2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include <linux/slab.h>
62 #define NR_STRIPES 256
63 #define STRIPE_SIZE PAGE_SIZE
64 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
65 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
66 #define IO_THRESHOLD 1
67 #define BYPASS_THRESHOLD 1
68 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
69 #define HASH_MASK (NR_HASH - 1)
71 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
73 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
74 * order without overlap. There may be several bio's per stripe+device, and
75 * a bio could span several devices.
76 * When walking this list for a particular stripe+device, we must never proceed
77 * beyond a bio that extends past this device, as the next bio might no longer
79 * This macro is used to determine the 'next' bio in the list, given the sector
80 * of the current stripe+device
82 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
84 * The following can be used to debug the driver
86 #define RAID5_PARANOIA 1
87 #if RAID5_PARANOIA && defined(CONFIG_SMP)
88 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
90 # define CHECK_DEVLOCK()
98 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
101 * We maintain a biased count of active stripes in the bottom 16 bits of
102 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
104 static inline int raid5_bi_phys_segments(struct bio
*bio
)
106 return bio
->bi_phys_segments
& 0xffff;
109 static inline int raid5_bi_hw_segments(struct bio
*bio
)
111 return (bio
->bi_phys_segments
>> 16) & 0xffff;
114 static inline int raid5_dec_bi_phys_segments(struct bio
*bio
)
116 --bio
->bi_phys_segments
;
117 return raid5_bi_phys_segments(bio
);
120 static inline int raid5_dec_bi_hw_segments(struct bio
*bio
)
122 unsigned short val
= raid5_bi_hw_segments(bio
);
125 bio
->bi_phys_segments
= (val
<< 16) | raid5_bi_phys_segments(bio
);
129 static inline void raid5_set_bi_hw_segments(struct bio
*bio
, unsigned int cnt
)
131 bio
->bi_phys_segments
= raid5_bi_phys_segments(bio
) || (cnt
<< 16);
134 /* Find first data disk in a raid6 stripe */
135 static inline int raid6_d0(struct stripe_head
*sh
)
138 /* ddf always start from first device */
140 /* md starts just after Q block */
141 if (sh
->qd_idx
== sh
->disks
- 1)
144 return sh
->qd_idx
+ 1;
146 static inline int raid6_next_disk(int disk
, int raid_disks
)
149 return (disk
< raid_disks
) ? disk
: 0;
152 /* When walking through the disks in a raid5, starting at raid6_d0,
153 * We need to map each disk to a 'slot', where the data disks are slot
154 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
155 * is raid_disks-1. This help does that mapping.
157 static int raid6_idx_to_slot(int idx
, struct stripe_head
*sh
,
158 int *count
, int syndrome_disks
)
164 if (idx
== sh
->pd_idx
)
165 return syndrome_disks
;
166 if (idx
== sh
->qd_idx
)
167 return syndrome_disks
+ 1;
173 static void return_io(struct bio
*return_bi
)
175 struct bio
*bi
= return_bi
;
178 return_bi
= bi
->bi_next
;
186 static void print_raid5_conf (raid5_conf_t
*conf
);
188 static int stripe_operations_active(struct stripe_head
*sh
)
190 return sh
->check_state
|| sh
->reconstruct_state
||
191 test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
) ||
192 test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
195 static void __release_stripe(raid5_conf_t
*conf
, struct stripe_head
*sh
)
197 if (atomic_dec_and_test(&sh
->count
)) {
198 BUG_ON(!list_empty(&sh
->lru
));
199 BUG_ON(atomic_read(&conf
->active_stripes
)==0);
200 if (test_bit(STRIPE_HANDLE
, &sh
->state
)) {
201 if (test_bit(STRIPE_DELAYED
, &sh
->state
)) {
202 list_add_tail(&sh
->lru
, &conf
->delayed_list
);
203 blk_plug_device(conf
->mddev
->queue
);
204 } else if (test_bit(STRIPE_BIT_DELAY
, &sh
->state
) &&
205 sh
->bm_seq
- conf
->seq_write
> 0) {
206 list_add_tail(&sh
->lru
, &conf
->bitmap_list
);
207 blk_plug_device(conf
->mddev
->queue
);
209 clear_bit(STRIPE_BIT_DELAY
, &sh
->state
);
210 list_add_tail(&sh
->lru
, &conf
->handle_list
);
212 md_wakeup_thread(conf
->mddev
->thread
);
214 BUG_ON(stripe_operations_active(sh
));
215 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
216 atomic_dec(&conf
->preread_active_stripes
);
217 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
)
218 md_wakeup_thread(conf
->mddev
->thread
);
220 atomic_dec(&conf
->active_stripes
);
221 if (!test_bit(STRIPE_EXPANDING
, &sh
->state
)) {
222 list_add_tail(&sh
->lru
, &conf
->inactive_list
);
223 wake_up(&conf
->wait_for_stripe
);
224 if (conf
->retry_read_aligned
)
225 md_wakeup_thread(conf
->mddev
->thread
);
231 static void release_stripe(struct stripe_head
*sh
)
233 raid5_conf_t
*conf
= sh
->raid_conf
;
236 spin_lock_irqsave(&conf
->device_lock
, flags
);
237 __release_stripe(conf
, sh
);
238 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
241 static inline void remove_hash(struct stripe_head
*sh
)
243 pr_debug("remove_hash(), stripe %llu\n",
244 (unsigned long long)sh
->sector
);
246 hlist_del_init(&sh
->hash
);
249 static inline void insert_hash(raid5_conf_t
*conf
, struct stripe_head
*sh
)
251 struct hlist_head
*hp
= stripe_hash(conf
, sh
->sector
);
253 pr_debug("insert_hash(), stripe %llu\n",
254 (unsigned long long)sh
->sector
);
257 hlist_add_head(&sh
->hash
, hp
);
261 /* find an idle stripe, make sure it is unhashed, and return it. */
262 static struct stripe_head
*get_free_stripe(raid5_conf_t
*conf
)
264 struct stripe_head
*sh
= NULL
;
265 struct list_head
*first
;
268 if (list_empty(&conf
->inactive_list
))
270 first
= conf
->inactive_list
.next
;
271 sh
= list_entry(first
, struct stripe_head
, lru
);
272 list_del_init(first
);
274 atomic_inc(&conf
->active_stripes
);
279 static void shrink_buffers(struct stripe_head
*sh
, int num
)
284 for (i
=0; i
<num
; i
++) {
288 sh
->dev
[i
].page
= NULL
;
293 static int grow_buffers(struct stripe_head
*sh
, int num
)
297 for (i
=0; i
<num
; i
++) {
300 if (!(page
= alloc_page(GFP_KERNEL
))) {
303 sh
->dev
[i
].page
= page
;
308 static void raid5_build_block(struct stripe_head
*sh
, int i
, int previous
);
309 static void stripe_set_idx(sector_t stripe
, raid5_conf_t
*conf
, int previous
,
310 struct stripe_head
*sh
);
312 static void init_stripe(struct stripe_head
*sh
, sector_t sector
, int previous
)
314 raid5_conf_t
*conf
= sh
->raid_conf
;
317 BUG_ON(atomic_read(&sh
->count
) != 0);
318 BUG_ON(test_bit(STRIPE_HANDLE
, &sh
->state
));
319 BUG_ON(stripe_operations_active(sh
));
322 pr_debug("init_stripe called, stripe %llu\n",
323 (unsigned long long)sh
->sector
);
327 sh
->generation
= conf
->generation
- previous
;
328 sh
->disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
330 stripe_set_idx(sector
, conf
, previous
, sh
);
334 for (i
= sh
->disks
; i
--; ) {
335 struct r5dev
*dev
= &sh
->dev
[i
];
337 if (dev
->toread
|| dev
->read
|| dev
->towrite
|| dev
->written
||
338 test_bit(R5_LOCKED
, &dev
->flags
)) {
339 printk(KERN_ERR
"sector=%llx i=%d %p %p %p %p %d\n",
340 (unsigned long long)sh
->sector
, i
, dev
->toread
,
341 dev
->read
, dev
->towrite
, dev
->written
,
342 test_bit(R5_LOCKED
, &dev
->flags
));
346 raid5_build_block(sh
, i
, previous
);
348 insert_hash(conf
, sh
);
351 static struct stripe_head
*__find_stripe(raid5_conf_t
*conf
, sector_t sector
,
354 struct stripe_head
*sh
;
355 struct hlist_node
*hn
;
358 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector
);
359 hlist_for_each_entry(sh
, hn
, stripe_hash(conf
, sector
), hash
)
360 if (sh
->sector
== sector
&& sh
->generation
== generation
)
362 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector
);
366 static void unplug_slaves(mddev_t
*mddev
);
367 static void raid5_unplug_device(struct request_queue
*q
);
369 static struct stripe_head
*
370 get_active_stripe(raid5_conf_t
*conf
, sector_t sector
,
371 int previous
, int noblock
, int noquiesce
)
373 struct stripe_head
*sh
;
375 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector
);
377 spin_lock_irq(&conf
->device_lock
);
380 wait_event_lock_irq(conf
->wait_for_stripe
,
381 conf
->quiesce
== 0 || noquiesce
,
382 conf
->device_lock
, /* nothing */);
383 sh
= __find_stripe(conf
, sector
, conf
->generation
- previous
);
385 if (!conf
->inactive_blocked
)
386 sh
= get_free_stripe(conf
);
387 if (noblock
&& sh
== NULL
)
390 conf
->inactive_blocked
= 1;
391 wait_event_lock_irq(conf
->wait_for_stripe
,
392 !list_empty(&conf
->inactive_list
) &&
393 (atomic_read(&conf
->active_stripes
)
394 < (conf
->max_nr_stripes
*3/4)
395 || !conf
->inactive_blocked
),
397 raid5_unplug_device(conf
->mddev
->queue
)
399 conf
->inactive_blocked
= 0;
401 init_stripe(sh
, sector
, previous
);
403 if (atomic_read(&sh
->count
)) {
404 BUG_ON(!list_empty(&sh
->lru
)
405 && !test_bit(STRIPE_EXPANDING
, &sh
->state
));
407 if (!test_bit(STRIPE_HANDLE
, &sh
->state
))
408 atomic_inc(&conf
->active_stripes
);
409 if (list_empty(&sh
->lru
) &&
410 !test_bit(STRIPE_EXPANDING
, &sh
->state
))
412 list_del_init(&sh
->lru
);
415 } while (sh
== NULL
);
418 atomic_inc(&sh
->count
);
420 spin_unlock_irq(&conf
->device_lock
);
425 raid5_end_read_request(struct bio
*bi
, int error
);
427 raid5_end_write_request(struct bio
*bi
, int error
);
429 static void ops_run_io(struct stripe_head
*sh
, struct stripe_head_state
*s
)
431 raid5_conf_t
*conf
= sh
->raid_conf
;
432 int i
, disks
= sh
->disks
;
436 for (i
= disks
; i
--; ) {
440 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
))
442 else if (test_and_clear_bit(R5_Wantread
, &sh
->dev
[i
].flags
))
447 bi
= &sh
->dev
[i
].req
;
451 bi
->bi_end_io
= raid5_end_write_request
;
453 bi
->bi_end_io
= raid5_end_read_request
;
456 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
457 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
460 atomic_inc(&rdev
->nr_pending
);
464 if (s
->syncing
|| s
->expanding
|| s
->expanded
)
465 md_sync_acct(rdev
->bdev
, STRIPE_SECTORS
);
467 set_bit(STRIPE_IO_STARTED
, &sh
->state
);
469 bi
->bi_bdev
= rdev
->bdev
;
470 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
471 __func__
, (unsigned long long)sh
->sector
,
473 atomic_inc(&sh
->count
);
474 bi
->bi_sector
= sh
->sector
+ rdev
->data_offset
;
475 bi
->bi_flags
= 1 << BIO_UPTODATE
;
479 bi
->bi_io_vec
= &sh
->dev
[i
].vec
;
480 bi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
481 bi
->bi_io_vec
[0].bv_offset
= 0;
482 bi
->bi_size
= STRIPE_SIZE
;
485 test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
))
486 atomic_add(STRIPE_SECTORS
,
487 &rdev
->corrected_errors
);
488 generic_make_request(bi
);
491 set_bit(STRIPE_DEGRADED
, &sh
->state
);
492 pr_debug("skip op %ld on disc %d for sector %llu\n",
493 bi
->bi_rw
, i
, (unsigned long long)sh
->sector
);
494 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
495 set_bit(STRIPE_HANDLE
, &sh
->state
);
500 static struct dma_async_tx_descriptor
*
501 async_copy_data(int frombio
, struct bio
*bio
, struct page
*page
,
502 sector_t sector
, struct dma_async_tx_descriptor
*tx
)
505 struct page
*bio_page
;
508 struct async_submit_ctl submit
;
509 enum async_tx_flags flags
= 0;
511 if (bio
->bi_sector
>= sector
)
512 page_offset
= (signed)(bio
->bi_sector
- sector
) * 512;
514 page_offset
= (signed)(sector
- bio
->bi_sector
) * -512;
517 flags
|= ASYNC_TX_FENCE
;
518 init_async_submit(&submit
, flags
, tx
, NULL
, NULL
, NULL
);
520 bio_for_each_segment(bvl
, bio
, i
) {
521 int len
= bio_iovec_idx(bio
, i
)->bv_len
;
525 if (page_offset
< 0) {
526 b_offset
= -page_offset
;
527 page_offset
+= b_offset
;
531 if (len
> 0 && page_offset
+ len
> STRIPE_SIZE
)
532 clen
= STRIPE_SIZE
- page_offset
;
537 b_offset
+= bio_iovec_idx(bio
, i
)->bv_offset
;
538 bio_page
= bio_iovec_idx(bio
, i
)->bv_page
;
540 tx
= async_memcpy(page
, bio_page
, page_offset
,
541 b_offset
, clen
, &submit
);
543 tx
= async_memcpy(bio_page
, page
, b_offset
,
544 page_offset
, clen
, &submit
);
546 /* chain the operations */
547 submit
.depend_tx
= tx
;
549 if (clen
< len
) /* hit end of page */
557 static void ops_complete_biofill(void *stripe_head_ref
)
559 struct stripe_head
*sh
= stripe_head_ref
;
560 struct bio
*return_bi
= NULL
;
561 raid5_conf_t
*conf
= sh
->raid_conf
;
564 pr_debug("%s: stripe %llu\n", __func__
,
565 (unsigned long long)sh
->sector
);
567 /* clear completed biofills */
568 spin_lock_irq(&conf
->device_lock
);
569 for (i
= sh
->disks
; i
--; ) {
570 struct r5dev
*dev
= &sh
->dev
[i
];
572 /* acknowledge completion of a biofill operation */
573 /* and check if we need to reply to a read request,
574 * new R5_Wantfill requests are held off until
575 * !STRIPE_BIOFILL_RUN
577 if (test_and_clear_bit(R5_Wantfill
, &dev
->flags
)) {
578 struct bio
*rbi
, *rbi2
;
583 while (rbi
&& rbi
->bi_sector
<
584 dev
->sector
+ STRIPE_SECTORS
) {
585 rbi2
= r5_next_bio(rbi
, dev
->sector
);
586 if (!raid5_dec_bi_phys_segments(rbi
)) {
587 rbi
->bi_next
= return_bi
;
594 spin_unlock_irq(&conf
->device_lock
);
595 clear_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
597 return_io(return_bi
);
599 set_bit(STRIPE_HANDLE
, &sh
->state
);
603 static void ops_run_biofill(struct stripe_head
*sh
)
605 struct dma_async_tx_descriptor
*tx
= NULL
;
606 raid5_conf_t
*conf
= sh
->raid_conf
;
607 struct async_submit_ctl submit
;
610 pr_debug("%s: stripe %llu\n", __func__
,
611 (unsigned long long)sh
->sector
);
613 for (i
= sh
->disks
; i
--; ) {
614 struct r5dev
*dev
= &sh
->dev
[i
];
615 if (test_bit(R5_Wantfill
, &dev
->flags
)) {
617 spin_lock_irq(&conf
->device_lock
);
618 dev
->read
= rbi
= dev
->toread
;
620 spin_unlock_irq(&conf
->device_lock
);
621 while (rbi
&& rbi
->bi_sector
<
622 dev
->sector
+ STRIPE_SECTORS
) {
623 tx
= async_copy_data(0, rbi
, dev
->page
,
625 rbi
= r5_next_bio(rbi
, dev
->sector
);
630 atomic_inc(&sh
->count
);
631 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_biofill
, sh
, NULL
);
632 async_trigger_callback(&submit
);
635 static void mark_target_uptodate(struct stripe_head
*sh
, int target
)
642 tgt
= &sh
->dev
[target
];
643 set_bit(R5_UPTODATE
, &tgt
->flags
);
644 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
645 clear_bit(R5_Wantcompute
, &tgt
->flags
);
648 static void ops_complete_compute(void *stripe_head_ref
)
650 struct stripe_head
*sh
= stripe_head_ref
;
652 pr_debug("%s: stripe %llu\n", __func__
,
653 (unsigned long long)sh
->sector
);
655 /* mark the computed target(s) as uptodate */
656 mark_target_uptodate(sh
, sh
->ops
.target
);
657 mark_target_uptodate(sh
, sh
->ops
.target2
);
659 clear_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
660 if (sh
->check_state
== check_state_compute_run
)
661 sh
->check_state
= check_state_compute_result
;
662 set_bit(STRIPE_HANDLE
, &sh
->state
);
666 /* return a pointer to the address conversion region of the scribble buffer */
667 static addr_conv_t
*to_addr_conv(struct stripe_head
*sh
,
668 struct raid5_percpu
*percpu
)
670 return percpu
->scribble
+ sizeof(struct page
*) * (sh
->disks
+ 2);
673 static struct dma_async_tx_descriptor
*
674 ops_run_compute5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
676 int disks
= sh
->disks
;
677 struct page
**xor_srcs
= percpu
->scribble
;
678 int target
= sh
->ops
.target
;
679 struct r5dev
*tgt
= &sh
->dev
[target
];
680 struct page
*xor_dest
= tgt
->page
;
682 struct dma_async_tx_descriptor
*tx
;
683 struct async_submit_ctl submit
;
686 pr_debug("%s: stripe %llu block: %d\n",
687 __func__
, (unsigned long long)sh
->sector
, target
);
688 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
690 for (i
= disks
; i
--; )
692 xor_srcs
[count
++] = sh
->dev
[i
].page
;
694 atomic_inc(&sh
->count
);
696 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
, NULL
,
697 ops_complete_compute
, sh
, to_addr_conv(sh
, percpu
));
698 if (unlikely(count
== 1))
699 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
, &submit
);
701 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
706 /* set_syndrome_sources - populate source buffers for gen_syndrome
707 * @srcs - (struct page *) array of size sh->disks
708 * @sh - stripe_head to parse
710 * Populates srcs in proper layout order for the stripe and returns the
711 * 'count' of sources to be used in a call to async_gen_syndrome. The P
712 * destination buffer is recorded in srcs[count] and the Q destination
713 * is recorded in srcs[count+1]].
715 static int set_syndrome_sources(struct page
**srcs
, struct stripe_head
*sh
)
717 int disks
= sh
->disks
;
718 int syndrome_disks
= sh
->ddf_layout
? disks
: (disks
- 2);
719 int d0_idx
= raid6_d0(sh
);
723 for (i
= 0; i
< disks
; i
++)
729 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
731 srcs
[slot
] = sh
->dev
[i
].page
;
732 i
= raid6_next_disk(i
, disks
);
733 } while (i
!= d0_idx
);
735 return syndrome_disks
;
738 static struct dma_async_tx_descriptor
*
739 ops_run_compute6_1(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
741 int disks
= sh
->disks
;
742 struct page
**blocks
= percpu
->scribble
;
744 int qd_idx
= sh
->qd_idx
;
745 struct dma_async_tx_descriptor
*tx
;
746 struct async_submit_ctl submit
;
752 if (sh
->ops
.target
< 0)
753 target
= sh
->ops
.target2
;
754 else if (sh
->ops
.target2
< 0)
755 target
= sh
->ops
.target
;
757 /* we should only have one valid target */
760 pr_debug("%s: stripe %llu block: %d\n",
761 __func__
, (unsigned long long)sh
->sector
, target
);
763 tgt
= &sh
->dev
[target
];
764 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
767 atomic_inc(&sh
->count
);
769 if (target
== qd_idx
) {
770 count
= set_syndrome_sources(blocks
, sh
);
771 blocks
[count
] = NULL
; /* regenerating p is not necessary */
772 BUG_ON(blocks
[count
+1] != dest
); /* q should already be set */
773 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
774 ops_complete_compute
, sh
,
775 to_addr_conv(sh
, percpu
));
776 tx
= async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
778 /* Compute any data- or p-drive using XOR */
780 for (i
= disks
; i
-- ; ) {
781 if (i
== target
|| i
== qd_idx
)
783 blocks
[count
++] = sh
->dev
[i
].page
;
786 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
,
787 NULL
, ops_complete_compute
, sh
,
788 to_addr_conv(sh
, percpu
));
789 tx
= async_xor(dest
, blocks
, 0, count
, STRIPE_SIZE
, &submit
);
795 static struct dma_async_tx_descriptor
*
796 ops_run_compute6_2(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
798 int i
, count
, disks
= sh
->disks
;
799 int syndrome_disks
= sh
->ddf_layout
? disks
: disks
-2;
800 int d0_idx
= raid6_d0(sh
);
801 int faila
= -1, failb
= -1;
802 int target
= sh
->ops
.target
;
803 int target2
= sh
->ops
.target2
;
804 struct r5dev
*tgt
= &sh
->dev
[target
];
805 struct r5dev
*tgt2
= &sh
->dev
[target2
];
806 struct dma_async_tx_descriptor
*tx
;
807 struct page
**blocks
= percpu
->scribble
;
808 struct async_submit_ctl submit
;
810 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
811 __func__
, (unsigned long long)sh
->sector
, target
, target2
);
812 BUG_ON(target
< 0 || target2
< 0);
813 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
814 BUG_ON(!test_bit(R5_Wantcompute
, &tgt2
->flags
));
816 /* we need to open-code set_syndrome_sources to handle the
817 * slot number conversion for 'faila' and 'failb'
819 for (i
= 0; i
< disks
; i
++)
824 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
826 blocks
[slot
] = sh
->dev
[i
].page
;
832 i
= raid6_next_disk(i
, disks
);
833 } while (i
!= d0_idx
);
835 BUG_ON(faila
== failb
);
838 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
839 __func__
, (unsigned long long)sh
->sector
, faila
, failb
);
841 atomic_inc(&sh
->count
);
843 if (failb
== syndrome_disks
+1) {
844 /* Q disk is one of the missing disks */
845 if (faila
== syndrome_disks
) {
846 /* Missing P+Q, just recompute */
847 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
848 ops_complete_compute
, sh
,
849 to_addr_conv(sh
, percpu
));
850 return async_gen_syndrome(blocks
, 0, syndrome_disks
+2,
851 STRIPE_SIZE
, &submit
);
855 int qd_idx
= sh
->qd_idx
;
857 /* Missing D+Q: recompute D from P, then recompute Q */
858 if (target
== qd_idx
)
859 data_target
= target2
;
861 data_target
= target
;
864 for (i
= disks
; i
-- ; ) {
865 if (i
== data_target
|| i
== qd_idx
)
867 blocks
[count
++] = sh
->dev
[i
].page
;
869 dest
= sh
->dev
[data_target
].page
;
870 init_async_submit(&submit
,
871 ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
,
873 to_addr_conv(sh
, percpu
));
874 tx
= async_xor(dest
, blocks
, 0, count
, STRIPE_SIZE
,
877 count
= set_syndrome_sources(blocks
, sh
);
878 init_async_submit(&submit
, ASYNC_TX_FENCE
, tx
,
879 ops_complete_compute
, sh
,
880 to_addr_conv(sh
, percpu
));
881 return async_gen_syndrome(blocks
, 0, count
+2,
882 STRIPE_SIZE
, &submit
);
885 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
886 ops_complete_compute
, sh
,
887 to_addr_conv(sh
, percpu
));
888 if (failb
== syndrome_disks
) {
889 /* We're missing D+P. */
890 return async_raid6_datap_recov(syndrome_disks
+2,
894 /* We're missing D+D. */
895 return async_raid6_2data_recov(syndrome_disks
+2,
896 STRIPE_SIZE
, faila
, failb
,
903 static void ops_complete_prexor(void *stripe_head_ref
)
905 struct stripe_head
*sh
= stripe_head_ref
;
907 pr_debug("%s: stripe %llu\n", __func__
,
908 (unsigned long long)sh
->sector
);
911 static struct dma_async_tx_descriptor
*
912 ops_run_prexor(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
913 struct dma_async_tx_descriptor
*tx
)
915 int disks
= sh
->disks
;
916 struct page
**xor_srcs
= percpu
->scribble
;
917 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
918 struct async_submit_ctl submit
;
920 /* existing parity data subtracted */
921 struct page
*xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
923 pr_debug("%s: stripe %llu\n", __func__
,
924 (unsigned long long)sh
->sector
);
926 for (i
= disks
; i
--; ) {
927 struct r5dev
*dev
= &sh
->dev
[i
];
928 /* Only process blocks that are known to be uptodate */
929 if (test_bit(R5_Wantdrain
, &dev
->flags
))
930 xor_srcs
[count
++] = dev
->page
;
933 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_DROP_DST
, tx
,
934 ops_complete_prexor
, sh
, to_addr_conv(sh
, percpu
));
935 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
940 static struct dma_async_tx_descriptor
*
941 ops_run_biodrain(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
943 int disks
= sh
->disks
;
946 pr_debug("%s: stripe %llu\n", __func__
,
947 (unsigned long long)sh
->sector
);
949 for (i
= disks
; i
--; ) {
950 struct r5dev
*dev
= &sh
->dev
[i
];
953 if (test_and_clear_bit(R5_Wantdrain
, &dev
->flags
)) {
956 spin_lock(&sh
->lock
);
957 chosen
= dev
->towrite
;
959 BUG_ON(dev
->written
);
960 wbi
= dev
->written
= chosen
;
961 spin_unlock(&sh
->lock
);
963 while (wbi
&& wbi
->bi_sector
<
964 dev
->sector
+ STRIPE_SECTORS
) {
965 tx
= async_copy_data(1, wbi
, dev
->page
,
967 wbi
= r5_next_bio(wbi
, dev
->sector
);
975 static void ops_complete_reconstruct(void *stripe_head_ref
)
977 struct stripe_head
*sh
= stripe_head_ref
;
978 int disks
= sh
->disks
;
979 int pd_idx
= sh
->pd_idx
;
980 int qd_idx
= sh
->qd_idx
;
983 pr_debug("%s: stripe %llu\n", __func__
,
984 (unsigned long long)sh
->sector
);
986 for (i
= disks
; i
--; ) {
987 struct r5dev
*dev
= &sh
->dev
[i
];
989 if (dev
->written
|| i
== pd_idx
|| i
== qd_idx
)
990 set_bit(R5_UPTODATE
, &dev
->flags
);
993 if (sh
->reconstruct_state
== reconstruct_state_drain_run
)
994 sh
->reconstruct_state
= reconstruct_state_drain_result
;
995 else if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
)
996 sh
->reconstruct_state
= reconstruct_state_prexor_drain_result
;
998 BUG_ON(sh
->reconstruct_state
!= reconstruct_state_run
);
999 sh
->reconstruct_state
= reconstruct_state_result
;
1002 set_bit(STRIPE_HANDLE
, &sh
->state
);
1007 ops_run_reconstruct5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1008 struct dma_async_tx_descriptor
*tx
)
1010 int disks
= sh
->disks
;
1011 struct page
**xor_srcs
= percpu
->scribble
;
1012 struct async_submit_ctl submit
;
1013 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
1014 struct page
*xor_dest
;
1016 unsigned long flags
;
1018 pr_debug("%s: stripe %llu\n", __func__
,
1019 (unsigned long long)sh
->sector
);
1021 /* check if prexor is active which means only process blocks
1022 * that are part of a read-modify-write (written)
1024 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
) {
1026 xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
1027 for (i
= disks
; i
--; ) {
1028 struct r5dev
*dev
= &sh
->dev
[i
];
1030 xor_srcs
[count
++] = dev
->page
;
1033 xor_dest
= sh
->dev
[pd_idx
].page
;
1034 for (i
= disks
; i
--; ) {
1035 struct r5dev
*dev
= &sh
->dev
[i
];
1037 xor_srcs
[count
++] = dev
->page
;
1041 /* 1/ if we prexor'd then the dest is reused as a source
1042 * 2/ if we did not prexor then we are redoing the parity
1043 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1044 * for the synchronous xor case
1046 flags
= ASYNC_TX_ACK
|
1047 (prexor
? ASYNC_TX_XOR_DROP_DST
: ASYNC_TX_XOR_ZERO_DST
);
1049 atomic_inc(&sh
->count
);
1051 init_async_submit(&submit
, flags
, tx
, ops_complete_reconstruct
, sh
,
1052 to_addr_conv(sh
, percpu
));
1053 if (unlikely(count
== 1))
1054 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
, &submit
);
1056 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1060 ops_run_reconstruct6(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1061 struct dma_async_tx_descriptor
*tx
)
1063 struct async_submit_ctl submit
;
1064 struct page
**blocks
= percpu
->scribble
;
1067 pr_debug("%s: stripe %llu\n", __func__
, (unsigned long long)sh
->sector
);
1069 count
= set_syndrome_sources(blocks
, sh
);
1071 atomic_inc(&sh
->count
);
1073 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_reconstruct
,
1074 sh
, to_addr_conv(sh
, percpu
));
1075 async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
1078 static void ops_complete_check(void *stripe_head_ref
)
1080 struct stripe_head
*sh
= stripe_head_ref
;
1082 pr_debug("%s: stripe %llu\n", __func__
,
1083 (unsigned long long)sh
->sector
);
1085 sh
->check_state
= check_state_check_result
;
1086 set_bit(STRIPE_HANDLE
, &sh
->state
);
1090 static void ops_run_check_p(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1092 int disks
= sh
->disks
;
1093 int pd_idx
= sh
->pd_idx
;
1094 int qd_idx
= sh
->qd_idx
;
1095 struct page
*xor_dest
;
1096 struct page
**xor_srcs
= percpu
->scribble
;
1097 struct dma_async_tx_descriptor
*tx
;
1098 struct async_submit_ctl submit
;
1102 pr_debug("%s: stripe %llu\n", __func__
,
1103 (unsigned long long)sh
->sector
);
1106 xor_dest
= sh
->dev
[pd_idx
].page
;
1107 xor_srcs
[count
++] = xor_dest
;
1108 for (i
= disks
; i
--; ) {
1109 if (i
== pd_idx
|| i
== qd_idx
)
1111 xor_srcs
[count
++] = sh
->dev
[i
].page
;
1114 init_async_submit(&submit
, 0, NULL
, NULL
, NULL
,
1115 to_addr_conv(sh
, percpu
));
1116 tx
= async_xor_val(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
1117 &sh
->ops
.zero_sum_result
, &submit
);
1119 atomic_inc(&sh
->count
);
1120 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_check
, sh
, NULL
);
1121 tx
= async_trigger_callback(&submit
);
1124 static void ops_run_check_pq(struct stripe_head
*sh
, struct raid5_percpu
*percpu
, int checkp
)
1126 struct page
**srcs
= percpu
->scribble
;
1127 struct async_submit_ctl submit
;
1130 pr_debug("%s: stripe %llu checkp: %d\n", __func__
,
1131 (unsigned long long)sh
->sector
, checkp
);
1133 count
= set_syndrome_sources(srcs
, sh
);
1137 atomic_inc(&sh
->count
);
1138 init_async_submit(&submit
, ASYNC_TX_ACK
, NULL
, ops_complete_check
,
1139 sh
, to_addr_conv(sh
, percpu
));
1140 async_syndrome_val(srcs
, 0, count
+2, STRIPE_SIZE
,
1141 &sh
->ops
.zero_sum_result
, percpu
->spare_page
, &submit
);
1144 static void __raid_run_ops(struct stripe_head
*sh
, unsigned long ops_request
)
1146 int overlap_clear
= 0, i
, disks
= sh
->disks
;
1147 struct dma_async_tx_descriptor
*tx
= NULL
;
1148 raid5_conf_t
*conf
= sh
->raid_conf
;
1149 int level
= conf
->level
;
1150 struct raid5_percpu
*percpu
;
1154 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
1155 if (test_bit(STRIPE_OP_BIOFILL
, &ops_request
)) {
1156 ops_run_biofill(sh
);
1160 if (test_bit(STRIPE_OP_COMPUTE_BLK
, &ops_request
)) {
1162 tx
= ops_run_compute5(sh
, percpu
);
1164 if (sh
->ops
.target2
< 0 || sh
->ops
.target
< 0)
1165 tx
= ops_run_compute6_1(sh
, percpu
);
1167 tx
= ops_run_compute6_2(sh
, percpu
);
1169 /* terminate the chain if reconstruct is not set to be run */
1170 if (tx
&& !test_bit(STRIPE_OP_RECONSTRUCT
, &ops_request
))
1174 if (test_bit(STRIPE_OP_PREXOR
, &ops_request
))
1175 tx
= ops_run_prexor(sh
, percpu
, tx
);
1177 if (test_bit(STRIPE_OP_BIODRAIN
, &ops_request
)) {
1178 tx
= ops_run_biodrain(sh
, tx
);
1182 if (test_bit(STRIPE_OP_RECONSTRUCT
, &ops_request
)) {
1184 ops_run_reconstruct5(sh
, percpu
, tx
);
1186 ops_run_reconstruct6(sh
, percpu
, tx
);
1189 if (test_bit(STRIPE_OP_CHECK
, &ops_request
)) {
1190 if (sh
->check_state
== check_state_run
)
1191 ops_run_check_p(sh
, percpu
);
1192 else if (sh
->check_state
== check_state_run_q
)
1193 ops_run_check_pq(sh
, percpu
, 0);
1194 else if (sh
->check_state
== check_state_run_pq
)
1195 ops_run_check_pq(sh
, percpu
, 1);
1201 for (i
= disks
; i
--; ) {
1202 struct r5dev
*dev
= &sh
->dev
[i
];
1203 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
1204 wake_up(&sh
->raid_conf
->wait_for_overlap
);
1209 #ifdef CONFIG_MULTICORE_RAID456
1210 static void async_run_ops(void *param
, async_cookie_t cookie
)
1212 struct stripe_head
*sh
= param
;
1213 unsigned long ops_request
= sh
->ops
.request
;
1215 clear_bit_unlock(STRIPE_OPS_REQ_PENDING
, &sh
->state
);
1216 wake_up(&sh
->ops
.wait_for_ops
);
1218 __raid_run_ops(sh
, ops_request
);
1222 static void raid_run_ops(struct stripe_head
*sh
, unsigned long ops_request
)
1224 /* since handle_stripe can be called outside of raid5d context
1225 * we need to ensure sh->ops.request is de-staged before another
1228 wait_event(sh
->ops
.wait_for_ops
,
1229 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING
, &sh
->state
));
1230 sh
->ops
.request
= ops_request
;
1232 atomic_inc(&sh
->count
);
1233 async_schedule(async_run_ops
, sh
);
1236 #define raid_run_ops __raid_run_ops
1239 static int grow_one_stripe(raid5_conf_t
*conf
)
1241 struct stripe_head
*sh
;
1242 int disks
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
1243 sh
= kmem_cache_alloc(conf
->slab_cache
, GFP_KERNEL
);
1246 memset(sh
, 0, sizeof(*sh
) + (disks
-1)*sizeof(struct r5dev
));
1247 sh
->raid_conf
= conf
;
1248 spin_lock_init(&sh
->lock
);
1249 #ifdef CONFIG_MULTICORE_RAID456
1250 init_waitqueue_head(&sh
->ops
.wait_for_ops
);
1253 if (grow_buffers(sh
, disks
)) {
1254 shrink_buffers(sh
, disks
);
1255 kmem_cache_free(conf
->slab_cache
, sh
);
1258 /* we just created an active stripe so... */
1259 atomic_set(&sh
->count
, 1);
1260 atomic_inc(&conf
->active_stripes
);
1261 INIT_LIST_HEAD(&sh
->lru
);
1266 static int grow_stripes(raid5_conf_t
*conf
, int num
)
1268 struct kmem_cache
*sc
;
1269 int devs
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
1271 sprintf(conf
->cache_name
[0],
1272 "raid%d-%s", conf
->level
, mdname(conf
->mddev
));
1273 sprintf(conf
->cache_name
[1],
1274 "raid%d-%s-alt", conf
->level
, mdname(conf
->mddev
));
1275 conf
->active_name
= 0;
1276 sc
= kmem_cache_create(conf
->cache_name
[conf
->active_name
],
1277 sizeof(struct stripe_head
)+(devs
-1)*sizeof(struct r5dev
),
1281 conf
->slab_cache
= sc
;
1282 conf
->pool_size
= devs
;
1284 if (!grow_one_stripe(conf
))
1290 * scribble_len - return the required size of the scribble region
1291 * @num - total number of disks in the array
1293 * The size must be enough to contain:
1294 * 1/ a struct page pointer for each device in the array +2
1295 * 2/ room to convert each entry in (1) to its corresponding dma
1296 * (dma_map_page()) or page (page_address()) address.
1298 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1299 * calculate over all devices (not just the data blocks), using zeros in place
1300 * of the P and Q blocks.
1302 static size_t scribble_len(int num
)
1306 len
= sizeof(struct page
*) * (num
+2) + sizeof(addr_conv_t
) * (num
+2);
1311 static int resize_stripes(raid5_conf_t
*conf
, int newsize
)
1313 /* Make all the stripes able to hold 'newsize' devices.
1314 * New slots in each stripe get 'page' set to a new page.
1316 * This happens in stages:
1317 * 1/ create a new kmem_cache and allocate the required number of
1319 * 2/ gather all the old stripe_heads and tranfer the pages across
1320 * to the new stripe_heads. This will have the side effect of
1321 * freezing the array as once all stripe_heads have been collected,
1322 * no IO will be possible. Old stripe heads are freed once their
1323 * pages have been transferred over, and the old kmem_cache is
1324 * freed when all stripes are done.
1325 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1326 * we simple return a failre status - no need to clean anything up.
1327 * 4/ allocate new pages for the new slots in the new stripe_heads.
1328 * If this fails, we don't bother trying the shrink the
1329 * stripe_heads down again, we just leave them as they are.
1330 * As each stripe_head is processed the new one is released into
1333 * Once step2 is started, we cannot afford to wait for a write,
1334 * so we use GFP_NOIO allocations.
1336 struct stripe_head
*osh
, *nsh
;
1337 LIST_HEAD(newstripes
);
1338 struct disk_info
*ndisks
;
1341 struct kmem_cache
*sc
;
1344 if (newsize
<= conf
->pool_size
)
1345 return 0; /* never bother to shrink */
1347 err
= md_allow_write(conf
->mddev
);
1352 sc
= kmem_cache_create(conf
->cache_name
[1-conf
->active_name
],
1353 sizeof(struct stripe_head
)+(newsize
-1)*sizeof(struct r5dev
),
1358 for (i
= conf
->max_nr_stripes
; i
; i
--) {
1359 nsh
= kmem_cache_alloc(sc
, GFP_KERNEL
);
1363 memset(nsh
, 0, sizeof(*nsh
) + (newsize
-1)*sizeof(struct r5dev
));
1365 nsh
->raid_conf
= conf
;
1366 spin_lock_init(&nsh
->lock
);
1367 #ifdef CONFIG_MULTICORE_RAID456
1368 init_waitqueue_head(&nsh
->ops
.wait_for_ops
);
1371 list_add(&nsh
->lru
, &newstripes
);
1374 /* didn't get enough, give up */
1375 while (!list_empty(&newstripes
)) {
1376 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
1377 list_del(&nsh
->lru
);
1378 kmem_cache_free(sc
, nsh
);
1380 kmem_cache_destroy(sc
);
1383 /* Step 2 - Must use GFP_NOIO now.
1384 * OK, we have enough stripes, start collecting inactive
1385 * stripes and copying them over
1387 list_for_each_entry(nsh
, &newstripes
, lru
) {
1388 spin_lock_irq(&conf
->device_lock
);
1389 wait_event_lock_irq(conf
->wait_for_stripe
,
1390 !list_empty(&conf
->inactive_list
),
1392 unplug_slaves(conf
->mddev
)
1394 osh
= get_free_stripe(conf
);
1395 spin_unlock_irq(&conf
->device_lock
);
1396 atomic_set(&nsh
->count
, 1);
1397 for(i
=0; i
<conf
->pool_size
; i
++)
1398 nsh
->dev
[i
].page
= osh
->dev
[i
].page
;
1399 for( ; i
<newsize
; i
++)
1400 nsh
->dev
[i
].page
= NULL
;
1401 kmem_cache_free(conf
->slab_cache
, osh
);
1403 kmem_cache_destroy(conf
->slab_cache
);
1406 * At this point, we are holding all the stripes so the array
1407 * is completely stalled, so now is a good time to resize
1408 * conf->disks and the scribble region
1410 ndisks
= kzalloc(newsize
* sizeof(struct disk_info
), GFP_NOIO
);
1412 for (i
=0; i
<conf
->raid_disks
; i
++)
1413 ndisks
[i
] = conf
->disks
[i
];
1415 conf
->disks
= ndisks
;
1420 conf
->scribble_len
= scribble_len(newsize
);
1421 for_each_present_cpu(cpu
) {
1422 struct raid5_percpu
*percpu
;
1425 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
1426 scribble
= kmalloc(conf
->scribble_len
, GFP_NOIO
);
1429 kfree(percpu
->scribble
);
1430 percpu
->scribble
= scribble
;
1438 /* Step 4, return new stripes to service */
1439 while(!list_empty(&newstripes
)) {
1440 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
1441 list_del_init(&nsh
->lru
);
1443 for (i
=conf
->raid_disks
; i
< newsize
; i
++)
1444 if (nsh
->dev
[i
].page
== NULL
) {
1445 struct page
*p
= alloc_page(GFP_NOIO
);
1446 nsh
->dev
[i
].page
= p
;
1450 release_stripe(nsh
);
1452 /* critical section pass, GFP_NOIO no longer needed */
1454 conf
->slab_cache
= sc
;
1455 conf
->active_name
= 1-conf
->active_name
;
1456 conf
->pool_size
= newsize
;
1460 static int drop_one_stripe(raid5_conf_t
*conf
)
1462 struct stripe_head
*sh
;
1464 spin_lock_irq(&conf
->device_lock
);
1465 sh
= get_free_stripe(conf
);
1466 spin_unlock_irq(&conf
->device_lock
);
1469 BUG_ON(atomic_read(&sh
->count
));
1470 shrink_buffers(sh
, conf
->pool_size
);
1471 kmem_cache_free(conf
->slab_cache
, sh
);
1472 atomic_dec(&conf
->active_stripes
);
1476 static void shrink_stripes(raid5_conf_t
*conf
)
1478 while (drop_one_stripe(conf
))
1481 if (conf
->slab_cache
)
1482 kmem_cache_destroy(conf
->slab_cache
);
1483 conf
->slab_cache
= NULL
;
1486 static void raid5_end_read_request(struct bio
* bi
, int error
)
1488 struct stripe_head
*sh
= bi
->bi_private
;
1489 raid5_conf_t
*conf
= sh
->raid_conf
;
1490 int disks
= sh
->disks
, i
;
1491 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1492 char b
[BDEVNAME_SIZE
];
1496 for (i
=0 ; i
<disks
; i
++)
1497 if (bi
== &sh
->dev
[i
].req
)
1500 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1501 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
1509 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1510 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
1511 rdev
= conf
->disks
[i
].rdev
;
1512 printk_rl(KERN_INFO
"raid5:%s: read error corrected"
1513 " (%lu sectors at %llu on %s)\n",
1514 mdname(conf
->mddev
), STRIPE_SECTORS
,
1515 (unsigned long long)(sh
->sector
1516 + rdev
->data_offset
),
1517 bdevname(rdev
->bdev
, b
));
1518 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1519 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
1521 if (atomic_read(&conf
->disks
[i
].rdev
->read_errors
))
1522 atomic_set(&conf
->disks
[i
].rdev
->read_errors
, 0);
1524 const char *bdn
= bdevname(conf
->disks
[i
].rdev
->bdev
, b
);
1526 rdev
= conf
->disks
[i
].rdev
;
1528 clear_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1529 atomic_inc(&rdev
->read_errors
);
1530 if (conf
->mddev
->degraded
>= conf
->max_degraded
)
1531 printk_rl(KERN_WARNING
1532 "raid5:%s: read error not correctable "
1533 "(sector %llu on %s).\n",
1534 mdname(conf
->mddev
),
1535 (unsigned long long)(sh
->sector
1536 + rdev
->data_offset
),
1538 else if (test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
))
1540 printk_rl(KERN_WARNING
1541 "raid5:%s: read error NOT corrected!! "
1542 "(sector %llu on %s).\n",
1543 mdname(conf
->mddev
),
1544 (unsigned long long)(sh
->sector
1545 + rdev
->data_offset
),
1547 else if (atomic_read(&rdev
->read_errors
)
1548 > conf
->max_nr_stripes
)
1550 "raid5:%s: Too many read errors, failing device %s.\n",
1551 mdname(conf
->mddev
), bdn
);
1555 set_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1557 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1558 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
1559 md_error(conf
->mddev
, rdev
);
1562 rdev_dec_pending(conf
->disks
[i
].rdev
, conf
->mddev
);
1563 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1564 set_bit(STRIPE_HANDLE
, &sh
->state
);
1568 static void raid5_end_write_request(struct bio
*bi
, int error
)
1570 struct stripe_head
*sh
= bi
->bi_private
;
1571 raid5_conf_t
*conf
= sh
->raid_conf
;
1572 int disks
= sh
->disks
, i
;
1573 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1575 for (i
=0 ; i
<disks
; i
++)
1576 if (bi
== &sh
->dev
[i
].req
)
1579 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1580 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
1588 md_error(conf
->mddev
, conf
->disks
[i
].rdev
);
1590 rdev_dec_pending(conf
->disks
[i
].rdev
, conf
->mddev
);
1592 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1593 set_bit(STRIPE_HANDLE
, &sh
->state
);
1598 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
, int previous
);
1600 static void raid5_build_block(struct stripe_head
*sh
, int i
, int previous
)
1602 struct r5dev
*dev
= &sh
->dev
[i
];
1604 bio_init(&dev
->req
);
1605 dev
->req
.bi_io_vec
= &dev
->vec
;
1607 dev
->req
.bi_max_vecs
++;
1608 dev
->vec
.bv_page
= dev
->page
;
1609 dev
->vec
.bv_len
= STRIPE_SIZE
;
1610 dev
->vec
.bv_offset
= 0;
1612 dev
->req
.bi_sector
= sh
->sector
;
1613 dev
->req
.bi_private
= sh
;
1616 dev
->sector
= compute_blocknr(sh
, i
, previous
);
1619 static void error(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
1621 char b
[BDEVNAME_SIZE
];
1622 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
1623 pr_debug("raid5: error called\n");
1625 if (!test_bit(Faulty
, &rdev
->flags
)) {
1626 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1627 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1628 unsigned long flags
;
1629 spin_lock_irqsave(&conf
->device_lock
, flags
);
1631 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1633 * if recovery was running, make sure it aborts.
1635 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1637 set_bit(Faulty
, &rdev
->flags
);
1639 "raid5: Disk failure on %s, disabling device.\n"
1640 "raid5: Operation continuing on %d devices.\n",
1641 bdevname(rdev
->bdev
,b
), conf
->raid_disks
- mddev
->degraded
);
1646 * Input: a 'big' sector number,
1647 * Output: index of the data and parity disk, and the sector # in them.
1649 static sector_t
raid5_compute_sector(raid5_conf_t
*conf
, sector_t r_sector
,
1650 int previous
, int *dd_idx
,
1651 struct stripe_head
*sh
)
1653 sector_t stripe
, stripe2
;
1654 sector_t chunk_number
;
1655 unsigned int chunk_offset
;
1658 sector_t new_sector
;
1659 int algorithm
= previous
? conf
->prev_algo
1661 int sectors_per_chunk
= previous
? conf
->prev_chunk_sectors
1662 : conf
->chunk_sectors
;
1663 int raid_disks
= previous
? conf
->previous_raid_disks
1665 int data_disks
= raid_disks
- conf
->max_degraded
;
1667 /* First compute the information on this sector */
1670 * Compute the chunk number and the sector offset inside the chunk
1672 chunk_offset
= sector_div(r_sector
, sectors_per_chunk
);
1673 chunk_number
= r_sector
;
1676 * Compute the stripe number
1678 stripe
= chunk_number
;
1679 *dd_idx
= sector_div(stripe
, data_disks
);
1682 * Select the parity disk based on the user selected algorithm.
1684 pd_idx
= qd_idx
= ~0;
1685 switch(conf
->level
) {
1687 pd_idx
= data_disks
;
1690 switch (algorithm
) {
1691 case ALGORITHM_LEFT_ASYMMETRIC
:
1692 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
);
1693 if (*dd_idx
>= pd_idx
)
1696 case ALGORITHM_RIGHT_ASYMMETRIC
:
1697 pd_idx
= sector_div(stripe2
, raid_disks
);
1698 if (*dd_idx
>= pd_idx
)
1701 case ALGORITHM_LEFT_SYMMETRIC
:
1702 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
);
1703 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
1705 case ALGORITHM_RIGHT_SYMMETRIC
:
1706 pd_idx
= sector_div(stripe2
, raid_disks
);
1707 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
1709 case ALGORITHM_PARITY_0
:
1713 case ALGORITHM_PARITY_N
:
1714 pd_idx
= data_disks
;
1717 printk(KERN_ERR
"raid5: unsupported algorithm %d\n",
1724 switch (algorithm
) {
1725 case ALGORITHM_LEFT_ASYMMETRIC
:
1726 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
1727 qd_idx
= pd_idx
+ 1;
1728 if (pd_idx
== raid_disks
-1) {
1729 (*dd_idx
)++; /* Q D D D P */
1731 } else if (*dd_idx
>= pd_idx
)
1732 (*dd_idx
) += 2; /* D D P Q D */
1734 case ALGORITHM_RIGHT_ASYMMETRIC
:
1735 pd_idx
= sector_div(stripe2
, raid_disks
);
1736 qd_idx
= pd_idx
+ 1;
1737 if (pd_idx
== raid_disks
-1) {
1738 (*dd_idx
)++; /* Q D D D P */
1740 } else if (*dd_idx
>= pd_idx
)
1741 (*dd_idx
) += 2; /* D D P Q D */
1743 case ALGORITHM_LEFT_SYMMETRIC
:
1744 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
1745 qd_idx
= (pd_idx
+ 1) % raid_disks
;
1746 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
1748 case ALGORITHM_RIGHT_SYMMETRIC
:
1749 pd_idx
= sector_div(stripe2
, raid_disks
);
1750 qd_idx
= (pd_idx
+ 1) % raid_disks
;
1751 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
1754 case ALGORITHM_PARITY_0
:
1759 case ALGORITHM_PARITY_N
:
1760 pd_idx
= data_disks
;
1761 qd_idx
= data_disks
+ 1;
1764 case ALGORITHM_ROTATING_ZERO_RESTART
:
1765 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1766 * of blocks for computing Q is different.
1768 pd_idx
= sector_div(stripe2
, raid_disks
);
1769 qd_idx
= pd_idx
+ 1;
1770 if (pd_idx
== raid_disks
-1) {
1771 (*dd_idx
)++; /* Q D D D P */
1773 } else if (*dd_idx
>= pd_idx
)
1774 (*dd_idx
) += 2; /* D D P Q D */
1778 case ALGORITHM_ROTATING_N_RESTART
:
1779 /* Same a left_asymmetric, by first stripe is
1780 * D D D P Q rather than
1784 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
1785 qd_idx
= pd_idx
+ 1;
1786 if (pd_idx
== raid_disks
-1) {
1787 (*dd_idx
)++; /* Q D D D P */
1789 } else if (*dd_idx
>= pd_idx
)
1790 (*dd_idx
) += 2; /* D D P Q D */
1794 case ALGORITHM_ROTATING_N_CONTINUE
:
1795 /* Same as left_symmetric but Q is before P */
1796 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
1797 qd_idx
= (pd_idx
+ raid_disks
- 1) % raid_disks
;
1798 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
1802 case ALGORITHM_LEFT_ASYMMETRIC_6
:
1803 /* RAID5 left_asymmetric, with Q on last device */
1804 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
-1);
1805 if (*dd_idx
>= pd_idx
)
1807 qd_idx
= raid_disks
- 1;
1810 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
1811 pd_idx
= sector_div(stripe2
, raid_disks
-1);
1812 if (*dd_idx
>= pd_idx
)
1814 qd_idx
= raid_disks
- 1;
1817 case ALGORITHM_LEFT_SYMMETRIC_6
:
1818 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
-1);
1819 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
1820 qd_idx
= raid_disks
- 1;
1823 case ALGORITHM_RIGHT_SYMMETRIC_6
:
1824 pd_idx
= sector_div(stripe2
, raid_disks
-1);
1825 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
1826 qd_idx
= raid_disks
- 1;
1829 case ALGORITHM_PARITY_0_6
:
1832 qd_idx
= raid_disks
- 1;
1837 printk(KERN_CRIT
"raid6: unsupported algorithm %d\n",
1845 sh
->pd_idx
= pd_idx
;
1846 sh
->qd_idx
= qd_idx
;
1847 sh
->ddf_layout
= ddf_layout
;
1850 * Finally, compute the new sector number
1852 new_sector
= (sector_t
)stripe
* sectors_per_chunk
+ chunk_offset
;
1857 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
, int previous
)
1859 raid5_conf_t
*conf
= sh
->raid_conf
;
1860 int raid_disks
= sh
->disks
;
1861 int data_disks
= raid_disks
- conf
->max_degraded
;
1862 sector_t new_sector
= sh
->sector
, check
;
1863 int sectors_per_chunk
= previous
? conf
->prev_chunk_sectors
1864 : conf
->chunk_sectors
;
1865 int algorithm
= previous
? conf
->prev_algo
1869 sector_t chunk_number
;
1870 int dummy1
, dd_idx
= i
;
1872 struct stripe_head sh2
;
1875 chunk_offset
= sector_div(new_sector
, sectors_per_chunk
);
1876 stripe
= new_sector
;
1878 if (i
== sh
->pd_idx
)
1880 switch(conf
->level
) {
1883 switch (algorithm
) {
1884 case ALGORITHM_LEFT_ASYMMETRIC
:
1885 case ALGORITHM_RIGHT_ASYMMETRIC
:
1889 case ALGORITHM_LEFT_SYMMETRIC
:
1890 case ALGORITHM_RIGHT_SYMMETRIC
:
1893 i
-= (sh
->pd_idx
+ 1);
1895 case ALGORITHM_PARITY_0
:
1898 case ALGORITHM_PARITY_N
:
1901 printk(KERN_ERR
"raid5: unsupported algorithm %d\n",
1907 if (i
== sh
->qd_idx
)
1908 return 0; /* It is the Q disk */
1909 switch (algorithm
) {
1910 case ALGORITHM_LEFT_ASYMMETRIC
:
1911 case ALGORITHM_RIGHT_ASYMMETRIC
:
1912 case ALGORITHM_ROTATING_ZERO_RESTART
:
1913 case ALGORITHM_ROTATING_N_RESTART
:
1914 if (sh
->pd_idx
== raid_disks
-1)
1915 i
--; /* Q D D D P */
1916 else if (i
> sh
->pd_idx
)
1917 i
-= 2; /* D D P Q D */
1919 case ALGORITHM_LEFT_SYMMETRIC
:
1920 case ALGORITHM_RIGHT_SYMMETRIC
:
1921 if (sh
->pd_idx
== raid_disks
-1)
1922 i
--; /* Q D D D P */
1927 i
-= (sh
->pd_idx
+ 2);
1930 case ALGORITHM_PARITY_0
:
1933 case ALGORITHM_PARITY_N
:
1935 case ALGORITHM_ROTATING_N_CONTINUE
:
1936 /* Like left_symmetric, but P is before Q */
1937 if (sh
->pd_idx
== 0)
1938 i
--; /* P D D D Q */
1943 i
-= (sh
->pd_idx
+ 1);
1946 case ALGORITHM_LEFT_ASYMMETRIC_6
:
1947 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
1951 case ALGORITHM_LEFT_SYMMETRIC_6
:
1952 case ALGORITHM_RIGHT_SYMMETRIC_6
:
1954 i
+= data_disks
+ 1;
1955 i
-= (sh
->pd_idx
+ 1);
1957 case ALGORITHM_PARITY_0_6
:
1961 printk(KERN_CRIT
"raid6: unsupported algorithm %d\n",
1968 chunk_number
= stripe
* data_disks
+ i
;
1969 r_sector
= chunk_number
* sectors_per_chunk
+ chunk_offset
;
1971 check
= raid5_compute_sector(conf
, r_sector
,
1972 previous
, &dummy1
, &sh2
);
1973 if (check
!= sh
->sector
|| dummy1
!= dd_idx
|| sh2
.pd_idx
!= sh
->pd_idx
1974 || sh2
.qd_idx
!= sh
->qd_idx
) {
1975 printk(KERN_ERR
"compute_blocknr: map not correct\n");
1983 schedule_reconstruction(struct stripe_head
*sh
, struct stripe_head_state
*s
,
1984 int rcw
, int expand
)
1986 int i
, pd_idx
= sh
->pd_idx
, disks
= sh
->disks
;
1987 raid5_conf_t
*conf
= sh
->raid_conf
;
1988 int level
= conf
->level
;
1991 /* if we are not expanding this is a proper write request, and
1992 * there will be bios with new data to be drained into the
1996 sh
->reconstruct_state
= reconstruct_state_drain_run
;
1997 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
1999 sh
->reconstruct_state
= reconstruct_state_run
;
2001 set_bit(STRIPE_OP_RECONSTRUCT
, &s
->ops_request
);
2003 for (i
= disks
; i
--; ) {
2004 struct r5dev
*dev
= &sh
->dev
[i
];
2007 set_bit(R5_LOCKED
, &dev
->flags
);
2008 set_bit(R5_Wantdrain
, &dev
->flags
);
2010 clear_bit(R5_UPTODATE
, &dev
->flags
);
2014 if (s
->locked
+ conf
->max_degraded
== disks
)
2015 if (!test_and_set_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2016 atomic_inc(&conf
->pending_full_writes
);
2019 BUG_ON(!(test_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
) ||
2020 test_bit(R5_Wantcompute
, &sh
->dev
[pd_idx
].flags
)));
2022 sh
->reconstruct_state
= reconstruct_state_prexor_drain_run
;
2023 set_bit(STRIPE_OP_PREXOR
, &s
->ops_request
);
2024 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
2025 set_bit(STRIPE_OP_RECONSTRUCT
, &s
->ops_request
);
2027 for (i
= disks
; i
--; ) {
2028 struct r5dev
*dev
= &sh
->dev
[i
];
2033 (test_bit(R5_UPTODATE
, &dev
->flags
) ||
2034 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2035 set_bit(R5_Wantdrain
, &dev
->flags
);
2036 set_bit(R5_LOCKED
, &dev
->flags
);
2037 clear_bit(R5_UPTODATE
, &dev
->flags
);
2043 /* keep the parity disk(s) locked while asynchronous operations
2046 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
2047 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
2051 int qd_idx
= sh
->qd_idx
;
2052 struct r5dev
*dev
= &sh
->dev
[qd_idx
];
2054 set_bit(R5_LOCKED
, &dev
->flags
);
2055 clear_bit(R5_UPTODATE
, &dev
->flags
);
2059 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2060 __func__
, (unsigned long long)sh
->sector
,
2061 s
->locked
, s
->ops_request
);
2065 * Each stripe/dev can have one or more bion attached.
2066 * toread/towrite point to the first in a chain.
2067 * The bi_next chain must be in order.
2069 static int add_stripe_bio(struct stripe_head
*sh
, struct bio
*bi
, int dd_idx
, int forwrite
)
2072 raid5_conf_t
*conf
= sh
->raid_conf
;
2075 pr_debug("adding bh b#%llu to stripe s#%llu\n",
2076 (unsigned long long)bi
->bi_sector
,
2077 (unsigned long long)sh
->sector
);
2080 spin_lock(&sh
->lock
);
2081 spin_lock_irq(&conf
->device_lock
);
2083 bip
= &sh
->dev
[dd_idx
].towrite
;
2084 if (*bip
== NULL
&& sh
->dev
[dd_idx
].written
== NULL
)
2087 bip
= &sh
->dev
[dd_idx
].toread
;
2088 while (*bip
&& (*bip
)->bi_sector
< bi
->bi_sector
) {
2089 if ((*bip
)->bi_sector
+ ((*bip
)->bi_size
>> 9) > bi
->bi_sector
)
2091 bip
= & (*bip
)->bi_next
;
2093 if (*bip
&& (*bip
)->bi_sector
< bi
->bi_sector
+ ((bi
->bi_size
)>>9))
2096 BUG_ON(*bip
&& bi
->bi_next
&& (*bip
) != bi
->bi_next
);
2100 bi
->bi_phys_segments
++;
2101 spin_unlock_irq(&conf
->device_lock
);
2102 spin_unlock(&sh
->lock
);
2104 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2105 (unsigned long long)bi
->bi_sector
,
2106 (unsigned long long)sh
->sector
, dd_idx
);
2108 if (conf
->mddev
->bitmap
&& firstwrite
) {
2109 bitmap_startwrite(conf
->mddev
->bitmap
, sh
->sector
,
2111 sh
->bm_seq
= conf
->seq_flush
+1;
2112 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
2116 /* check if page is covered */
2117 sector_t sector
= sh
->dev
[dd_idx
].sector
;
2118 for (bi
=sh
->dev
[dd_idx
].towrite
;
2119 sector
< sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
&&
2120 bi
&& bi
->bi_sector
<= sector
;
2121 bi
= r5_next_bio(bi
, sh
->dev
[dd_idx
].sector
)) {
2122 if (bi
->bi_sector
+ (bi
->bi_size
>>9) >= sector
)
2123 sector
= bi
->bi_sector
+ (bi
->bi_size
>>9);
2125 if (sector
>= sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
)
2126 set_bit(R5_OVERWRITE
, &sh
->dev
[dd_idx
].flags
);
2131 set_bit(R5_Overlap
, &sh
->dev
[dd_idx
].flags
);
2132 spin_unlock_irq(&conf
->device_lock
);
2133 spin_unlock(&sh
->lock
);
2137 static void end_reshape(raid5_conf_t
*conf
);
2139 static void stripe_set_idx(sector_t stripe
, raid5_conf_t
*conf
, int previous
,
2140 struct stripe_head
*sh
)
2142 int sectors_per_chunk
=
2143 previous
? conf
->prev_chunk_sectors
: conf
->chunk_sectors
;
2145 int chunk_offset
= sector_div(stripe
, sectors_per_chunk
);
2146 int disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
2148 raid5_compute_sector(conf
,
2149 stripe
* (disks
- conf
->max_degraded
)
2150 *sectors_per_chunk
+ chunk_offset
,
2156 handle_failed_stripe(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2157 struct stripe_head_state
*s
, int disks
,
2158 struct bio
**return_bi
)
2161 for (i
= disks
; i
--; ) {
2165 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
2168 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
2169 if (rdev
&& test_bit(In_sync
, &rdev
->flags
))
2170 /* multiple read failures in one stripe */
2171 md_error(conf
->mddev
, rdev
);
2174 spin_lock_irq(&conf
->device_lock
);
2175 /* fail all writes first */
2176 bi
= sh
->dev
[i
].towrite
;
2177 sh
->dev
[i
].towrite
= NULL
;
2183 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
2184 wake_up(&conf
->wait_for_overlap
);
2186 while (bi
&& bi
->bi_sector
<
2187 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2188 struct bio
*nextbi
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
2189 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2190 if (!raid5_dec_bi_phys_segments(bi
)) {
2191 md_write_end(conf
->mddev
);
2192 bi
->bi_next
= *return_bi
;
2197 /* and fail all 'written' */
2198 bi
= sh
->dev
[i
].written
;
2199 sh
->dev
[i
].written
= NULL
;
2200 if (bi
) bitmap_end
= 1;
2201 while (bi
&& bi
->bi_sector
<
2202 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2203 struct bio
*bi2
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
2204 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2205 if (!raid5_dec_bi_phys_segments(bi
)) {
2206 md_write_end(conf
->mddev
);
2207 bi
->bi_next
= *return_bi
;
2213 /* fail any reads if this device is non-operational and
2214 * the data has not reached the cache yet.
2216 if (!test_bit(R5_Wantfill
, &sh
->dev
[i
].flags
) &&
2217 (!test_bit(R5_Insync
, &sh
->dev
[i
].flags
) ||
2218 test_bit(R5_ReadError
, &sh
->dev
[i
].flags
))) {
2219 bi
= sh
->dev
[i
].toread
;
2220 sh
->dev
[i
].toread
= NULL
;
2221 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
2222 wake_up(&conf
->wait_for_overlap
);
2223 if (bi
) s
->to_read
--;
2224 while (bi
&& bi
->bi_sector
<
2225 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2226 struct bio
*nextbi
=
2227 r5_next_bio(bi
, sh
->dev
[i
].sector
);
2228 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2229 if (!raid5_dec_bi_phys_segments(bi
)) {
2230 bi
->bi_next
= *return_bi
;
2236 spin_unlock_irq(&conf
->device_lock
);
2238 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
2239 STRIPE_SECTORS
, 0, 0);
2242 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2243 if (atomic_dec_and_test(&conf
->pending_full_writes
))
2244 md_wakeup_thread(conf
->mddev
->thread
);
2247 /* fetch_block5 - checks the given member device to see if its data needs
2248 * to be read or computed to satisfy a request.
2250 * Returns 1 when no more member devices need to be checked, otherwise returns
2251 * 0 to tell the loop in handle_stripe_fill5 to continue
2253 static int fetch_block5(struct stripe_head
*sh
, struct stripe_head_state
*s
,
2254 int disk_idx
, int disks
)
2256 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
2257 struct r5dev
*failed_dev
= &sh
->dev
[s
->failed_num
];
2259 /* is the data in this block needed, and can we get it? */
2260 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2261 !test_bit(R5_UPTODATE
, &dev
->flags
) &&
2263 (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
)) ||
2264 s
->syncing
|| s
->expanding
||
2266 (failed_dev
->toread
||
2267 (failed_dev
->towrite
&&
2268 !test_bit(R5_OVERWRITE
, &failed_dev
->flags
)))))) {
2269 /* We would like to get this block, possibly by computing it,
2270 * otherwise read it if the backing disk is insync
2272 if ((s
->uptodate
== disks
- 1) &&
2273 (s
->failed
&& disk_idx
== s
->failed_num
)) {
2274 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2275 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2276 set_bit(R5_Wantcompute
, &dev
->flags
);
2277 sh
->ops
.target
= disk_idx
;
2278 sh
->ops
.target2
= -1;
2280 /* Careful: from this point on 'uptodate' is in the eye
2281 * of raid_run_ops which services 'compute' operations
2282 * before writes. R5_Wantcompute flags a block that will
2283 * be R5_UPTODATE by the time it is needed for a
2284 * subsequent operation.
2287 return 1; /* uptodate + compute == disks */
2288 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
2289 set_bit(R5_LOCKED
, &dev
->flags
);
2290 set_bit(R5_Wantread
, &dev
->flags
);
2292 pr_debug("Reading block %d (sync=%d)\n", disk_idx
,
2301 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2303 static void handle_stripe_fill5(struct stripe_head
*sh
,
2304 struct stripe_head_state
*s
, int disks
)
2308 /* look for blocks to read/compute, skip this if a compute
2309 * is already in flight, or if the stripe contents are in the
2310 * midst of changing due to a write
2312 if (!test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) && !sh
->check_state
&&
2313 !sh
->reconstruct_state
)
2314 for (i
= disks
; i
--; )
2315 if (fetch_block5(sh
, s
, i
, disks
))
2317 set_bit(STRIPE_HANDLE
, &sh
->state
);
2320 /* fetch_block6 - checks the given member device to see if its data needs
2321 * to be read or computed to satisfy a request.
2323 * Returns 1 when no more member devices need to be checked, otherwise returns
2324 * 0 to tell the loop in handle_stripe_fill6 to continue
2326 static int fetch_block6(struct stripe_head
*sh
, struct stripe_head_state
*s
,
2327 struct r6_state
*r6s
, int disk_idx
, int disks
)
2329 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
2330 struct r5dev
*fdev
[2] = { &sh
->dev
[r6s
->failed_num
[0]],
2331 &sh
->dev
[r6s
->failed_num
[1]] };
2333 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2334 !test_bit(R5_UPTODATE
, &dev
->flags
) &&
2336 (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
)) ||
2337 s
->syncing
|| s
->expanding
||
2339 (fdev
[0]->toread
|| s
->to_write
)) ||
2341 (fdev
[1]->toread
|| s
->to_write
)))) {
2342 /* we would like to get this block, possibly by computing it,
2343 * otherwise read it if the backing disk is insync
2345 BUG_ON(test_bit(R5_Wantcompute
, &dev
->flags
));
2346 BUG_ON(test_bit(R5_Wantread
, &dev
->flags
));
2347 if ((s
->uptodate
== disks
- 1) &&
2348 (s
->failed
&& (disk_idx
== r6s
->failed_num
[0] ||
2349 disk_idx
== r6s
->failed_num
[1]))) {
2350 /* have disk failed, and we're requested to fetch it;
2353 pr_debug("Computing stripe %llu block %d\n",
2354 (unsigned long long)sh
->sector
, disk_idx
);
2355 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2356 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2357 set_bit(R5_Wantcompute
, &dev
->flags
);
2358 sh
->ops
.target
= disk_idx
;
2359 sh
->ops
.target2
= -1; /* no 2nd target */
2363 } else if (s
->uptodate
== disks
-2 && s
->failed
>= 2) {
2364 /* Computing 2-failure is *very* expensive; only
2365 * do it if failed >= 2
2368 for (other
= disks
; other
--; ) {
2369 if (other
== disk_idx
)
2371 if (!test_bit(R5_UPTODATE
,
2372 &sh
->dev
[other
].flags
))
2376 pr_debug("Computing stripe %llu blocks %d,%d\n",
2377 (unsigned long long)sh
->sector
,
2379 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2380 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2381 set_bit(R5_Wantcompute
, &sh
->dev
[disk_idx
].flags
);
2382 set_bit(R5_Wantcompute
, &sh
->dev
[other
].flags
);
2383 sh
->ops
.target
= disk_idx
;
2384 sh
->ops
.target2
= other
;
2388 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
2389 set_bit(R5_LOCKED
, &dev
->flags
);
2390 set_bit(R5_Wantread
, &dev
->flags
);
2392 pr_debug("Reading block %d (sync=%d)\n",
2393 disk_idx
, s
->syncing
);
2401 * handle_stripe_fill6 - read or compute data to satisfy pending requests.
2403 static void handle_stripe_fill6(struct stripe_head
*sh
,
2404 struct stripe_head_state
*s
, struct r6_state
*r6s
,
2409 /* look for blocks to read/compute, skip this if a compute
2410 * is already in flight, or if the stripe contents are in the
2411 * midst of changing due to a write
2413 if (!test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) && !sh
->check_state
&&
2414 !sh
->reconstruct_state
)
2415 for (i
= disks
; i
--; )
2416 if (fetch_block6(sh
, s
, r6s
, i
, disks
))
2418 set_bit(STRIPE_HANDLE
, &sh
->state
);
2422 /* handle_stripe_clean_event
2423 * any written block on an uptodate or failed drive can be returned.
2424 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2425 * never LOCKED, so we don't need to test 'failed' directly.
2427 static void handle_stripe_clean_event(raid5_conf_t
*conf
,
2428 struct stripe_head
*sh
, int disks
, struct bio
**return_bi
)
2433 for (i
= disks
; i
--; )
2434 if (sh
->dev
[i
].written
) {
2436 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2437 test_bit(R5_UPTODATE
, &dev
->flags
)) {
2438 /* We can return any write requests */
2439 struct bio
*wbi
, *wbi2
;
2441 pr_debug("Return write for disc %d\n", i
);
2442 spin_lock_irq(&conf
->device_lock
);
2444 dev
->written
= NULL
;
2445 while (wbi
&& wbi
->bi_sector
<
2446 dev
->sector
+ STRIPE_SECTORS
) {
2447 wbi2
= r5_next_bio(wbi
, dev
->sector
);
2448 if (!raid5_dec_bi_phys_segments(wbi
)) {
2449 md_write_end(conf
->mddev
);
2450 wbi
->bi_next
= *return_bi
;
2455 if (dev
->towrite
== NULL
)
2457 spin_unlock_irq(&conf
->device_lock
);
2459 bitmap_endwrite(conf
->mddev
->bitmap
,
2462 !test_bit(STRIPE_DEGRADED
, &sh
->state
),
2467 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2468 if (atomic_dec_and_test(&conf
->pending_full_writes
))
2469 md_wakeup_thread(conf
->mddev
->thread
);
2472 static void handle_stripe_dirtying5(raid5_conf_t
*conf
,
2473 struct stripe_head
*sh
, struct stripe_head_state
*s
, int disks
)
2475 int rmw
= 0, rcw
= 0, i
;
2476 for (i
= disks
; i
--; ) {
2477 /* would I have to read this buffer for read_modify_write */
2478 struct r5dev
*dev
= &sh
->dev
[i
];
2479 if ((dev
->towrite
|| i
== sh
->pd_idx
) &&
2480 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2481 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2482 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2483 if (test_bit(R5_Insync
, &dev
->flags
))
2486 rmw
+= 2*disks
; /* cannot read it */
2488 /* Would I have to read this buffer for reconstruct_write */
2489 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) && i
!= sh
->pd_idx
&&
2490 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2491 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2492 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2493 if (test_bit(R5_Insync
, &dev
->flags
)) rcw
++;
2498 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2499 (unsigned long long)sh
->sector
, rmw
, rcw
);
2500 set_bit(STRIPE_HANDLE
, &sh
->state
);
2501 if (rmw
< rcw
&& rmw
> 0)
2502 /* prefer read-modify-write, but need to get some data */
2503 for (i
= disks
; i
--; ) {
2504 struct r5dev
*dev
= &sh
->dev
[i
];
2505 if ((dev
->towrite
|| i
== sh
->pd_idx
) &&
2506 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2507 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2508 test_bit(R5_Wantcompute
, &dev
->flags
)) &&
2509 test_bit(R5_Insync
, &dev
->flags
)) {
2511 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2512 pr_debug("Read_old block "
2513 "%d for r-m-w\n", i
);
2514 set_bit(R5_LOCKED
, &dev
->flags
);
2515 set_bit(R5_Wantread
, &dev
->flags
);
2518 set_bit(STRIPE_DELAYED
, &sh
->state
);
2519 set_bit(STRIPE_HANDLE
, &sh
->state
);
2523 if (rcw
<= rmw
&& rcw
> 0)
2524 /* want reconstruct write, but need to get some data */
2525 for (i
= disks
; i
--; ) {
2526 struct r5dev
*dev
= &sh
->dev
[i
];
2527 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
2529 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2530 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2531 test_bit(R5_Wantcompute
, &dev
->flags
)) &&
2532 test_bit(R5_Insync
, &dev
->flags
)) {
2534 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2535 pr_debug("Read_old block "
2536 "%d for Reconstruct\n", i
);
2537 set_bit(R5_LOCKED
, &dev
->flags
);
2538 set_bit(R5_Wantread
, &dev
->flags
);
2541 set_bit(STRIPE_DELAYED
, &sh
->state
);
2542 set_bit(STRIPE_HANDLE
, &sh
->state
);
2546 /* now if nothing is locked, and if we have enough data,
2547 * we can start a write request
2549 /* since handle_stripe can be called at any time we need to handle the
2550 * case where a compute block operation has been submitted and then a
2551 * subsequent call wants to start a write request. raid_run_ops only
2552 * handles the case where compute block and reconstruct are requested
2553 * simultaneously. If this is not the case then new writes need to be
2554 * held off until the compute completes.
2556 if ((s
->req_compute
|| !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
)) &&
2557 (s
->locked
== 0 && (rcw
== 0 || rmw
== 0) &&
2558 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)))
2559 schedule_reconstruction(sh
, s
, rcw
== 0, 0);
2562 static void handle_stripe_dirtying6(raid5_conf_t
*conf
,
2563 struct stripe_head
*sh
, struct stripe_head_state
*s
,
2564 struct r6_state
*r6s
, int disks
)
2566 int rcw
= 0, pd_idx
= sh
->pd_idx
, i
;
2567 int qd_idx
= sh
->qd_idx
;
2569 set_bit(STRIPE_HANDLE
, &sh
->state
);
2570 for (i
= disks
; i
--; ) {
2571 struct r5dev
*dev
= &sh
->dev
[i
];
2572 /* check if we haven't enough data */
2573 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
2574 i
!= pd_idx
&& i
!= qd_idx
&&
2575 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2576 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2577 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2579 if (!test_bit(R5_Insync
, &dev
->flags
))
2580 continue; /* it's a failed drive */
2583 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2584 pr_debug("Read_old stripe %llu "
2585 "block %d for Reconstruct\n",
2586 (unsigned long long)sh
->sector
, i
);
2587 set_bit(R5_LOCKED
, &dev
->flags
);
2588 set_bit(R5_Wantread
, &dev
->flags
);
2591 pr_debug("Request delayed stripe %llu "
2592 "block %d for Reconstruct\n",
2593 (unsigned long long)sh
->sector
, i
);
2594 set_bit(STRIPE_DELAYED
, &sh
->state
);
2595 set_bit(STRIPE_HANDLE
, &sh
->state
);
2599 /* now if nothing is locked, and if we have enough data, we can start a
2602 if ((s
->req_compute
|| !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
)) &&
2603 s
->locked
== 0 && rcw
== 0 &&
2604 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)) {
2605 schedule_reconstruction(sh
, s
, 1, 0);
2609 static void handle_parity_checks5(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2610 struct stripe_head_state
*s
, int disks
)
2612 struct r5dev
*dev
= NULL
;
2614 set_bit(STRIPE_HANDLE
, &sh
->state
);
2616 switch (sh
->check_state
) {
2617 case check_state_idle
:
2618 /* start a new check operation if there are no failures */
2619 if (s
->failed
== 0) {
2620 BUG_ON(s
->uptodate
!= disks
);
2621 sh
->check_state
= check_state_run
;
2622 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
2623 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
);
2627 dev
= &sh
->dev
[s
->failed_num
];
2629 case check_state_compute_result
:
2630 sh
->check_state
= check_state_idle
;
2632 dev
= &sh
->dev
[sh
->pd_idx
];
2634 /* check that a write has not made the stripe insync */
2635 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
2638 /* either failed parity check, or recovery is happening */
2639 BUG_ON(!test_bit(R5_UPTODATE
, &dev
->flags
));
2640 BUG_ON(s
->uptodate
!= disks
);
2642 set_bit(R5_LOCKED
, &dev
->flags
);
2644 set_bit(R5_Wantwrite
, &dev
->flags
);
2646 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
2647 set_bit(STRIPE_INSYNC
, &sh
->state
);
2649 case check_state_run
:
2650 break; /* we will be called again upon completion */
2651 case check_state_check_result
:
2652 sh
->check_state
= check_state_idle
;
2654 /* if a failure occurred during the check operation, leave
2655 * STRIPE_INSYNC not set and let the stripe be handled again
2660 /* handle a successful check operation, if parity is correct
2661 * we are done. Otherwise update the mismatch count and repair
2662 * parity if !MD_RECOVERY_CHECK
2664 if ((sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) == 0)
2665 /* parity is correct (on disc,
2666 * not in buffer any more)
2668 set_bit(STRIPE_INSYNC
, &sh
->state
);
2670 conf
->mddev
->resync_mismatches
+= STRIPE_SECTORS
;
2671 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
2672 /* don't try to repair!! */
2673 set_bit(STRIPE_INSYNC
, &sh
->state
);
2675 sh
->check_state
= check_state_compute_run
;
2676 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2677 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2678 set_bit(R5_Wantcompute
,
2679 &sh
->dev
[sh
->pd_idx
].flags
);
2680 sh
->ops
.target
= sh
->pd_idx
;
2681 sh
->ops
.target2
= -1;
2686 case check_state_compute_run
:
2689 printk(KERN_ERR
"%s: unknown check_state: %d sector: %llu\n",
2690 __func__
, sh
->check_state
,
2691 (unsigned long long) sh
->sector
);
2697 static void handle_parity_checks6(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2698 struct stripe_head_state
*s
,
2699 struct r6_state
*r6s
, int disks
)
2701 int pd_idx
= sh
->pd_idx
;
2702 int qd_idx
= sh
->qd_idx
;
2705 set_bit(STRIPE_HANDLE
, &sh
->state
);
2707 BUG_ON(s
->failed
> 2);
2709 /* Want to check and possibly repair P and Q.
2710 * However there could be one 'failed' device, in which
2711 * case we can only check one of them, possibly using the
2712 * other to generate missing data
2715 switch (sh
->check_state
) {
2716 case check_state_idle
:
2717 /* start a new check operation if there are < 2 failures */
2718 if (s
->failed
== r6s
->q_failed
) {
2719 /* The only possible failed device holds Q, so it
2720 * makes sense to check P (If anything else were failed,
2721 * we would have used P to recreate it).
2723 sh
->check_state
= check_state_run
;
2725 if (!r6s
->q_failed
&& s
->failed
< 2) {
2726 /* Q is not failed, and we didn't use it to generate
2727 * anything, so it makes sense to check it
2729 if (sh
->check_state
== check_state_run
)
2730 sh
->check_state
= check_state_run_pq
;
2732 sh
->check_state
= check_state_run_q
;
2735 /* discard potentially stale zero_sum_result */
2736 sh
->ops
.zero_sum_result
= 0;
2738 if (sh
->check_state
== check_state_run
) {
2739 /* async_xor_zero_sum destroys the contents of P */
2740 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
2743 if (sh
->check_state
>= check_state_run
&&
2744 sh
->check_state
<= check_state_run_pq
) {
2745 /* async_syndrome_zero_sum preserves P and Q, so
2746 * no need to mark them !uptodate here
2748 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
2752 /* we have 2-disk failure */
2753 BUG_ON(s
->failed
!= 2);
2755 case check_state_compute_result
:
2756 sh
->check_state
= check_state_idle
;
2758 /* check that a write has not made the stripe insync */
2759 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
2762 /* now write out any block on a failed drive,
2763 * or P or Q if they were recomputed
2765 BUG_ON(s
->uptodate
< disks
- 1); /* We don't need Q to recover */
2766 if (s
->failed
== 2) {
2767 dev
= &sh
->dev
[r6s
->failed_num
[1]];
2769 set_bit(R5_LOCKED
, &dev
->flags
);
2770 set_bit(R5_Wantwrite
, &dev
->flags
);
2772 if (s
->failed
>= 1) {
2773 dev
= &sh
->dev
[r6s
->failed_num
[0]];
2775 set_bit(R5_LOCKED
, &dev
->flags
);
2776 set_bit(R5_Wantwrite
, &dev
->flags
);
2778 if (sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) {
2779 dev
= &sh
->dev
[pd_idx
];
2781 set_bit(R5_LOCKED
, &dev
->flags
);
2782 set_bit(R5_Wantwrite
, &dev
->flags
);
2784 if (sh
->ops
.zero_sum_result
& SUM_CHECK_Q_RESULT
) {
2785 dev
= &sh
->dev
[qd_idx
];
2787 set_bit(R5_LOCKED
, &dev
->flags
);
2788 set_bit(R5_Wantwrite
, &dev
->flags
);
2790 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
2792 set_bit(STRIPE_INSYNC
, &sh
->state
);
2794 case check_state_run
:
2795 case check_state_run_q
:
2796 case check_state_run_pq
:
2797 break; /* we will be called again upon completion */
2798 case check_state_check_result
:
2799 sh
->check_state
= check_state_idle
;
2801 /* handle a successful check operation, if parity is correct
2802 * we are done. Otherwise update the mismatch count and repair
2803 * parity if !MD_RECOVERY_CHECK
2805 if (sh
->ops
.zero_sum_result
== 0) {
2806 /* both parities are correct */
2808 set_bit(STRIPE_INSYNC
, &sh
->state
);
2810 /* in contrast to the raid5 case we can validate
2811 * parity, but still have a failure to write
2814 sh
->check_state
= check_state_compute_result
;
2815 /* Returning at this point means that we may go
2816 * off and bring p and/or q uptodate again so
2817 * we make sure to check zero_sum_result again
2818 * to verify if p or q need writeback
2822 conf
->mddev
->resync_mismatches
+= STRIPE_SECTORS
;
2823 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
2824 /* don't try to repair!! */
2825 set_bit(STRIPE_INSYNC
, &sh
->state
);
2827 int *target
= &sh
->ops
.target
;
2829 sh
->ops
.target
= -1;
2830 sh
->ops
.target2
= -1;
2831 sh
->check_state
= check_state_compute_run
;
2832 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2833 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2834 if (sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) {
2835 set_bit(R5_Wantcompute
,
2836 &sh
->dev
[pd_idx
].flags
);
2838 target
= &sh
->ops
.target2
;
2841 if (sh
->ops
.zero_sum_result
& SUM_CHECK_Q_RESULT
) {
2842 set_bit(R5_Wantcompute
,
2843 &sh
->dev
[qd_idx
].flags
);
2850 case check_state_compute_run
:
2853 printk(KERN_ERR
"%s: unknown check_state: %d sector: %llu\n",
2854 __func__
, sh
->check_state
,
2855 (unsigned long long) sh
->sector
);
2860 static void handle_stripe_expansion(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2861 struct r6_state
*r6s
)
2865 /* We have read all the blocks in this stripe and now we need to
2866 * copy some of them into a target stripe for expand.
2868 struct dma_async_tx_descriptor
*tx
= NULL
;
2869 clear_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
2870 for (i
= 0; i
< sh
->disks
; i
++)
2871 if (i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
) {
2873 struct stripe_head
*sh2
;
2874 struct async_submit_ctl submit
;
2876 sector_t bn
= compute_blocknr(sh
, i
, 1);
2877 sector_t s
= raid5_compute_sector(conf
, bn
, 0,
2879 sh2
= get_active_stripe(conf
, s
, 0, 1, 1);
2881 /* so far only the early blocks of this stripe
2882 * have been requested. When later blocks
2883 * get requested, we will try again
2886 if (!test_bit(STRIPE_EXPANDING
, &sh2
->state
) ||
2887 test_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
)) {
2888 /* must have already done this block */
2889 release_stripe(sh2
);
2893 /* place all the copies on one channel */
2894 init_async_submit(&submit
, 0, tx
, NULL
, NULL
, NULL
);
2895 tx
= async_memcpy(sh2
->dev
[dd_idx
].page
,
2896 sh
->dev
[i
].page
, 0, 0, STRIPE_SIZE
,
2899 set_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
);
2900 set_bit(R5_UPTODATE
, &sh2
->dev
[dd_idx
].flags
);
2901 for (j
= 0; j
< conf
->raid_disks
; j
++)
2902 if (j
!= sh2
->pd_idx
&&
2903 (!r6s
|| j
!= sh2
->qd_idx
) &&
2904 !test_bit(R5_Expanded
, &sh2
->dev
[j
].flags
))
2906 if (j
== conf
->raid_disks
) {
2907 set_bit(STRIPE_EXPAND_READY
, &sh2
->state
);
2908 set_bit(STRIPE_HANDLE
, &sh2
->state
);
2910 release_stripe(sh2
);
2913 /* done submitting copies, wait for them to complete */
2916 dma_wait_for_async_tx(tx
);
2922 * handle_stripe - do things to a stripe.
2924 * We lock the stripe and then examine the state of various bits
2925 * to see what needs to be done.
2927 * return some read request which now have data
2928 * return some write requests which are safely on disc
2929 * schedule a read on some buffers
2930 * schedule a write of some buffers
2931 * return confirmation of parity correctness
2933 * buffers are taken off read_list or write_list, and bh_cache buffers
2934 * get BH_Lock set before the stripe lock is released.
2938 static void handle_stripe5(struct stripe_head
*sh
)
2940 raid5_conf_t
*conf
= sh
->raid_conf
;
2941 int disks
= sh
->disks
, i
;
2942 struct bio
*return_bi
= NULL
;
2943 struct stripe_head_state s
;
2945 mdk_rdev_t
*blocked_rdev
= NULL
;
2947 int dec_preread_active
= 0;
2949 memset(&s
, 0, sizeof(s
));
2950 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2951 "reconstruct:%d\n", (unsigned long long)sh
->sector
, sh
->state
,
2952 atomic_read(&sh
->count
), sh
->pd_idx
, sh
->check_state
,
2953 sh
->reconstruct_state
);
2955 spin_lock(&sh
->lock
);
2956 clear_bit(STRIPE_HANDLE
, &sh
->state
);
2957 clear_bit(STRIPE_DELAYED
, &sh
->state
);
2959 s
.syncing
= test_bit(STRIPE_SYNCING
, &sh
->state
);
2960 s
.expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
2961 s
.expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
);
2963 /* Now to look around and see what can be done */
2965 for (i
=disks
; i
--; ) {
2969 clear_bit(R5_Insync
, &dev
->flags
);
2971 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2972 "written %p\n", i
, dev
->flags
, dev
->toread
, dev
->read
,
2973 dev
->towrite
, dev
->written
);
2975 /* maybe we can request a biofill operation
2977 * new wantfill requests are only permitted while
2978 * ops_complete_biofill is guaranteed to be inactive
2980 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
&&
2981 !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
))
2982 set_bit(R5_Wantfill
, &dev
->flags
);
2984 /* now count some things */
2985 if (test_bit(R5_LOCKED
, &dev
->flags
)) s
.locked
++;
2986 if (test_bit(R5_UPTODATE
, &dev
->flags
)) s
.uptodate
++;
2987 if (test_bit(R5_Wantcompute
, &dev
->flags
)) s
.compute
++;
2989 if (test_bit(R5_Wantfill
, &dev
->flags
))
2991 else if (dev
->toread
)
2995 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
3000 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3001 if (blocked_rdev
== NULL
&&
3002 rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
3003 blocked_rdev
= rdev
;
3004 atomic_inc(&rdev
->nr_pending
);
3006 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)) {
3007 /* The ReadError flag will just be confusing now */
3008 clear_bit(R5_ReadError
, &dev
->flags
);
3009 clear_bit(R5_ReWrite
, &dev
->flags
);
3011 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)
3012 || test_bit(R5_ReadError
, &dev
->flags
)) {
3016 set_bit(R5_Insync
, &dev
->flags
);
3020 if (unlikely(blocked_rdev
)) {
3021 if (s
.syncing
|| s
.expanding
|| s
.expanded
||
3022 s
.to_write
|| s
.written
) {
3023 set_bit(STRIPE_HANDLE
, &sh
->state
);
3026 /* There is nothing for the blocked_rdev to block */
3027 rdev_dec_pending(blocked_rdev
, conf
->mddev
);
3028 blocked_rdev
= NULL
;
3031 if (s
.to_fill
&& !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
)) {
3032 set_bit(STRIPE_OP_BIOFILL
, &s
.ops_request
);
3033 set_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
3036 pr_debug("locked=%d uptodate=%d to_read=%d"
3037 " to_write=%d failed=%d failed_num=%d\n",
3038 s
.locked
, s
.uptodate
, s
.to_read
, s
.to_write
,
3039 s
.failed
, s
.failed_num
);
3040 /* check if the array has lost two devices and, if so, some requests might
3043 if (s
.failed
> 1 && s
.to_read
+s
.to_write
+s
.written
)
3044 handle_failed_stripe(conf
, sh
, &s
, disks
, &return_bi
);
3045 if (s
.failed
> 1 && s
.syncing
) {
3046 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,0);
3047 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3051 /* might be able to return some write requests if the parity block
3052 * is safe, or on a failed drive
3054 dev
= &sh
->dev
[sh
->pd_idx
];
3056 ((test_bit(R5_Insync
, &dev
->flags
) &&
3057 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3058 test_bit(R5_UPTODATE
, &dev
->flags
)) ||
3059 (s
.failed
== 1 && s
.failed_num
== sh
->pd_idx
)))
3060 handle_stripe_clean_event(conf
, sh
, disks
, &return_bi
);
3062 /* Now we might consider reading some blocks, either to check/generate
3063 * parity, or to satisfy requests
3064 * or to load a block that is being partially written.
3066 if (s
.to_read
|| s
.non_overwrite
||
3067 (s
.syncing
&& (s
.uptodate
+ s
.compute
< disks
)) || s
.expanding
)
3068 handle_stripe_fill5(sh
, &s
, disks
);
3070 /* Now we check to see if any write operations have recently
3074 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
)
3076 if (sh
->reconstruct_state
== reconstruct_state_drain_result
||
3077 sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
) {
3078 sh
->reconstruct_state
= reconstruct_state_idle
;
3080 /* All the 'written' buffers and the parity block are ready to
3081 * be written back to disk
3083 BUG_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
));
3084 for (i
= disks
; i
--; ) {
3086 if (test_bit(R5_LOCKED
, &dev
->flags
) &&
3087 (i
== sh
->pd_idx
|| dev
->written
)) {
3088 pr_debug("Writing block %d\n", i
);
3089 set_bit(R5_Wantwrite
, &dev
->flags
);
3092 if (!test_bit(R5_Insync
, &dev
->flags
) ||
3093 (i
== sh
->pd_idx
&& s
.failed
== 0))
3094 set_bit(STRIPE_INSYNC
, &sh
->state
);
3097 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3098 dec_preread_active
= 1;
3101 /* Now to consider new write requests and what else, if anything
3102 * should be read. We do not handle new writes when:
3103 * 1/ A 'write' operation (copy+xor) is already in flight.
3104 * 2/ A 'check' operation is in flight, as it may clobber the parity
3107 if (s
.to_write
&& !sh
->reconstruct_state
&& !sh
->check_state
)
3108 handle_stripe_dirtying5(conf
, sh
, &s
, disks
);
3110 /* maybe we need to check and possibly fix the parity for this stripe
3111 * Any reads will already have been scheduled, so we just see if enough
3112 * data is available. The parity check is held off while parity
3113 * dependent operations are in flight.
3115 if (sh
->check_state
||
3116 (s
.syncing
&& s
.locked
== 0 &&
3117 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) &&
3118 !test_bit(STRIPE_INSYNC
, &sh
->state
)))
3119 handle_parity_checks5(conf
, sh
, &s
, disks
);
3121 if (s
.syncing
&& s
.locked
== 0 && test_bit(STRIPE_INSYNC
, &sh
->state
)) {
3122 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,1);
3123 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3126 /* If the failed drive is just a ReadError, then we might need to progress
3127 * the repair/check process
3129 if (s
.failed
== 1 && !conf
->mddev
->ro
&&
3130 test_bit(R5_ReadError
, &sh
->dev
[s
.failed_num
].flags
)
3131 && !test_bit(R5_LOCKED
, &sh
->dev
[s
.failed_num
].flags
)
3132 && test_bit(R5_UPTODATE
, &sh
->dev
[s
.failed_num
].flags
)
3134 dev
= &sh
->dev
[s
.failed_num
];
3135 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
3136 set_bit(R5_Wantwrite
, &dev
->flags
);
3137 set_bit(R5_ReWrite
, &dev
->flags
);
3138 set_bit(R5_LOCKED
, &dev
->flags
);
3141 /* let's read it back */
3142 set_bit(R5_Wantread
, &dev
->flags
);
3143 set_bit(R5_LOCKED
, &dev
->flags
);
3148 /* Finish reconstruct operations initiated by the expansion process */
3149 if (sh
->reconstruct_state
== reconstruct_state_result
) {
3150 struct stripe_head
*sh2
3151 = get_active_stripe(conf
, sh
->sector
, 1, 1, 1);
3152 if (sh2
&& test_bit(STRIPE_EXPAND_SOURCE
, &sh2
->state
)) {
3153 /* sh cannot be written until sh2 has been read.
3154 * so arrange for sh to be delayed a little
3156 set_bit(STRIPE_DELAYED
, &sh
->state
);
3157 set_bit(STRIPE_HANDLE
, &sh
->state
);
3158 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
,
3160 atomic_inc(&conf
->preread_active_stripes
);
3161 release_stripe(sh2
);
3165 release_stripe(sh2
);
3167 sh
->reconstruct_state
= reconstruct_state_idle
;
3168 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
3169 for (i
= conf
->raid_disks
; i
--; ) {
3170 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
3171 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
3176 if (s
.expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
) &&
3177 !sh
->reconstruct_state
) {
3178 /* Need to write out all blocks after computing parity */
3179 sh
->disks
= conf
->raid_disks
;
3180 stripe_set_idx(sh
->sector
, conf
, 0, sh
);
3181 schedule_reconstruction(sh
, &s
, 1, 1);
3182 } else if (s
.expanded
&& !sh
->reconstruct_state
&& s
.locked
== 0) {
3183 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3184 atomic_dec(&conf
->reshape_stripes
);
3185 wake_up(&conf
->wait_for_overlap
);
3186 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
3189 if (s
.expanding
&& s
.locked
== 0 &&
3190 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
))
3191 handle_stripe_expansion(conf
, sh
, NULL
);
3194 spin_unlock(&sh
->lock
);
3196 /* wait for this device to become unblocked */
3197 if (unlikely(blocked_rdev
))
3198 md_wait_for_blocked_rdev(blocked_rdev
, conf
->mddev
);
3201 raid_run_ops(sh
, s
.ops_request
);
3205 if (dec_preread_active
) {
3206 /* We delay this until after ops_run_io so that if make_request
3207 * is waiting on a barrier, it won't continue until the writes
3208 * have actually been submitted.
3210 atomic_dec(&conf
->preread_active_stripes
);
3211 if (atomic_read(&conf
->preread_active_stripes
) <
3213 md_wakeup_thread(conf
->mddev
->thread
);
3215 return_io(return_bi
);
3218 static void handle_stripe6(struct stripe_head
*sh
)
3220 raid5_conf_t
*conf
= sh
->raid_conf
;
3221 int disks
= sh
->disks
;
3222 struct bio
*return_bi
= NULL
;
3223 int i
, pd_idx
= sh
->pd_idx
, qd_idx
= sh
->qd_idx
;
3224 struct stripe_head_state s
;
3225 struct r6_state r6s
;
3226 struct r5dev
*dev
, *pdev
, *qdev
;
3227 mdk_rdev_t
*blocked_rdev
= NULL
;
3228 int dec_preread_active
= 0;
3230 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3231 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3232 (unsigned long long)sh
->sector
, sh
->state
,
3233 atomic_read(&sh
->count
), pd_idx
, qd_idx
,
3234 sh
->check_state
, sh
->reconstruct_state
);
3235 memset(&s
, 0, sizeof(s
));
3237 spin_lock(&sh
->lock
);
3238 clear_bit(STRIPE_HANDLE
, &sh
->state
);
3239 clear_bit(STRIPE_DELAYED
, &sh
->state
);
3241 s
.syncing
= test_bit(STRIPE_SYNCING
, &sh
->state
);
3242 s
.expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
3243 s
.expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3244 /* Now to look around and see what can be done */
3247 for (i
=disks
; i
--; ) {
3250 clear_bit(R5_Insync
, &dev
->flags
);
3252 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3253 i
, dev
->flags
, dev
->toread
, dev
->towrite
, dev
->written
);
3254 /* maybe we can reply to a read
3256 * new wantfill requests are only permitted while
3257 * ops_complete_biofill is guaranteed to be inactive
3259 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
&&
3260 !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
))
3261 set_bit(R5_Wantfill
, &dev
->flags
);
3263 /* now count some things */
3264 if (test_bit(R5_LOCKED
, &dev
->flags
)) s
.locked
++;
3265 if (test_bit(R5_UPTODATE
, &dev
->flags
)) s
.uptodate
++;
3266 if (test_bit(R5_Wantcompute
, &dev
->flags
)) {
3268 BUG_ON(s
.compute
> 2);
3271 if (test_bit(R5_Wantfill
, &dev
->flags
)) {
3273 } else if (dev
->toread
)
3277 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
3282 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3283 if (blocked_rdev
== NULL
&&
3284 rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
3285 blocked_rdev
= rdev
;
3286 atomic_inc(&rdev
->nr_pending
);
3288 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)) {
3289 /* The ReadError flag will just be confusing now */
3290 clear_bit(R5_ReadError
, &dev
->flags
);
3291 clear_bit(R5_ReWrite
, &dev
->flags
);
3293 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)
3294 || test_bit(R5_ReadError
, &dev
->flags
)) {
3296 r6s
.failed_num
[s
.failed
] = i
;
3299 set_bit(R5_Insync
, &dev
->flags
);
3303 if (unlikely(blocked_rdev
)) {
3304 if (s
.syncing
|| s
.expanding
|| s
.expanded
||
3305 s
.to_write
|| s
.written
) {
3306 set_bit(STRIPE_HANDLE
, &sh
->state
);
3309 /* There is nothing for the blocked_rdev to block */
3310 rdev_dec_pending(blocked_rdev
, conf
->mddev
);
3311 blocked_rdev
= NULL
;
3314 if (s
.to_fill
&& !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
)) {
3315 set_bit(STRIPE_OP_BIOFILL
, &s
.ops_request
);
3316 set_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
3319 pr_debug("locked=%d uptodate=%d to_read=%d"
3320 " to_write=%d failed=%d failed_num=%d,%d\n",
3321 s
.locked
, s
.uptodate
, s
.to_read
, s
.to_write
, s
.failed
,
3322 r6s
.failed_num
[0], r6s
.failed_num
[1]);
3323 /* check if the array has lost >2 devices and, if so, some requests
3324 * might need to be failed
3326 if (s
.failed
> 2 && s
.to_read
+s
.to_write
+s
.written
)
3327 handle_failed_stripe(conf
, sh
, &s
, disks
, &return_bi
);
3328 if (s
.failed
> 2 && s
.syncing
) {
3329 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,0);
3330 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3335 * might be able to return some write requests if the parity blocks
3336 * are safe, or on a failed drive
3338 pdev
= &sh
->dev
[pd_idx
];
3339 r6s
.p_failed
= (s
.failed
>= 1 && r6s
.failed_num
[0] == pd_idx
)
3340 || (s
.failed
>= 2 && r6s
.failed_num
[1] == pd_idx
);
3341 qdev
= &sh
->dev
[qd_idx
];
3342 r6s
.q_failed
= (s
.failed
>= 1 && r6s
.failed_num
[0] == qd_idx
)
3343 || (s
.failed
>= 2 && r6s
.failed_num
[1] == qd_idx
);
3346 ( r6s
.p_failed
|| ((test_bit(R5_Insync
, &pdev
->flags
)
3347 && !test_bit(R5_LOCKED
, &pdev
->flags
)
3348 && test_bit(R5_UPTODATE
, &pdev
->flags
)))) &&
3349 ( r6s
.q_failed
|| ((test_bit(R5_Insync
, &qdev
->flags
)
3350 && !test_bit(R5_LOCKED
, &qdev
->flags
)
3351 && test_bit(R5_UPTODATE
, &qdev
->flags
)))))
3352 handle_stripe_clean_event(conf
, sh
, disks
, &return_bi
);
3354 /* Now we might consider reading some blocks, either to check/generate
3355 * parity, or to satisfy requests
3356 * or to load a block that is being partially written.
3358 if (s
.to_read
|| s
.non_overwrite
|| (s
.to_write
&& s
.failed
) ||
3359 (s
.syncing
&& (s
.uptodate
+ s
.compute
< disks
)) || s
.expanding
)
3360 handle_stripe_fill6(sh
, &s
, &r6s
, disks
);
3362 /* Now we check to see if any write operations have recently
3365 if (sh
->reconstruct_state
== reconstruct_state_drain_result
) {
3367 sh
->reconstruct_state
= reconstruct_state_idle
;
3368 /* All the 'written' buffers and the parity blocks are ready to
3369 * be written back to disk
3371 BUG_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
));
3372 BUG_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[qd_idx
].flags
));
3373 for (i
= disks
; i
--; ) {
3375 if (test_bit(R5_LOCKED
, &dev
->flags
) &&
3376 (i
== sh
->pd_idx
|| i
== qd_idx
||
3378 pr_debug("Writing block %d\n", i
);
3379 BUG_ON(!test_bit(R5_UPTODATE
, &dev
->flags
));
3380 set_bit(R5_Wantwrite
, &dev
->flags
);
3381 if (!test_bit(R5_Insync
, &dev
->flags
) ||
3382 ((i
== sh
->pd_idx
|| i
== qd_idx
) &&
3384 set_bit(STRIPE_INSYNC
, &sh
->state
);
3387 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3388 dec_preread_active
= 1;
3391 /* Now to consider new write requests and what else, if anything
3392 * should be read. We do not handle new writes when:
3393 * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
3394 * 2/ A 'check' operation is in flight, as it may clobber the parity
3397 if (s
.to_write
&& !sh
->reconstruct_state
&& !sh
->check_state
)
3398 handle_stripe_dirtying6(conf
, sh
, &s
, &r6s
, disks
);
3400 /* maybe we need to check and possibly fix the parity for this stripe
3401 * Any reads will already have been scheduled, so we just see if enough
3402 * data is available. The parity check is held off while parity
3403 * dependent operations are in flight.
3405 if (sh
->check_state
||
3406 (s
.syncing
&& s
.locked
== 0 &&
3407 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) &&
3408 !test_bit(STRIPE_INSYNC
, &sh
->state
)))
3409 handle_parity_checks6(conf
, sh
, &s
, &r6s
, disks
);
3411 if (s
.syncing
&& s
.locked
== 0 && test_bit(STRIPE_INSYNC
, &sh
->state
)) {
3412 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,1);
3413 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3416 /* If the failed drives are just a ReadError, then we might need
3417 * to progress the repair/check process
3419 if (s
.failed
<= 2 && !conf
->mddev
->ro
)
3420 for (i
= 0; i
< s
.failed
; i
++) {
3421 dev
= &sh
->dev
[r6s
.failed_num
[i
]];
3422 if (test_bit(R5_ReadError
, &dev
->flags
)
3423 && !test_bit(R5_LOCKED
, &dev
->flags
)
3424 && test_bit(R5_UPTODATE
, &dev
->flags
)
3426 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
3427 set_bit(R5_Wantwrite
, &dev
->flags
);
3428 set_bit(R5_ReWrite
, &dev
->flags
);
3429 set_bit(R5_LOCKED
, &dev
->flags
);
3432 /* let's read it back */
3433 set_bit(R5_Wantread
, &dev
->flags
);
3434 set_bit(R5_LOCKED
, &dev
->flags
);
3440 /* Finish reconstruct operations initiated by the expansion process */
3441 if (sh
->reconstruct_state
== reconstruct_state_result
) {
3442 sh
->reconstruct_state
= reconstruct_state_idle
;
3443 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
3444 for (i
= conf
->raid_disks
; i
--; ) {
3445 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
3446 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
3451 if (s
.expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
) &&
3452 !sh
->reconstruct_state
) {
3453 struct stripe_head
*sh2
3454 = get_active_stripe(conf
, sh
->sector
, 1, 1, 1);
3455 if (sh2
&& test_bit(STRIPE_EXPAND_SOURCE
, &sh2
->state
)) {
3456 /* sh cannot be written until sh2 has been read.
3457 * so arrange for sh to be delayed a little
3459 set_bit(STRIPE_DELAYED
, &sh
->state
);
3460 set_bit(STRIPE_HANDLE
, &sh
->state
);
3461 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
,
3463 atomic_inc(&conf
->preread_active_stripes
);
3464 release_stripe(sh2
);
3468 release_stripe(sh2
);
3470 /* Need to write out all blocks after computing P&Q */
3471 sh
->disks
= conf
->raid_disks
;
3472 stripe_set_idx(sh
->sector
, conf
, 0, sh
);
3473 schedule_reconstruction(sh
, &s
, 1, 1);
3474 } else if (s
.expanded
&& !sh
->reconstruct_state
&& s
.locked
== 0) {
3475 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3476 atomic_dec(&conf
->reshape_stripes
);
3477 wake_up(&conf
->wait_for_overlap
);
3478 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
3481 if (s
.expanding
&& s
.locked
== 0 &&
3482 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
))
3483 handle_stripe_expansion(conf
, sh
, &r6s
);
3486 spin_unlock(&sh
->lock
);
3488 /* wait for this device to become unblocked */
3489 if (unlikely(blocked_rdev
))
3490 md_wait_for_blocked_rdev(blocked_rdev
, conf
->mddev
);
3493 raid_run_ops(sh
, s
.ops_request
);
3498 if (dec_preread_active
) {
3499 /* We delay this until after ops_run_io so that if make_request
3500 * is waiting on a barrier, it won't continue until the writes
3501 * have actually been submitted.
3503 atomic_dec(&conf
->preread_active_stripes
);
3504 if (atomic_read(&conf
->preread_active_stripes
) <
3506 md_wakeup_thread(conf
->mddev
->thread
);
3509 return_io(return_bi
);
3512 static void handle_stripe(struct stripe_head
*sh
)
3514 if (sh
->raid_conf
->level
== 6)
3520 static void raid5_activate_delayed(raid5_conf_t
*conf
)
3522 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
) {
3523 while (!list_empty(&conf
->delayed_list
)) {
3524 struct list_head
*l
= conf
->delayed_list
.next
;
3525 struct stripe_head
*sh
;
3526 sh
= list_entry(l
, struct stripe_head
, lru
);
3528 clear_bit(STRIPE_DELAYED
, &sh
->state
);
3529 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3530 atomic_inc(&conf
->preread_active_stripes
);
3531 list_add_tail(&sh
->lru
, &conf
->hold_list
);
3534 blk_plug_device(conf
->mddev
->queue
);
3537 static void activate_bit_delay(raid5_conf_t
*conf
)
3539 /* device_lock is held */
3540 struct list_head head
;
3541 list_add(&head
, &conf
->bitmap_list
);
3542 list_del_init(&conf
->bitmap_list
);
3543 while (!list_empty(&head
)) {
3544 struct stripe_head
*sh
= list_entry(head
.next
, struct stripe_head
, lru
);
3545 list_del_init(&sh
->lru
);
3546 atomic_inc(&sh
->count
);
3547 __release_stripe(conf
, sh
);
3551 static void unplug_slaves(mddev_t
*mddev
)
3553 raid5_conf_t
*conf
= mddev
->private;
3555 int devs
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
3558 for (i
= 0; i
< devs
; i
++) {
3559 mdk_rdev_t
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3560 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
) && atomic_read(&rdev
->nr_pending
)) {
3561 struct request_queue
*r_queue
= bdev_get_queue(rdev
->bdev
);
3563 atomic_inc(&rdev
->nr_pending
);
3566 blk_unplug(r_queue
);
3568 rdev_dec_pending(rdev
, mddev
);
3575 static void raid5_unplug_device(struct request_queue
*q
)
3577 mddev_t
*mddev
= q
->queuedata
;
3578 raid5_conf_t
*conf
= mddev
->private;
3579 unsigned long flags
;
3581 spin_lock_irqsave(&conf
->device_lock
, flags
);
3583 if (blk_remove_plug(q
)) {
3585 raid5_activate_delayed(conf
);
3587 md_wakeup_thread(mddev
->thread
);
3589 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3591 unplug_slaves(mddev
);
3594 static int raid5_congested(void *data
, int bits
)
3596 mddev_t
*mddev
= data
;
3597 raid5_conf_t
*conf
= mddev
->private;
3599 /* No difference between reads and writes. Just check
3600 * how busy the stripe_cache is
3603 if (mddev_congested(mddev
, bits
))
3605 if (conf
->inactive_blocked
)
3609 if (list_empty_careful(&conf
->inactive_list
))
3615 /* We want read requests to align with chunks where possible,
3616 * but write requests don't need to.
3618 static int raid5_mergeable_bvec(struct request_queue
*q
,
3619 struct bvec_merge_data
*bvm
,
3620 struct bio_vec
*biovec
)
3622 mddev_t
*mddev
= q
->queuedata
;
3623 sector_t sector
= bvm
->bi_sector
+ get_start_sect(bvm
->bi_bdev
);
3625 unsigned int chunk_sectors
= mddev
->chunk_sectors
;
3626 unsigned int bio_sectors
= bvm
->bi_size
>> 9;
3628 if ((bvm
->bi_rw
& 1) == WRITE
)
3629 return biovec
->bv_len
; /* always allow writes to be mergeable */
3631 if (mddev
->new_chunk_sectors
< mddev
->chunk_sectors
)
3632 chunk_sectors
= mddev
->new_chunk_sectors
;
3633 max
= (chunk_sectors
- ((sector
& (chunk_sectors
- 1)) + bio_sectors
)) << 9;
3634 if (max
< 0) max
= 0;
3635 if (max
<= biovec
->bv_len
&& bio_sectors
== 0)
3636 return biovec
->bv_len
;
3642 static int in_chunk_boundary(mddev_t
*mddev
, struct bio
*bio
)
3644 sector_t sector
= bio
->bi_sector
+ get_start_sect(bio
->bi_bdev
);
3645 unsigned int chunk_sectors
= mddev
->chunk_sectors
;
3646 unsigned int bio_sectors
= bio
->bi_size
>> 9;
3648 if (mddev
->new_chunk_sectors
< mddev
->chunk_sectors
)
3649 chunk_sectors
= mddev
->new_chunk_sectors
;
3650 return chunk_sectors
>=
3651 ((sector
& (chunk_sectors
- 1)) + bio_sectors
);
3655 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3656 * later sampled by raid5d.
3658 static void add_bio_to_retry(struct bio
*bi
,raid5_conf_t
*conf
)
3660 unsigned long flags
;
3662 spin_lock_irqsave(&conf
->device_lock
, flags
);
3664 bi
->bi_next
= conf
->retry_read_aligned_list
;
3665 conf
->retry_read_aligned_list
= bi
;
3667 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3668 md_wakeup_thread(conf
->mddev
->thread
);
3672 static struct bio
*remove_bio_from_retry(raid5_conf_t
*conf
)
3676 bi
= conf
->retry_read_aligned
;
3678 conf
->retry_read_aligned
= NULL
;
3681 bi
= conf
->retry_read_aligned_list
;
3683 conf
->retry_read_aligned_list
= bi
->bi_next
;
3686 * this sets the active strip count to 1 and the processed
3687 * strip count to zero (upper 8 bits)
3689 bi
->bi_phys_segments
= 1; /* biased count of active stripes */
3697 * The "raid5_align_endio" should check if the read succeeded and if it
3698 * did, call bio_endio on the original bio (having bio_put the new bio
3700 * If the read failed..
3702 static void raid5_align_endio(struct bio
*bi
, int error
)
3704 struct bio
* raid_bi
= bi
->bi_private
;
3707 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
3712 mddev
= raid_bi
->bi_bdev
->bd_disk
->queue
->queuedata
;
3713 conf
= mddev
->private;
3714 rdev
= (void*)raid_bi
->bi_next
;
3715 raid_bi
->bi_next
= NULL
;
3717 rdev_dec_pending(rdev
, conf
->mddev
);
3719 if (!error
&& uptodate
) {
3720 bio_endio(raid_bi
, 0);
3721 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
3722 wake_up(&conf
->wait_for_stripe
);
3727 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3729 add_bio_to_retry(raid_bi
, conf
);
3732 static int bio_fits_rdev(struct bio
*bi
)
3734 struct request_queue
*q
= bdev_get_queue(bi
->bi_bdev
);
3736 if ((bi
->bi_size
>>9) > queue_max_sectors(q
))
3738 blk_recount_segments(q
, bi
);
3739 if (bi
->bi_phys_segments
> queue_max_segments(q
))
3742 if (q
->merge_bvec_fn
)
3743 /* it's too hard to apply the merge_bvec_fn at this stage,
3752 static int chunk_aligned_read(struct request_queue
*q
, struct bio
* raid_bio
)
3754 mddev_t
*mddev
= q
->queuedata
;
3755 raid5_conf_t
*conf
= mddev
->private;
3757 struct bio
* align_bi
;
3760 if (!in_chunk_boundary(mddev
, raid_bio
)) {
3761 pr_debug("chunk_aligned_read : non aligned\n");
3765 * use bio_clone to make a copy of the bio
3767 align_bi
= bio_clone(raid_bio
, GFP_NOIO
);
3771 * set bi_end_io to a new function, and set bi_private to the
3774 align_bi
->bi_end_io
= raid5_align_endio
;
3775 align_bi
->bi_private
= raid_bio
;
3779 align_bi
->bi_sector
= raid5_compute_sector(conf
, raid_bio
->bi_sector
,
3784 rdev
= rcu_dereference(conf
->disks
[dd_idx
].rdev
);
3785 if (rdev
&& test_bit(In_sync
, &rdev
->flags
)) {
3786 atomic_inc(&rdev
->nr_pending
);
3788 raid_bio
->bi_next
= (void*)rdev
;
3789 align_bi
->bi_bdev
= rdev
->bdev
;
3790 align_bi
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
3791 align_bi
->bi_sector
+= rdev
->data_offset
;
3793 if (!bio_fits_rdev(align_bi
)) {
3794 /* too big in some way */
3796 rdev_dec_pending(rdev
, mddev
);
3800 spin_lock_irq(&conf
->device_lock
);
3801 wait_event_lock_irq(conf
->wait_for_stripe
,
3803 conf
->device_lock
, /* nothing */);
3804 atomic_inc(&conf
->active_aligned_reads
);
3805 spin_unlock_irq(&conf
->device_lock
);
3807 generic_make_request(align_bi
);
3816 /* __get_priority_stripe - get the next stripe to process
3818 * Full stripe writes are allowed to pass preread active stripes up until
3819 * the bypass_threshold is exceeded. In general the bypass_count
3820 * increments when the handle_list is handled before the hold_list; however, it
3821 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3822 * stripe with in flight i/o. The bypass_count will be reset when the
3823 * head of the hold_list has changed, i.e. the head was promoted to the
3826 static struct stripe_head
*__get_priority_stripe(raid5_conf_t
*conf
)
3828 struct stripe_head
*sh
;
3830 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3832 list_empty(&conf
->handle_list
) ? "empty" : "busy",
3833 list_empty(&conf
->hold_list
) ? "empty" : "busy",
3834 atomic_read(&conf
->pending_full_writes
), conf
->bypass_count
);
3836 if (!list_empty(&conf
->handle_list
)) {
3837 sh
= list_entry(conf
->handle_list
.next
, typeof(*sh
), lru
);
3839 if (list_empty(&conf
->hold_list
))
3840 conf
->bypass_count
= 0;
3841 else if (!test_bit(STRIPE_IO_STARTED
, &sh
->state
)) {
3842 if (conf
->hold_list
.next
== conf
->last_hold
)
3843 conf
->bypass_count
++;
3845 conf
->last_hold
= conf
->hold_list
.next
;
3846 conf
->bypass_count
-= conf
->bypass_threshold
;
3847 if (conf
->bypass_count
< 0)
3848 conf
->bypass_count
= 0;
3851 } else if (!list_empty(&conf
->hold_list
) &&
3852 ((conf
->bypass_threshold
&&
3853 conf
->bypass_count
> conf
->bypass_threshold
) ||
3854 atomic_read(&conf
->pending_full_writes
) == 0)) {
3855 sh
= list_entry(conf
->hold_list
.next
,
3857 conf
->bypass_count
-= conf
->bypass_threshold
;
3858 if (conf
->bypass_count
< 0)
3859 conf
->bypass_count
= 0;
3863 list_del_init(&sh
->lru
);
3864 atomic_inc(&sh
->count
);
3865 BUG_ON(atomic_read(&sh
->count
) != 1);
3869 static int make_request(struct request_queue
*q
, struct bio
* bi
)
3871 mddev_t
*mddev
= q
->queuedata
;
3872 raid5_conf_t
*conf
= mddev
->private;
3874 sector_t new_sector
;
3875 sector_t logical_sector
, last_sector
;
3876 struct stripe_head
*sh
;
3877 const int rw
= bio_data_dir(bi
);
3880 if (unlikely(bio_rw_flagged(bi
, BIO_RW_BARRIER
))) {
3881 /* Drain all pending writes. We only really need
3882 * to ensure they have been submitted, but this is
3885 mddev
->pers
->quiesce(mddev
, 1);
3886 mddev
->pers
->quiesce(mddev
, 0);
3887 md_barrier_request(mddev
, bi
);
3891 md_write_start(mddev
, bi
);
3893 cpu
= part_stat_lock();
3894 part_stat_inc(cpu
, &mddev
->gendisk
->part0
, ios
[rw
]);
3895 part_stat_add(cpu
, &mddev
->gendisk
->part0
, sectors
[rw
],
3900 mddev
->reshape_position
== MaxSector
&&
3901 chunk_aligned_read(q
,bi
))
3904 logical_sector
= bi
->bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
3905 last_sector
= bi
->bi_sector
+ (bi
->bi_size
>>9);
3907 bi
->bi_phys_segments
= 1; /* over-loaded to count active stripes */
3909 for (;logical_sector
< last_sector
; logical_sector
+= STRIPE_SECTORS
) {
3911 int disks
, data_disks
;
3916 disks
= conf
->raid_disks
;
3917 prepare_to_wait(&conf
->wait_for_overlap
, &w
, TASK_UNINTERRUPTIBLE
);
3918 if (unlikely(conf
->reshape_progress
!= MaxSector
)) {
3919 /* spinlock is needed as reshape_progress may be
3920 * 64bit on a 32bit platform, and so it might be
3921 * possible to see a half-updated value
3922 * Ofcourse reshape_progress could change after
3923 * the lock is dropped, so once we get a reference
3924 * to the stripe that we think it is, we will have
3927 spin_lock_irq(&conf
->device_lock
);
3928 if (mddev
->delta_disks
< 0
3929 ? logical_sector
< conf
->reshape_progress
3930 : logical_sector
>= conf
->reshape_progress
) {
3931 disks
= conf
->previous_raid_disks
;
3934 if (mddev
->delta_disks
< 0
3935 ? logical_sector
< conf
->reshape_safe
3936 : logical_sector
>= conf
->reshape_safe
) {
3937 spin_unlock_irq(&conf
->device_lock
);
3942 spin_unlock_irq(&conf
->device_lock
);
3944 data_disks
= disks
- conf
->max_degraded
;
3946 new_sector
= raid5_compute_sector(conf
, logical_sector
,
3949 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3950 (unsigned long long)new_sector
,
3951 (unsigned long long)logical_sector
);
3953 sh
= get_active_stripe(conf
, new_sector
, previous
,
3954 (bi
->bi_rw
&RWA_MASK
), 0);
3956 if (unlikely(previous
)) {
3957 /* expansion might have moved on while waiting for a
3958 * stripe, so we must do the range check again.
3959 * Expansion could still move past after this
3960 * test, but as we are holding a reference to
3961 * 'sh', we know that if that happens,
3962 * STRIPE_EXPANDING will get set and the expansion
3963 * won't proceed until we finish with the stripe.
3966 spin_lock_irq(&conf
->device_lock
);
3967 if (mddev
->delta_disks
< 0
3968 ? logical_sector
>= conf
->reshape_progress
3969 : logical_sector
< conf
->reshape_progress
)
3970 /* mismatch, need to try again */
3972 spin_unlock_irq(&conf
->device_lock
);
3980 if (bio_data_dir(bi
) == WRITE
&&
3981 logical_sector
>= mddev
->suspend_lo
&&
3982 logical_sector
< mddev
->suspend_hi
) {
3984 /* As the suspend_* range is controlled by
3985 * userspace, we want an interruptible
3988 flush_signals(current
);
3989 prepare_to_wait(&conf
->wait_for_overlap
,
3990 &w
, TASK_INTERRUPTIBLE
);
3991 if (logical_sector
>= mddev
->suspend_lo
&&
3992 logical_sector
< mddev
->suspend_hi
)
3997 if (test_bit(STRIPE_EXPANDING
, &sh
->state
) ||
3998 !add_stripe_bio(sh
, bi
, dd_idx
, (bi
->bi_rw
&RW_MASK
))) {
3999 /* Stripe is busy expanding or
4000 * add failed due to overlap. Flush everything
4003 raid5_unplug_device(mddev
->queue
);
4008 finish_wait(&conf
->wait_for_overlap
, &w
);
4009 set_bit(STRIPE_HANDLE
, &sh
->state
);
4010 clear_bit(STRIPE_DELAYED
, &sh
->state
);
4011 if (mddev
->barrier
&&
4012 !test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
4013 atomic_inc(&conf
->preread_active_stripes
);
4016 /* cannot get stripe for read-ahead, just give-up */
4017 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
4018 finish_wait(&conf
->wait_for_overlap
, &w
);
4023 spin_lock_irq(&conf
->device_lock
);
4024 remaining
= raid5_dec_bi_phys_segments(bi
);
4025 spin_unlock_irq(&conf
->device_lock
);
4026 if (remaining
== 0) {
4029 md_write_end(mddev
);
4034 if (mddev
->barrier
) {
4035 /* We need to wait for the stripes to all be handled.
4036 * So: wait for preread_active_stripes to drop to 0.
4038 wait_event(mddev
->thread
->wqueue
,
4039 atomic_read(&conf
->preread_active_stripes
) == 0);
4044 static sector_t
raid5_size(mddev_t
*mddev
, sector_t sectors
, int raid_disks
);
4046 static sector_t
reshape_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
)
4048 /* reshaping is quite different to recovery/resync so it is
4049 * handled quite separately ... here.
4051 * On each call to sync_request, we gather one chunk worth of
4052 * destination stripes and flag them as expanding.
4053 * Then we find all the source stripes and request reads.
4054 * As the reads complete, handle_stripe will copy the data
4055 * into the destination stripe and release that stripe.
4057 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
4058 struct stripe_head
*sh
;
4059 sector_t first_sector
, last_sector
;
4060 int raid_disks
= conf
->previous_raid_disks
;
4061 int data_disks
= raid_disks
- conf
->max_degraded
;
4062 int new_data_disks
= conf
->raid_disks
- conf
->max_degraded
;
4065 sector_t writepos
, readpos
, safepos
;
4066 sector_t stripe_addr
;
4067 int reshape_sectors
;
4068 struct list_head stripes
;
4070 if (sector_nr
== 0) {
4071 /* If restarting in the middle, skip the initial sectors */
4072 if (mddev
->delta_disks
< 0 &&
4073 conf
->reshape_progress
< raid5_size(mddev
, 0, 0)) {
4074 sector_nr
= raid5_size(mddev
, 0, 0)
4075 - conf
->reshape_progress
;
4076 } else if (mddev
->delta_disks
>= 0 &&
4077 conf
->reshape_progress
> 0)
4078 sector_nr
= conf
->reshape_progress
;
4079 sector_div(sector_nr
, new_data_disks
);
4081 mddev
->curr_resync_completed
= sector_nr
;
4082 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
4088 /* We need to process a full chunk at a time.
4089 * If old and new chunk sizes differ, we need to process the
4092 if (mddev
->new_chunk_sectors
> mddev
->chunk_sectors
)
4093 reshape_sectors
= mddev
->new_chunk_sectors
;
4095 reshape_sectors
= mddev
->chunk_sectors
;
4097 /* we update the metadata when there is more than 3Meg
4098 * in the block range (that is rather arbitrary, should
4099 * probably be time based) or when the data about to be
4100 * copied would over-write the source of the data at
4101 * the front of the range.
4102 * i.e. one new_stripe along from reshape_progress new_maps
4103 * to after where reshape_safe old_maps to
4105 writepos
= conf
->reshape_progress
;
4106 sector_div(writepos
, new_data_disks
);
4107 readpos
= conf
->reshape_progress
;
4108 sector_div(readpos
, data_disks
);
4109 safepos
= conf
->reshape_safe
;
4110 sector_div(safepos
, data_disks
);
4111 if (mddev
->delta_disks
< 0) {
4112 writepos
-= min_t(sector_t
, reshape_sectors
, writepos
);
4113 readpos
+= reshape_sectors
;
4114 safepos
+= reshape_sectors
;
4116 writepos
+= reshape_sectors
;
4117 readpos
-= min_t(sector_t
, reshape_sectors
, readpos
);
4118 safepos
-= min_t(sector_t
, reshape_sectors
, safepos
);
4121 /* 'writepos' is the most advanced device address we might write.
4122 * 'readpos' is the least advanced device address we might read.
4123 * 'safepos' is the least address recorded in the metadata as having
4125 * If 'readpos' is behind 'writepos', then there is no way that we can
4126 * ensure safety in the face of a crash - that must be done by userspace
4127 * making a backup of the data. So in that case there is no particular
4128 * rush to update metadata.
4129 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4130 * update the metadata to advance 'safepos' to match 'readpos' so that
4131 * we can be safe in the event of a crash.
4132 * So we insist on updating metadata if safepos is behind writepos and
4133 * readpos is beyond writepos.
4134 * In any case, update the metadata every 10 seconds.
4135 * Maybe that number should be configurable, but I'm not sure it is
4136 * worth it.... maybe it could be a multiple of safemode_delay???
4138 if ((mddev
->delta_disks
< 0
4139 ? (safepos
> writepos
&& readpos
< writepos
)
4140 : (safepos
< writepos
&& readpos
> writepos
)) ||
4141 time_after(jiffies
, conf
->reshape_checkpoint
+ 10*HZ
)) {
4142 /* Cannot proceed until we've updated the superblock... */
4143 wait_event(conf
->wait_for_overlap
,
4144 atomic_read(&conf
->reshape_stripes
)==0);
4145 mddev
->reshape_position
= conf
->reshape_progress
;
4146 mddev
->curr_resync_completed
= mddev
->curr_resync
;
4147 conf
->reshape_checkpoint
= jiffies
;
4148 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
4149 md_wakeup_thread(mddev
->thread
);
4150 wait_event(mddev
->sb_wait
, mddev
->flags
== 0 ||
4151 kthread_should_stop());
4152 spin_lock_irq(&conf
->device_lock
);
4153 conf
->reshape_safe
= mddev
->reshape_position
;
4154 spin_unlock_irq(&conf
->device_lock
);
4155 wake_up(&conf
->wait_for_overlap
);
4156 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
4159 if (mddev
->delta_disks
< 0) {
4160 BUG_ON(conf
->reshape_progress
== 0);
4161 stripe_addr
= writepos
;
4162 BUG_ON((mddev
->dev_sectors
&
4163 ~((sector_t
)reshape_sectors
- 1))
4164 - reshape_sectors
- stripe_addr
4167 BUG_ON(writepos
!= sector_nr
+ reshape_sectors
);
4168 stripe_addr
= sector_nr
;
4170 INIT_LIST_HEAD(&stripes
);
4171 for (i
= 0; i
< reshape_sectors
; i
+= STRIPE_SECTORS
) {
4173 int skipped_disk
= 0;
4174 sh
= get_active_stripe(conf
, stripe_addr
+i
, 0, 0, 1);
4175 set_bit(STRIPE_EXPANDING
, &sh
->state
);
4176 atomic_inc(&conf
->reshape_stripes
);
4177 /* If any of this stripe is beyond the end of the old
4178 * array, then we need to zero those blocks
4180 for (j
=sh
->disks
; j
--;) {
4182 if (j
== sh
->pd_idx
)
4184 if (conf
->level
== 6 &&
4187 s
= compute_blocknr(sh
, j
, 0);
4188 if (s
< raid5_size(mddev
, 0, 0)) {
4192 memset(page_address(sh
->dev
[j
].page
), 0, STRIPE_SIZE
);
4193 set_bit(R5_Expanded
, &sh
->dev
[j
].flags
);
4194 set_bit(R5_UPTODATE
, &sh
->dev
[j
].flags
);
4196 if (!skipped_disk
) {
4197 set_bit(STRIPE_EXPAND_READY
, &sh
->state
);
4198 set_bit(STRIPE_HANDLE
, &sh
->state
);
4200 list_add(&sh
->lru
, &stripes
);
4202 spin_lock_irq(&conf
->device_lock
);
4203 if (mddev
->delta_disks
< 0)
4204 conf
->reshape_progress
-= reshape_sectors
* new_data_disks
;
4206 conf
->reshape_progress
+= reshape_sectors
* new_data_disks
;
4207 spin_unlock_irq(&conf
->device_lock
);
4208 /* Ok, those stripe are ready. We can start scheduling
4209 * reads on the source stripes.
4210 * The source stripes are determined by mapping the first and last
4211 * block on the destination stripes.
4214 raid5_compute_sector(conf
, stripe_addr
*(new_data_disks
),
4217 raid5_compute_sector(conf
, ((stripe_addr
+reshape_sectors
)
4218 * new_data_disks
- 1),
4220 if (last_sector
>= mddev
->dev_sectors
)
4221 last_sector
= mddev
->dev_sectors
- 1;
4222 while (first_sector
<= last_sector
) {
4223 sh
= get_active_stripe(conf
, first_sector
, 1, 0, 1);
4224 set_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
4225 set_bit(STRIPE_HANDLE
, &sh
->state
);
4227 first_sector
+= STRIPE_SECTORS
;
4229 /* Now that the sources are clearly marked, we can release
4230 * the destination stripes
4232 while (!list_empty(&stripes
)) {
4233 sh
= list_entry(stripes
.next
, struct stripe_head
, lru
);
4234 list_del_init(&sh
->lru
);
4237 /* If this takes us to the resync_max point where we have to pause,
4238 * then we need to write out the superblock.
4240 sector_nr
+= reshape_sectors
;
4241 if ((sector_nr
- mddev
->curr_resync_completed
) * 2
4242 >= mddev
->resync_max
- mddev
->curr_resync_completed
) {
4243 /* Cannot proceed until we've updated the superblock... */
4244 wait_event(conf
->wait_for_overlap
,
4245 atomic_read(&conf
->reshape_stripes
) == 0);
4246 mddev
->reshape_position
= conf
->reshape_progress
;
4247 mddev
->curr_resync_completed
= mddev
->curr_resync
+ reshape_sectors
;
4248 conf
->reshape_checkpoint
= jiffies
;
4249 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
4250 md_wakeup_thread(mddev
->thread
);
4251 wait_event(mddev
->sb_wait
,
4252 !test_bit(MD_CHANGE_DEVS
, &mddev
->flags
)
4253 || kthread_should_stop());
4254 spin_lock_irq(&conf
->device_lock
);
4255 conf
->reshape_safe
= mddev
->reshape_position
;
4256 spin_unlock_irq(&conf
->device_lock
);
4257 wake_up(&conf
->wait_for_overlap
);
4258 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
4260 return reshape_sectors
;
4263 /* FIXME go_faster isn't used */
4264 static inline sector_t
sync_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
4266 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
4267 struct stripe_head
*sh
;
4268 sector_t max_sector
= mddev
->dev_sectors
;
4270 int still_degraded
= 0;
4273 if (sector_nr
>= max_sector
) {
4274 /* just being told to finish up .. nothing much to do */
4275 unplug_slaves(mddev
);
4277 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)) {
4282 if (mddev
->curr_resync
< max_sector
) /* aborted */
4283 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
4285 else /* completed sync */
4287 bitmap_close_sync(mddev
->bitmap
);
4292 /* Allow raid5_quiesce to complete */
4293 wait_event(conf
->wait_for_overlap
, conf
->quiesce
!= 2);
4295 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
4296 return reshape_request(mddev
, sector_nr
, skipped
);
4298 /* No need to check resync_max as we never do more than one
4299 * stripe, and as resync_max will always be on a chunk boundary,
4300 * if the check in md_do_sync didn't fire, there is no chance
4301 * of overstepping resync_max here
4304 /* if there is too many failed drives and we are trying
4305 * to resync, then assert that we are finished, because there is
4306 * nothing we can do.
4308 if (mddev
->degraded
>= conf
->max_degraded
&&
4309 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
4310 sector_t rv
= mddev
->dev_sectors
- sector_nr
;
4314 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
4315 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
4316 !conf
->fullsync
&& sync_blocks
>= STRIPE_SECTORS
) {
4317 /* we can skip this block, and probably more */
4318 sync_blocks
/= STRIPE_SECTORS
;
4320 return sync_blocks
* STRIPE_SECTORS
; /* keep things rounded to whole stripes */
4324 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
4326 sh
= get_active_stripe(conf
, sector_nr
, 0, 1, 0);
4328 sh
= get_active_stripe(conf
, sector_nr
, 0, 0, 0);
4329 /* make sure we don't swamp the stripe cache if someone else
4330 * is trying to get access
4332 schedule_timeout_uninterruptible(1);
4334 /* Need to check if array will still be degraded after recovery/resync
4335 * We don't need to check the 'failed' flag as when that gets set,
4338 for (i
= 0; i
< conf
->raid_disks
; i
++)
4339 if (conf
->disks
[i
].rdev
== NULL
)
4342 bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, still_degraded
);
4344 spin_lock(&sh
->lock
);
4345 set_bit(STRIPE_SYNCING
, &sh
->state
);
4346 clear_bit(STRIPE_INSYNC
, &sh
->state
);
4347 spin_unlock(&sh
->lock
);
4352 return STRIPE_SECTORS
;
4355 static int retry_aligned_read(raid5_conf_t
*conf
, struct bio
*raid_bio
)
4357 /* We may not be able to submit a whole bio at once as there
4358 * may not be enough stripe_heads available.
4359 * We cannot pre-allocate enough stripe_heads as we may need
4360 * more than exist in the cache (if we allow ever large chunks).
4361 * So we do one stripe head at a time and record in
4362 * ->bi_hw_segments how many have been done.
4364 * We *know* that this entire raid_bio is in one chunk, so
4365 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4367 struct stripe_head
*sh
;
4369 sector_t sector
, logical_sector
, last_sector
;
4374 logical_sector
= raid_bio
->bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
4375 sector
= raid5_compute_sector(conf
, logical_sector
,
4377 last_sector
= raid_bio
->bi_sector
+ (raid_bio
->bi_size
>>9);
4379 for (; logical_sector
< last_sector
;
4380 logical_sector
+= STRIPE_SECTORS
,
4381 sector
+= STRIPE_SECTORS
,
4384 if (scnt
< raid5_bi_hw_segments(raid_bio
))
4385 /* already done this stripe */
4388 sh
= get_active_stripe(conf
, sector
, 0, 1, 0);
4391 /* failed to get a stripe - must wait */
4392 raid5_set_bi_hw_segments(raid_bio
, scnt
);
4393 conf
->retry_read_aligned
= raid_bio
;
4397 set_bit(R5_ReadError
, &sh
->dev
[dd_idx
].flags
);
4398 if (!add_stripe_bio(sh
, raid_bio
, dd_idx
, 0)) {
4400 raid5_set_bi_hw_segments(raid_bio
, scnt
);
4401 conf
->retry_read_aligned
= raid_bio
;
4409 spin_lock_irq(&conf
->device_lock
);
4410 remaining
= raid5_dec_bi_phys_segments(raid_bio
);
4411 spin_unlock_irq(&conf
->device_lock
);
4413 bio_endio(raid_bio
, 0);
4414 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
4415 wake_up(&conf
->wait_for_stripe
);
4421 * This is our raid5 kernel thread.
4423 * We scan the hash table for stripes which can be handled now.
4424 * During the scan, completed stripes are saved for us by the interrupt
4425 * handler, so that they will not have to wait for our next wakeup.
4427 static void raid5d(mddev_t
*mddev
)
4429 struct stripe_head
*sh
;
4430 raid5_conf_t
*conf
= mddev
->private;
4433 pr_debug("+++ raid5d active\n");
4435 md_check_recovery(mddev
);
4438 spin_lock_irq(&conf
->device_lock
);
4442 if (conf
->seq_flush
!= conf
->seq_write
) {
4443 int seq
= conf
->seq_flush
;
4444 spin_unlock_irq(&conf
->device_lock
);
4445 bitmap_unplug(mddev
->bitmap
);
4446 spin_lock_irq(&conf
->device_lock
);
4447 conf
->seq_write
= seq
;
4448 activate_bit_delay(conf
);
4451 while ((bio
= remove_bio_from_retry(conf
))) {
4453 spin_unlock_irq(&conf
->device_lock
);
4454 ok
= retry_aligned_read(conf
, bio
);
4455 spin_lock_irq(&conf
->device_lock
);
4461 sh
= __get_priority_stripe(conf
);
4465 spin_unlock_irq(&conf
->device_lock
);
4472 spin_lock_irq(&conf
->device_lock
);
4474 pr_debug("%d stripes handled\n", handled
);
4476 spin_unlock_irq(&conf
->device_lock
);
4478 async_tx_issue_pending_all();
4479 unplug_slaves(mddev
);
4481 pr_debug("--- raid5d inactive\n");
4485 raid5_show_stripe_cache_size(mddev_t
*mddev
, char *page
)
4487 raid5_conf_t
*conf
= mddev
->private;
4489 return sprintf(page
, "%d\n", conf
->max_nr_stripes
);
4495 raid5_store_stripe_cache_size(mddev_t
*mddev
, const char *page
, size_t len
)
4497 raid5_conf_t
*conf
= mddev
->private;
4501 if (len
>= PAGE_SIZE
)
4506 if (strict_strtoul(page
, 10, &new))
4508 if (new <= 16 || new > 32768)
4510 while (new < conf
->max_nr_stripes
) {
4511 if (drop_one_stripe(conf
))
4512 conf
->max_nr_stripes
--;
4516 err
= md_allow_write(mddev
);
4519 while (new > conf
->max_nr_stripes
) {
4520 if (grow_one_stripe(conf
))
4521 conf
->max_nr_stripes
++;
4527 static struct md_sysfs_entry
4528 raid5_stripecache_size
= __ATTR(stripe_cache_size
, S_IRUGO
| S_IWUSR
,
4529 raid5_show_stripe_cache_size
,
4530 raid5_store_stripe_cache_size
);
4533 raid5_show_preread_threshold(mddev_t
*mddev
, char *page
)
4535 raid5_conf_t
*conf
= mddev
->private;
4537 return sprintf(page
, "%d\n", conf
->bypass_threshold
);
4543 raid5_store_preread_threshold(mddev_t
*mddev
, const char *page
, size_t len
)
4545 raid5_conf_t
*conf
= mddev
->private;
4547 if (len
>= PAGE_SIZE
)
4552 if (strict_strtoul(page
, 10, &new))
4554 if (new > conf
->max_nr_stripes
)
4556 conf
->bypass_threshold
= new;
4560 static struct md_sysfs_entry
4561 raid5_preread_bypass_threshold
= __ATTR(preread_bypass_threshold
,
4563 raid5_show_preread_threshold
,
4564 raid5_store_preread_threshold
);
4567 stripe_cache_active_show(mddev_t
*mddev
, char *page
)
4569 raid5_conf_t
*conf
= mddev
->private;
4571 return sprintf(page
, "%d\n", atomic_read(&conf
->active_stripes
));
4576 static struct md_sysfs_entry
4577 raid5_stripecache_active
= __ATTR_RO(stripe_cache_active
);
4579 static struct attribute
*raid5_attrs
[] = {
4580 &raid5_stripecache_size
.attr
,
4581 &raid5_stripecache_active
.attr
,
4582 &raid5_preread_bypass_threshold
.attr
,
4585 static struct attribute_group raid5_attrs_group
= {
4587 .attrs
= raid5_attrs
,
4591 raid5_size(mddev_t
*mddev
, sector_t sectors
, int raid_disks
)
4593 raid5_conf_t
*conf
= mddev
->private;
4596 sectors
= mddev
->dev_sectors
;
4598 /* size is defined by the smallest of previous and new size */
4599 raid_disks
= min(conf
->raid_disks
, conf
->previous_raid_disks
);
4601 sectors
&= ~((sector_t
)mddev
->chunk_sectors
- 1);
4602 sectors
&= ~((sector_t
)mddev
->new_chunk_sectors
- 1);
4603 return sectors
* (raid_disks
- conf
->max_degraded
);
4606 static void raid5_free_percpu(raid5_conf_t
*conf
)
4608 struct raid5_percpu
*percpu
;
4615 for_each_possible_cpu(cpu
) {
4616 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
4617 safe_put_page(percpu
->spare_page
);
4618 kfree(percpu
->scribble
);
4620 #ifdef CONFIG_HOTPLUG_CPU
4621 unregister_cpu_notifier(&conf
->cpu_notify
);
4625 free_percpu(conf
->percpu
);
4628 static void free_conf(raid5_conf_t
*conf
)
4630 shrink_stripes(conf
);
4631 raid5_free_percpu(conf
);
4633 kfree(conf
->stripe_hashtbl
);
4637 #ifdef CONFIG_HOTPLUG_CPU
4638 static int raid456_cpu_notify(struct notifier_block
*nfb
, unsigned long action
,
4641 raid5_conf_t
*conf
= container_of(nfb
, raid5_conf_t
, cpu_notify
);
4642 long cpu
= (long)hcpu
;
4643 struct raid5_percpu
*percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
4646 case CPU_UP_PREPARE
:
4647 case CPU_UP_PREPARE_FROZEN
:
4648 if (conf
->level
== 6 && !percpu
->spare_page
)
4649 percpu
->spare_page
= alloc_page(GFP_KERNEL
);
4650 if (!percpu
->scribble
)
4651 percpu
->scribble
= kmalloc(conf
->scribble_len
, GFP_KERNEL
);
4653 if (!percpu
->scribble
||
4654 (conf
->level
== 6 && !percpu
->spare_page
)) {
4655 safe_put_page(percpu
->spare_page
);
4656 kfree(percpu
->scribble
);
4657 pr_err("%s: failed memory allocation for cpu%ld\n",
4663 case CPU_DEAD_FROZEN
:
4664 safe_put_page(percpu
->spare_page
);
4665 kfree(percpu
->scribble
);
4666 percpu
->spare_page
= NULL
;
4667 percpu
->scribble
= NULL
;
4676 static int raid5_alloc_percpu(raid5_conf_t
*conf
)
4679 struct page
*spare_page
;
4680 struct raid5_percpu __percpu
*allcpus
;
4684 allcpus
= alloc_percpu(struct raid5_percpu
);
4687 conf
->percpu
= allcpus
;
4691 for_each_present_cpu(cpu
) {
4692 if (conf
->level
== 6) {
4693 spare_page
= alloc_page(GFP_KERNEL
);
4698 per_cpu_ptr(conf
->percpu
, cpu
)->spare_page
= spare_page
;
4700 scribble
= kmalloc(conf
->scribble_len
, GFP_KERNEL
);
4705 per_cpu_ptr(conf
->percpu
, cpu
)->scribble
= scribble
;
4707 #ifdef CONFIG_HOTPLUG_CPU
4708 conf
->cpu_notify
.notifier_call
= raid456_cpu_notify
;
4709 conf
->cpu_notify
.priority
= 0;
4711 err
= register_cpu_notifier(&conf
->cpu_notify
);
4718 static raid5_conf_t
*setup_conf(mddev_t
*mddev
)
4721 int raid_disk
, memory
, max_disks
;
4723 struct disk_info
*disk
;
4725 if (mddev
->new_level
!= 5
4726 && mddev
->new_level
!= 4
4727 && mddev
->new_level
!= 6) {
4728 printk(KERN_ERR
"raid5: %s: raid level not set to 4/5/6 (%d)\n",
4729 mdname(mddev
), mddev
->new_level
);
4730 return ERR_PTR(-EIO
);
4732 if ((mddev
->new_level
== 5
4733 && !algorithm_valid_raid5(mddev
->new_layout
)) ||
4734 (mddev
->new_level
== 6
4735 && !algorithm_valid_raid6(mddev
->new_layout
))) {
4736 printk(KERN_ERR
"raid5: %s: layout %d not supported\n",
4737 mdname(mddev
), mddev
->new_layout
);
4738 return ERR_PTR(-EIO
);
4740 if (mddev
->new_level
== 6 && mddev
->raid_disks
< 4) {
4741 printk(KERN_ERR
"raid6: not enough configured devices for %s (%d, minimum 4)\n",
4742 mdname(mddev
), mddev
->raid_disks
);
4743 return ERR_PTR(-EINVAL
);
4746 if (!mddev
->new_chunk_sectors
||
4747 (mddev
->new_chunk_sectors
<< 9) % PAGE_SIZE
||
4748 !is_power_of_2(mddev
->new_chunk_sectors
)) {
4749 printk(KERN_ERR
"raid5: invalid chunk size %d for %s\n",
4750 mddev
->new_chunk_sectors
<< 9, mdname(mddev
));
4751 return ERR_PTR(-EINVAL
);
4754 conf
= kzalloc(sizeof(raid5_conf_t
), GFP_KERNEL
);
4757 spin_lock_init(&conf
->device_lock
);
4758 init_waitqueue_head(&conf
->wait_for_stripe
);
4759 init_waitqueue_head(&conf
->wait_for_overlap
);
4760 INIT_LIST_HEAD(&conf
->handle_list
);
4761 INIT_LIST_HEAD(&conf
->hold_list
);
4762 INIT_LIST_HEAD(&conf
->delayed_list
);
4763 INIT_LIST_HEAD(&conf
->bitmap_list
);
4764 INIT_LIST_HEAD(&conf
->inactive_list
);
4765 atomic_set(&conf
->active_stripes
, 0);
4766 atomic_set(&conf
->preread_active_stripes
, 0);
4767 atomic_set(&conf
->active_aligned_reads
, 0);
4768 conf
->bypass_threshold
= BYPASS_THRESHOLD
;
4770 conf
->raid_disks
= mddev
->raid_disks
;
4771 if (mddev
->reshape_position
== MaxSector
)
4772 conf
->previous_raid_disks
= mddev
->raid_disks
;
4774 conf
->previous_raid_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
4775 max_disks
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
4776 conf
->scribble_len
= scribble_len(max_disks
);
4778 conf
->disks
= kzalloc(max_disks
* sizeof(struct disk_info
),
4783 conf
->mddev
= mddev
;
4785 if ((conf
->stripe_hashtbl
= kzalloc(PAGE_SIZE
, GFP_KERNEL
)) == NULL
)
4788 conf
->level
= mddev
->new_level
;
4789 if (raid5_alloc_percpu(conf
) != 0)
4792 pr_debug("raid5: run(%s) called.\n", mdname(mddev
));
4794 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
4795 raid_disk
= rdev
->raid_disk
;
4796 if (raid_disk
>= max_disks
4799 disk
= conf
->disks
+ raid_disk
;
4803 if (test_bit(In_sync
, &rdev
->flags
)) {
4804 char b
[BDEVNAME_SIZE
];
4805 printk(KERN_INFO
"raid5: device %s operational as raid"
4806 " disk %d\n", bdevname(rdev
->bdev
,b
),
4809 /* Cannot rely on bitmap to complete recovery */
4813 conf
->chunk_sectors
= mddev
->new_chunk_sectors
;
4814 conf
->level
= mddev
->new_level
;
4815 if (conf
->level
== 6)
4816 conf
->max_degraded
= 2;
4818 conf
->max_degraded
= 1;
4819 conf
->algorithm
= mddev
->new_layout
;
4820 conf
->max_nr_stripes
= NR_STRIPES
;
4821 conf
->reshape_progress
= mddev
->reshape_position
;
4822 if (conf
->reshape_progress
!= MaxSector
) {
4823 conf
->prev_chunk_sectors
= mddev
->chunk_sectors
;
4824 conf
->prev_algo
= mddev
->layout
;
4827 memory
= conf
->max_nr_stripes
* (sizeof(struct stripe_head
) +
4828 max_disks
* ((sizeof(struct bio
) + PAGE_SIZE
))) / 1024;
4829 if (grow_stripes(conf
, conf
->max_nr_stripes
)) {
4831 "raid5: couldn't allocate %dkB for buffers\n", memory
);
4834 printk(KERN_INFO
"raid5: allocated %dkB for %s\n",
4835 memory
, mdname(mddev
));
4837 conf
->thread
= md_register_thread(raid5d
, mddev
, NULL
);
4838 if (!conf
->thread
) {
4840 "raid5: couldn't allocate thread for %s\n",
4850 return ERR_PTR(-EIO
);
4852 return ERR_PTR(-ENOMEM
);
4856 static int only_parity(int raid_disk
, int algo
, int raid_disks
, int max_degraded
)
4859 case ALGORITHM_PARITY_0
:
4860 if (raid_disk
< max_degraded
)
4863 case ALGORITHM_PARITY_N
:
4864 if (raid_disk
>= raid_disks
- max_degraded
)
4867 case ALGORITHM_PARITY_0_6
:
4868 if (raid_disk
== 0 ||
4869 raid_disk
== raid_disks
- 1)
4872 case ALGORITHM_LEFT_ASYMMETRIC_6
:
4873 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
4874 case ALGORITHM_LEFT_SYMMETRIC_6
:
4875 case ALGORITHM_RIGHT_SYMMETRIC_6
:
4876 if (raid_disk
== raid_disks
- 1)
4882 static int run(mddev_t
*mddev
)
4885 int working_disks
= 0, chunk_size
;
4886 int dirty_parity_disks
= 0;
4888 sector_t reshape_offset
= 0;
4890 if (mddev
->recovery_cp
!= MaxSector
)
4891 printk(KERN_NOTICE
"raid5: %s is not clean"
4892 " -- starting background reconstruction\n",
4894 if (mddev
->reshape_position
!= MaxSector
) {
4895 /* Check that we can continue the reshape.
4896 * Currently only disks can change, it must
4897 * increase, and we must be past the point where
4898 * a stripe over-writes itself
4900 sector_t here_new
, here_old
;
4902 int max_degraded
= (mddev
->level
== 6 ? 2 : 1);
4904 if (mddev
->new_level
!= mddev
->level
) {
4905 printk(KERN_ERR
"raid5: %s: unsupported reshape "
4906 "required - aborting.\n",
4910 old_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
4911 /* reshape_position must be on a new-stripe boundary, and one
4912 * further up in new geometry must map after here in old
4915 here_new
= mddev
->reshape_position
;
4916 if (sector_div(here_new
, mddev
->new_chunk_sectors
*
4917 (mddev
->raid_disks
- max_degraded
))) {
4918 printk(KERN_ERR
"raid5: reshape_position not "
4919 "on a stripe boundary\n");
4922 reshape_offset
= here_new
* mddev
->new_chunk_sectors
;
4923 /* here_new is the stripe we will write to */
4924 here_old
= mddev
->reshape_position
;
4925 sector_div(here_old
, mddev
->chunk_sectors
*
4926 (old_disks
-max_degraded
));
4927 /* here_old is the first stripe that we might need to read
4929 if (mddev
->delta_disks
== 0) {
4930 /* We cannot be sure it is safe to start an in-place
4931 * reshape. It is only safe if user-space if monitoring
4932 * and taking constant backups.
4933 * mdadm always starts a situation like this in
4934 * readonly mode so it can take control before
4935 * allowing any writes. So just check for that.
4937 if ((here_new
* mddev
->new_chunk_sectors
!=
4938 here_old
* mddev
->chunk_sectors
) ||
4940 printk(KERN_ERR
"raid5: in-place reshape must be started"
4941 " in read-only mode - aborting\n");
4944 } else if (mddev
->delta_disks
< 0
4945 ? (here_new
* mddev
->new_chunk_sectors
<=
4946 here_old
* mddev
->chunk_sectors
)
4947 : (here_new
* mddev
->new_chunk_sectors
>=
4948 here_old
* mddev
->chunk_sectors
)) {
4949 /* Reading from the same stripe as writing to - bad */
4950 printk(KERN_ERR
"raid5: reshape_position too early for "
4951 "auto-recovery - aborting.\n");
4954 printk(KERN_INFO
"raid5: reshape will continue\n");
4955 /* OK, we should be able to continue; */
4957 BUG_ON(mddev
->level
!= mddev
->new_level
);
4958 BUG_ON(mddev
->layout
!= mddev
->new_layout
);
4959 BUG_ON(mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
);
4960 BUG_ON(mddev
->delta_disks
!= 0);
4963 if (mddev
->private == NULL
)
4964 conf
= setup_conf(mddev
);
4966 conf
= mddev
->private;
4969 return PTR_ERR(conf
);
4971 mddev
->thread
= conf
->thread
;
4972 conf
->thread
= NULL
;
4973 mddev
->private = conf
;
4976 * 0 for a fully functional array, 1 or 2 for a degraded array.
4978 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
4979 if (rdev
->raid_disk
< 0)
4981 if (test_bit(In_sync
, &rdev
->flags
))
4983 /* This disc is not fully in-sync. However if it
4984 * just stored parity (beyond the recovery_offset),
4985 * when we don't need to be concerned about the
4986 * array being dirty.
4987 * When reshape goes 'backwards', we never have
4988 * partially completed devices, so we only need
4989 * to worry about reshape going forwards.
4991 /* Hack because v0.91 doesn't store recovery_offset properly. */
4992 if (mddev
->major_version
== 0 &&
4993 mddev
->minor_version
> 90)
4994 rdev
->recovery_offset
= reshape_offset
;
4996 printk("%d: w=%d pa=%d pr=%d m=%d a=%d r=%d op1=%d op2=%d\n",
4997 rdev
->raid_disk
, working_disks
, conf
->prev_algo
,
4998 conf
->previous_raid_disks
, conf
->max_degraded
,
4999 conf
->algorithm
, conf
->raid_disks
,
5000 only_parity(rdev
->raid_disk
,
5002 conf
->previous_raid_disks
,
5003 conf
->max_degraded
),
5004 only_parity(rdev
->raid_disk
,
5007 conf
->max_degraded
));
5008 if (rdev
->recovery_offset
< reshape_offset
) {
5009 /* We need to check old and new layout */
5010 if (!only_parity(rdev
->raid_disk
,
5013 conf
->max_degraded
))
5016 if (!only_parity(rdev
->raid_disk
,
5018 conf
->previous_raid_disks
,
5019 conf
->max_degraded
))
5021 dirty_parity_disks
++;
5024 mddev
->degraded
= (max(conf
->raid_disks
, conf
->previous_raid_disks
)
5027 if (mddev
->degraded
> conf
->max_degraded
) {
5028 printk(KERN_ERR
"raid5: not enough operational devices for %s"
5029 " (%d/%d failed)\n",
5030 mdname(mddev
), mddev
->degraded
, conf
->raid_disks
);
5034 /* device size must be a multiple of chunk size */
5035 mddev
->dev_sectors
&= ~(mddev
->chunk_sectors
- 1);
5036 mddev
->resync_max_sectors
= mddev
->dev_sectors
;
5038 if (mddev
->degraded
> dirty_parity_disks
&&
5039 mddev
->recovery_cp
!= MaxSector
) {
5040 if (mddev
->ok_start_degraded
)
5042 "raid5: starting dirty degraded array: %s"
5043 "- data corruption possible.\n",
5047 "raid5: cannot start dirty degraded array for %s\n",
5053 if (mddev
->degraded
== 0)
5054 printk("raid5: raid level %d set %s active with %d out of %d"
5055 " devices, algorithm %d\n", conf
->level
, mdname(mddev
),
5056 mddev
->raid_disks
-mddev
->degraded
, mddev
->raid_disks
,
5059 printk(KERN_ALERT
"raid5: raid level %d set %s active with %d"
5060 " out of %d devices, algorithm %d\n", conf
->level
,
5061 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
5062 mddev
->raid_disks
, mddev
->new_layout
);
5064 print_raid5_conf(conf
);
5066 if (conf
->reshape_progress
!= MaxSector
) {
5067 printk("...ok start reshape thread\n");
5068 conf
->reshape_safe
= conf
->reshape_progress
;
5069 atomic_set(&conf
->reshape_stripes
, 0);
5070 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
5071 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
5072 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
5073 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
5074 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
5078 /* read-ahead size must cover two whole stripes, which is
5079 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5082 int data_disks
= conf
->previous_raid_disks
- conf
->max_degraded
;
5083 int stripe
= data_disks
*
5084 ((mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
5085 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
5086 mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
5089 /* Ok, everything is just fine now */
5090 if (sysfs_create_group(&mddev
->kobj
, &raid5_attrs_group
))
5092 "raid5: failed to create sysfs attributes for %s\n",
5095 mddev
->queue
->queue_lock
= &conf
->device_lock
;
5097 mddev
->queue
->unplug_fn
= raid5_unplug_device
;
5098 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
5099 mddev
->queue
->backing_dev_info
.congested_fn
= raid5_congested
;
5101 md_set_array_sectors(mddev
, raid5_size(mddev
, 0, 0));
5103 blk_queue_merge_bvec(mddev
->queue
, raid5_mergeable_bvec
);
5104 chunk_size
= mddev
->chunk_sectors
<< 9;
5105 blk_queue_io_min(mddev
->queue
, chunk_size
);
5106 blk_queue_io_opt(mddev
->queue
, chunk_size
*
5107 (conf
->raid_disks
- conf
->max_degraded
));
5109 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
5110 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
5111 rdev
->data_offset
<< 9);
5115 md_unregister_thread(mddev
->thread
);
5116 mddev
->thread
= NULL
;
5118 print_raid5_conf(conf
);
5121 mddev
->private = NULL
;
5122 printk(KERN_ALERT
"raid5: failed to run raid set %s\n", mdname(mddev
));
5128 static int stop(mddev_t
*mddev
)
5130 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
5132 md_unregister_thread(mddev
->thread
);
5133 mddev
->thread
= NULL
;
5134 mddev
->queue
->backing_dev_info
.congested_fn
= NULL
;
5135 blk_sync_queue(mddev
->queue
); /* the unplug fn references 'conf'*/
5137 mddev
->private = &raid5_attrs_group
;
5142 static void print_sh(struct seq_file
*seq
, struct stripe_head
*sh
)
5146 seq_printf(seq
, "sh %llu, pd_idx %d, state %ld.\n",
5147 (unsigned long long)sh
->sector
, sh
->pd_idx
, sh
->state
);
5148 seq_printf(seq
, "sh %llu, count %d.\n",
5149 (unsigned long long)sh
->sector
, atomic_read(&sh
->count
));
5150 seq_printf(seq
, "sh %llu, ", (unsigned long long)sh
->sector
);
5151 for (i
= 0; i
< sh
->disks
; i
++) {
5152 seq_printf(seq
, "(cache%d: %p %ld) ",
5153 i
, sh
->dev
[i
].page
, sh
->dev
[i
].flags
);
5155 seq_printf(seq
, "\n");
5158 static void printall(struct seq_file
*seq
, raid5_conf_t
*conf
)
5160 struct stripe_head
*sh
;
5161 struct hlist_node
*hn
;
5164 spin_lock_irq(&conf
->device_lock
);
5165 for (i
= 0; i
< NR_HASH
; i
++) {
5166 hlist_for_each_entry(sh
, hn
, &conf
->stripe_hashtbl
[i
], hash
) {
5167 if (sh
->raid_conf
!= conf
)
5172 spin_unlock_irq(&conf
->device_lock
);
5176 static void status(struct seq_file
*seq
, mddev_t
*mddev
)
5178 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
5181 seq_printf(seq
, " level %d, %dk chunk, algorithm %d", mddev
->level
,
5182 mddev
->chunk_sectors
/ 2, mddev
->layout
);
5183 seq_printf (seq
, " [%d/%d] [", conf
->raid_disks
, conf
->raid_disks
- mddev
->degraded
);
5184 for (i
= 0; i
< conf
->raid_disks
; i
++)
5185 seq_printf (seq
, "%s",
5186 conf
->disks
[i
].rdev
&&
5187 test_bit(In_sync
, &conf
->disks
[i
].rdev
->flags
) ? "U" : "_");
5188 seq_printf (seq
, "]");
5190 seq_printf (seq
, "\n");
5191 printall(seq
, conf
);
5195 static void print_raid5_conf (raid5_conf_t
*conf
)
5198 struct disk_info
*tmp
;
5200 printk("RAID5 conf printout:\n");
5202 printk("(conf==NULL)\n");
5205 printk(" --- rd:%d wd:%d\n", conf
->raid_disks
,
5206 conf
->raid_disks
- conf
->mddev
->degraded
);
5208 for (i
= 0; i
< conf
->raid_disks
; i
++) {
5209 char b
[BDEVNAME_SIZE
];
5210 tmp
= conf
->disks
+ i
;
5212 printk(" disk %d, o:%d, dev:%s\n",
5213 i
, !test_bit(Faulty
, &tmp
->rdev
->flags
),
5214 bdevname(tmp
->rdev
->bdev
,b
));
5218 static int raid5_spare_active(mddev_t
*mddev
)
5221 raid5_conf_t
*conf
= mddev
->private;
5222 struct disk_info
*tmp
;
5224 for (i
= 0; i
< conf
->raid_disks
; i
++) {
5225 tmp
= conf
->disks
+ i
;
5227 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
5228 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
5229 unsigned long flags
;
5230 spin_lock_irqsave(&conf
->device_lock
, flags
);
5232 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
5235 print_raid5_conf(conf
);
5239 static int raid5_remove_disk(mddev_t
*mddev
, int number
)
5241 raid5_conf_t
*conf
= mddev
->private;
5244 struct disk_info
*p
= conf
->disks
+ number
;
5246 print_raid5_conf(conf
);
5249 if (number
>= conf
->raid_disks
&&
5250 conf
->reshape_progress
== MaxSector
)
5251 clear_bit(In_sync
, &rdev
->flags
);
5253 if (test_bit(In_sync
, &rdev
->flags
) ||
5254 atomic_read(&rdev
->nr_pending
)) {
5258 /* Only remove non-faulty devices if recovery
5261 if (!test_bit(Faulty
, &rdev
->flags
) &&
5262 mddev
->degraded
<= conf
->max_degraded
&&
5263 number
< conf
->raid_disks
) {
5269 if (atomic_read(&rdev
->nr_pending
)) {
5270 /* lost the race, try later */
5277 print_raid5_conf(conf
);
5281 static int raid5_add_disk(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
5283 raid5_conf_t
*conf
= mddev
->private;
5286 struct disk_info
*p
;
5288 int last
= conf
->raid_disks
- 1;
5290 if (mddev
->degraded
> conf
->max_degraded
)
5291 /* no point adding a device */
5294 if (rdev
->raid_disk
>= 0)
5295 first
= last
= rdev
->raid_disk
;
5298 * find the disk ... but prefer rdev->saved_raid_disk
5301 if (rdev
->saved_raid_disk
>= 0 &&
5302 rdev
->saved_raid_disk
>= first
&&
5303 conf
->disks
[rdev
->saved_raid_disk
].rdev
== NULL
)
5304 disk
= rdev
->saved_raid_disk
;
5307 for ( ; disk
<= last
; disk
++)
5308 if ((p
=conf
->disks
+ disk
)->rdev
== NULL
) {
5309 clear_bit(In_sync
, &rdev
->flags
);
5310 rdev
->raid_disk
= disk
;
5312 if (rdev
->saved_raid_disk
!= disk
)
5314 rcu_assign_pointer(p
->rdev
, rdev
);
5317 print_raid5_conf(conf
);
5321 static int raid5_resize(mddev_t
*mddev
, sector_t sectors
)
5323 /* no resync is happening, and there is enough space
5324 * on all devices, so we can resize.
5325 * We need to make sure resync covers any new space.
5326 * If the array is shrinking we should possibly wait until
5327 * any io in the removed space completes, but it hardly seems
5330 sectors
&= ~((sector_t
)mddev
->chunk_sectors
- 1);
5331 md_set_array_sectors(mddev
, raid5_size(mddev
, sectors
,
5332 mddev
->raid_disks
));
5333 if (mddev
->array_sectors
>
5334 raid5_size(mddev
, sectors
, mddev
->raid_disks
))
5336 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
5338 revalidate_disk(mddev
->gendisk
);
5339 if (sectors
> mddev
->dev_sectors
&& mddev
->recovery_cp
== MaxSector
) {
5340 mddev
->recovery_cp
= mddev
->dev_sectors
;
5341 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
5343 mddev
->dev_sectors
= sectors
;
5344 mddev
->resync_max_sectors
= sectors
;
5348 static int check_stripe_cache(mddev_t
*mddev
)
5350 /* Can only proceed if there are plenty of stripe_heads.
5351 * We need a minimum of one full stripe,, and for sensible progress
5352 * it is best to have about 4 times that.
5353 * If we require 4 times, then the default 256 4K stripe_heads will
5354 * allow for chunk sizes up to 256K, which is probably OK.
5355 * If the chunk size is greater, user-space should request more
5356 * stripe_heads first.
5358 raid5_conf_t
*conf
= mddev
->private;
5359 if (((mddev
->chunk_sectors
<< 9) / STRIPE_SIZE
) * 4
5360 > conf
->max_nr_stripes
||
5361 ((mddev
->new_chunk_sectors
<< 9) / STRIPE_SIZE
) * 4
5362 > conf
->max_nr_stripes
) {
5363 printk(KERN_WARNING
"raid5: reshape: not enough stripes. Needed %lu\n",
5364 ((max(mddev
->chunk_sectors
, mddev
->new_chunk_sectors
) << 9)
5371 static int check_reshape(mddev_t
*mddev
)
5373 raid5_conf_t
*conf
= mddev
->private;
5375 if (mddev
->delta_disks
== 0 &&
5376 mddev
->new_layout
== mddev
->layout
&&
5377 mddev
->new_chunk_sectors
== mddev
->chunk_sectors
)
5378 return 0; /* nothing to do */
5380 /* Cannot grow a bitmap yet */
5382 if (mddev
->degraded
> conf
->max_degraded
)
5384 if (mddev
->delta_disks
< 0) {
5385 /* We might be able to shrink, but the devices must
5386 * be made bigger first.
5387 * For raid6, 4 is the minimum size.
5388 * Otherwise 2 is the minimum
5391 if (mddev
->level
== 6)
5393 if (mddev
->raid_disks
+ mddev
->delta_disks
< min
)
5397 if (!check_stripe_cache(mddev
))
5400 return resize_stripes(conf
, conf
->raid_disks
+ mddev
->delta_disks
);
5403 static int raid5_start_reshape(mddev_t
*mddev
)
5405 raid5_conf_t
*conf
= mddev
->private;
5408 int added_devices
= 0;
5409 unsigned long flags
;
5411 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
5414 if (!check_stripe_cache(mddev
))
5417 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
5418 if (rdev
->raid_disk
< 0 &&
5419 !test_bit(Faulty
, &rdev
->flags
))
5422 if (spares
- mddev
->degraded
< mddev
->delta_disks
- conf
->max_degraded
)
5423 /* Not enough devices even to make a degraded array
5428 /* Refuse to reduce size of the array. Any reductions in
5429 * array size must be through explicit setting of array_size
5432 if (raid5_size(mddev
, 0, conf
->raid_disks
+ mddev
->delta_disks
)
5433 < mddev
->array_sectors
) {
5434 printk(KERN_ERR
"md: %s: array size must be reduced "
5435 "before number of disks\n", mdname(mddev
));
5439 atomic_set(&conf
->reshape_stripes
, 0);
5440 spin_lock_irq(&conf
->device_lock
);
5441 conf
->previous_raid_disks
= conf
->raid_disks
;
5442 conf
->raid_disks
+= mddev
->delta_disks
;
5443 conf
->prev_chunk_sectors
= conf
->chunk_sectors
;
5444 conf
->chunk_sectors
= mddev
->new_chunk_sectors
;
5445 conf
->prev_algo
= conf
->algorithm
;
5446 conf
->algorithm
= mddev
->new_layout
;
5447 if (mddev
->delta_disks
< 0)
5448 conf
->reshape_progress
= raid5_size(mddev
, 0, 0);
5450 conf
->reshape_progress
= 0;
5451 conf
->reshape_safe
= conf
->reshape_progress
;
5453 spin_unlock_irq(&conf
->device_lock
);
5455 /* Add some new drives, as many as will fit.
5456 * We know there are enough to make the newly sized array work.
5458 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
5459 if (rdev
->raid_disk
< 0 &&
5460 !test_bit(Faulty
, &rdev
->flags
)) {
5461 if (raid5_add_disk(mddev
, rdev
) == 0) {
5463 if (rdev
->raid_disk
>= conf
->previous_raid_disks
) {
5464 set_bit(In_sync
, &rdev
->flags
);
5467 rdev
->recovery_offset
= 0;
5468 sprintf(nm
, "rd%d", rdev
->raid_disk
);
5469 if (sysfs_create_link(&mddev
->kobj
,
5472 "raid5: failed to create "
5473 " link %s for %s\n",
5479 /* When a reshape changes the number of devices, ->degraded
5480 * is measured against the large of the pre and post number of
5482 if (mddev
->delta_disks
> 0) {
5483 spin_lock_irqsave(&conf
->device_lock
, flags
);
5484 mddev
->degraded
+= (conf
->raid_disks
- conf
->previous_raid_disks
)
5486 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
5488 mddev
->raid_disks
= conf
->raid_disks
;
5489 mddev
->reshape_position
= conf
->reshape_progress
;
5490 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
5492 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
5493 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
5494 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
5495 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
5496 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
5498 if (!mddev
->sync_thread
) {
5499 mddev
->recovery
= 0;
5500 spin_lock_irq(&conf
->device_lock
);
5501 mddev
->raid_disks
= conf
->raid_disks
= conf
->previous_raid_disks
;
5502 conf
->reshape_progress
= MaxSector
;
5503 spin_unlock_irq(&conf
->device_lock
);
5506 conf
->reshape_checkpoint
= jiffies
;
5507 md_wakeup_thread(mddev
->sync_thread
);
5508 md_new_event(mddev
);
5512 /* This is called from the reshape thread and should make any
5513 * changes needed in 'conf'
5515 static void end_reshape(raid5_conf_t
*conf
)
5518 if (!test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
)) {
5520 spin_lock_irq(&conf
->device_lock
);
5521 conf
->previous_raid_disks
= conf
->raid_disks
;
5522 conf
->reshape_progress
= MaxSector
;
5523 spin_unlock_irq(&conf
->device_lock
);
5524 wake_up(&conf
->wait_for_overlap
);
5526 /* read-ahead size must cover two whole stripes, which is
5527 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5530 int data_disks
= conf
->raid_disks
- conf
->max_degraded
;
5531 int stripe
= data_disks
* ((conf
->chunk_sectors
<< 9)
5533 if (conf
->mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
5534 conf
->mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
5539 /* This is called from the raid5d thread with mddev_lock held.
5540 * It makes config changes to the device.
5542 static void raid5_finish_reshape(mddev_t
*mddev
)
5544 raid5_conf_t
*conf
= mddev
->private;
5546 if (!test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
)) {
5548 if (mddev
->delta_disks
> 0) {
5549 md_set_array_sectors(mddev
, raid5_size(mddev
, 0, 0));
5550 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
5552 revalidate_disk(mddev
->gendisk
);
5555 mddev
->degraded
= conf
->raid_disks
;
5556 for (d
= 0; d
< conf
->raid_disks
; d
++)
5557 if (conf
->disks
[d
].rdev
&&
5559 &conf
->disks
[d
].rdev
->flags
))
5561 for (d
= conf
->raid_disks
;
5562 d
< conf
->raid_disks
- mddev
->delta_disks
;
5564 mdk_rdev_t
*rdev
= conf
->disks
[d
].rdev
;
5565 if (rdev
&& raid5_remove_disk(mddev
, d
) == 0) {
5567 sprintf(nm
, "rd%d", rdev
->raid_disk
);
5568 sysfs_remove_link(&mddev
->kobj
, nm
);
5569 rdev
->raid_disk
= -1;
5573 mddev
->layout
= conf
->algorithm
;
5574 mddev
->chunk_sectors
= conf
->chunk_sectors
;
5575 mddev
->reshape_position
= MaxSector
;
5576 mddev
->delta_disks
= 0;
5580 static void raid5_quiesce(mddev_t
*mddev
, int state
)
5582 raid5_conf_t
*conf
= mddev
->private;
5585 case 2: /* resume for a suspend */
5586 wake_up(&conf
->wait_for_overlap
);
5589 case 1: /* stop all writes */
5590 spin_lock_irq(&conf
->device_lock
);
5591 /* '2' tells resync/reshape to pause so that all
5592 * active stripes can drain
5595 wait_event_lock_irq(conf
->wait_for_stripe
,
5596 atomic_read(&conf
->active_stripes
) == 0 &&
5597 atomic_read(&conf
->active_aligned_reads
) == 0,
5598 conf
->device_lock
, /* nothing */);
5600 spin_unlock_irq(&conf
->device_lock
);
5601 /* allow reshape to continue */
5602 wake_up(&conf
->wait_for_overlap
);
5605 case 0: /* re-enable writes */
5606 spin_lock_irq(&conf
->device_lock
);
5608 wake_up(&conf
->wait_for_stripe
);
5609 wake_up(&conf
->wait_for_overlap
);
5610 spin_unlock_irq(&conf
->device_lock
);
5616 static void *raid5_takeover_raid1(mddev_t
*mddev
)
5620 if (mddev
->raid_disks
!= 2 ||
5621 mddev
->degraded
> 1)
5622 return ERR_PTR(-EINVAL
);
5624 /* Should check if there are write-behind devices? */
5626 chunksect
= 64*2; /* 64K by default */
5628 /* The array must be an exact multiple of chunksize */
5629 while (chunksect
&& (mddev
->array_sectors
& (chunksect
-1)))
5632 if ((chunksect
<<9) < STRIPE_SIZE
)
5633 /* array size does not allow a suitable chunk size */
5634 return ERR_PTR(-EINVAL
);
5636 mddev
->new_level
= 5;
5637 mddev
->new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
5638 mddev
->new_chunk_sectors
= chunksect
;
5640 return setup_conf(mddev
);
5643 static void *raid5_takeover_raid6(mddev_t
*mddev
)
5647 switch (mddev
->layout
) {
5648 case ALGORITHM_LEFT_ASYMMETRIC_6
:
5649 new_layout
= ALGORITHM_LEFT_ASYMMETRIC
;
5651 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
5652 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC
;
5654 case ALGORITHM_LEFT_SYMMETRIC_6
:
5655 new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
5657 case ALGORITHM_RIGHT_SYMMETRIC_6
:
5658 new_layout
= ALGORITHM_RIGHT_SYMMETRIC
;
5660 case ALGORITHM_PARITY_0_6
:
5661 new_layout
= ALGORITHM_PARITY_0
;
5663 case ALGORITHM_PARITY_N
:
5664 new_layout
= ALGORITHM_PARITY_N
;
5667 return ERR_PTR(-EINVAL
);
5669 mddev
->new_level
= 5;
5670 mddev
->new_layout
= new_layout
;
5671 mddev
->delta_disks
= -1;
5672 mddev
->raid_disks
-= 1;
5673 return setup_conf(mddev
);
5677 static int raid5_check_reshape(mddev_t
*mddev
)
5679 /* For a 2-drive array, the layout and chunk size can be changed
5680 * immediately as not restriping is needed.
5681 * For larger arrays we record the new value - after validation
5682 * to be used by a reshape pass.
5684 raid5_conf_t
*conf
= mddev
->private;
5685 int new_chunk
= mddev
->new_chunk_sectors
;
5687 if (mddev
->new_layout
>= 0 && !algorithm_valid_raid5(mddev
->new_layout
))
5689 if (new_chunk
> 0) {
5690 if (!is_power_of_2(new_chunk
))
5692 if (new_chunk
< (PAGE_SIZE
>>9))
5694 if (mddev
->array_sectors
& (new_chunk
-1))
5695 /* not factor of array size */
5699 /* They look valid */
5701 if (mddev
->raid_disks
== 2) {
5702 /* can make the change immediately */
5703 if (mddev
->new_layout
>= 0) {
5704 conf
->algorithm
= mddev
->new_layout
;
5705 mddev
->layout
= mddev
->new_layout
;
5707 if (new_chunk
> 0) {
5708 conf
->chunk_sectors
= new_chunk
;
5709 mddev
->chunk_sectors
= new_chunk
;
5711 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
5712 md_wakeup_thread(mddev
->thread
);
5714 return check_reshape(mddev
);
5717 static int raid6_check_reshape(mddev_t
*mddev
)
5719 int new_chunk
= mddev
->new_chunk_sectors
;
5721 if (mddev
->new_layout
>= 0 && !algorithm_valid_raid6(mddev
->new_layout
))
5723 if (new_chunk
> 0) {
5724 if (!is_power_of_2(new_chunk
))
5726 if (new_chunk
< (PAGE_SIZE
>> 9))
5728 if (mddev
->array_sectors
& (new_chunk
-1))
5729 /* not factor of array size */
5733 /* They look valid */
5734 return check_reshape(mddev
);
5737 static void *raid5_takeover(mddev_t
*mddev
)
5739 /* raid5 can take over:
5740 * raid0 - if all devices are the same - make it a raid4 layout
5741 * raid1 - if there are two drives. We need to know the chunk size
5742 * raid4 - trivial - just use a raid4 layout.
5743 * raid6 - Providing it is a *_6 layout
5746 if (mddev
->level
== 1)
5747 return raid5_takeover_raid1(mddev
);
5748 if (mddev
->level
== 4) {
5749 mddev
->new_layout
= ALGORITHM_PARITY_N
;
5750 mddev
->new_level
= 5;
5751 return setup_conf(mddev
);
5753 if (mddev
->level
== 6)
5754 return raid5_takeover_raid6(mddev
);
5756 return ERR_PTR(-EINVAL
);
5760 static struct mdk_personality raid5_personality
;
5762 static void *raid6_takeover(mddev_t
*mddev
)
5764 /* Currently can only take over a raid5. We map the
5765 * personality to an equivalent raid6 personality
5766 * with the Q block at the end.
5770 if (mddev
->pers
!= &raid5_personality
)
5771 return ERR_PTR(-EINVAL
);
5772 if (mddev
->degraded
> 1)
5773 return ERR_PTR(-EINVAL
);
5774 if (mddev
->raid_disks
> 253)
5775 return ERR_PTR(-EINVAL
);
5776 if (mddev
->raid_disks
< 3)
5777 return ERR_PTR(-EINVAL
);
5779 switch (mddev
->layout
) {
5780 case ALGORITHM_LEFT_ASYMMETRIC
:
5781 new_layout
= ALGORITHM_LEFT_ASYMMETRIC_6
;
5783 case ALGORITHM_RIGHT_ASYMMETRIC
:
5784 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC_6
;
5786 case ALGORITHM_LEFT_SYMMETRIC
:
5787 new_layout
= ALGORITHM_LEFT_SYMMETRIC_6
;
5789 case ALGORITHM_RIGHT_SYMMETRIC
:
5790 new_layout
= ALGORITHM_RIGHT_SYMMETRIC_6
;
5792 case ALGORITHM_PARITY_0
:
5793 new_layout
= ALGORITHM_PARITY_0_6
;
5795 case ALGORITHM_PARITY_N
:
5796 new_layout
= ALGORITHM_PARITY_N
;
5799 return ERR_PTR(-EINVAL
);
5801 mddev
->new_level
= 6;
5802 mddev
->new_layout
= new_layout
;
5803 mddev
->delta_disks
= 1;
5804 mddev
->raid_disks
+= 1;
5805 return setup_conf(mddev
);
5809 static struct mdk_personality raid6_personality
=
5813 .owner
= THIS_MODULE
,
5814 .make_request
= make_request
,
5818 .error_handler
= error
,
5819 .hot_add_disk
= raid5_add_disk
,
5820 .hot_remove_disk
= raid5_remove_disk
,
5821 .spare_active
= raid5_spare_active
,
5822 .sync_request
= sync_request
,
5823 .resize
= raid5_resize
,
5825 .check_reshape
= raid6_check_reshape
,
5826 .start_reshape
= raid5_start_reshape
,
5827 .finish_reshape
= raid5_finish_reshape
,
5828 .quiesce
= raid5_quiesce
,
5829 .takeover
= raid6_takeover
,
5831 static struct mdk_personality raid5_personality
=
5835 .owner
= THIS_MODULE
,
5836 .make_request
= make_request
,
5840 .error_handler
= error
,
5841 .hot_add_disk
= raid5_add_disk
,
5842 .hot_remove_disk
= raid5_remove_disk
,
5843 .spare_active
= raid5_spare_active
,
5844 .sync_request
= sync_request
,
5845 .resize
= raid5_resize
,
5847 .check_reshape
= raid5_check_reshape
,
5848 .start_reshape
= raid5_start_reshape
,
5849 .finish_reshape
= raid5_finish_reshape
,
5850 .quiesce
= raid5_quiesce
,
5851 .takeover
= raid5_takeover
,
5854 static struct mdk_personality raid4_personality
=
5858 .owner
= THIS_MODULE
,
5859 .make_request
= make_request
,
5863 .error_handler
= error
,
5864 .hot_add_disk
= raid5_add_disk
,
5865 .hot_remove_disk
= raid5_remove_disk
,
5866 .spare_active
= raid5_spare_active
,
5867 .sync_request
= sync_request
,
5868 .resize
= raid5_resize
,
5870 .check_reshape
= raid5_check_reshape
,
5871 .start_reshape
= raid5_start_reshape
,
5872 .finish_reshape
= raid5_finish_reshape
,
5873 .quiesce
= raid5_quiesce
,
5876 static int __init
raid5_init(void)
5878 register_md_personality(&raid6_personality
);
5879 register_md_personality(&raid5_personality
);
5880 register_md_personality(&raid4_personality
);
5884 static void raid5_exit(void)
5886 unregister_md_personality(&raid6_personality
);
5887 unregister_md_personality(&raid5_personality
);
5888 unregister_md_personality(&raid4_personality
);
5891 module_init(raid5_init
);
5892 module_exit(raid5_exit
);
5893 MODULE_LICENSE("GPL");
5894 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
5895 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5896 MODULE_ALIAS("md-raid5");
5897 MODULE_ALIAS("md-raid4");
5898 MODULE_ALIAS("md-level-5");
5899 MODULE_ALIAS("md-level-4");
5900 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5901 MODULE_ALIAS("md-raid6");
5902 MODULE_ALIAS("md-level-6");
5904 /* This used to be two separate modules, they were: */
5905 MODULE_ALIAS("raid5");
5906 MODULE_ALIAS("raid6");