / mm / migrate.c
blobd6a2e89b086a43d77f155f6b525fc15326d9c035
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Memory Migration functionality - linux/mm/migrate.c
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
13 * Christoph Lameter
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/page_idle.h>
47 #include <linux/page_owner.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ptrace.h>
51 #include <asm/tlbflush.h>
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/migrate.h>
56 #include "internal.h"
59 * migrate_prep() needs to be called before we start compiling a list of pages
60 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61 * undesirable, use migrate_prep_local()
63 int migrate_prep(void)
66 * Clear the LRU lists so pages can be isolated.
67 * Note that pages may be moved off the LRU after we have
68 * drained them. Those pages will fail to migrate like other
69 * pages that may be busy.
71 lru_add_drain_all();
73 return 0;
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 int migrate_prep_local(void)
79 lru_add_drain();
81 return 0;
84 int isolate_movable_page(struct page *page, isolate_mode_t mode)
86 struct address_space *mapping;
89 * Avoid burning cycles with pages that are yet under __free_pages(),
90 * or just got freed under us.
92 * In case we 'win' a race for a movable page being freed under us and
93 * raise its refcount preventing __free_pages() from doing its job
94 * the put_page() at the end of this block will take care of
95 * release this page, thus avoiding a nasty leakage.
97 if (unlikely(!get_page_unless_zero(page)))
98 goto out;
101 * Check PageMovable before holding a PG_lock because page's owner
102 * assumes anybody doesn't touch PG_lock of newly allocated page
103 * so unconditionally grapping the lock ruins page's owner side.
105 if (unlikely(!__PageMovable(page)))
106 goto out_putpage;
108 * As movable pages are not isolated from LRU lists, concurrent
109 * compaction threads can race against page migration functions
110 * as well as race against the releasing a page.
112 * In order to avoid having an already isolated movable page
113 * being (wrongly) re-isolated while it is under migration,
114 * or to avoid attempting to isolate pages being released,
115 * lets be sure we have the page lock
116 * before proceeding with the movable page isolation steps.
118 if (unlikely(!trylock_page(page)))
119 goto out_putpage;
121 if (!PageMovable(page) || PageIsolated(page))
122 goto out_no_isolated;
124 mapping = page_mapping(page);
125 VM_BUG_ON_PAGE(!mapping, page);
127 if (!mapping->a_ops->isolate_page(page, mode))
128 goto out_no_isolated;
130 /* Driver shouldn't use PG_isolated bit of page->flags */
131 WARN_ON_ONCE(PageIsolated(page));
132 __SetPageIsolated(page);
133 unlock_page(page);
135 return 0;
137 out_no_isolated:
138 unlock_page(page);
139 out_putpage:
140 put_page(page);
141 out:
142 return -EBUSY;
145 /* It should be called on page which is PG_movable */
146 void putback_movable_page(struct page *page)
148 struct address_space *mapping;
150 VM_BUG_ON_PAGE(!PageLocked(page), page);
151 VM_BUG_ON_PAGE(!PageMovable(page), page);
152 VM_BUG_ON_PAGE(!PageIsolated(page), page);
154 mapping = page_mapping(page);
155 mapping->a_ops->putback_page(page);
156 __ClearPageIsolated(page);
160 * Put previously isolated pages back onto the appropriate lists
161 * from where they were once taken off for compaction/migration.
163 * This function shall be used whenever the isolated pageset has been
164 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165 * and isolate_huge_page().
167 void putback_movable_pages(struct list_head *l)
169 struct page *page;
170 struct page *page2;
172 list_for_each_entry_safe(page, page2, l, lru) {
173 if (unlikely(PageHuge(page))) {
174 putback_active_hugepage(page);
175 continue;
177 list_del(&page->lru);
179 * We isolated non-lru movable page so here we can use
180 * __PageMovable because LRU page's mapping cannot have
181 * PAGE_MAPPING_MOVABLE.
183 if (unlikely(__PageMovable(page))) {
184 VM_BUG_ON_PAGE(!PageIsolated(page), page);
185 lock_page(page);
186 if (PageMovable(page))
187 putback_movable_page(page);
188 else
189 __ClearPageIsolated(page);
190 unlock_page(page);
191 put_page(page);
192 } else {
193 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194 page_is_file_cache(page), -hpage_nr_pages(page));
195 putback_lru_page(page);
201 * Restore a potential migration pte to a working pte entry
203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
204 unsigned long addr, void *old)
206 struct page_vma_mapped_walk pvmw = {
207 .page = old,
208 .vma = vma,
209 .address = addr,
210 .flags = PVMW_SYNC | PVMW_MIGRATION,
212 struct page *new;
213 pte_t pte;
214 swp_entry_t entry;
216 VM_BUG_ON_PAGE(PageTail(page), page);
217 while (page_vma_mapped_walk(&pvmw)) {
218 if (PageKsm(page))
219 new = page;
220 else
221 new = page - pvmw.page->index +
222 linear_page_index(vma, pvmw.address);
224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225 /* PMD-mapped THP migration entry */
226 if (!pvmw.pte) {
227 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228 remove_migration_pmd(&pvmw, new);
229 continue;
231 #endif
233 get_page(new);
234 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235 if (pte_swp_soft_dirty(*pvmw.pte))
236 pte = pte_mksoft_dirty(pte);
239 * Recheck VMA as permissions can change since migration started
241 entry = pte_to_swp_entry(*pvmw.pte);
242 if (is_write_migration_entry(entry))
243 pte = maybe_mkwrite(pte, vma);
245 if (unlikely(is_zone_device_page(new))) {
246 if (is_device_private_page(new)) {
247 entry = make_device_private_entry(new, pte_write(pte));
248 pte = swp_entry_to_pte(entry);
249 } else if (is_device_public_page(new)) {
250 pte = pte_mkdevmap(pte);
251 flush_dcache_page(new);
253 } else
254 flush_dcache_page(new);
256 #ifdef CONFIG_HUGETLB_PAGE
257 if (PageHuge(new)) {
258 pte = pte_mkhuge(pte);
259 pte = arch_make_huge_pte(pte, vma, new, 0);
260 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
261 if (PageAnon(new))
262 hugepage_add_anon_rmap(new, vma, pvmw.address);
263 else
264 page_dup_rmap(new, true);
265 } else
266 #endif
268 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
270 if (PageAnon(new))
271 page_add_anon_rmap(new, vma, pvmw.address, false);
272 else
273 page_add_file_rmap(new, false);
275 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
276 mlock_vma_page(new);
278 /* No need to invalidate - it was non-present before */
279 update_mmu_cache(vma, pvmw.address, pvmw.pte);
282 return true;
286 * Get rid of all migration entries and replace them by
287 * references to the indicated page.
289 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
291 struct rmap_walk_control rwc = {
292 .rmap_one = remove_migration_pte,
293 .arg = old,
296 if (locked)
297 rmap_walk_locked(new, &rwc);
298 else
299 rmap_walk(new, &rwc);
303 * Something used the pte of a page under migration. We need to
304 * get to the page and wait until migration is finished.
305 * When we return from this function the fault will be retried.
307 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
308 spinlock_t *ptl)
310 pte_t pte;
311 swp_entry_t entry;
312 struct page *page;
314 spin_lock(ptl);
315 pte = *ptep;
316 if (!is_swap_pte(pte))
317 goto out;
319 entry = pte_to_swp_entry(pte);
320 if (!is_migration_entry(entry))
321 goto out;
323 page = migration_entry_to_page(entry);
326 * Once radix-tree replacement of page migration started, page_count
327 * *must* be zero. And, we don't want to call wait_on_page_locked()
328 * against a page without get_page().
329 * So, we use get_page_unless_zero(), here. Even failed, page fault
330 * will occur again.
332 if (!get_page_unless_zero(page))
333 goto out;
334 pte_unmap_unlock(ptep, ptl);
335 wait_on_page_locked(page);
336 put_page(page);
337 return;
338 out:
339 pte_unmap_unlock(ptep, ptl);
342 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
343 unsigned long address)
345 spinlock_t *ptl = pte_lockptr(mm, pmd);
346 pte_t *ptep = pte_offset_map(pmd, address);
347 __migration_entry_wait(mm, ptep, ptl);
350 void migration_entry_wait_huge(struct vm_area_struct *vma,
351 struct mm_struct *mm, pte_t *pte)
353 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
354 __migration_entry_wait(mm, pte, ptl);
357 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
358 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
360 spinlock_t *ptl;
361 struct page *page;
363 ptl = pmd_lock(mm, pmd);
364 if (!is_pmd_migration_entry(*pmd))
365 goto unlock;
366 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
367 if (!get_page_unless_zero(page))
368 goto unlock;
369 spin_unlock(ptl);
370 wait_on_page_locked(page);
371 put_page(page);
372 return;
373 unlock:
374 spin_unlock(ptl);
376 #endif
378 #ifdef CONFIG_BLOCK
379 /* Returns true if all buffers are successfully locked */
380 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
381 enum migrate_mode mode)
383 struct buffer_head *bh = head;
385 /* Simple case, sync compaction */
386 if (mode != MIGRATE_ASYNC) {
387 do {
388 get_bh(bh);
389 lock_buffer(bh);
390 bh = bh->b_this_page;
392 } while (bh != head);
394 return true;
397 /* async case, we cannot block on lock_buffer so use trylock_buffer */
398 do {
399 get_bh(bh);
400 if (!trylock_buffer(bh)) {
402 * We failed to lock the buffer and cannot stall in
403 * async migration. Release the taken locks
405 struct buffer_head *failed_bh = bh;
406 put_bh(failed_bh);
407 bh = head;
408 while (bh != failed_bh) {
409 unlock_buffer(bh);
410 put_bh(bh);
411 bh = bh->b_this_page;
413 return false;
416 bh = bh->b_this_page;
417 } while (bh != head);
418 return true;
420 #else
421 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
422 enum migrate_mode mode)
424 return true;
426 #endif /* CONFIG_BLOCK */
429 * Replace the page in the mapping.
431 * The number of remaining references must be:
432 * 1 for anonymous pages without a mapping
433 * 2 for pages with a mapping
434 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
436 int migrate_page_move_mapping(struct address_space *mapping,
437 struct page *newpage, struct page *page,
438 struct buffer_head *head, enum migrate_mode mode,
439 int extra_count)
441 struct zone *oldzone, *newzone;
442 int dirty;
443 int expected_count = 1 + extra_count;
444 void **pslot;
447 * Device public or private pages have an extra refcount as they are
448 * ZONE_DEVICE pages.
450 expected_count += is_device_private_page(page);
451 expected_count += is_device_public_page(page);
453 if (!mapping) {
454 /* Anonymous page without mapping */
455 if (page_count(page) != expected_count)
456 return -EAGAIN;
458 /* No turning back from here */
459 newpage->index = page->index;
460 newpage->mapping = page->mapping;
461 if (PageSwapBacked(page))
462 __SetPageSwapBacked(newpage);
464 return MIGRATEPAGE_SUCCESS;
467 oldzone = page_zone(page);
468 newzone = page_zone(newpage);
470 xa_lock_irq(&mapping->i_pages);
472 pslot = radix_tree_lookup_slot(&mapping->i_pages,
473 page_index(page));
475 expected_count += hpage_nr_pages(page) + page_has_private(page);
476 if (page_count(page) != expected_count ||
477 radix_tree_deref_slot_protected(pslot,
478 &mapping->i_pages.xa_lock) != page) {
479 xa_unlock_irq(&mapping->i_pages);
480 return -EAGAIN;
483 if (!page_ref_freeze(page, expected_count)) {
484 xa_unlock_irq(&mapping->i_pages);
485 return -EAGAIN;
489 * In the async migration case of moving a page with buffers, lock the
490 * buffers using trylock before the mapping is moved. If the mapping
491 * was moved, we later failed to lock the buffers and could not move
492 * the mapping back due to an elevated page count, we would have to
493 * block waiting on other references to be dropped.
495 if (mode == MIGRATE_ASYNC && head &&
496 !buffer_migrate_lock_buffers(head, mode)) {
497 page_ref_unfreeze(page, expected_count);
498 xa_unlock_irq(&mapping->i_pages);
499 return -EAGAIN;
503 * Now we know that no one else is looking at the page:
504 * no turning back from here.
506 newpage->index = page->index;
507 newpage->mapping = page->mapping;
508 page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
509 if (PageSwapBacked(page)) {
510 __SetPageSwapBacked(newpage);
511 if (PageSwapCache(page)) {
512 SetPageSwapCache(newpage);
513 set_page_private(newpage, page_private(page));
515 } else {
516 VM_BUG_ON_PAGE(PageSwapCache(page), page);
519 /* Move dirty while page refs frozen and newpage not yet exposed */
520 dirty = PageDirty(page);
521 if (dirty) {
522 ClearPageDirty(page);
523 SetPageDirty(newpage);
526 radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
527 if (PageTransHuge(page)) {
528 int i;
529 int index = page_index(page);
531 for (i = 1; i < HPAGE_PMD_NR; i++) {
532 pslot = radix_tree_lookup_slot(&mapping->i_pages,
533 index + i);
534 radix_tree_replace_slot(&mapping->i_pages, pslot,
535 newpage + i);
540 * Drop cache reference from old page by unfreezing
541 * to one less reference.
542 * We know this isn't the last reference.
544 page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
546 xa_unlock(&mapping->i_pages);
547 /* Leave irq disabled to prevent preemption while updating stats */
550 * If moved to a different zone then also account
551 * the page for that zone. Other VM counters will be
552 * taken care of when we establish references to the
553 * new page and drop references to the old page.
555 * Note that anonymous pages are accounted for
556 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
557 * are mapped to swap space.
559 if (newzone != oldzone) {
560 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
561 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
562 if (PageSwapBacked(page) && !PageSwapCache(page)) {
563 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
564 __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
566 if (dirty && mapping_cap_account_dirty(mapping)) {
567 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
568 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
569 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
570 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
573 local_irq_enable();
575 return MIGRATEPAGE_SUCCESS;
577 EXPORT_SYMBOL(migrate_page_move_mapping);
580 * The expected number of remaining references is the same as that
581 * of migrate_page_move_mapping().
583 int migrate_huge_page_move_mapping(struct address_space *mapping,
584 struct page *newpage, struct page *page)
586 int expected_count;
587 void **pslot;
589 xa_lock_irq(&mapping->i_pages);
591 pslot = radix_tree_lookup_slot(&mapping->i_pages, page_index(page));
593 expected_count = 2 + page_has_private(page);
594 if (page_count(page) != expected_count ||
595 radix_tree_deref_slot_protected(pslot, &mapping->i_pages.xa_lock) != page) {
596 xa_unlock_irq(&mapping->i_pages);
597 return -EAGAIN;
600 if (!page_ref_freeze(page, expected_count)) {
601 xa_unlock_irq(&mapping->i_pages);
602 return -EAGAIN;
605 newpage->index = page->index;
606 newpage->mapping = page->mapping;
608 get_page(newpage);
610 radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
612 page_ref_unfreeze(page, expected_count - 1);
614 xa_unlock_irq(&mapping->i_pages);
616 return MIGRATEPAGE_SUCCESS;
620 * Gigantic pages are so large that we do not guarantee that page++ pointer
621 * arithmetic will work across the entire page. We need something more
622 * specialized.
624 static void __copy_gigantic_page(struct page *dst, struct page *src,
625 int nr_pages)
627 int i;
628 struct page *dst_base = dst;
629 struct page *src_base = src;
631 for (i = 0; i < nr_pages; ) {
632 cond_resched();
633 copy_highpage(dst, src);
635 i++;
636 dst = mem_map_next(dst, dst_base, i);
637 src = mem_map_next(src, src_base, i);
641 static void copy_huge_page(struct page *dst, struct page *src)
643 int i;
644 int nr_pages;
646 if (PageHuge(src)) {
647 /* hugetlbfs page */
648 struct hstate *h = page_hstate(src);
649 nr_pages = pages_per_huge_page(h);
651 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
652 __copy_gigantic_page(dst, src, nr_pages);
653 return;
655 } else {
656 /* thp page */
657 BUG_ON(!PageTransHuge(src));
658 nr_pages = hpage_nr_pages(src);
661 for (i = 0; i < nr_pages; i++) {
662 cond_resched();
663 copy_highpage(dst + i, src + i);
668 * Copy the page to its new location
670 void migrate_page_states(struct page *newpage, struct page *page)
672 int cpupid;
674 if (PageError(page))
675 SetPageError(newpage);
676 if (PageReferenced(page))
677 SetPageReferenced(newpage);
678 if (PageUptodate(page))
679 SetPageUptodate(newpage);
680 if (TestClearPageActive(page)) {
681 VM_BUG_ON_PAGE(PageUnevictable(page), page);
682 SetPageActive(newpage);
683 } else if (TestClearPageUnevictable(page))
684 SetPageUnevictable(newpage);
685 if (PageChecked(page))
686 SetPageChecked(newpage);
687 if (PageMappedToDisk(page))
688 SetPageMappedToDisk(newpage);
690 /* Move dirty on pages not done by migrate_page_move_mapping() */
691 if (PageDirty(page))
692 SetPageDirty(newpage);
694 if (page_is_young(page))
695 set_page_young(newpage);
696 if (page_is_idle(page))
697 set_page_idle(newpage);
700 * Copy NUMA information to the new page, to prevent over-eager
701 * future migrations of this same page.
703 cpupid = page_cpupid_xchg_last(page, -1);
704 page_cpupid_xchg_last(newpage, cpupid);
706 ksm_migrate_page(newpage, page);
708 * Please do not reorder this without considering how mm/ksm.c's
709 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
711 if (PageSwapCache(page))
712 ClearPageSwapCache(page);
713 ClearPagePrivate(page);
714 set_page_private(page, 0);
717 * If any waiters have accumulated on the new page then
718 * wake them up.
720 if (PageWriteback(newpage))
721 end_page_writeback(newpage);
723 copy_page_owner(page, newpage);
725 mem_cgroup_migrate(page, newpage);
727 EXPORT_SYMBOL(migrate_page_states);
729 void migrate_page_copy(struct page *newpage, struct page *page)
731 if (PageHuge(page) || PageTransHuge(page))
732 copy_huge_page(newpage, page);
733 else
734 copy_highpage(newpage, page);
736 migrate_page_states(newpage, page);
738 EXPORT_SYMBOL(migrate_page_copy);
740 /************************************************************
741 * Migration functions
742 ***********************************************************/
745 * Common logic to directly migrate a single LRU page suitable for
746 * pages that do not use PagePrivate/PagePrivate2.
748 * Pages are locked upon entry and exit.
750 int migrate_page(struct address_space *mapping,
751 struct page *newpage, struct page *page,
752 enum migrate_mode mode)
754 int rc;
756 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
758 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
760 if (rc != MIGRATEPAGE_SUCCESS)
761 return rc;
763 if (mode != MIGRATE_SYNC_NO_COPY)
764 migrate_page_copy(newpage, page);
765 else
766 migrate_page_states(newpage, page);
767 return MIGRATEPAGE_SUCCESS;
769 EXPORT_SYMBOL(migrate_page);
771 #ifdef CONFIG_BLOCK
773 * Migration function for pages with buffers. This function can only be used
774 * if the underlying filesystem guarantees that no other references to "page"
775 * exist.
777 int buffer_migrate_page(struct address_space *mapping,
778 struct page *newpage, struct page *page, enum migrate_mode mode)
780 struct buffer_head *bh, *head;
781 int rc;
783 if (!page_has_buffers(page))
784 return migrate_page(mapping, newpage, page, mode);
786 head = page_buffers(page);
788 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
790 if (rc != MIGRATEPAGE_SUCCESS)
791 return rc;
794 * In the async case, migrate_page_move_mapping locked the buffers
795 * with an IRQ-safe spinlock held. In the sync case, the buffers
796 * need to be locked now
798 if (mode != MIGRATE_ASYNC)
799 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
801 ClearPagePrivate(page);
802 set_page_private(newpage, page_private(page));
803 set_page_private(page, 0);
804 put_page(page);
805 get_page(newpage);
807 bh = head;
808 do {
809 set_bh_page(bh, newpage, bh_offset(bh));
810 bh = bh->b_this_page;
812 } while (bh != head);
814 SetPagePrivate(newpage);
816 if (mode != MIGRATE_SYNC_NO_COPY)
817 migrate_page_copy(newpage, page);
818 else
819 migrate_page_states(newpage, page);
821 bh = head;
822 do {
823 unlock_buffer(bh);
824 put_bh(bh);
825 bh = bh->b_this_page;
827 } while (bh != head);
829 return MIGRATEPAGE_SUCCESS;
831 EXPORT_SYMBOL(buffer_migrate_page);
832 #endif
835 * Writeback a page to clean the dirty state
837 static int writeout(struct address_space *mapping, struct page *page)
839 struct writeback_control wbc = {
840 .sync_mode = WB_SYNC_NONE,
841 .nr_to_write = 1,
842 .range_start = 0,
843 .range_end = LLONG_MAX,
844 .for_reclaim = 1
846 int rc;
848 if (!mapping->a_ops->writepage)
849 /* No write method for the address space */
850 return -EINVAL;
852 if (!clear_page_dirty_for_io(page))
853 /* Someone else already triggered a write */
854 return -EAGAIN;
857 * A dirty page may imply that the underlying filesystem has
858 * the page on some queue. So the page must be clean for
859 * migration. Writeout may mean we loose the lock and the
860 * page state is no longer what we checked for earlier.
861 * At this point we know that the migration attempt cannot
862 * be successful.
864 remove_migration_ptes(page, page, false);
866 rc = mapping->a_ops->writepage(page, &wbc);
868 if (rc != AOP_WRITEPAGE_ACTIVATE)
869 /* unlocked. Relock */
870 lock_page(page);
872 return (rc < 0) ? -EIO : -EAGAIN;
876 * Default handling if a filesystem does not provide a migration function.
878 static int fallback_migrate_page(struct address_space *mapping,
879 struct page *newpage, struct page *page, enum migrate_mode mode)
881 if (PageDirty(page)) {
882 /* Only writeback pages in full synchronous migration */
883 switch (mode) {
884 case MIGRATE_SYNC:
885 case MIGRATE_SYNC_NO_COPY:
886 break;
887 default:
888 return -EBUSY;
890 return writeout(mapping, page);
894 * Buffers may be managed in a filesystem specific way.
895 * We must have no buffers or drop them.
897 if (page_has_private(page) &&
898 !try_to_release_page(page, GFP_KERNEL))
899 return -EAGAIN;
901 return migrate_page(mapping, newpage, page, mode);
905 * Move a page to a newly allocated page
906 * The page is locked and all ptes have been successfully removed.
908 * The new page will have replaced the old page if this function
909 * is successful.
911 * Return value:
912 * < 0 - error code
913 * MIGRATEPAGE_SUCCESS - success
915 static int move_to_new_page(struct page *newpage, struct page *page,
916 enum migrate_mode mode)
918 struct address_space *mapping;
919 int rc = -EAGAIN;
920 bool is_lru = !__PageMovable(page);
922 VM_BUG_ON_PAGE(!PageLocked(page), page);
923 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
925 mapping = page_mapping(page);
927 if (likely(is_lru)) {
928 if (!mapping)
929 rc = migrate_page(mapping, newpage, page, mode);
930 else if (mapping->a_ops->migratepage)
932 * Most pages have a mapping and most filesystems
933 * provide a migratepage callback. Anonymous pages
934 * are part of swap space which also has its own
935 * migratepage callback. This is the most common path
936 * for page migration.
938 rc = mapping->a_ops->migratepage(mapping, newpage,
939 page, mode);
940 else
941 rc = fallback_migrate_page(mapping, newpage,
942 page, mode);
943 } else {
945 * In case of non-lru page, it could be released after
946 * isolation step. In that case, we shouldn't try migration.
948 VM_BUG_ON_PAGE(!PageIsolated(page), page);
949 if (!PageMovable(page)) {
950 rc = MIGRATEPAGE_SUCCESS;
951 __ClearPageIsolated(page);
952 goto out;
955 rc = mapping->a_ops->migratepage(mapping, newpage,
956 page, mode);
957 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
958 !PageIsolated(page));
962 * When successful, old pagecache page->mapping must be cleared before
963 * page is freed; but stats require that PageAnon be left as PageAnon.
965 if (rc == MIGRATEPAGE_SUCCESS) {
966 if (__PageMovable(page)) {
967 VM_BUG_ON_PAGE(!PageIsolated(page), page);
970 * We clear PG_movable under page_lock so any compactor
971 * cannot try to migrate this page.
973 __ClearPageIsolated(page);
977 * Anonymous and movable page->mapping will be cleard by
978 * free_pages_prepare so don't reset it here for keeping
979 * the type to work PageAnon, for example.
981 if (!PageMappingFlags(page))
982 page->mapping = NULL;
984 out:
985 return rc;
988 static int __unmap_and_move(struct page *page, struct page *newpage,
989 int force, enum migrate_mode mode)
991 int rc = -EAGAIN;
992 int page_was_mapped = 0;
993 struct anon_vma *anon_vma = NULL;
994 bool is_lru = !__PageMovable(page);
996 if (!trylock_page(page)) {
997 if (!force || mode == MIGRATE_ASYNC)
998 goto out;
1001 * It's not safe for direct compaction to call lock_page.
1002 * For example, during page readahead pages are added locked
1003 * to the LRU. Later, when the IO completes the pages are
1004 * marked uptodate and unlocked. However, the queueing
1005 * could be merging multiple pages for one bio (e.g.
1006 * mpage_readpages). If an allocation happens for the
1007 * second or third page, the process can end up locking
1008 * the same page twice and deadlocking. Rather than
1009 * trying to be clever about what pages can be locked,
1010 * avoid the use of lock_page for direct compaction
1011 * altogether.
1013 if (current->flags & PF_MEMALLOC)
1014 goto out;
1016 lock_page(page);
1019 if (PageWriteback(page)) {
1021 * Only in the case of a full synchronous migration is it
1022 * necessary to wait for PageWriteback. In the async case,
1023 * the retry loop is too short and in the sync-light case,
1024 * the overhead of stalling is too much
1026 switch (mode) {
1027 case MIGRATE_SYNC:
1028 case MIGRATE_SYNC_NO_COPY:
1029 break;
1030 default:
1031 rc = -EBUSY;
1032 goto out_unlock;
1034 if (!force)
1035 goto out_unlock;
1036 wait_on_page_writeback(page);
1040 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1041 * we cannot notice that anon_vma is freed while we migrates a page.
1042 * This get_anon_vma() delays freeing anon_vma pointer until the end
1043 * of migration. File cache pages are no problem because of page_lock()
1044 * File Caches may use write_page() or lock_page() in migration, then,
1045 * just care Anon page here.
1047 * Only page_get_anon_vma() understands the subtleties of
1048 * getting a hold on an anon_vma from outside one of its mms.
1049 * But if we cannot get anon_vma, then we won't need it anyway,
1050 * because that implies that the anon page is no longer mapped
1051 * (and cannot be remapped so long as we hold the page lock).
1053 if (PageAnon(page) && !PageKsm(page))
1054 anon_vma = page_get_anon_vma(page);
1057 * Block others from accessing the new page when we get around to
1058 * establishing additional references. We are usually the only one
1059 * holding a reference to newpage at this point. We used to have a BUG
1060 * here if trylock_page(newpage) fails, but would like to allow for
1061 * cases where there might be a race with the previous use of newpage.
1062 * This is much like races on refcount of oldpage: just don't BUG().
1064 if (unlikely(!trylock_page(newpage)))
1065 goto out_unlock;
1067 if (unlikely(!is_lru)) {
1068 rc = move_to_new_page(newpage, page, mode);
1069 goto out_unlock_both;
1073 * Corner case handling:
1074 * 1. When a new swap-cache page is read into, it is added to the LRU
1075 * and treated as swapcache but it has no rmap yet.
1076 * Calling try_to_unmap() against a page->mapping==NULL page will
1077 * trigger a BUG. So handle it here.
1078 * 2. An orphaned page (see truncate_complete_page) might have
1079 * fs-private metadata. The page can be picked up due to memory
1080 * offlining. Everywhere else except page reclaim, the page is
1081 * invisible to the vm, so the page can not be migrated. So try to
1082 * free the metadata, so the page can be freed.
1084 if (!page->mapping) {
1085 VM_BUG_ON_PAGE(PageAnon(page), page);
1086 if (page_has_private(page)) {
1087 try_to_free_buffers(page);
1088 goto out_unlock_both;
1090 } else if (page_mapped(page)) {
1091 /* Establish migration ptes */
1092 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1093 page);
1094 try_to_unmap(page,
1095 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1096 page_was_mapped = 1;
1099 if (!page_mapped(page))
1100 rc = move_to_new_page(newpage, page, mode);
1102 if (page_was_mapped)
1103 remove_migration_ptes(page,
1104 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1106 out_unlock_both:
1107 unlock_page(newpage);
1108 out_unlock:
1109 /* Drop an anon_vma reference if we took one */
1110 if (anon_vma)
1111 put_anon_vma(anon_vma);
1112 unlock_page(page);
1113 out:
1115 * If migration is successful, decrease refcount of the newpage
1116 * which will not free the page because new page owner increased
1117 * refcounter. As well, if it is LRU page, add the page to LRU
1118 * list in here.
1120 if (rc == MIGRATEPAGE_SUCCESS) {
1121 if (unlikely(__PageMovable(newpage)))
1122 put_page(newpage);
1123 else
1124 putback_lru_page(newpage);
1127 return rc;
1131 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1132 * around it.
1134 #if defined(CONFIG_ARM) && \
1135 defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1136 #define ICE_noinline noinline
1137 #else
1138 #define ICE_noinline
1139 #endif
1142 * Obtain the lock on page, remove all ptes and migrate the page
1143 * to the newly allocated page in newpage.
1145 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1146 free_page_t put_new_page,
1147 unsigned long private, struct page *page,
1148 int force, enum migrate_mode mode,
1149 enum migrate_reason reason)
1151 int rc = MIGRATEPAGE_SUCCESS;
1152 struct page *newpage;
1154 if (!thp_migration_supported() && PageTransHuge(page))
1155 return -ENOMEM;
1157 newpage = get_new_page(page, private);
1158 if (!newpage)
1159 return -ENOMEM;
1161 if (page_count(page) == 1) {
1162 /* page was freed from under us. So we are done. */
1163 ClearPageActive(page);
1164 ClearPageUnevictable(page);
1165 if (unlikely(__PageMovable(page))) {
1166 lock_page(page);
1167 if (!PageMovable(page))
1168 __ClearPageIsolated(page);
1169 unlock_page(page);
1171 if (put_new_page)
1172 put_new_page(newpage, private);
1173 else
1174 put_page(newpage);
1175 goto out;
1178 rc = __unmap_and_move(page, newpage, force, mode);
1179 if (rc == MIGRATEPAGE_SUCCESS)
1180 set_page_owner_migrate_reason(newpage, reason);
1182 out:
1183 if (rc != -EAGAIN) {
1185 * A page that has been migrated has all references
1186 * removed and will be freed. A page that has not been
1187 * migrated will have kepts its references and be
1188 * restored.
1190 list_del(&page->lru);
1193 * Compaction can migrate also non-LRU pages which are
1194 * not accounted to NR_ISOLATED_*. They can be recognized
1195 * as __PageMovable
1197 if (likely(!__PageMovable(page)))
1198 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1199 page_is_file_cache(page), -hpage_nr_pages(page));
1203 * If migration is successful, releases reference grabbed during
1204 * isolation. Otherwise, restore the page to right list unless
1205 * we want to retry.
1207 if (rc == MIGRATEPAGE_SUCCESS) {
1208 put_page(page);
1209 if (reason == MR_MEMORY_FAILURE) {
1211 * Set PG_HWPoison on just freed page
1212 * intentionally. Although it's rather weird,
1213 * it's how HWPoison flag works at the moment.
1215 if (set_hwpoison_free_buddy_page(page))
1216 num_poisoned_pages_inc();
1218 } else {
1219 if (rc != -EAGAIN) {
1220 if (likely(!__PageMovable(page))) {
1221 putback_lru_page(page);
1222 goto put_new;
1225 lock_page(page);
1226 if (PageMovable(page))
1227 putback_movable_page(page);
1228 else
1229 __ClearPageIsolated(page);
1230 unlock_page(page);
1231 put_page(page);
1233 put_new:
1234 if (put_new_page)
1235 put_new_page(newpage, private);
1236 else
1237 put_page(newpage);
1240 return rc;
1244 * Counterpart of unmap_and_move_page() for hugepage migration.
1246 * This function doesn't wait the completion of hugepage I/O
1247 * because there is no race between I/O and migration for hugepage.
1248 * Note that currently hugepage I/O occurs only in direct I/O
1249 * where no lock is held and PG_writeback is irrelevant,
1250 * and writeback status of all subpages are counted in the reference
1251 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1252 * under direct I/O, the reference of the head page is 512 and a bit more.)
1253 * This means that when we try to migrate hugepage whose subpages are
1254 * doing direct I/O, some references remain after try_to_unmap() and
1255 * hugepage migration fails without data corruption.
1257 * There is also no race when direct I/O is issued on the page under migration,
1258 * because then pte is replaced with migration swap entry and direct I/O code
1259 * will wait in the page fault for migration to complete.
1261 static int unmap_and_move_huge_page(new_page_t get_new_page,
1262 free_page_t put_new_page, unsigned long private,
1263 struct page *hpage, int force,
1264 enum migrate_mode mode, int reason)
1266 int rc = -EAGAIN;
1267 int page_was_mapped = 0;
1268 struct page *new_hpage;
1269 struct anon_vma *anon_vma = NULL;
1272 * Movability of hugepages depends on architectures and hugepage size.
1273 * This check is necessary because some callers of hugepage migration
1274 * like soft offline and memory hotremove don't walk through page
1275 * tables or check whether the hugepage is pmd-based or not before
1276 * kicking migration.
1278 if (!hugepage_migration_supported(page_hstate(hpage))) {
1279 putback_active_hugepage(hpage);
1280 return -ENOSYS;
1283 new_hpage = get_new_page(hpage, private);
1284 if (!new_hpage)
1285 return -ENOMEM;
1287 if (!trylock_page(hpage)) {
1288 if (!force)
1289 goto out;
1290 switch (mode) {
1291 case MIGRATE_SYNC:
1292 case MIGRATE_SYNC_NO_COPY:
1293 break;
1294 default:
1295 goto out;
1297 lock_page(hpage);
1300 if (PageAnon(hpage))
1301 anon_vma = page_get_anon_vma(hpage);
1303 if (unlikely(!trylock_page(new_hpage)))
1304 goto put_anon;
1306 if (page_mapped(hpage)) {
1307 try_to_unmap(hpage,
1308 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1309 page_was_mapped = 1;
1312 if (!page_mapped(hpage))
1313 rc = move_to_new_page(new_hpage, hpage, mode);
1315 if (page_was_mapped)
1316 remove_migration_ptes(hpage,
1317 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1319 unlock_page(new_hpage);
1321 put_anon:
1322 if (anon_vma)
1323 put_anon_vma(anon_vma);
1325 if (rc == MIGRATEPAGE_SUCCESS) {
1326 move_hugetlb_state(hpage, new_hpage, reason);
1327 put_new_page = NULL;
1330 unlock_page(hpage);
1331 out:
1332 if (rc != -EAGAIN)
1333 putback_active_hugepage(hpage);
1336 * If migration was not successful and there's a freeing callback, use
1337 * it. Otherwise, put_page() will drop the reference grabbed during
1338 * isolation.
1340 if (put_new_page)
1341 put_new_page(new_hpage, private);
1342 else
1343 putback_active_hugepage(new_hpage);
1345 return rc;
1349 * migrate_pages - migrate the pages specified in a list, to the free pages
1350 * supplied as the target for the page migration
1352 * @from: The list of pages to be migrated.
1353 * @get_new_page: The function used to allocate free pages to be used
1354 * as the target of the page migration.
1355 * @put_new_page: The function used to free target pages if migration
1356 * fails, or NULL if no special handling is necessary.
1357 * @private: Private data to be passed on to get_new_page()
1358 * @mode: The migration mode that specifies the constraints for
1359 * page migration, if any.
1360 * @reason: The reason for page migration.
1362 * The function returns after 10 attempts or if no pages are movable any more
1363 * because the list has become empty or no retryable pages exist any more.
1364 * The caller should call putback_movable_pages() to return pages to the LRU
1365 * or free list only if ret != 0.
1367 * Returns the number of pages that were not migrated, or an error code.
1369 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1370 free_page_t put_new_page, unsigned long private,
1371 enum migrate_mode mode, int reason)
1373 int retry = 1;
1374 int nr_failed = 0;
1375 int nr_succeeded = 0;
1376 int pass = 0;
1377 struct page *page;
1378 struct page *page2;
1379 int swapwrite = current->flags & PF_SWAPWRITE;
1380 int rc;
1382 if (!swapwrite)
1383 current->flags |= PF_SWAPWRITE;
1385 for(pass = 0; pass < 10 && retry; pass++) {
1386 retry = 0;
1388 list_for_each_entry_safe(page, page2, from, lru) {
1389 retry:
1390 cond_resched();
1392 if (PageHuge(page))
1393 rc = unmap_and_move_huge_page(get_new_page,
1394 put_new_page, private, page,
1395 pass > 2, mode, reason);
1396 else
1397 rc = unmap_and_move(get_new_page, put_new_page,
1398 private, page, pass > 2, mode,
1399 reason);
1401 switch(rc) {
1402 case -ENOMEM:
1404 * THP migration might be unsupported or the
1405 * allocation could've failed so we should
1406 * retry on the same page with the THP split
1407 * to base pages.
1409 * Head page is retried immediately and tail
1410 * pages are added to the tail of the list so
1411 * we encounter them after the rest of the list
1412 * is processed.
1414 if (PageTransHuge(page)) {
1415 lock_page(page);
1416 rc = split_huge_page_to_list(page, from);
1417 unlock_page(page);
1418 if (!rc) {
1419 list_safe_reset_next(page, page2, lru);
1420 goto retry;
1423 nr_failed++;
1424 goto out;
1425 case -EAGAIN:
1426 retry++;
1427 break;
1428 case MIGRATEPAGE_SUCCESS:
1429 nr_succeeded++;
1430 break;
1431 default:
1433 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1434 * unlike -EAGAIN case, the failed page is
1435 * removed from migration page list and not
1436 * retried in the next outer loop.
1438 nr_failed++;
1439 break;
1443 nr_failed += retry;
1444 rc = nr_failed;
1445 out:
1446 if (nr_succeeded)
1447 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1448 if (nr_failed)
1449 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1450 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1452 if (!swapwrite)
1453 current->flags &= ~PF_SWAPWRITE;
1455 return rc;
1458 #ifdef CONFIG_NUMA
1460 static int store_status(int __user *status, int start, int value, int nr)
1462 while (nr-- > 0) {
1463 if (put_user(value, status + start))
1464 return -EFAULT;
1465 start++;
1468 return 0;
1471 static int do_move_pages_to_node(struct mm_struct *mm,
1472 struct list_head *pagelist, int node)
1474 int err;
1476 if (list_empty(pagelist))
1477 return 0;
1479 err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1480 MIGRATE_SYNC, MR_SYSCALL);
1481 if (err)
1482 putback_movable_pages(pagelist);
1483 return err;
1487 * Resolves the given address to a struct page, isolates it from the LRU and
1488 * puts it to the given pagelist.
1489 * Returns -errno if the page cannot be found/isolated or 0 when it has been
1490 * queued or the page doesn't need to be migrated because it is already on
1491 * the target node
1493 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1494 int node, struct list_head *pagelist, bool migrate_all)
1496 struct vm_area_struct *vma;
1497 struct page *page;
1498 unsigned int follflags;
1499 int err;
1501 down_read(&mm->mmap_sem);
1502 err = -EFAULT;
1503 vma = find_vma(mm, addr);
1504 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1505 goto out;
1507 /* FOLL_DUMP to ignore special (like zero) pages */
1508 follflags = FOLL_GET | FOLL_DUMP;
1509 page = follow_page(vma, addr, follflags);
1511 err = PTR_ERR(page);
1512 if (IS_ERR(page))
1513 goto out;
1515 err = -ENOENT;
1516 if (!page)
1517 goto out;
1519 err = 0;
1520 if (page_to_nid(page) == node)
1521 goto out_putpage;
1523 err = -EACCES;
1524 if (page_mapcount(page) > 1 && !migrate_all)
1525 goto out_putpage;
1527 if (PageHuge(page)) {
1528 if (PageHead(page)) {
1529 isolate_huge_page(page, pagelist);
1530 err = 0;
1532 } else {
1533 struct page *head;
1535 head = compound_head(page);
1536 err = isolate_lru_page(head);
1537 if (err)
1538 goto out_putpage;
1540 err = 0;
1541 list_add_tail(&head->lru, pagelist);
1542 mod_node_page_state(page_pgdat(head),
1543 NR_ISOLATED_ANON + page_is_file_cache(head),
1544 hpage_nr_pages(head));
1546 out_putpage:
1548 * Either remove the duplicate refcount from
1549 * isolate_lru_page() or drop the page ref if it was
1550 * not isolated.
1552 put_page(page);
1553 out:
1554 up_read(&mm->mmap_sem);
1555 return err;
1559 * Migrate an array of page address onto an array of nodes and fill
1560 * the corresponding array of status.
1562 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1563 unsigned long nr_pages,
1564 const void __user * __user *pages,
1565 const int __user *nodes,
1566 int __user *status, int flags)
1568 int current_node = NUMA_NO_NODE;
1569 LIST_HEAD(pagelist);
1570 int start, i;
1571 int err = 0, err1;
1573 migrate_prep();
1575 for (i = start = 0; i < nr_pages; i++) {
1576 const void __user *p;
1577 unsigned long addr;
1578 int node;
1580 err = -EFAULT;
1581 if (get_user(p, pages + i))
1582 goto out_flush;
1583 if (get_user(node, nodes + i))
1584 goto out_flush;
1585 addr = (unsigned long)p;
1587 err = -ENODEV;
1588 if (node < 0 || node >= MAX_NUMNODES)
1589 goto out_flush;
1590 if (!node_state(node, N_MEMORY))
1591 goto out_flush;
1593 err = -EACCES;
1594 if (!node_isset(node, task_nodes))
1595 goto out_flush;
1597 if (current_node == NUMA_NO_NODE) {
1598 current_node = node;
1599 start = i;
1600 } else if (node != current_node) {
1601 err = do_move_pages_to_node(mm, &pagelist, current_node);
1602 if (err)
1603 goto out;
1604 err = store_status(status, start, current_node, i - start);
1605 if (err)
1606 goto out;
1607 start = i;
1608 current_node = node;
1612 * Errors in the page lookup or isolation are not fatal and we simply
1613 * report them via status
1615 err = add_page_for_migration(mm, addr, current_node,
1616 &pagelist, flags & MPOL_MF_MOVE_ALL);
1617 if (!err)
1618 continue;
1620 err = store_status(status, i, err, 1);
1621 if (err)
1622 goto out_flush;
1624 err = do_move_pages_to_node(mm, &pagelist, current_node);
1625 if (err)
1626 goto out;
1627 if (i > start) {
1628 err = store_status(status, start, current_node, i - start);
1629 if (err)
1630 goto out;
1632 current_node = NUMA_NO_NODE;
1634 out_flush:
1635 if (list_empty(&pagelist))
1636 return err;
1638 /* Make sure we do not overwrite the existing error */
1639 err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1640 if (!err1)
1641 err1 = store_status(status, start, current_node, i - start);
1642 if (!err)
1643 err = err1;
1644 out:
1645 return err;
1649 * Determine the nodes of an array of pages and store it in an array of status.
1651 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1652 const void __user **pages, int *status)
1654 unsigned long i;
1656 down_read(&mm->mmap_sem);
1658 for (i = 0; i < nr_pages; i++) {
1659 unsigned long addr = (unsigned long)(*pages);
1660 struct vm_area_struct *vma;
1661 struct page *page;
1662 int err = -EFAULT;
1664 vma = find_vma(mm, addr);
1665 if (!vma || addr < vma->vm_start)
1666 goto set_status;
1668 /* FOLL_DUMP to ignore special (like zero) pages */
1669 page = follow_page(vma, addr, FOLL_DUMP);
1671 err = PTR_ERR(page);
1672 if (IS_ERR(page))
1673 goto set_status;
1675 err = page ? page_to_nid(page) : -ENOENT;
1676 set_status:
1677 *status = err;
1679 pages++;
1680 status++;
1683 up_read(&mm->mmap_sem);
1687 * Determine the nodes of a user array of pages and store it in
1688 * a user array of status.
1690 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1691 const void __user * __user *pages,
1692 int __user *status)
1694 #define DO_PAGES_STAT_CHUNK_NR 16
1695 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1696 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1698 while (nr_pages) {
1699 unsigned long chunk_nr;
1701 chunk_nr = nr_pages;
1702 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1703 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1705 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1706 break;
1708 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1710 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1711 break;
1713 pages += chunk_nr;
1714 status += chunk_nr;
1715 nr_pages -= chunk_nr;
1717 return nr_pages ? -EFAULT : 0;
1721 * Move a list of pages in the address space of the currently executing
1722 * process.
1724 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1725 const void __user * __user *pages,
1726 const int __user *nodes,
1727 int __user *status, int flags)
1729 struct task_struct *task;
1730 struct mm_struct *mm;
1731 int err;
1732 nodemask_t task_nodes;
1734 /* Check flags */
1735 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1736 return -EINVAL;
1738 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1739 return -EPERM;
1741 /* Find the mm_struct */
1742 rcu_read_lock();
1743 task = pid ? find_task_by_vpid(pid) : current;
1744 if (!task) {
1745 rcu_read_unlock();
1746 return -ESRCH;
1748 get_task_struct(task);
1751 * Check if this process has the right to modify the specified
1752 * process. Use the regular "ptrace_may_access()" checks.
1754 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1755 rcu_read_unlock();
1756 err = -EPERM;
1757 goto out;
1759 rcu_read_unlock();
1761 err = security_task_movememory(task);
1762 if (err)
1763 goto out;
1765 task_nodes = cpuset_mems_allowed(task);
1766 mm = get_task_mm(task);
1767 put_task_struct(task);
1769 if (!mm)
1770 return -EINVAL;
1772 if (nodes)
1773 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1774 nodes, status, flags);
1775 else
1776 err = do_pages_stat(mm, nr_pages, pages, status);
1778 mmput(mm);
1779 return err;
1781 out:
1782 put_task_struct(task);
1783 return err;
1786 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1787 const void __user * __user *, pages,
1788 const int __user *, nodes,
1789 int __user *, status, int, flags)
1791 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1794 #ifdef CONFIG_COMPAT
1795 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1796 compat_uptr_t __user *, pages32,
1797 const int __user *, nodes,
1798 int __user *, status,
1799 int, flags)
1801 const void __user * __user *pages;
1802 int i;
1804 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1805 for (i = 0; i < nr_pages; i++) {
1806 compat_uptr_t p;
1808 if (get_user(p, pages32 + i) ||
1809 put_user(compat_ptr(p), pages + i))
1810 return -EFAULT;
1812 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1814 #endif /* CONFIG_COMPAT */
1816 #ifdef CONFIG_NUMA_BALANCING
1818 * Returns true if this is a safe migration target node for misplaced NUMA
1819 * pages. Currently it only checks the watermarks which crude
1821 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1822 unsigned long nr_migrate_pages)
1824 int z;
1826 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1827 struct zone *zone = pgdat->node_zones + z;
1829 if (!populated_zone(zone))
1830 continue;
1832 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1833 if (!zone_watermark_ok(zone, 0,
1834 high_wmark_pages(zone) +
1835 nr_migrate_pages,
1836 0, 0))
1837 continue;
1838 return true;
1840 return false;
1843 static struct page *alloc_misplaced_dst_page(struct page *page,
1844 unsigned long data)
1846 int nid = (int) data;
1847 struct page *newpage;
1849 newpage = __alloc_pages_node(nid,
1850 (GFP_HIGHUSER_MOVABLE |
1851 __GFP_THISNODE | __GFP_NOMEMALLOC |
1852 __GFP_NORETRY | __GFP_NOWARN) &
1853 ~__GFP_RECLAIM, 0);
1855 return newpage;
1859 * page migration rate limiting control.
1860 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1861 * window of time. Default here says do not migrate more than 1280M per second.
1863 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1864 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1866 /* Returns true if the node is migrate rate-limited after the update */
1867 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1868 unsigned long nr_pages)
1871 * Rate-limit the amount of data that is being migrated to a node.
1872 * Optimal placement is no good if the memory bus is saturated and
1873 * all the time is being spent migrating!
1875 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1876 spin_lock(&pgdat->numabalancing_migrate_lock);
1877 pgdat->numabalancing_migrate_nr_pages = 0;
1878 pgdat->numabalancing_migrate_next_window = jiffies +
1879 msecs_to_jiffies(migrate_interval_millisecs);
1880 spin_unlock(&pgdat->numabalancing_migrate_lock);
1882 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1883 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1884 nr_pages);
1885 return true;
1889 * This is an unlocked non-atomic update so errors are possible.
1890 * The consequences are failing to migrate when we potentiall should
1891 * have which is not severe enough to warrant locking. If it is ever
1892 * a problem, it can be converted to a per-cpu counter.
1894 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1895 return false;
1898 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1900 int page_lru;
1902 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1904 /* Avoid migrating to a node that is nearly full */
1905 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1906 return 0;
1908 if (isolate_lru_page(page))
1909 return 0;
1912 * migrate_misplaced_transhuge_page() skips page migration's usual
1913 * check on page_count(), so we must do it here, now that the page
1914 * has been isolated: a GUP pin, or any other pin, prevents migration.
1915 * The expected page count is 3: 1 for page's mapcount and 1 for the
1916 * caller's pin and 1 for the reference taken by isolate_lru_page().
1918 if (PageTransHuge(page) && page_count(page) != 3) {
1919 putback_lru_page(page);
1920 return 0;
1923 page_lru = page_is_file_cache(page);
1924 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1925 hpage_nr_pages(page));
1928 * Isolating the page has taken another reference, so the
1929 * caller's reference can be safely dropped without the page
1930 * disappearing underneath us during migration.
1932 put_page(page);
1933 return 1;
1936 bool pmd_trans_migrating(pmd_t pmd)
1938 struct page *page = pmd_page(pmd);
1939 return PageLocked(page);
1943 * Attempt to migrate a misplaced page to the specified destination
1944 * node. Caller is expected to have an elevated reference count on
1945 * the page that will be dropped by this function before returning.
1947 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1948 int node)
1950 pg_data_t *pgdat = NODE_DATA(node);
1951 int isolated;
1952 int nr_remaining;
1953 LIST_HEAD(migratepages);
1956 * Don't migrate file pages that are mapped in multiple processes
1957 * with execute permissions as they are probably shared libraries.
1959 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1960 (vma->vm_flags & VM_EXEC))
1961 goto out;
1964 * Also do not migrate dirty pages as not all filesystems can move
1965 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1967 if (page_is_file_cache(page) && PageDirty(page))
1968 goto out;
1971 * Rate-limit the amount of data that is being migrated to a node.
1972 * Optimal placement is no good if the memory bus is saturated and
1973 * all the time is being spent migrating!
1975 if (numamigrate_update_ratelimit(pgdat, 1))
1976 goto out;
1978 isolated = numamigrate_isolate_page(pgdat, page);
1979 if (!isolated)
1980 goto out;
1982 list_add(&page->lru, &migratepages);
1983 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1984 NULL, node, MIGRATE_ASYNC,
1985 MR_NUMA_MISPLACED);
1986 if (nr_remaining) {
1987 if (!list_empty(&migratepages)) {
1988 list_del(&page->lru);
1989 dec_node_page_state(page, NR_ISOLATED_ANON +
1990 page_is_file_cache(page));
1991 putback_lru_page(page);
1993 isolated = 0;
1994 } else
1995 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1996 BUG_ON(!list_empty(&migratepages));
1997 return isolated;
1999 out:
2000 put_page(page);
2001 return 0;
2003 #endif /* CONFIG_NUMA_BALANCING */
2005 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2007 * Migrates a THP to a given target node. page must be locked and is unlocked
2008 * before returning.
2010 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2011 struct vm_area_struct *vma,
2012 pmd_t *pmd, pmd_t entry,
2013 unsigned long address,
2014 struct page *page, int node)
2016 spinlock_t *ptl;
2017 pg_data_t *pgdat = NODE_DATA(node);
2018 int isolated = 0;
2019 struct page *new_page = NULL;
2020 int page_lru = page_is_file_cache(page);
2021 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2022 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
2025 * Rate-limit the amount of data that is being migrated to a node.
2026 * Optimal placement is no good if the memory bus is saturated and
2027 * all the time is being spent migrating!
2029 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
2030 goto out_dropref;
2032 new_page = alloc_pages_node(node,
2033 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2034 HPAGE_PMD_ORDER);
2035 if (!new_page)
2036 goto out_fail;
2037 prep_transhuge_page(new_page);
2039 isolated = numamigrate_isolate_page(pgdat, page);
2040 if (!isolated) {
2041 put_page(new_page);
2042 goto out_fail;
2045 /* Prepare a page as a migration target */
2046 __SetPageLocked(new_page);
2047 if (PageSwapBacked(page))
2048 __SetPageSwapBacked(new_page);
2050 /* anon mapping, we can simply copy page->mapping to the new page: */
2051 new_page->mapping = page->mapping;
2052 new_page->index = page->index;
2053 migrate_page_copy(new_page, page);
2054 WARN_ON(PageLRU(new_page));
2056 /* Recheck the target PMD */
2057 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2058 ptl = pmd_lock(mm, pmd);
2059 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2060 spin_unlock(ptl);
2061 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2063 /* Reverse changes made by migrate_page_copy() */
2064 if (TestClearPageActive(new_page))
2065 SetPageActive(page);
2066 if (TestClearPageUnevictable(new_page))
2067 SetPageUnevictable(page);
2069 unlock_page(new_page);
2070 put_page(new_page); /* Free it */
2072 /* Retake the callers reference and putback on LRU */
2073 get_page(page);
2074 putback_lru_page(page);
2075 mod_node_page_state(page_pgdat(page),
2076 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2078 goto out_unlock;
2081 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2082 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2085 * Clear the old entry under pagetable lock and establish the new PTE.
2086 * Any parallel GUP will either observe the old page blocking on the
2087 * page lock, block on the page table lock or observe the new page.
2088 * The SetPageUptodate on the new page and page_add_new_anon_rmap
2089 * guarantee the copy is visible before the pagetable update.
2091 flush_cache_range(vma, mmun_start, mmun_end);
2092 page_add_anon_rmap(new_page, vma, mmun_start, true);
2093 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
2094 set_pmd_at(mm, mmun_start, pmd, entry);
2095 update_mmu_cache_pmd(vma, address, &entry);
2097 page_ref_unfreeze(page, 2);
2098 mlock_migrate_page(new_page, page);
2099 page_remove_rmap(page, true);
2100 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2102 spin_unlock(ptl);
2104 * No need to double call mmu_notifier->invalidate_range() callback as
2105 * the above pmdp_huge_clear_flush_notify() did already call it.
2107 mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2109 /* Take an "isolate" reference and put new page on the LRU. */
2110 get_page(new_page);
2111 putback_lru_page(new_page);
2113 unlock_page(new_page);
2114 unlock_page(page);
2115 put_page(page); /* Drop the rmap reference */
2116 put_page(page); /* Drop the LRU isolation reference */
2118 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2119 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2121 mod_node_page_state(page_pgdat(page),
2122 NR_ISOLATED_ANON + page_lru,
2123 -HPAGE_PMD_NR);
2124 return isolated;
2126 out_fail:
2127 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2128 out_dropref:
2129 ptl = pmd_lock(mm, pmd);
2130 if (pmd_same(*pmd, entry)) {
2131 entry = pmd_modify(entry, vma->vm_page_prot);
2132 set_pmd_at(mm, mmun_start, pmd, entry);
2133 update_mmu_cache_pmd(vma, address, &entry);
2135 spin_unlock(ptl);
2137 out_unlock:
2138 unlock_page(page);
2139 put_page(page);
2140 return 0;
2142 #endif /* CONFIG_NUMA_BALANCING */
2144 #endif /* CONFIG_NUMA */
2146 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2147 struct migrate_vma {
2148 struct vm_area_struct *vma;
2149 unsigned long *dst;
2150 unsigned long *src;
2151 unsigned long cpages;
2152 unsigned long npages;
2153 unsigned long start;
2154 unsigned long end;
2157 static int migrate_vma_collect_hole(unsigned long start,
2158 unsigned long end,
2159 struct mm_walk *walk)
2161 struct migrate_vma *migrate = walk->private;
2162 unsigned long addr;
2164 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2165 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2166 migrate->dst[migrate->npages] = 0;
2167 migrate->npages++;
2168 migrate->cpages++;
2171 return 0;
2174 static int migrate_vma_collect_skip(unsigned long start,
2175 unsigned long end,
2176 struct mm_walk *walk)
2178 struct migrate_vma *migrate = walk->private;
2179 unsigned long addr;
2181 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2182 migrate->dst[migrate->npages] = 0;
2183 migrate->src[migrate->npages++] = 0;
2186 return 0;
2189 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2190 unsigned long start,
2191 unsigned long end,
2192 struct mm_walk *walk)
2194 struct migrate_vma *migrate = walk->private;
2195 struct vm_area_struct *vma = walk->vma;
2196 struct mm_struct *mm = vma->vm_mm;
2197 unsigned long addr = start, unmapped = 0;
2198 spinlock_t *ptl;
2199 pte_t *ptep;
2201 again:
2202 if (pmd_none(*pmdp))
2203 return migrate_vma_collect_hole(start, end, walk);
2205 if (pmd_trans_huge(*pmdp)) {
2206 struct page *page;
2208 ptl = pmd_lock(mm, pmdp);
2209 if (unlikely(!pmd_trans_huge(*pmdp))) {
2210 spin_unlock(ptl);
2211 goto again;
2214 page = pmd_page(*pmdp);
2215 if (is_huge_zero_page(page)) {
2216 spin_unlock(ptl);
2217 split_huge_pmd(vma, pmdp, addr);
2218 if (pmd_trans_unstable(pmdp))
2219 return migrate_vma_collect_skip(start, end,
2220 walk);
2221 } else {
2222 int ret;
2224 get_page(page);
2225 spin_unlock(ptl);
2226 if (unlikely(!trylock_page(page)))
2227 return migrate_vma_collect_skip(start, end,
2228 walk);
2229 ret = split_huge_page(page);
2230 unlock_page(page);
2231 put_page(page);
2232 if (ret)
2233 return migrate_vma_collect_skip(start, end,
2234 walk);
2235 if (pmd_none(*pmdp))
2236 return migrate_vma_collect_hole(start, end,
2237 walk);
2241 if (unlikely(pmd_bad(*pmdp)))
2242 return migrate_vma_collect_skip(start, end, walk);
2244 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2245 arch_enter_lazy_mmu_mode();
2247 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2248 unsigned long mpfn, pfn;
2249 struct page *page;
2250 swp_entry_t entry;
2251 pte_t pte;
2253 pte = *ptep;
2254 pfn = pte_pfn(pte);
2256 if (pte_none(pte)) {
2257 mpfn = MIGRATE_PFN_MIGRATE;
2258 migrate->cpages++;
2259 pfn = 0;
2260 goto next;
2263 if (!pte_present(pte)) {
2264 mpfn = pfn = 0;
2267 * Only care about unaddressable device page special
2268 * page table entry. Other special swap entries are not
2269 * migratable, and we ignore regular swapped page.
2271 entry = pte_to_swp_entry(pte);
2272 if (!is_device_private_entry(entry))
2273 goto next;
2275 page = device_private_entry_to_page(entry);
2276 mpfn = migrate_pfn(page_to_pfn(page))|
2277 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2278 if (is_write_device_private_entry(entry))
2279 mpfn |= MIGRATE_PFN_WRITE;
2280 } else {
2281 if (is_zero_pfn(pfn)) {
2282 mpfn = MIGRATE_PFN_MIGRATE;
2283 migrate->cpages++;
2284 pfn = 0;
2285 goto next;
2287 page = _vm_normal_page(migrate->vma, addr, pte, true);
2288 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2289 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2292 /* FIXME support THP */
2293 if (!page || !page->mapping || PageTransCompound(page)) {
2294 mpfn = pfn = 0;
2295 goto next;
2297 pfn = page_to_pfn(page);
2300 * By getting a reference on the page we pin it and that blocks
2301 * any kind of migration. Side effect is that it "freezes" the
2302 * pte.
2304 * We drop this reference after isolating the page from the lru
2305 * for non device page (device page are not on the lru and thus
2306 * can't be dropped from it).
2308 get_page(page);
2309 migrate->cpages++;
2312 * Optimize for the common case where page is only mapped once
2313 * in one process. If we can lock the page, then we can safely
2314 * set up a special migration page table entry now.
2316 if (trylock_page(page)) {
2317 pte_t swp_pte;
2319 mpfn |= MIGRATE_PFN_LOCKED;
2320 ptep_get_and_clear(mm, addr, ptep);
2322 /* Setup special migration page table entry */
2323 entry = make_migration_entry(page, mpfn &
2324 MIGRATE_PFN_WRITE);
2325 swp_pte = swp_entry_to_pte(entry);
2326 if (pte_soft_dirty(pte))
2327 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2328 set_pte_at(mm, addr, ptep, swp_pte);
2331 * This is like regular unmap: we remove the rmap and
2332 * drop page refcount. Page won't be freed, as we took
2333 * a reference just above.
2335 page_remove_rmap(page, false);
2336 put_page(page);
2338 if (pte_present(pte))
2339 unmapped++;
2342 next:
2343 migrate->dst[migrate->npages] = 0;
2344 migrate->src[migrate->npages++] = mpfn;
2346 arch_leave_lazy_mmu_mode();
2347 pte_unmap_unlock(ptep - 1, ptl);
2349 /* Only flush the TLB if we actually modified any entries */
2350 if (unmapped)
2351 flush_tlb_range(walk->vma, start, end);
2353 return 0;
2357 * migrate_vma_collect() - collect pages over a range of virtual addresses
2358 * @migrate: migrate struct containing all migration information
2360 * This will walk the CPU page table. For each virtual address backed by a
2361 * valid page, it updates the src array and takes a reference on the page, in
2362 * order to pin the page until we lock it and unmap it.
2364 static void migrate_vma_collect(struct migrate_vma *migrate)
2366 struct mm_walk mm_walk;
2368 mm_walk.pmd_entry = migrate_vma_collect_pmd;
2369 mm_walk.pte_entry = NULL;
2370 mm_walk.pte_hole = migrate_vma_collect_hole;
2371 mm_walk.hugetlb_entry = NULL;
2372 mm_walk.test_walk = NULL;
2373 mm_walk.vma = migrate->vma;
2374 mm_walk.mm = migrate->vma->vm_mm;
2375 mm_walk.private = migrate;
2377 mmu_notifier_invalidate_range_start(mm_walk.mm,
2378 migrate->start,
2379 migrate->end);
2380 walk_page_range(migrate->start, migrate->end, &mm_walk);
2381 mmu_notifier_invalidate_range_end(mm_walk.mm,
2382 migrate->start,
2383 migrate->end);
2385 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2389 * migrate_vma_check_page() - check if page is pinned or not
2390 * @page: struct page to check
2392 * Pinned pages cannot be migrated. This is the same test as in
2393 * migrate_page_move_mapping(), except that here we allow migration of a
2394 * ZONE_DEVICE page.
2396 static bool migrate_vma_check_page(struct page *page)
2399 * One extra ref because caller holds an extra reference, either from
2400 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2401 * a device page.
2403 int extra = 1;
2406 * FIXME support THP (transparent huge page), it is bit more complex to
2407 * check them than regular pages, because they can be mapped with a pmd
2408 * or with a pte (split pte mapping).
2410 if (PageCompound(page))
2411 return false;
2413 /* Page from ZONE_DEVICE have one extra reference */
2414 if (is_zone_device_page(page)) {
2416 * Private page can never be pin as they have no valid pte and
2417 * GUP will fail for those. Yet if there is a pending migration
2418 * a thread might try to wait on the pte migration entry and
2419 * will bump the page reference count. Sadly there is no way to
2420 * differentiate a regular pin from migration wait. Hence to
2421 * avoid 2 racing thread trying to migrate back to CPU to enter
2422 * infinite loop (one stoping migration because the other is
2423 * waiting on pte migration entry). We always return true here.
2425 * FIXME proper solution is to rework migration_entry_wait() so
2426 * it does not need to take a reference on page.
2428 if (is_device_private_page(page))
2429 return true;
2432 * Only allow device public page to be migrated and account for
2433 * the extra reference count imply by ZONE_DEVICE pages.
2435 if (!is_device_public_page(page))
2436 return false;
2437 extra++;
2440 /* For file back page */
2441 if (page_mapping(page))
2442 extra += 1 + page_has_private(page);
2444 if ((page_count(page) - extra) > page_mapcount(page))
2445 return false;
2447 return true;
2451 * migrate_vma_prepare() - lock pages and isolate them from the lru
2452 * @migrate: migrate struct containing all migration information
2454 * This locks pages that have been collected by migrate_vma_collect(). Once each
2455 * page is locked it is isolated from the lru (for non-device pages). Finally,
2456 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2457 * migrated by concurrent kernel threads.
2459 static void migrate_vma_prepare(struct migrate_vma *migrate)
2461 const unsigned long npages = migrate->npages;
2462 const unsigned long start = migrate->start;
2463 unsigned long addr, i, restore = 0;
2464 bool allow_drain = true;
2466 lru_add_drain();
2468 for (i = 0; (i < npages) && migrate->cpages; i++) {
2469 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2470 bool remap = true;
2472 if (!page)
2473 continue;
2475 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2477 * Because we are migrating several pages there can be
2478 * a deadlock between 2 concurrent migration where each
2479 * are waiting on each other page lock.
2481 * Make migrate_vma() a best effort thing and backoff
2482 * for any page we can not lock right away.
2484 if (!trylock_page(page)) {
2485 migrate->src[i] = 0;
2486 migrate->cpages--;
2487 put_page(page);
2488 continue;
2490 remap = false;
2491 migrate->src[i] |= MIGRATE_PFN_LOCKED;
2494 /* ZONE_DEVICE pages are not on LRU */
2495 if (!is_zone_device_page(page)) {
2496 if (!PageLRU(page) && allow_drain) {
2497 /* Drain CPU's pagevec */
2498 lru_add_drain_all();
2499 allow_drain = false;
2502 if (isolate_lru_page(page)) {
2503 if (remap) {
2504 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2505 migrate->cpages--;
2506 restore++;
2507 } else {
2508 migrate->src[i] = 0;
2509 unlock_page(page);
2510 migrate->cpages--;
2511 put_page(page);
2513 continue;
2516 /* Drop the reference we took in collect */
2517 put_page(page);
2520 if (!migrate_vma_check_page(page)) {
2521 if (remap) {
2522 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2523 migrate->cpages--;
2524 restore++;
2526 if (!is_zone_device_page(page)) {
2527 get_page(page);
2528 putback_lru_page(page);
2530 } else {
2531 migrate->src[i] = 0;
2532 unlock_page(page);
2533 migrate->cpages--;
2535 if (!is_zone_device_page(page))
2536 putback_lru_page(page);
2537 else
2538 put_page(page);
2543 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2544 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2546 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2547 continue;
2549 remove_migration_pte(page, migrate->vma, addr, page);
2551 migrate->src[i] = 0;
2552 unlock_page(page);
2553 put_page(page);
2554 restore--;
2559 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2560 * @migrate: migrate struct containing all migration information
2562 * Replace page mapping (CPU page table pte) with a special migration pte entry
2563 * and check again if it has been pinned. Pinned pages are restored because we
2564 * cannot migrate them.
2566 * This is the last step before we call the device driver callback to allocate
2567 * destination memory and copy contents of original page over to new page.
2569 static void migrate_vma_unmap(struct migrate_vma *migrate)
2571 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2572 const unsigned long npages = migrate->npages;
2573 const unsigned long start = migrate->start;
2574 unsigned long addr, i, restore = 0;
2576 for (i = 0; i < npages; i++) {
2577 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2579 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2580 continue;
2582 if (page_mapped(page)) {
2583 try_to_unmap(page, flags);
2584 if (page_mapped(page))
2585 goto restore;
2588 if (migrate_vma_check_page(page))
2589 continue;
2591 restore:
2592 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2593 migrate->cpages--;
2594 restore++;
2597 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2598 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2600 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2601 continue;
2603 remove_migration_ptes(page, page, false);
2605 migrate->src[i] = 0;
2606 unlock_page(page);
2607 restore--;
2609 if (is_zone_device_page(page))
2610 put_page(page);
2611 else
2612 putback_lru_page(page);
2616 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2617 unsigned long addr,
2618 struct page *page,
2619 unsigned long *src,
2620 unsigned long *dst)
2622 struct vm_area_struct *vma = migrate->vma;
2623 struct mm_struct *mm = vma->vm_mm;
2624 struct mem_cgroup *memcg;
2625 bool flush = false;
2626 spinlock_t *ptl;
2627 pte_t entry;
2628 pgd_t *pgdp;
2629 p4d_t *p4dp;
2630 pud_t *pudp;
2631 pmd_t *pmdp;
2632 pte_t *ptep;
2634 /* Only allow populating anonymous memory */
2635 if (!vma_is_anonymous(vma))
2636 goto abort;
2638 pgdp = pgd_offset(mm, addr);
2639 p4dp = p4d_alloc(mm, pgdp, addr);
2640 if (!p4dp)
2641 goto abort;
2642 pudp = pud_alloc(mm, p4dp, addr);
2643 if (!pudp)
2644 goto abort;
2645 pmdp = pmd_alloc(mm, pudp, addr);
2646 if (!pmdp)
2647 goto abort;
2649 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2650 goto abort;
2653 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2654 * pte_offset_map() on pmds where a huge pmd might be created
2655 * from a different thread.
2657 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2658 * parallel threads are excluded by other means.
2660 * Here we only have down_read(mmap_sem).
2662 if (pte_alloc(mm, pmdp, addr))
2663 goto abort;
2665 /* See the comment in pte_alloc_one_map() */
2666 if (unlikely(pmd_trans_unstable(pmdp)))
2667 goto abort;
2669 if (unlikely(anon_vma_prepare(vma)))
2670 goto abort;
2671 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2672 goto abort;
2675 * The memory barrier inside __SetPageUptodate makes sure that
2676 * preceding stores to the page contents become visible before
2677 * the set_pte_at() write.
2679 __SetPageUptodate(page);
2681 if (is_zone_device_page(page)) {
2682 if (is_device_private_page(page)) {
2683 swp_entry_t swp_entry;
2685 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2686 entry = swp_entry_to_pte(swp_entry);
2687 } else if (is_device_public_page(page)) {
2688 entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2689 if (vma->vm_flags & VM_WRITE)
2690 entry = pte_mkwrite(pte_mkdirty(entry));
2691 entry = pte_mkdevmap(entry);
2693 } else {
2694 entry = mk_pte(page, vma->vm_page_prot);
2695 if (vma->vm_flags & VM_WRITE)
2696 entry = pte_mkwrite(pte_mkdirty(entry));
2699 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2701 if (pte_present(*ptep)) {
2702 unsigned long pfn = pte_pfn(*ptep);
2704 if (!is_zero_pfn(pfn)) {
2705 pte_unmap_unlock(ptep, ptl);
2706 mem_cgroup_cancel_charge(page, memcg, false);
2707 goto abort;
2709 flush = true;
2710 } else if (!pte_none(*ptep)) {
2711 pte_unmap_unlock(ptep, ptl);
2712 mem_cgroup_cancel_charge(page, memcg, false);
2713 goto abort;
2717 * Check for usefaultfd but do not deliver the fault. Instead,
2718 * just back off.
2720 if (userfaultfd_missing(vma)) {
2721 pte_unmap_unlock(ptep, ptl);
2722 mem_cgroup_cancel_charge(page, memcg, false);
2723 goto abort;
2726 inc_mm_counter(mm, MM_ANONPAGES);
2727 page_add_new_anon_rmap(page, vma, addr, false);
2728 mem_cgroup_commit_charge(page, memcg, false, false);
2729 if (!is_zone_device_page(page))
2730 lru_cache_add_active_or_unevictable(page, vma);
2731 get_page(page);
2733 if (flush) {
2734 flush_cache_page(vma, addr, pte_pfn(*ptep));
2735 ptep_clear_flush_notify(vma, addr, ptep);
2736 set_pte_at_notify(mm, addr, ptep, entry);
2737 update_mmu_cache(vma, addr, ptep);
2738 } else {
2739 /* No need to invalidate - it was non-present before */
2740 set_pte_at(mm, addr, ptep, entry);
2741 update_mmu_cache(vma, addr, ptep);
2744 pte_unmap_unlock(ptep, ptl);
2745 *src = MIGRATE_PFN_MIGRATE;
2746 return;
2748 abort:
2749 *src &= ~MIGRATE_PFN_MIGRATE;
2753 * migrate_vma_pages() - migrate meta-data from src page to dst page
2754 * @migrate: migrate struct containing all migration information
2756 * This migrates struct page meta-data from source struct page to destination
2757 * struct page. This effectively finishes the migration from source page to the
2758 * destination page.
2760 static void migrate_vma_pages(struct migrate_vma *migrate)
2762 const unsigned long npages = migrate->npages;
2763 const unsigned long start = migrate->start;
2764 struct vm_area_struct *vma = migrate->vma;
2765 struct mm_struct *mm = vma->vm_mm;
2766 unsigned long addr, i, mmu_start;
2767 bool notified = false;
2769 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2770 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2771 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2772 struct address_space *mapping;
2773 int r;
2775 if (!newpage) {
2776 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2777 continue;
2780 if (!page) {
2781 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2782 continue;
2784 if (!notified) {
2785 mmu_start = addr;
2786 notified = true;
2787 mmu_notifier_invalidate_range_start(mm,
2788 mmu_start,
2789 migrate->end);
2791 migrate_vma_insert_page(migrate, addr, newpage,
2792 &migrate->src[i],
2793 &migrate->dst[i]);
2794 continue;
2797 mapping = page_mapping(page);
2799 if (is_zone_device_page(newpage)) {
2800 if (is_device_private_page(newpage)) {
2802 * For now only support private anonymous when
2803 * migrating to un-addressable device memory.
2805 if (mapping) {
2806 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2807 continue;
2809 } else if (!is_device_public_page(newpage)) {
2811 * Other types of ZONE_DEVICE page are not
2812 * supported.
2814 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2815 continue;
2819 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2820 if (r != MIGRATEPAGE_SUCCESS)
2821 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2825 * No need to double call mmu_notifier->invalidate_range() callback as
2826 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2827 * did already call it.
2829 if (notified)
2830 mmu_notifier_invalidate_range_only_end(mm, mmu_start,
2831 migrate->end);
2835 * migrate_vma_finalize() - restore CPU page table entry
2836 * @migrate: migrate struct containing all migration information
2838 * This replaces the special migration pte entry with either a mapping to the
2839 * new page if migration was successful for that page, or to the original page
2840 * otherwise.
2842 * This also unlocks the pages and puts them back on the lru, or drops the extra
2843 * refcount, for device pages.
2845 static void migrate_vma_finalize(struct migrate_vma *migrate)
2847 const unsigned long npages = migrate->npages;
2848 unsigned long i;
2850 for (i = 0; i < npages; i++) {
2851 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2852 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2854 if (!page) {
2855 if (newpage) {
2856 unlock_page(newpage);
2857 put_page(newpage);
2859 continue;
2862 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2863 if (newpage) {
2864 unlock_page(newpage);
2865 put_page(newpage);
2867 newpage = page;
2870 remove_migration_ptes(page, newpage, false);
2871 unlock_page(page);
2872 migrate->cpages--;
2874 if (is_zone_device_page(page))
2875 put_page(page);
2876 else
2877 putback_lru_page(page);
2879 if (newpage != page) {
2880 unlock_page(newpage);
2881 if (is_zone_device_page(newpage))
2882 put_page(newpage);
2883 else
2884 putback_lru_page(newpage);
2890 * migrate_vma() - migrate a range of memory inside vma
2892 * @ops: migration callback for allocating destination memory and copying
2893 * @vma: virtual memory area containing the range to be migrated
2894 * @start: start address of the range to migrate (inclusive)
2895 * @end: end address of the range to migrate (exclusive)
2896 * @src: array of hmm_pfn_t containing source pfns
2897 * @dst: array of hmm_pfn_t containing destination pfns
2898 * @private: pointer passed back to each of the callback
2899 * Returns: 0 on success, error code otherwise
2901 * This function tries to migrate a range of memory virtual address range, using
2902 * callbacks to allocate and copy memory from source to destination. First it
2903 * collects all the pages backing each virtual address in the range, saving this
2904 * inside the src array. Then it locks those pages and unmaps them. Once the pages
2905 * are locked and unmapped, it checks whether each page is pinned or not. Pages
2906 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2907 * in the corresponding src array entry. It then restores any pages that are
2908 * pinned, by remapping and unlocking those pages.
2910 * At this point it calls the alloc_and_copy() callback. For documentation on
2911 * what is expected from that callback, see struct migrate_vma_ops comments in
2912 * include/linux/migrate.h
2914 * After the alloc_and_copy() callback, this function goes over each entry in
2915 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2916 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2917 * then the function tries to migrate struct page information from the source
2918 * struct page to the destination struct page. If it fails to migrate the struct
2919 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2920 * array.
2922 * At this point all successfully migrated pages have an entry in the src
2923 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2924 * array entry with MIGRATE_PFN_VALID flag set.
2926 * It then calls the finalize_and_map() callback. See comments for "struct
2927 * migrate_vma_ops", in include/linux/migrate.h for details about
2928 * finalize_and_map() behavior.
2930 * After the finalize_and_map() callback, for successfully migrated pages, this
2931 * function updates the CPU page table to point to new pages, otherwise it
2932 * restores the CPU page table to point to the original source pages.
2934 * Function returns 0 after the above steps, even if no pages were migrated
2935 * (The function only returns an error if any of the arguments are invalid.)
2937 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2938 * unsigned long entries.
2940 int migrate_vma(const struct migrate_vma_ops *ops,
2941 struct vm_area_struct *vma,
2942 unsigned long start,
2943 unsigned long end,
2944 unsigned long *src,
2945 unsigned long *dst,
2946 void *private)
2948 struct migrate_vma migrate;
2950 /* Sanity check the arguments */
2951 start &= PAGE_MASK;
2952 end &= PAGE_MASK;
2953 if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
2954 vma_is_dax(vma))
2955 return -EINVAL;
2956 if (start < vma->vm_start || start >= vma->vm_end)
2957 return -EINVAL;
2958 if (end <= vma->vm_start || end > vma->vm_end)
2959 return -EINVAL;
2960 if (!ops || !src || !dst || start >= end)
2961 return -EINVAL;
2963 memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2964 migrate.src = src;
2965 migrate.dst = dst;
2966 migrate.start = start;
2967 migrate.npages = 0;
2968 migrate.cpages = 0;
2969 migrate.end = end;
2970 migrate.vma = vma;
2972 /* Collect, and try to unmap source pages */
2973 migrate_vma_collect(&migrate);
2974 if (!migrate.cpages)
2975 return 0;
2977 /* Lock and isolate page */
2978 migrate_vma_prepare(&migrate);
2979 if (!migrate.cpages)
2980 return 0;
2982 /* Unmap pages */
2983 migrate_vma_unmap(&migrate);
2984 if (!migrate.cpages)
2985 return 0;
2988 * At this point pages are locked and unmapped, and thus they have
2989 * stable content and can safely be copied to destination memory that
2990 * is allocated by the callback.
2992 * Note that migration can fail in migrate_vma_struct_page() for each
2993 * individual page.
2995 ops->alloc_and_copy(vma, src, dst, start, end, private);
2997 /* This does the real migration of struct page */
2998 migrate_vma_pages(&migrate);
3000 ops->finalize_and_map(vma, src, dst, start, end, private);
3002 /* Unlock and remap pages */
3003 migrate_vma_finalize(&migrate);
3005 return 0;
3007 EXPORT_SYMBOL(migrate_vma);
3008 #endif /* defined(MIGRATE_VMA_HELPER) */