s390/pageattr: do a single TLB flush for change_page_attr
[linux-2.6/btrfs-unstable.git] / include / linux / rcupdate.h
blob14e6f47ee16fe49774894f7e9107d4357b2ce0a7
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
18 * Copyright IBM Corporation, 2001
20 * Author: Dipankar Sarma <dipankar@in.ibm.com>
22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
24 * Papers:
25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
28 * For detailed explanation of Read-Copy Update mechanism see -
29 * http://lse.sourceforge.net/locking/rcupdate.html
33 #ifndef __LINUX_RCUPDATE_H
34 #define __LINUX_RCUPDATE_H
36 #include <linux/types.h>
37 #include <linux/cache.h>
38 #include <linux/spinlock.h>
39 #include <linux/threads.h>
40 #include <linux/cpumask.h>
41 #include <linux/seqlock.h>
42 #include <linux/lockdep.h>
43 #include <linux/completion.h>
44 #include <linux/debugobjects.h>
45 #include <linux/bug.h>
46 #include <linux/compiler.h>
47 #include <linux/ktime.h>
49 #include <asm/barrier.h>
51 #ifndef CONFIG_TINY_RCU
52 extern int rcu_expedited; /* for sysctl */
53 extern int rcu_normal; /* also for sysctl */
54 #endif /* #ifndef CONFIG_TINY_RCU */
56 #ifdef CONFIG_TINY_RCU
57 /* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */
58 static inline bool rcu_gp_is_normal(void) /* Internal RCU use. */
60 return true;
62 static inline bool rcu_gp_is_expedited(void) /* Internal RCU use. */
64 return false;
67 static inline void rcu_expedite_gp(void)
71 static inline void rcu_unexpedite_gp(void)
74 #else /* #ifdef CONFIG_TINY_RCU */
75 bool rcu_gp_is_normal(void); /* Internal RCU use. */
76 bool rcu_gp_is_expedited(void); /* Internal RCU use. */
77 void rcu_expedite_gp(void);
78 void rcu_unexpedite_gp(void);
79 #endif /* #else #ifdef CONFIG_TINY_RCU */
81 enum rcutorture_type {
82 RCU_FLAVOR,
83 RCU_BH_FLAVOR,
84 RCU_SCHED_FLAVOR,
85 RCU_TASKS_FLAVOR,
86 SRCU_FLAVOR,
87 INVALID_RCU_FLAVOR
90 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
91 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
92 unsigned long *gpnum, unsigned long *completed);
93 void rcutorture_record_test_transition(void);
94 void rcutorture_record_progress(unsigned long vernum);
95 void do_trace_rcu_torture_read(const char *rcutorturename,
96 struct rcu_head *rhp,
97 unsigned long secs,
98 unsigned long c_old,
99 unsigned long c);
100 #else
101 static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
102 int *flags,
103 unsigned long *gpnum,
104 unsigned long *completed)
106 *flags = 0;
107 *gpnum = 0;
108 *completed = 0;
110 static inline void rcutorture_record_test_transition(void)
113 static inline void rcutorture_record_progress(unsigned long vernum)
116 #ifdef CONFIG_RCU_TRACE
117 void do_trace_rcu_torture_read(const char *rcutorturename,
118 struct rcu_head *rhp,
119 unsigned long secs,
120 unsigned long c_old,
121 unsigned long c);
122 #else
123 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
124 do { } while (0)
125 #endif
126 #endif
128 #define UINT_CMP_GE(a, b) (UINT_MAX / 2 >= (a) - (b))
129 #define UINT_CMP_LT(a, b) (UINT_MAX / 2 < (a) - (b))
130 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
131 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
132 #define ulong2long(a) (*(long *)(&(a)))
134 /* Exported common interfaces */
136 #ifdef CONFIG_PREEMPT_RCU
139 * call_rcu() - Queue an RCU callback for invocation after a grace period.
140 * @head: structure to be used for queueing the RCU updates.
141 * @func: actual callback function to be invoked after the grace period
143 * The callback function will be invoked some time after a full grace
144 * period elapses, in other words after all pre-existing RCU read-side
145 * critical sections have completed. However, the callback function
146 * might well execute concurrently with RCU read-side critical sections
147 * that started after call_rcu() was invoked. RCU read-side critical
148 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
149 * and may be nested.
151 * Note that all CPUs must agree that the grace period extended beyond
152 * all pre-existing RCU read-side critical section. On systems with more
153 * than one CPU, this means that when "func()" is invoked, each CPU is
154 * guaranteed to have executed a full memory barrier since the end of its
155 * last RCU read-side critical section whose beginning preceded the call
156 * to call_rcu(). It also means that each CPU executing an RCU read-side
157 * critical section that continues beyond the start of "func()" must have
158 * executed a memory barrier after the call_rcu() but before the beginning
159 * of that RCU read-side critical section. Note that these guarantees
160 * include CPUs that are offline, idle, or executing in user mode, as
161 * well as CPUs that are executing in the kernel.
163 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
164 * resulting RCU callback function "func()", then both CPU A and CPU B are
165 * guaranteed to execute a full memory barrier during the time interval
166 * between the call to call_rcu() and the invocation of "func()" -- even
167 * if CPU A and CPU B are the same CPU (but again only if the system has
168 * more than one CPU).
170 void call_rcu(struct rcu_head *head,
171 rcu_callback_t func);
173 #else /* #ifdef CONFIG_PREEMPT_RCU */
175 /* In classic RCU, call_rcu() is just call_rcu_sched(). */
176 #define call_rcu call_rcu_sched
178 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
181 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
182 * @head: structure to be used for queueing the RCU updates.
183 * @func: actual callback function to be invoked after the grace period
185 * The callback function will be invoked some time after a full grace
186 * period elapses, in other words after all currently executing RCU
187 * read-side critical sections have completed. call_rcu_bh() assumes
188 * that the read-side critical sections end on completion of a softirq
189 * handler. This means that read-side critical sections in process
190 * context must not be interrupted by softirqs. This interface is to be
191 * used when most of the read-side critical sections are in softirq context.
192 * RCU read-side critical sections are delimited by :
193 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context.
194 * OR
195 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
196 * These may be nested.
198 * See the description of call_rcu() for more detailed information on
199 * memory ordering guarantees.
201 void call_rcu_bh(struct rcu_head *head,
202 rcu_callback_t func);
205 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
206 * @head: structure to be used for queueing the RCU updates.
207 * @func: actual callback function to be invoked after the grace period
209 * The callback function will be invoked some time after a full grace
210 * period elapses, in other words after all currently executing RCU
211 * read-side critical sections have completed. call_rcu_sched() assumes
212 * that the read-side critical sections end on enabling of preemption
213 * or on voluntary preemption.
214 * RCU read-side critical sections are delimited by :
215 * - rcu_read_lock_sched() and rcu_read_unlock_sched(),
216 * OR
217 * anything that disables preemption.
218 * These may be nested.
220 * See the description of call_rcu() for more detailed information on
221 * memory ordering guarantees.
223 void call_rcu_sched(struct rcu_head *head,
224 rcu_callback_t func);
226 void synchronize_sched(void);
229 * Structure allowing asynchronous waiting on RCU.
231 struct rcu_synchronize {
232 struct rcu_head head;
233 struct completion completion;
235 void wakeme_after_rcu(struct rcu_head *head);
237 void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
238 struct rcu_synchronize *rs_array);
240 #define _wait_rcu_gp(checktiny, ...) \
241 do { \
242 call_rcu_func_t __crcu_array[] = { __VA_ARGS__ }; \
243 struct rcu_synchronize __rs_array[ARRAY_SIZE(__crcu_array)]; \
244 __wait_rcu_gp(checktiny, ARRAY_SIZE(__crcu_array), \
245 __crcu_array, __rs_array); \
246 } while (0)
248 #define wait_rcu_gp(...) _wait_rcu_gp(false, __VA_ARGS__)
251 * synchronize_rcu_mult - Wait concurrently for multiple grace periods
252 * @...: List of call_rcu() functions for the flavors to wait on.
254 * This macro waits concurrently for multiple flavors of RCU grace periods.
255 * For example, synchronize_rcu_mult(call_rcu, call_rcu_bh) would wait
256 * on concurrent RCU and RCU-bh grace periods. Waiting on a give SRCU
257 * domain requires you to write a wrapper function for that SRCU domain's
258 * call_srcu() function, supplying the corresponding srcu_struct.
260 * If Tiny RCU, tell _wait_rcu_gp() not to bother waiting for RCU
261 * or RCU-bh, given that anywhere synchronize_rcu_mult() can be called
262 * is automatically a grace period.
264 #define synchronize_rcu_mult(...) \
265 _wait_rcu_gp(IS_ENABLED(CONFIG_TINY_RCU), __VA_ARGS__)
268 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
269 * @head: structure to be used for queueing the RCU updates.
270 * @func: actual callback function to be invoked after the grace period
272 * The callback function will be invoked some time after a full grace
273 * period elapses, in other words after all currently executing RCU
274 * read-side critical sections have completed. call_rcu_tasks() assumes
275 * that the read-side critical sections end at a voluntary context
276 * switch (not a preemption!), entry into idle, or transition to usermode
277 * execution. As such, there are no read-side primitives analogous to
278 * rcu_read_lock() and rcu_read_unlock() because this primitive is intended
279 * to determine that all tasks have passed through a safe state, not so
280 * much for data-strcuture synchronization.
282 * See the description of call_rcu() for more detailed information on
283 * memory ordering guarantees.
285 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
286 void synchronize_rcu_tasks(void);
287 void rcu_barrier_tasks(void);
289 #ifdef CONFIG_PREEMPT_RCU
291 void __rcu_read_lock(void);
292 void __rcu_read_unlock(void);
293 void rcu_read_unlock_special(struct task_struct *t);
294 void synchronize_rcu(void);
297 * Defined as a macro as it is a very low level header included from
298 * areas that don't even know about current. This gives the rcu_read_lock()
299 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
300 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
302 #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
304 #else /* #ifdef CONFIG_PREEMPT_RCU */
306 static inline void __rcu_read_lock(void)
308 if (IS_ENABLED(CONFIG_PREEMPT_COUNT))
309 preempt_disable();
312 static inline void __rcu_read_unlock(void)
314 if (IS_ENABLED(CONFIG_PREEMPT_COUNT))
315 preempt_enable();
318 static inline void synchronize_rcu(void)
320 synchronize_sched();
323 static inline int rcu_preempt_depth(void)
325 return 0;
328 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
330 /* Internal to kernel */
331 void rcu_init(void);
332 void rcu_sched_qs(void);
333 void rcu_bh_qs(void);
334 void rcu_check_callbacks(int user);
335 struct notifier_block;
336 int rcu_cpu_notify(struct notifier_block *self,
337 unsigned long action, void *hcpu);
339 #ifndef CONFIG_TINY_RCU
340 void rcu_end_inkernel_boot(void);
341 #else /* #ifndef CONFIG_TINY_RCU */
342 static inline void rcu_end_inkernel_boot(void) { }
343 #endif /* #ifndef CONFIG_TINY_RCU */
345 #ifdef CONFIG_RCU_STALL_COMMON
346 void rcu_sysrq_start(void);
347 void rcu_sysrq_end(void);
348 #else /* #ifdef CONFIG_RCU_STALL_COMMON */
349 static inline void rcu_sysrq_start(void)
352 static inline void rcu_sysrq_end(void)
355 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
357 #ifdef CONFIG_NO_HZ_FULL
358 void rcu_user_enter(void);
359 void rcu_user_exit(void);
360 #else
361 static inline void rcu_user_enter(void) { }
362 static inline void rcu_user_exit(void) { }
363 static inline void rcu_user_hooks_switch(struct task_struct *prev,
364 struct task_struct *next) { }
365 #endif /* CONFIG_NO_HZ_FULL */
367 #ifdef CONFIG_RCU_NOCB_CPU
368 void rcu_init_nohz(void);
369 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
370 static inline void rcu_init_nohz(void)
373 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
376 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
377 * @a: Code that RCU needs to pay attention to.
379 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
380 * in the inner idle loop, that is, between the rcu_idle_enter() and
381 * the rcu_idle_exit() -- RCU will happily ignore any such read-side
382 * critical sections. However, things like powertop need tracepoints
383 * in the inner idle loop.
385 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU())
386 * will tell RCU that it needs to pay attending, invoke its argument
387 * (in this example, a call to the do_something_with_RCU() function),
388 * and then tell RCU to go back to ignoring this CPU. It is permissible
389 * to nest RCU_NONIDLE() wrappers, but the nesting level is currently
390 * quite limited. If deeper nesting is required, it will be necessary
391 * to adjust DYNTICK_TASK_NESTING_VALUE accordingly.
393 #define RCU_NONIDLE(a) \
394 do { \
395 rcu_irq_enter_irqson(); \
396 do { a; } while (0); \
397 rcu_irq_exit_irqson(); \
398 } while (0)
401 * Note a voluntary context switch for RCU-tasks benefit. This is a
402 * macro rather than an inline function to avoid #include hell.
404 #ifdef CONFIG_TASKS_RCU
405 #define TASKS_RCU(x) x
406 extern struct srcu_struct tasks_rcu_exit_srcu;
407 #define rcu_note_voluntary_context_switch(t) \
408 do { \
409 rcu_all_qs(); \
410 if (READ_ONCE((t)->rcu_tasks_holdout)) \
411 WRITE_ONCE((t)->rcu_tasks_holdout, false); \
412 } while (0)
413 #else /* #ifdef CONFIG_TASKS_RCU */
414 #define TASKS_RCU(x) do { } while (0)
415 #define rcu_note_voluntary_context_switch(t) rcu_all_qs()
416 #endif /* #else #ifdef CONFIG_TASKS_RCU */
419 * cond_resched_rcu_qs - Report potential quiescent states to RCU
421 * This macro resembles cond_resched(), except that it is defined to
422 * report potential quiescent states to RCU-tasks even if the cond_resched()
423 * machinery were to be shut off, as some advocate for PREEMPT kernels.
425 #define cond_resched_rcu_qs() \
426 do { \
427 if (!cond_resched()) \
428 rcu_note_voluntary_context_switch(current); \
429 } while (0)
431 #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP)
432 bool __rcu_is_watching(void);
433 #endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) */
436 * Infrastructure to implement the synchronize_() primitives in
437 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
440 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
441 #include <linux/rcutree.h>
442 #elif defined(CONFIG_TINY_RCU)
443 #include <linux/rcutiny.h>
444 #else
445 #error "Unknown RCU implementation specified to kernel configuration"
446 #endif
449 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
450 * initialization and destruction of rcu_head on the stack. rcu_head structures
451 * allocated dynamically in the heap or defined statically don't need any
452 * initialization.
454 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
455 void init_rcu_head(struct rcu_head *head);
456 void destroy_rcu_head(struct rcu_head *head);
457 void init_rcu_head_on_stack(struct rcu_head *head);
458 void destroy_rcu_head_on_stack(struct rcu_head *head);
459 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
460 static inline void init_rcu_head(struct rcu_head *head)
464 static inline void destroy_rcu_head(struct rcu_head *head)
468 static inline void init_rcu_head_on_stack(struct rcu_head *head)
472 static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
475 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
477 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
478 bool rcu_lockdep_current_cpu_online(void);
479 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
480 static inline bool rcu_lockdep_current_cpu_online(void)
482 return true;
484 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
486 #ifdef CONFIG_DEBUG_LOCK_ALLOC
488 static inline void rcu_lock_acquire(struct lockdep_map *map)
490 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
493 static inline void rcu_lock_release(struct lockdep_map *map)
495 lock_release(map, 1, _THIS_IP_);
498 extern struct lockdep_map rcu_lock_map;
499 extern struct lockdep_map rcu_bh_lock_map;
500 extern struct lockdep_map rcu_sched_lock_map;
501 extern struct lockdep_map rcu_callback_map;
502 int debug_lockdep_rcu_enabled(void);
504 int rcu_read_lock_held(void);
505 int rcu_read_lock_bh_held(void);
508 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
510 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
511 * RCU-sched read-side critical section. In absence of
512 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
513 * critical section unless it can prove otherwise.
515 #ifdef CONFIG_PREEMPT_COUNT
516 int rcu_read_lock_sched_held(void);
517 #else /* #ifdef CONFIG_PREEMPT_COUNT */
518 static inline int rcu_read_lock_sched_held(void)
520 return 1;
522 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
524 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
526 # define rcu_lock_acquire(a) do { } while (0)
527 # define rcu_lock_release(a) do { } while (0)
529 static inline int rcu_read_lock_held(void)
531 return 1;
534 static inline int rcu_read_lock_bh_held(void)
536 return 1;
539 #ifdef CONFIG_PREEMPT_COUNT
540 static inline int rcu_read_lock_sched_held(void)
542 return preempt_count() != 0 || irqs_disabled();
544 #else /* #ifdef CONFIG_PREEMPT_COUNT */
545 static inline int rcu_read_lock_sched_held(void)
547 return 1;
549 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
551 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
553 #ifdef CONFIG_PROVE_RCU
556 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
557 * @c: condition to check
558 * @s: informative message
560 #define RCU_LOCKDEP_WARN(c, s) \
561 do { \
562 static bool __section(.data.unlikely) __warned; \
563 if (debug_lockdep_rcu_enabled() && !__warned && (c)) { \
564 __warned = true; \
565 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
567 } while (0)
569 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
570 static inline void rcu_preempt_sleep_check(void)
572 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
573 "Illegal context switch in RCU read-side critical section");
575 #else /* #ifdef CONFIG_PROVE_RCU */
576 static inline void rcu_preempt_sleep_check(void)
579 #endif /* #else #ifdef CONFIG_PROVE_RCU */
581 #define rcu_sleep_check() \
582 do { \
583 rcu_preempt_sleep_check(); \
584 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \
585 "Illegal context switch in RCU-bh read-side critical section"); \
586 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \
587 "Illegal context switch in RCU-sched read-side critical section"); \
588 } while (0)
590 #else /* #ifdef CONFIG_PROVE_RCU */
592 #define RCU_LOCKDEP_WARN(c, s) do { } while (0)
593 #define rcu_sleep_check() do { } while (0)
595 #endif /* #else #ifdef CONFIG_PROVE_RCU */
598 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
599 * and rcu_assign_pointer(). Some of these could be folded into their
600 * callers, but they are left separate in order to ease introduction of
601 * multiple flavors of pointers to match the multiple flavors of RCU
602 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
603 * the future.
606 #ifdef __CHECKER__
607 #define rcu_dereference_sparse(p, space) \
608 ((void)(((typeof(*p) space *)p) == p))
609 #else /* #ifdef __CHECKER__ */
610 #define rcu_dereference_sparse(p, space)
611 #endif /* #else #ifdef __CHECKER__ */
613 #define __rcu_access_pointer(p, space) \
614 ({ \
615 typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
616 rcu_dereference_sparse(p, space); \
617 ((typeof(*p) __force __kernel *)(_________p1)); \
619 #define __rcu_dereference_check(p, c, space) \
620 ({ \
621 /* Dependency order vs. p above. */ \
622 typeof(*p) *________p1 = (typeof(*p) *__force)lockless_dereference(p); \
623 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
624 rcu_dereference_sparse(p, space); \
625 ((typeof(*p) __force __kernel *)(________p1)); \
627 #define __rcu_dereference_protected(p, c, space) \
628 ({ \
629 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
630 rcu_dereference_sparse(p, space); \
631 ((typeof(*p) __force __kernel *)(p)); \
635 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
636 * @v: The value to statically initialize with.
638 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
641 * rcu_assign_pointer() - assign to RCU-protected pointer
642 * @p: pointer to assign to
643 * @v: value to assign (publish)
645 * Assigns the specified value to the specified RCU-protected
646 * pointer, ensuring that any concurrent RCU readers will see
647 * any prior initialization.
649 * Inserts memory barriers on architectures that require them
650 * (which is most of them), and also prevents the compiler from
651 * reordering the code that initializes the structure after the pointer
652 * assignment. More importantly, this call documents which pointers
653 * will be dereferenced by RCU read-side code.
655 * In some special cases, you may use RCU_INIT_POINTER() instead
656 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
657 * to the fact that it does not constrain either the CPU or the compiler.
658 * That said, using RCU_INIT_POINTER() when you should have used
659 * rcu_assign_pointer() is a very bad thing that results in
660 * impossible-to-diagnose memory corruption. So please be careful.
661 * See the RCU_INIT_POINTER() comment header for details.
663 * Note that rcu_assign_pointer() evaluates each of its arguments only
664 * once, appearances notwithstanding. One of the "extra" evaluations
665 * is in typeof() and the other visible only to sparse (__CHECKER__),
666 * neither of which actually execute the argument. As with most cpp
667 * macros, this execute-arguments-only-once property is important, so
668 * please be careful when making changes to rcu_assign_pointer() and the
669 * other macros that it invokes.
671 #define rcu_assign_pointer(p, v) smp_store_release(&p, RCU_INITIALIZER(v))
674 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
675 * @p: The pointer to read
677 * Return the value of the specified RCU-protected pointer, but omit the
678 * smp_read_barrier_depends() and keep the READ_ONCE(). This is useful
679 * when the value of this pointer is accessed, but the pointer is not
680 * dereferenced, for example, when testing an RCU-protected pointer against
681 * NULL. Although rcu_access_pointer() may also be used in cases where
682 * update-side locks prevent the value of the pointer from changing, you
683 * should instead use rcu_dereference_protected() for this use case.
685 * It is also permissible to use rcu_access_pointer() when read-side
686 * access to the pointer was removed at least one grace period ago, as
687 * is the case in the context of the RCU callback that is freeing up
688 * the data, or after a synchronize_rcu() returns. This can be useful
689 * when tearing down multi-linked structures after a grace period
690 * has elapsed.
692 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
695 * rcu_dereference_check() - rcu_dereference with debug checking
696 * @p: The pointer to read, prior to dereferencing
697 * @c: The conditions under which the dereference will take place
699 * Do an rcu_dereference(), but check that the conditions under which the
700 * dereference will take place are correct. Typically the conditions
701 * indicate the various locking conditions that should be held at that
702 * point. The check should return true if the conditions are satisfied.
703 * An implicit check for being in an RCU read-side critical section
704 * (rcu_read_lock()) is included.
706 * For example:
708 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
710 * could be used to indicate to lockdep that foo->bar may only be dereferenced
711 * if either rcu_read_lock() is held, or that the lock required to replace
712 * the bar struct at foo->bar is held.
714 * Note that the list of conditions may also include indications of when a lock
715 * need not be held, for example during initialisation or destruction of the
716 * target struct:
718 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
719 * atomic_read(&foo->usage) == 0);
721 * Inserts memory barriers on architectures that require them
722 * (currently only the Alpha), prevents the compiler from refetching
723 * (and from merging fetches), and, more importantly, documents exactly
724 * which pointers are protected by RCU and checks that the pointer is
725 * annotated as __rcu.
727 #define rcu_dereference_check(p, c) \
728 __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
731 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
732 * @p: The pointer to read, prior to dereferencing
733 * @c: The conditions under which the dereference will take place
735 * This is the RCU-bh counterpart to rcu_dereference_check().
737 #define rcu_dereference_bh_check(p, c) \
738 __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
741 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
742 * @p: The pointer to read, prior to dereferencing
743 * @c: The conditions under which the dereference will take place
745 * This is the RCU-sched counterpart to rcu_dereference_check().
747 #define rcu_dereference_sched_check(p, c) \
748 __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
749 __rcu)
751 #define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/
754 * The tracing infrastructure traces RCU (we want that), but unfortunately
755 * some of the RCU checks causes tracing to lock up the system.
757 * The no-tracing version of rcu_dereference_raw() must not call
758 * rcu_read_lock_held().
760 #define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)
763 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
764 * @p: The pointer to read, prior to dereferencing
765 * @c: The conditions under which the dereference will take place
767 * Return the value of the specified RCU-protected pointer, but omit
768 * both the smp_read_barrier_depends() and the READ_ONCE(). This
769 * is useful in cases where update-side locks prevent the value of the
770 * pointer from changing. Please note that this primitive does -not-
771 * prevent the compiler from repeating this reference or combining it
772 * with other references, so it should not be used without protection
773 * of appropriate locks.
775 * This function is only for update-side use. Using this function
776 * when protected only by rcu_read_lock() will result in infrequent
777 * but very ugly failures.
779 #define rcu_dereference_protected(p, c) \
780 __rcu_dereference_protected((p), (c), __rcu)
784 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
785 * @p: The pointer to read, prior to dereferencing
787 * This is a simple wrapper around rcu_dereference_check().
789 #define rcu_dereference(p) rcu_dereference_check(p, 0)
792 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
793 * @p: The pointer to read, prior to dereferencing
795 * Makes rcu_dereference_check() do the dirty work.
797 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
800 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
801 * @p: The pointer to read, prior to dereferencing
803 * Makes rcu_dereference_check() do the dirty work.
805 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
808 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
809 * @p: The pointer to hand off
811 * This is simply an identity function, but it documents where a pointer
812 * is handed off from RCU to some other synchronization mechanism, for
813 * example, reference counting or locking. In C11, it would map to
814 * kill_dependency(). It could be used as follows:
816 * rcu_read_lock();
817 * p = rcu_dereference(gp);
818 * long_lived = is_long_lived(p);
819 * if (long_lived) {
820 * if (!atomic_inc_not_zero(p->refcnt))
821 * long_lived = false;
822 * else
823 * p = rcu_pointer_handoff(p);
825 * rcu_read_unlock();
827 #define rcu_pointer_handoff(p) (p)
830 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
832 * When synchronize_rcu() is invoked on one CPU while other CPUs
833 * are within RCU read-side critical sections, then the
834 * synchronize_rcu() is guaranteed to block until after all the other
835 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
836 * on one CPU while other CPUs are within RCU read-side critical
837 * sections, invocation of the corresponding RCU callback is deferred
838 * until after the all the other CPUs exit their critical sections.
840 * Note, however, that RCU callbacks are permitted to run concurrently
841 * with new RCU read-side critical sections. One way that this can happen
842 * is via the following sequence of events: (1) CPU 0 enters an RCU
843 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
844 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
845 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
846 * callback is invoked. This is legal, because the RCU read-side critical
847 * section that was running concurrently with the call_rcu() (and which
848 * therefore might be referencing something that the corresponding RCU
849 * callback would free up) has completed before the corresponding
850 * RCU callback is invoked.
852 * RCU read-side critical sections may be nested. Any deferred actions
853 * will be deferred until the outermost RCU read-side critical section
854 * completes.
856 * You can avoid reading and understanding the next paragraph by
857 * following this rule: don't put anything in an rcu_read_lock() RCU
858 * read-side critical section that would block in a !PREEMPT kernel.
859 * But if you want the full story, read on!
861 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU),
862 * it is illegal to block while in an RCU read-side critical section.
863 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPT
864 * kernel builds, RCU read-side critical sections may be preempted,
865 * but explicit blocking is illegal. Finally, in preemptible RCU
866 * implementations in real-time (with -rt patchset) kernel builds, RCU
867 * read-side critical sections may be preempted and they may also block, but
868 * only when acquiring spinlocks that are subject to priority inheritance.
870 static inline void rcu_read_lock(void)
872 __rcu_read_lock();
873 __acquire(RCU);
874 rcu_lock_acquire(&rcu_lock_map);
875 RCU_LOCKDEP_WARN(!rcu_is_watching(),
876 "rcu_read_lock() used illegally while idle");
880 * So where is rcu_write_lock()? It does not exist, as there is no
881 * way for writers to lock out RCU readers. This is a feature, not
882 * a bug -- this property is what provides RCU's performance benefits.
883 * Of course, writers must coordinate with each other. The normal
884 * spinlock primitives work well for this, but any other technique may be
885 * used as well. RCU does not care how the writers keep out of each
886 * others' way, as long as they do so.
890 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
892 * In most situations, rcu_read_unlock() is immune from deadlock.
893 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
894 * is responsible for deboosting, which it does via rt_mutex_unlock().
895 * Unfortunately, this function acquires the scheduler's runqueue and
896 * priority-inheritance spinlocks. This means that deadlock could result
897 * if the caller of rcu_read_unlock() already holds one of these locks or
898 * any lock that is ever acquired while holding them; or any lock which
899 * can be taken from interrupt context because rcu_boost()->rt_mutex_lock()
900 * does not disable irqs while taking ->wait_lock.
902 * That said, RCU readers are never priority boosted unless they were
903 * preempted. Therefore, one way to avoid deadlock is to make sure
904 * that preemption never happens within any RCU read-side critical
905 * section whose outermost rcu_read_unlock() is called with one of
906 * rt_mutex_unlock()'s locks held. Such preemption can be avoided in
907 * a number of ways, for example, by invoking preempt_disable() before
908 * critical section's outermost rcu_read_lock().
910 * Given that the set of locks acquired by rt_mutex_unlock() might change
911 * at any time, a somewhat more future-proofed approach is to make sure
912 * that that preemption never happens within any RCU read-side critical
913 * section whose outermost rcu_read_unlock() is called with irqs disabled.
914 * This approach relies on the fact that rt_mutex_unlock() currently only
915 * acquires irq-disabled locks.
917 * The second of these two approaches is best in most situations,
918 * however, the first approach can also be useful, at least to those
919 * developers willing to keep abreast of the set of locks acquired by
920 * rt_mutex_unlock().
922 * See rcu_read_lock() for more information.
924 static inline void rcu_read_unlock(void)
926 RCU_LOCKDEP_WARN(!rcu_is_watching(),
927 "rcu_read_unlock() used illegally while idle");
928 __release(RCU);
929 __rcu_read_unlock();
930 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
934 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
936 * This is equivalent of rcu_read_lock(), but to be used when updates
937 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
938 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
939 * softirq handler to be a quiescent state, a process in RCU read-side
940 * critical section must be protected by disabling softirqs. Read-side
941 * critical sections in interrupt context can use just rcu_read_lock(),
942 * though this should at least be commented to avoid confusing people
943 * reading the code.
945 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
946 * must occur in the same context, for example, it is illegal to invoke
947 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
948 * was invoked from some other task.
950 static inline void rcu_read_lock_bh(void)
952 local_bh_disable();
953 __acquire(RCU_BH);
954 rcu_lock_acquire(&rcu_bh_lock_map);
955 RCU_LOCKDEP_WARN(!rcu_is_watching(),
956 "rcu_read_lock_bh() used illegally while idle");
960 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
962 * See rcu_read_lock_bh() for more information.
964 static inline void rcu_read_unlock_bh(void)
966 RCU_LOCKDEP_WARN(!rcu_is_watching(),
967 "rcu_read_unlock_bh() used illegally while idle");
968 rcu_lock_release(&rcu_bh_lock_map);
969 __release(RCU_BH);
970 local_bh_enable();
974 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
976 * This is equivalent of rcu_read_lock(), but to be used when updates
977 * are being done using call_rcu_sched() or synchronize_rcu_sched().
978 * Read-side critical sections can also be introduced by anything that
979 * disables preemption, including local_irq_disable() and friends.
981 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
982 * must occur in the same context, for example, it is illegal to invoke
983 * rcu_read_unlock_sched() from process context if the matching
984 * rcu_read_lock_sched() was invoked from an NMI handler.
986 static inline void rcu_read_lock_sched(void)
988 preempt_disable();
989 __acquire(RCU_SCHED);
990 rcu_lock_acquire(&rcu_sched_lock_map);
991 RCU_LOCKDEP_WARN(!rcu_is_watching(),
992 "rcu_read_lock_sched() used illegally while idle");
995 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
996 static inline notrace void rcu_read_lock_sched_notrace(void)
998 preempt_disable_notrace();
999 __acquire(RCU_SCHED);
1003 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
1005 * See rcu_read_lock_sched for more information.
1007 static inline void rcu_read_unlock_sched(void)
1009 RCU_LOCKDEP_WARN(!rcu_is_watching(),
1010 "rcu_read_unlock_sched() used illegally while idle");
1011 rcu_lock_release(&rcu_sched_lock_map);
1012 __release(RCU_SCHED);
1013 preempt_enable();
1016 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
1017 static inline notrace void rcu_read_unlock_sched_notrace(void)
1019 __release(RCU_SCHED);
1020 preempt_enable_notrace();
1024 * RCU_INIT_POINTER() - initialize an RCU protected pointer
1026 * Initialize an RCU-protected pointer in special cases where readers
1027 * do not need ordering constraints on the CPU or the compiler. These
1028 * special cases are:
1030 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
1031 * 2. The caller has taken whatever steps are required to prevent
1032 * RCU readers from concurrently accessing this pointer -or-
1033 * 3. The referenced data structure has already been exposed to
1034 * readers either at compile time or via rcu_assign_pointer() -and-
1035 * a. You have not made -any- reader-visible changes to
1036 * this structure since then -or-
1037 * b. It is OK for readers accessing this structure from its
1038 * new location to see the old state of the structure. (For
1039 * example, the changes were to statistical counters or to
1040 * other state where exact synchronization is not required.)
1042 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
1043 * result in impossible-to-diagnose memory corruption. As in the structures
1044 * will look OK in crash dumps, but any concurrent RCU readers might
1045 * see pre-initialized values of the referenced data structure. So
1046 * please be very careful how you use RCU_INIT_POINTER()!!!
1048 * If you are creating an RCU-protected linked structure that is accessed
1049 * by a single external-to-structure RCU-protected pointer, then you may
1050 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
1051 * pointers, but you must use rcu_assign_pointer() to initialize the
1052 * external-to-structure pointer -after- you have completely initialized
1053 * the reader-accessible portions of the linked structure.
1055 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
1056 * ordering guarantees for either the CPU or the compiler.
1058 #define RCU_INIT_POINTER(p, v) \
1059 do { \
1060 rcu_dereference_sparse(p, __rcu); \
1061 WRITE_ONCE(p, RCU_INITIALIZER(v)); \
1062 } while (0)
1065 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
1067 * GCC-style initialization for an RCU-protected pointer in a structure field.
1069 #define RCU_POINTER_INITIALIZER(p, v) \
1070 .p = RCU_INITIALIZER(v)
1073 * Does the specified offset indicate that the corresponding rcu_head
1074 * structure can be handled by kfree_rcu()?
1076 #define __is_kfree_rcu_offset(offset) ((offset) < 4096)
1079 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
1081 #define __kfree_rcu(head, offset) \
1082 do { \
1083 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
1084 kfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \
1085 } while (0)
1088 * kfree_rcu() - kfree an object after a grace period.
1089 * @ptr: pointer to kfree
1090 * @rcu_head: the name of the struct rcu_head within the type of @ptr.
1092 * Many rcu callbacks functions just call kfree() on the base structure.
1093 * These functions are trivial, but their size adds up, and furthermore
1094 * when they are used in a kernel module, that module must invoke the
1095 * high-latency rcu_barrier() function at module-unload time.
1097 * The kfree_rcu() function handles this issue. Rather than encoding a
1098 * function address in the embedded rcu_head structure, kfree_rcu() instead
1099 * encodes the offset of the rcu_head structure within the base structure.
1100 * Because the functions are not allowed in the low-order 4096 bytes of
1101 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
1102 * If the offset is larger than 4095 bytes, a compile-time error will
1103 * be generated in __kfree_rcu(). If this error is triggered, you can
1104 * either fall back to use of call_rcu() or rearrange the structure to
1105 * position the rcu_head structure into the first 4096 bytes.
1107 * Note that the allowable offset might decrease in the future, for example,
1108 * to allow something like kmem_cache_free_rcu().
1110 * The BUILD_BUG_ON check must not involve any function calls, hence the
1111 * checks are done in macros here.
1113 #define kfree_rcu(ptr, rcu_head) \
1114 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
1116 #ifdef CONFIG_TINY_RCU
1117 static inline int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1119 *nextevt = KTIME_MAX;
1120 return 0;
1122 #endif /* #ifdef CONFIG_TINY_RCU */
1124 #if defined(CONFIG_RCU_NOCB_CPU_ALL)
1125 static inline bool rcu_is_nocb_cpu(int cpu) { return true; }
1126 #elif defined(CONFIG_RCU_NOCB_CPU)
1127 bool rcu_is_nocb_cpu(int cpu);
1128 #else
1129 static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
1130 #endif
1133 /* Only for use by adaptive-ticks code. */
1134 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
1135 bool rcu_sys_is_idle(void);
1136 void rcu_sysidle_force_exit(void);
1137 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1139 static inline bool rcu_sys_is_idle(void)
1141 return false;
1144 static inline void rcu_sysidle_force_exit(void)
1148 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1151 #endif /* __LINUX_RCUPDATE_H */