s390: Use HAVE_MEMBLOCK_NODE_MAP
[linux-2.6.git] / mm / memblock.c
blobef4987b03afd3e3b40154809e6a65f2d94bf4595
1 /*
2 * Procedures for maintaining information about logical memory blocks.
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
23 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
24 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
26 struct memblock memblock __initdata_memblock = {
27 .memory.regions = memblock_memory_init_regions,
28 .memory.cnt = 1, /* empty dummy entry */
29 .memory.max = INIT_MEMBLOCK_REGIONS,
31 .reserved.regions = memblock_reserved_init_regions,
32 .reserved.cnt = 1, /* empty dummy entry */
33 .reserved.max = INIT_MEMBLOCK_REGIONS,
35 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
38 int memblock_debug __initdata_memblock;
39 static int memblock_can_resize __initdata_memblock;
41 /* inline so we don't get a warning when pr_debug is compiled out */
42 static inline const char *memblock_type_name(struct memblock_type *type)
44 if (type == &memblock.memory)
45 return "memory";
46 else if (type == &memblock.reserved)
47 return "reserved";
48 else
49 return "unknown";
52 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
53 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
55 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
59 * Address comparison utilities
61 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
62 phys_addr_t base2, phys_addr_t size2)
64 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
67 static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
68 phys_addr_t base, phys_addr_t size)
70 unsigned long i;
72 for (i = 0; i < type->cnt; i++) {
73 phys_addr_t rgnbase = type->regions[i].base;
74 phys_addr_t rgnsize = type->regions[i].size;
75 if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
76 break;
79 return (i < type->cnt) ? i : -1;
83 * Find, allocate, deallocate or reserve unreserved regions. All allocations
84 * are top-down.
87 static phys_addr_t __init_memblock memblock_find_region(phys_addr_t start, phys_addr_t end,
88 phys_addr_t size, phys_addr_t align)
90 phys_addr_t base, res_base;
91 long j;
93 /* In case, huge size is requested */
94 if (end < size)
95 return 0;
97 base = round_down(end - size, align);
99 /* Prevent allocations returning 0 as it's also used to
100 * indicate an allocation failure
102 if (start == 0)
103 start = PAGE_SIZE;
105 while (start <= base) {
106 j = memblock_overlaps_region(&memblock.reserved, base, size);
107 if (j < 0)
108 return base;
109 res_base = memblock.reserved.regions[j].base;
110 if (res_base < size)
111 break;
112 base = round_down(res_base - size, align);
115 return 0;
119 * Find a free area with specified alignment in a specific range.
121 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, phys_addr_t end,
122 phys_addr_t size, phys_addr_t align)
124 long i;
126 BUG_ON(0 == size);
128 /* Pump up max_addr */
129 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
130 end = memblock.current_limit;
132 /* We do a top-down search, this tends to limit memory
133 * fragmentation by keeping early boot allocs near the
134 * top of memory
136 for (i = memblock.memory.cnt - 1; i >= 0; i--) {
137 phys_addr_t memblockbase = memblock.memory.regions[i].base;
138 phys_addr_t memblocksize = memblock.memory.regions[i].size;
139 phys_addr_t bottom, top, found;
141 if (memblocksize < size)
142 continue;
143 if ((memblockbase + memblocksize) <= start)
144 break;
145 bottom = max(memblockbase, start);
146 top = min(memblockbase + memblocksize, end);
147 if (bottom >= top)
148 continue;
149 found = memblock_find_region(bottom, top, size, align);
150 if (found)
151 return found;
153 return 0;
157 * Free memblock.reserved.regions
159 int __init_memblock memblock_free_reserved_regions(void)
161 if (memblock.reserved.regions == memblock_reserved_init_regions)
162 return 0;
164 return memblock_free(__pa(memblock.reserved.regions),
165 sizeof(struct memblock_region) * memblock.reserved.max);
169 * Reserve memblock.reserved.regions
171 int __init_memblock memblock_reserve_reserved_regions(void)
173 if (memblock.reserved.regions == memblock_reserved_init_regions)
174 return 0;
176 return memblock_reserve(__pa(memblock.reserved.regions),
177 sizeof(struct memblock_region) * memblock.reserved.max);
180 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
182 type->total_size -= type->regions[r].size;
183 memmove(&type->regions[r], &type->regions[r + 1],
184 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
185 type->cnt--;
187 /* Special case for empty arrays */
188 if (type->cnt == 0) {
189 WARN_ON(type->total_size != 0);
190 type->cnt = 1;
191 type->regions[0].base = 0;
192 type->regions[0].size = 0;
193 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
197 static int __init_memblock memblock_double_array(struct memblock_type *type)
199 struct memblock_region *new_array, *old_array;
200 phys_addr_t old_size, new_size, addr;
201 int use_slab = slab_is_available();
203 /* We don't allow resizing until we know about the reserved regions
204 * of memory that aren't suitable for allocation
206 if (!memblock_can_resize)
207 return -1;
209 /* Calculate new doubled size */
210 old_size = type->max * sizeof(struct memblock_region);
211 new_size = old_size << 1;
213 /* Try to find some space for it.
215 * WARNING: We assume that either slab_is_available() and we use it or
216 * we use MEMBLOCK for allocations. That means that this is unsafe to use
217 * when bootmem is currently active (unless bootmem itself is implemented
218 * on top of MEMBLOCK which isn't the case yet)
220 * This should however not be an issue for now, as we currently only
221 * call into MEMBLOCK while it's still active, or much later when slab is
222 * active for memory hotplug operations
224 if (use_slab) {
225 new_array = kmalloc(new_size, GFP_KERNEL);
226 addr = new_array ? __pa(new_array) : 0;
227 } else
228 addr = memblock_find_in_range(0, MEMBLOCK_ALLOC_ACCESSIBLE, new_size, sizeof(phys_addr_t));
229 if (!addr) {
230 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
231 memblock_type_name(type), type->max, type->max * 2);
232 return -1;
234 new_array = __va(addr);
236 memblock_dbg("memblock: %s array is doubled to %ld at [%#010llx-%#010llx]",
237 memblock_type_name(type), type->max * 2, (u64)addr, (u64)addr + new_size - 1);
239 /* Found space, we now need to move the array over before
240 * we add the reserved region since it may be our reserved
241 * array itself that is full.
243 memcpy(new_array, type->regions, old_size);
244 memset(new_array + type->max, 0, old_size);
245 old_array = type->regions;
246 type->regions = new_array;
247 type->max <<= 1;
249 /* If we use SLAB that's it, we are done */
250 if (use_slab)
251 return 0;
253 /* Add the new reserved region now. Should not fail ! */
254 BUG_ON(memblock_reserve(addr, new_size));
256 /* If the array wasn't our static init one, then free it. We only do
257 * that before SLAB is available as later on, we don't know whether
258 * to use kfree or free_bootmem_pages(). Shouldn't be a big deal
259 * anyways
261 if (old_array != memblock_memory_init_regions &&
262 old_array != memblock_reserved_init_regions)
263 memblock_free(__pa(old_array), old_size);
265 return 0;
269 * memblock_merge_regions - merge neighboring compatible regions
270 * @type: memblock type to scan
272 * Scan @type and merge neighboring compatible regions.
274 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
276 int i = 0;
278 /* cnt never goes below 1 */
279 while (i < type->cnt - 1) {
280 struct memblock_region *this = &type->regions[i];
281 struct memblock_region *next = &type->regions[i + 1];
283 if (this->base + this->size != next->base ||
284 memblock_get_region_node(this) !=
285 memblock_get_region_node(next)) {
286 BUG_ON(this->base + this->size > next->base);
287 i++;
288 continue;
291 this->size += next->size;
292 memmove(next, next + 1, (type->cnt - (i + 1)) * sizeof(*next));
293 type->cnt--;
298 * memblock_insert_region - insert new memblock region
299 * @type: memblock type to insert into
300 * @idx: index for the insertion point
301 * @base: base address of the new region
302 * @size: size of the new region
304 * Insert new memblock region [@base,@base+@size) into @type at @idx.
305 * @type must already have extra room to accomodate the new region.
307 static void __init_memblock memblock_insert_region(struct memblock_type *type,
308 int idx, phys_addr_t base,
309 phys_addr_t size, int nid)
311 struct memblock_region *rgn = &type->regions[idx];
313 BUG_ON(type->cnt >= type->max);
314 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
315 rgn->base = base;
316 rgn->size = size;
317 memblock_set_region_node(rgn, nid);
318 type->cnt++;
319 type->total_size += size;
323 * memblock_add_region - add new memblock region
324 * @type: memblock type to add new region into
325 * @base: base address of the new region
326 * @size: size of the new region
327 * @nid: nid of the new region
329 * Add new memblock region [@base,@base+@size) into @type. The new region
330 * is allowed to overlap with existing ones - overlaps don't affect already
331 * existing regions. @type is guaranteed to be minimal (all neighbouring
332 * compatible regions are merged) after the addition.
334 * RETURNS:
335 * 0 on success, -errno on failure.
337 static int __init_memblock memblock_add_region(struct memblock_type *type,
338 phys_addr_t base, phys_addr_t size, int nid)
340 bool insert = false;
341 phys_addr_t obase = base;
342 phys_addr_t end = base + memblock_cap_size(base, &size);
343 int i, nr_new;
345 /* special case for empty array */
346 if (type->regions[0].size == 0) {
347 WARN_ON(type->cnt != 1 || type->total_size);
348 type->regions[0].base = base;
349 type->regions[0].size = size;
350 memblock_set_region_node(&type->regions[0], nid);
351 type->total_size = size;
352 return 0;
354 repeat:
356 * The following is executed twice. Once with %false @insert and
357 * then with %true. The first counts the number of regions needed
358 * to accomodate the new area. The second actually inserts them.
360 base = obase;
361 nr_new = 0;
363 for (i = 0; i < type->cnt; i++) {
364 struct memblock_region *rgn = &type->regions[i];
365 phys_addr_t rbase = rgn->base;
366 phys_addr_t rend = rbase + rgn->size;
368 if (rbase >= end)
369 break;
370 if (rend <= base)
371 continue;
373 * @rgn overlaps. If it separates the lower part of new
374 * area, insert that portion.
376 if (rbase > base) {
377 nr_new++;
378 if (insert)
379 memblock_insert_region(type, i++, base,
380 rbase - base, nid);
382 /* area below @rend is dealt with, forget about it */
383 base = min(rend, end);
386 /* insert the remaining portion */
387 if (base < end) {
388 nr_new++;
389 if (insert)
390 memblock_insert_region(type, i, base, end - base, nid);
394 * If this was the first round, resize array and repeat for actual
395 * insertions; otherwise, merge and return.
397 if (!insert) {
398 while (type->cnt + nr_new > type->max)
399 if (memblock_double_array(type) < 0)
400 return -ENOMEM;
401 insert = true;
402 goto repeat;
403 } else {
404 memblock_merge_regions(type);
405 return 0;
409 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
410 int nid)
412 return memblock_add_region(&memblock.memory, base, size, nid);
415 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
417 return memblock_add_region(&memblock.memory, base, size, MAX_NUMNODES);
421 * memblock_isolate_range - isolate given range into disjoint memblocks
422 * @type: memblock type to isolate range for
423 * @base: base of range to isolate
424 * @size: size of range to isolate
425 * @start_rgn: out parameter for the start of isolated region
426 * @end_rgn: out parameter for the end of isolated region
428 * Walk @type and ensure that regions don't cross the boundaries defined by
429 * [@base,@base+@size). Crossing regions are split at the boundaries,
430 * which may create at most two more regions. The index of the first
431 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
433 * RETURNS:
434 * 0 on success, -errno on failure.
436 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
437 phys_addr_t base, phys_addr_t size,
438 int *start_rgn, int *end_rgn)
440 phys_addr_t end = base + memblock_cap_size(base, &size);
441 int i;
443 *start_rgn = *end_rgn = 0;
445 /* we'll create at most two more regions */
446 while (type->cnt + 2 > type->max)
447 if (memblock_double_array(type) < 0)
448 return -ENOMEM;
450 for (i = 0; i < type->cnt; i++) {
451 struct memblock_region *rgn = &type->regions[i];
452 phys_addr_t rbase = rgn->base;
453 phys_addr_t rend = rbase + rgn->size;
455 if (rbase >= end)
456 break;
457 if (rend <= base)
458 continue;
460 if (rbase < base) {
462 * @rgn intersects from below. Split and continue
463 * to process the next region - the new top half.
465 rgn->base = base;
466 rgn->size -= base - rbase;
467 type->total_size -= base - rbase;
468 memblock_insert_region(type, i, rbase, base - rbase,
469 memblock_get_region_node(rgn));
470 } else if (rend > end) {
472 * @rgn intersects from above. Split and redo the
473 * current region - the new bottom half.
475 rgn->base = end;
476 rgn->size -= end - rbase;
477 type->total_size -= end - rbase;
478 memblock_insert_region(type, i--, rbase, end - rbase,
479 memblock_get_region_node(rgn));
480 } else {
481 /* @rgn is fully contained, record it */
482 if (!*end_rgn)
483 *start_rgn = i;
484 *end_rgn = i + 1;
488 return 0;
491 static int __init_memblock __memblock_remove(struct memblock_type *type,
492 phys_addr_t base, phys_addr_t size)
494 int start_rgn, end_rgn;
495 int i, ret;
497 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
498 if (ret)
499 return ret;
501 for (i = end_rgn - 1; i >= start_rgn; i--)
502 memblock_remove_region(type, i);
503 return 0;
506 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
508 return __memblock_remove(&memblock.memory, base, size);
511 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
513 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
514 (unsigned long long)base,
515 (unsigned long long)base + size,
516 (void *)_RET_IP_);
518 return __memblock_remove(&memblock.reserved, base, size);
521 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
523 struct memblock_type *_rgn = &memblock.reserved;
525 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] %pF\n",
526 (unsigned long long)base,
527 (unsigned long long)base + size,
528 (void *)_RET_IP_);
529 BUG_ON(0 == size);
531 return memblock_add_region(_rgn, base, size, MAX_NUMNODES);
535 * __next_free_mem_range - next function for for_each_free_mem_range()
536 * @idx: pointer to u64 loop variable
537 * @nid: nid: node selector, %MAX_NUMNODES for all nodes
538 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
539 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
540 * @p_nid: ptr to int for nid of the range, can be %NULL
542 * Find the first free area from *@idx which matches @nid, fill the out
543 * parameters, and update *@idx for the next iteration. The lower 32bit of
544 * *@idx contains index into memory region and the upper 32bit indexes the
545 * areas before each reserved region. For example, if reserved regions
546 * look like the following,
548 * 0:[0-16), 1:[32-48), 2:[128-130)
550 * The upper 32bit indexes the following regions.
552 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
554 * As both region arrays are sorted, the function advances the two indices
555 * in lockstep and returns each intersection.
557 void __init_memblock __next_free_mem_range(u64 *idx, int nid,
558 phys_addr_t *out_start,
559 phys_addr_t *out_end, int *out_nid)
561 struct memblock_type *mem = &memblock.memory;
562 struct memblock_type *rsv = &memblock.reserved;
563 int mi = *idx & 0xffffffff;
564 int ri = *idx >> 32;
566 for ( ; mi < mem->cnt; mi++) {
567 struct memblock_region *m = &mem->regions[mi];
568 phys_addr_t m_start = m->base;
569 phys_addr_t m_end = m->base + m->size;
571 /* only memory regions are associated with nodes, check it */
572 if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
573 continue;
575 /* scan areas before each reservation for intersection */
576 for ( ; ri < rsv->cnt + 1; ri++) {
577 struct memblock_region *r = &rsv->regions[ri];
578 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
579 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
581 /* if ri advanced past mi, break out to advance mi */
582 if (r_start >= m_end)
583 break;
584 /* if the two regions intersect, we're done */
585 if (m_start < r_end) {
586 if (out_start)
587 *out_start = max(m_start, r_start);
588 if (out_end)
589 *out_end = min(m_end, r_end);
590 if (out_nid)
591 *out_nid = memblock_get_region_node(m);
593 * The region which ends first is advanced
594 * for the next iteration.
596 if (m_end <= r_end)
597 mi++;
598 else
599 ri++;
600 *idx = (u32)mi | (u64)ri << 32;
601 return;
606 /* signal end of iteration */
607 *idx = ULLONG_MAX;
610 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
612 * Common iterator interface used to define for_each_mem_range().
614 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
615 unsigned long *out_start_pfn,
616 unsigned long *out_end_pfn, int *out_nid)
618 struct memblock_type *type = &memblock.memory;
619 struct memblock_region *r;
621 while (++*idx < type->cnt) {
622 r = &type->regions[*idx];
624 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
625 continue;
626 if (nid == MAX_NUMNODES || nid == r->nid)
627 break;
629 if (*idx >= type->cnt) {
630 *idx = -1;
631 return;
634 if (out_start_pfn)
635 *out_start_pfn = PFN_UP(r->base);
636 if (out_end_pfn)
637 *out_end_pfn = PFN_DOWN(r->base + r->size);
638 if (out_nid)
639 *out_nid = r->nid;
643 * memblock_set_node - set node ID on memblock regions
644 * @base: base of area to set node ID for
645 * @size: size of area to set node ID for
646 * @nid: node ID to set
648 * Set the nid of memblock memory regions in [@base,@base+@size) to @nid.
649 * Regions which cross the area boundaries are split as necessary.
651 * RETURNS:
652 * 0 on success, -errno on failure.
654 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
655 int nid)
657 struct memblock_type *type = &memblock.memory;
658 int start_rgn, end_rgn;
659 int i, ret;
661 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
662 if (ret)
663 return ret;
665 for (i = start_rgn; i < end_rgn; i++)
666 type->regions[i].nid = nid;
668 memblock_merge_regions(type);
669 return 0;
671 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
673 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
675 phys_addr_t found;
677 /* We align the size to limit fragmentation. Without this, a lot of
678 * small allocs quickly eat up the whole reserve array on sparc
680 size = round_up(size, align);
682 found = memblock_find_in_range(0, max_addr, size, align);
683 if (found && !memblock_reserve(found, size))
684 return found;
686 return 0;
689 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
691 phys_addr_t alloc;
693 alloc = __memblock_alloc_base(size, align, max_addr);
695 if (alloc == 0)
696 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
697 (unsigned long long) size, (unsigned long long) max_addr);
699 return alloc;
702 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
704 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
709 * Additional node-local top-down allocators.
711 * WARNING: Only available after early_node_map[] has been populated,
712 * on some architectures, that is after all the calls to add_active_range()
713 * have been done to populate it.
716 static phys_addr_t __init memblock_nid_range_rev(phys_addr_t start,
717 phys_addr_t end, int *nid)
719 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
720 unsigned long start_pfn, end_pfn;
721 int i;
723 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, nid)
724 if (end > PFN_PHYS(start_pfn) && end <= PFN_PHYS(end_pfn))
725 return max(start, PFN_PHYS(start_pfn));
726 #endif
727 *nid = 0;
728 return start;
731 phys_addr_t __init memblock_find_in_range_node(phys_addr_t start,
732 phys_addr_t end,
733 phys_addr_t size,
734 phys_addr_t align, int nid)
736 struct memblock_type *mem = &memblock.memory;
737 int i;
739 BUG_ON(0 == size);
741 /* Pump up max_addr */
742 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
743 end = memblock.current_limit;
745 for (i = mem->cnt - 1; i >= 0; i--) {
746 struct memblock_region *r = &mem->regions[i];
747 phys_addr_t base = max(start, r->base);
748 phys_addr_t top = min(end, r->base + r->size);
750 while (base < top) {
751 phys_addr_t tbase, ret;
752 int tnid;
754 tbase = memblock_nid_range_rev(base, top, &tnid);
755 if (nid == MAX_NUMNODES || tnid == nid) {
756 ret = memblock_find_region(tbase, top, size, align);
757 if (ret)
758 return ret;
760 top = tbase;
764 return 0;
767 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
769 phys_addr_t found;
772 * We align the size to limit fragmentation. Without this, a lot of
773 * small allocs quickly eat up the whole reserve array on sparc
775 size = round_up(size, align);
777 found = memblock_find_in_range_node(0, MEMBLOCK_ALLOC_ACCESSIBLE,
778 size, align, nid);
779 if (found && !memblock_reserve(found, size))
780 return found;
782 return 0;
785 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
787 phys_addr_t res = memblock_alloc_nid(size, align, nid);
789 if (res)
790 return res;
791 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
796 * Remaining API functions
799 phys_addr_t __init memblock_phys_mem_size(void)
801 return memblock.memory.total_size;
804 /* lowest address */
805 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
807 return memblock.memory.regions[0].base;
810 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
812 int idx = memblock.memory.cnt - 1;
814 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
817 void __init memblock_enforce_memory_limit(phys_addr_t limit)
819 unsigned long i;
820 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
822 if (!limit)
823 return;
825 /* find out max address */
826 for (i = 0; i < memblock.memory.cnt; i++) {
827 struct memblock_region *r = &memblock.memory.regions[i];
829 if (limit <= r->size) {
830 max_addr = r->base + limit;
831 break;
833 limit -= r->size;
836 /* truncate both memory and reserved regions */
837 __memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX);
838 __memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX);
841 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
843 unsigned int left = 0, right = type->cnt;
845 do {
846 unsigned int mid = (right + left) / 2;
848 if (addr < type->regions[mid].base)
849 right = mid;
850 else if (addr >= (type->regions[mid].base +
851 type->regions[mid].size))
852 left = mid + 1;
853 else
854 return mid;
855 } while (left < right);
856 return -1;
859 int __init memblock_is_reserved(phys_addr_t addr)
861 return memblock_search(&memblock.reserved, addr) != -1;
864 int __init_memblock memblock_is_memory(phys_addr_t addr)
866 return memblock_search(&memblock.memory, addr) != -1;
869 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
871 int idx = memblock_search(&memblock.memory, base);
872 phys_addr_t end = base + memblock_cap_size(base, &size);
874 if (idx == -1)
875 return 0;
876 return memblock.memory.regions[idx].base <= base &&
877 (memblock.memory.regions[idx].base +
878 memblock.memory.regions[idx].size) >= end;
881 int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
883 memblock_cap_size(base, &size);
884 return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
888 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
890 memblock.current_limit = limit;
893 static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
895 unsigned long long base, size;
896 int i;
898 pr_info(" %s.cnt = 0x%lx\n", name, type->cnt);
900 for (i = 0; i < type->cnt; i++) {
901 struct memblock_region *rgn = &type->regions[i];
902 char nid_buf[32] = "";
904 base = rgn->base;
905 size = rgn->size;
906 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
907 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
908 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
909 memblock_get_region_node(rgn));
910 #endif
911 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s\n",
912 name, i, base, base + size - 1, size, nid_buf);
916 void __init_memblock __memblock_dump_all(void)
918 pr_info("MEMBLOCK configuration:\n");
919 pr_info(" memory size = %#llx reserved size = %#llx\n",
920 (unsigned long long)memblock.memory.total_size,
921 (unsigned long long)memblock.reserved.total_size);
923 memblock_dump(&memblock.memory, "memory");
924 memblock_dump(&memblock.reserved, "reserved");
927 void __init memblock_allow_resize(void)
929 memblock_can_resize = 1;
932 static int __init early_memblock(char *p)
934 if (p && strstr(p, "debug"))
935 memblock_debug = 1;
936 return 0;
938 early_param("memblock", early_memblock);
940 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
942 static int memblock_debug_show(struct seq_file *m, void *private)
944 struct memblock_type *type = m->private;
945 struct memblock_region *reg;
946 int i;
948 for (i = 0; i < type->cnt; i++) {
949 reg = &type->regions[i];
950 seq_printf(m, "%4d: ", i);
951 if (sizeof(phys_addr_t) == 4)
952 seq_printf(m, "0x%08lx..0x%08lx\n",
953 (unsigned long)reg->base,
954 (unsigned long)(reg->base + reg->size - 1));
955 else
956 seq_printf(m, "0x%016llx..0x%016llx\n",
957 (unsigned long long)reg->base,
958 (unsigned long long)(reg->base + reg->size - 1));
961 return 0;
964 static int memblock_debug_open(struct inode *inode, struct file *file)
966 return single_open(file, memblock_debug_show, inode->i_private);
969 static const struct file_operations memblock_debug_fops = {
970 .open = memblock_debug_open,
971 .read = seq_read,
972 .llseek = seq_lseek,
973 .release = single_release,
976 static int __init memblock_init_debugfs(void)
978 struct dentry *root = debugfs_create_dir("memblock", NULL);
979 if (!root)
980 return -ENXIO;
981 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
982 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
984 return 0;
986 __initcall(memblock_init_debugfs);
988 #endif /* CONFIG_DEBUG_FS */