KVM: Move gfn_to_page out of kmap/unmap pairs
[linux-2.6.git] / drivers / kvm / kvm_main.c
blob80ee427754d2b9f1e9ef2028771c9c38649e8120
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
18 #include "kvm.h"
19 #include "x86_emulate.h"
20 #include "segment_descriptor.h"
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/gfp.h>
27 #include <linux/mm.h>
28 #include <linux/miscdevice.h>
29 #include <linux/vmalloc.h>
30 #include <linux/reboot.h>
31 #include <linux/debugfs.h>
32 #include <linux/highmem.h>
33 #include <linux/file.h>
34 #include <linux/sysdev.h>
35 #include <linux/cpu.h>
36 #include <linux/sched.h>
37 #include <linux/cpumask.h>
38 #include <linux/smp.h>
39 #include <linux/anon_inodes.h>
41 #include <asm/processor.h>
42 #include <asm/msr.h>
43 #include <asm/io.h>
44 #include <asm/uaccess.h>
45 #include <asm/desc.h>
47 MODULE_AUTHOR("Qumranet");
48 MODULE_LICENSE("GPL");
50 static DEFINE_SPINLOCK(kvm_lock);
51 static LIST_HEAD(vm_list);
53 static cpumask_t cpus_hardware_enabled;
55 struct kvm_arch_ops *kvm_arch_ops;
57 #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
59 static struct kvm_stats_debugfs_item {
60 const char *name;
61 int offset;
62 struct dentry *dentry;
63 } debugfs_entries[] = {
64 { "pf_fixed", STAT_OFFSET(pf_fixed) },
65 { "pf_guest", STAT_OFFSET(pf_guest) },
66 { "tlb_flush", STAT_OFFSET(tlb_flush) },
67 { "invlpg", STAT_OFFSET(invlpg) },
68 { "exits", STAT_OFFSET(exits) },
69 { "io_exits", STAT_OFFSET(io_exits) },
70 { "mmio_exits", STAT_OFFSET(mmio_exits) },
71 { "signal_exits", STAT_OFFSET(signal_exits) },
72 { "irq_window", STAT_OFFSET(irq_window_exits) },
73 { "halt_exits", STAT_OFFSET(halt_exits) },
74 { "request_irq", STAT_OFFSET(request_irq_exits) },
75 { "irq_exits", STAT_OFFSET(irq_exits) },
76 { "light_exits", STAT_OFFSET(light_exits) },
77 { "efer_reload", STAT_OFFSET(efer_reload) },
78 { NULL }
81 static struct dentry *debugfs_dir;
83 #define MAX_IO_MSRS 256
85 #define CR0_RESERVED_BITS \
86 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
87 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
88 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
89 #define CR4_RESERVED_BITS \
90 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
91 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
92 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
93 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
95 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
96 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
98 #ifdef CONFIG_X86_64
99 // LDT or TSS descriptor in the GDT. 16 bytes.
100 struct segment_descriptor_64 {
101 struct segment_descriptor s;
102 u32 base_higher;
103 u32 pad_zero;
106 #endif
108 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
109 unsigned long arg);
111 unsigned long segment_base(u16 selector)
113 struct descriptor_table gdt;
114 struct segment_descriptor *d;
115 unsigned long table_base;
116 typedef unsigned long ul;
117 unsigned long v;
119 if (selector == 0)
120 return 0;
122 asm ("sgdt %0" : "=m"(gdt));
123 table_base = gdt.base;
125 if (selector & 4) { /* from ldt */
126 u16 ldt_selector;
128 asm ("sldt %0" : "=g"(ldt_selector));
129 table_base = segment_base(ldt_selector);
131 d = (struct segment_descriptor *)(table_base + (selector & ~7));
132 v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
133 #ifdef CONFIG_X86_64
134 if (d->system == 0
135 && (d->type == 2 || d->type == 9 || d->type == 11))
136 v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
137 #endif
138 return v;
140 EXPORT_SYMBOL_GPL(segment_base);
142 static inline int valid_vcpu(int n)
144 return likely(n >= 0 && n < KVM_MAX_VCPUS);
147 int kvm_read_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
148 void *dest)
150 unsigned char *host_buf = dest;
151 unsigned long req_size = size;
153 while (size) {
154 hpa_t paddr;
155 unsigned now;
156 unsigned offset;
157 hva_t guest_buf;
159 paddr = gva_to_hpa(vcpu, addr);
161 if (is_error_hpa(paddr))
162 break;
164 guest_buf = (hva_t)kmap_atomic(
165 pfn_to_page(paddr >> PAGE_SHIFT),
166 KM_USER0);
167 offset = addr & ~PAGE_MASK;
168 guest_buf |= offset;
169 now = min(size, PAGE_SIZE - offset);
170 memcpy(host_buf, (void*)guest_buf, now);
171 host_buf += now;
172 addr += now;
173 size -= now;
174 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
176 return req_size - size;
178 EXPORT_SYMBOL_GPL(kvm_read_guest);
180 int kvm_write_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
181 void *data)
183 unsigned char *host_buf = data;
184 unsigned long req_size = size;
186 while (size) {
187 hpa_t paddr;
188 unsigned now;
189 unsigned offset;
190 hva_t guest_buf;
191 gfn_t gfn;
193 paddr = gva_to_hpa(vcpu, addr);
195 if (is_error_hpa(paddr))
196 break;
198 gfn = vcpu->mmu.gva_to_gpa(vcpu, addr) >> PAGE_SHIFT;
199 mark_page_dirty(vcpu->kvm, gfn);
200 guest_buf = (hva_t)kmap_atomic(
201 pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
202 offset = addr & ~PAGE_MASK;
203 guest_buf |= offset;
204 now = min(size, PAGE_SIZE - offset);
205 memcpy((void*)guest_buf, host_buf, now);
206 host_buf += now;
207 addr += now;
208 size -= now;
209 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
211 return req_size - size;
213 EXPORT_SYMBOL_GPL(kvm_write_guest);
215 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
217 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
218 return;
220 vcpu->guest_fpu_loaded = 1;
221 fx_save(vcpu->host_fx_image);
222 fx_restore(vcpu->guest_fx_image);
224 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
226 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
228 if (!vcpu->guest_fpu_loaded)
229 return;
231 vcpu->guest_fpu_loaded = 0;
232 fx_save(vcpu->guest_fx_image);
233 fx_restore(vcpu->host_fx_image);
235 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
238 * Switches to specified vcpu, until a matching vcpu_put()
240 static void vcpu_load(struct kvm_vcpu *vcpu)
242 mutex_lock(&vcpu->mutex);
243 kvm_arch_ops->vcpu_load(vcpu);
246 static void vcpu_put(struct kvm_vcpu *vcpu)
248 kvm_arch_ops->vcpu_put(vcpu);
249 mutex_unlock(&vcpu->mutex);
252 static void ack_flush(void *_completed)
254 atomic_t *completed = _completed;
256 atomic_inc(completed);
259 void kvm_flush_remote_tlbs(struct kvm *kvm)
261 int i, cpu, needed;
262 cpumask_t cpus;
263 struct kvm_vcpu *vcpu;
264 atomic_t completed;
266 atomic_set(&completed, 0);
267 cpus_clear(cpus);
268 needed = 0;
269 for (i = 0; i < kvm->nvcpus; ++i) {
270 vcpu = &kvm->vcpus[i];
271 if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests))
272 continue;
273 cpu = vcpu->cpu;
274 if (cpu != -1 && cpu != raw_smp_processor_id())
275 if (!cpu_isset(cpu, cpus)) {
276 cpu_set(cpu, cpus);
277 ++needed;
282 * We really want smp_call_function_mask() here. But that's not
283 * available, so ipi all cpus in parallel and wait for them
284 * to complete.
286 for (cpu = first_cpu(cpus); cpu != NR_CPUS; cpu = next_cpu(cpu, cpus))
287 smp_call_function_single(cpu, ack_flush, &completed, 1, 0);
288 while (atomic_read(&completed) != needed) {
289 cpu_relax();
290 barrier();
294 static struct kvm *kvm_create_vm(void)
296 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
297 int i;
299 if (!kvm)
300 return ERR_PTR(-ENOMEM);
302 kvm_io_bus_init(&kvm->pio_bus);
303 spin_lock_init(&kvm->lock);
304 INIT_LIST_HEAD(&kvm->active_mmu_pages);
305 kvm_io_bus_init(&kvm->mmio_bus);
306 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
307 struct kvm_vcpu *vcpu = &kvm->vcpus[i];
309 mutex_init(&vcpu->mutex);
310 vcpu->cpu = -1;
311 vcpu->kvm = kvm;
312 vcpu->mmu.root_hpa = INVALID_PAGE;
314 spin_lock(&kvm_lock);
315 list_add(&kvm->vm_list, &vm_list);
316 spin_unlock(&kvm_lock);
317 return kvm;
320 static int kvm_dev_open(struct inode *inode, struct file *filp)
322 return 0;
326 * Free any memory in @free but not in @dont.
328 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
329 struct kvm_memory_slot *dont)
331 int i;
333 if (!dont || free->phys_mem != dont->phys_mem)
334 if (free->phys_mem) {
335 for (i = 0; i < free->npages; ++i)
336 if (free->phys_mem[i])
337 __free_page(free->phys_mem[i]);
338 vfree(free->phys_mem);
341 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
342 vfree(free->dirty_bitmap);
344 free->phys_mem = NULL;
345 free->npages = 0;
346 free->dirty_bitmap = NULL;
349 static void kvm_free_physmem(struct kvm *kvm)
351 int i;
353 for (i = 0; i < kvm->nmemslots; ++i)
354 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
357 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
359 int i;
361 for (i = 0; i < 2; ++i)
362 if (vcpu->pio.guest_pages[i]) {
363 __free_page(vcpu->pio.guest_pages[i]);
364 vcpu->pio.guest_pages[i] = NULL;
368 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
370 if (!vcpu->vmcs)
371 return;
373 vcpu_load(vcpu);
374 kvm_mmu_unload(vcpu);
375 vcpu_put(vcpu);
378 static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
380 if (!vcpu->vmcs)
381 return;
383 vcpu_load(vcpu);
384 kvm_mmu_destroy(vcpu);
385 vcpu_put(vcpu);
386 kvm_arch_ops->vcpu_free(vcpu);
387 free_page((unsigned long)vcpu->run);
388 vcpu->run = NULL;
389 free_page((unsigned long)vcpu->pio_data);
390 vcpu->pio_data = NULL;
391 free_pio_guest_pages(vcpu);
394 static void kvm_free_vcpus(struct kvm *kvm)
396 unsigned int i;
399 * Unpin any mmu pages first.
401 for (i = 0; i < KVM_MAX_VCPUS; ++i)
402 kvm_unload_vcpu_mmu(&kvm->vcpus[i]);
403 for (i = 0; i < KVM_MAX_VCPUS; ++i)
404 kvm_free_vcpu(&kvm->vcpus[i]);
407 static int kvm_dev_release(struct inode *inode, struct file *filp)
409 return 0;
412 static void kvm_destroy_vm(struct kvm *kvm)
414 spin_lock(&kvm_lock);
415 list_del(&kvm->vm_list);
416 spin_unlock(&kvm_lock);
417 kvm_io_bus_destroy(&kvm->pio_bus);
418 kvm_io_bus_destroy(&kvm->mmio_bus);
419 kvm_free_vcpus(kvm);
420 kvm_free_physmem(kvm);
421 kfree(kvm);
424 static int kvm_vm_release(struct inode *inode, struct file *filp)
426 struct kvm *kvm = filp->private_data;
428 kvm_destroy_vm(kvm);
429 return 0;
432 static void inject_gp(struct kvm_vcpu *vcpu)
434 kvm_arch_ops->inject_gp(vcpu, 0);
438 * Load the pae pdptrs. Return true is they are all valid.
440 static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
442 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
443 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
444 int i;
445 u64 pdpte;
446 u64 *pdpt;
447 int ret;
448 struct page *page;
450 spin_lock(&vcpu->kvm->lock);
451 page = gfn_to_page(vcpu->kvm, pdpt_gfn);
452 /* FIXME: !page - emulate? 0xff? */
453 pdpt = kmap_atomic(page, KM_USER0);
455 ret = 1;
456 for (i = 0; i < 4; ++i) {
457 pdpte = pdpt[offset + i];
458 if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull)) {
459 ret = 0;
460 goto out;
464 for (i = 0; i < 4; ++i)
465 vcpu->pdptrs[i] = pdpt[offset + i];
467 out:
468 kunmap_atomic(pdpt, KM_USER0);
469 spin_unlock(&vcpu->kvm->lock);
471 return ret;
474 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
476 if (cr0 & CR0_RESERVED_BITS) {
477 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
478 cr0, vcpu->cr0);
479 inject_gp(vcpu);
480 return;
483 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
484 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
485 inject_gp(vcpu);
486 return;
489 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
490 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
491 "and a clear PE flag\n");
492 inject_gp(vcpu);
493 return;
496 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
497 #ifdef CONFIG_X86_64
498 if ((vcpu->shadow_efer & EFER_LME)) {
499 int cs_db, cs_l;
501 if (!is_pae(vcpu)) {
502 printk(KERN_DEBUG "set_cr0: #GP, start paging "
503 "in long mode while PAE is disabled\n");
504 inject_gp(vcpu);
505 return;
507 kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
508 if (cs_l) {
509 printk(KERN_DEBUG "set_cr0: #GP, start paging "
510 "in long mode while CS.L == 1\n");
511 inject_gp(vcpu);
512 return;
515 } else
516 #endif
517 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
518 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
519 "reserved bits\n");
520 inject_gp(vcpu);
521 return;
526 kvm_arch_ops->set_cr0(vcpu, cr0);
527 vcpu->cr0 = cr0;
529 spin_lock(&vcpu->kvm->lock);
530 kvm_mmu_reset_context(vcpu);
531 spin_unlock(&vcpu->kvm->lock);
532 return;
534 EXPORT_SYMBOL_GPL(set_cr0);
536 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
538 set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
540 EXPORT_SYMBOL_GPL(lmsw);
542 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
544 if (cr4 & CR4_RESERVED_BITS) {
545 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
546 inject_gp(vcpu);
547 return;
550 if (is_long_mode(vcpu)) {
551 if (!(cr4 & X86_CR4_PAE)) {
552 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
553 "in long mode\n");
554 inject_gp(vcpu);
555 return;
557 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
558 && !load_pdptrs(vcpu, vcpu->cr3)) {
559 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
560 inject_gp(vcpu);
561 return;
564 if (cr4 & X86_CR4_VMXE) {
565 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
566 inject_gp(vcpu);
567 return;
569 kvm_arch_ops->set_cr4(vcpu, cr4);
570 spin_lock(&vcpu->kvm->lock);
571 kvm_mmu_reset_context(vcpu);
572 spin_unlock(&vcpu->kvm->lock);
574 EXPORT_SYMBOL_GPL(set_cr4);
576 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
578 if (is_long_mode(vcpu)) {
579 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
580 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
581 inject_gp(vcpu);
582 return;
584 } else {
585 if (is_pae(vcpu)) {
586 if (cr3 & CR3_PAE_RESERVED_BITS) {
587 printk(KERN_DEBUG
588 "set_cr3: #GP, reserved bits\n");
589 inject_gp(vcpu);
590 return;
592 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
593 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
594 "reserved bits\n");
595 inject_gp(vcpu);
596 return;
598 } else {
599 if (cr3 & CR3_NONPAE_RESERVED_BITS) {
600 printk(KERN_DEBUG
601 "set_cr3: #GP, reserved bits\n");
602 inject_gp(vcpu);
603 return;
608 vcpu->cr3 = cr3;
609 spin_lock(&vcpu->kvm->lock);
611 * Does the new cr3 value map to physical memory? (Note, we
612 * catch an invalid cr3 even in real-mode, because it would
613 * cause trouble later on when we turn on paging anyway.)
615 * A real CPU would silently accept an invalid cr3 and would
616 * attempt to use it - with largely undefined (and often hard
617 * to debug) behavior on the guest side.
619 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
620 inject_gp(vcpu);
621 else
622 vcpu->mmu.new_cr3(vcpu);
623 spin_unlock(&vcpu->kvm->lock);
625 EXPORT_SYMBOL_GPL(set_cr3);
627 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
629 if (cr8 & CR8_RESERVED_BITS) {
630 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
631 inject_gp(vcpu);
632 return;
634 vcpu->cr8 = cr8;
636 EXPORT_SYMBOL_GPL(set_cr8);
638 void fx_init(struct kvm_vcpu *vcpu)
640 struct __attribute__ ((__packed__)) fx_image_s {
641 u16 control; //fcw
642 u16 status; //fsw
643 u16 tag; // ftw
644 u16 opcode; //fop
645 u64 ip; // fpu ip
646 u64 operand;// fpu dp
647 u32 mxcsr;
648 u32 mxcsr_mask;
650 } *fx_image;
652 fx_save(vcpu->host_fx_image);
653 fpu_init();
654 fx_save(vcpu->guest_fx_image);
655 fx_restore(vcpu->host_fx_image);
657 fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
658 fx_image->mxcsr = 0x1f80;
659 memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
660 0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
662 EXPORT_SYMBOL_GPL(fx_init);
665 * Allocate some memory and give it an address in the guest physical address
666 * space.
668 * Discontiguous memory is allowed, mostly for framebuffers.
670 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
671 struct kvm_memory_region *mem)
673 int r;
674 gfn_t base_gfn;
675 unsigned long npages;
676 unsigned long i;
677 struct kvm_memory_slot *memslot;
678 struct kvm_memory_slot old, new;
679 int memory_config_version;
681 r = -EINVAL;
682 /* General sanity checks */
683 if (mem->memory_size & (PAGE_SIZE - 1))
684 goto out;
685 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
686 goto out;
687 if (mem->slot >= KVM_MEMORY_SLOTS)
688 goto out;
689 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
690 goto out;
692 memslot = &kvm->memslots[mem->slot];
693 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
694 npages = mem->memory_size >> PAGE_SHIFT;
696 if (!npages)
697 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
699 raced:
700 spin_lock(&kvm->lock);
702 memory_config_version = kvm->memory_config_version;
703 new = old = *memslot;
705 new.base_gfn = base_gfn;
706 new.npages = npages;
707 new.flags = mem->flags;
709 /* Disallow changing a memory slot's size. */
710 r = -EINVAL;
711 if (npages && old.npages && npages != old.npages)
712 goto out_unlock;
714 /* Check for overlaps */
715 r = -EEXIST;
716 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
717 struct kvm_memory_slot *s = &kvm->memslots[i];
719 if (s == memslot)
720 continue;
721 if (!((base_gfn + npages <= s->base_gfn) ||
722 (base_gfn >= s->base_gfn + s->npages)))
723 goto out_unlock;
726 * Do memory allocations outside lock. memory_config_version will
727 * detect any races.
729 spin_unlock(&kvm->lock);
731 /* Deallocate if slot is being removed */
732 if (!npages)
733 new.phys_mem = NULL;
735 /* Free page dirty bitmap if unneeded */
736 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
737 new.dirty_bitmap = NULL;
739 r = -ENOMEM;
741 /* Allocate if a slot is being created */
742 if (npages && !new.phys_mem) {
743 new.phys_mem = vmalloc(npages * sizeof(struct page *));
745 if (!new.phys_mem)
746 goto out_free;
748 memset(new.phys_mem, 0, npages * sizeof(struct page *));
749 for (i = 0; i < npages; ++i) {
750 new.phys_mem[i] = alloc_page(GFP_HIGHUSER
751 | __GFP_ZERO);
752 if (!new.phys_mem[i])
753 goto out_free;
754 set_page_private(new.phys_mem[i],0);
758 /* Allocate page dirty bitmap if needed */
759 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
760 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
762 new.dirty_bitmap = vmalloc(dirty_bytes);
763 if (!new.dirty_bitmap)
764 goto out_free;
765 memset(new.dirty_bitmap, 0, dirty_bytes);
768 spin_lock(&kvm->lock);
770 if (memory_config_version != kvm->memory_config_version) {
771 spin_unlock(&kvm->lock);
772 kvm_free_physmem_slot(&new, &old);
773 goto raced;
776 r = -EAGAIN;
777 if (kvm->busy)
778 goto out_unlock;
780 if (mem->slot >= kvm->nmemslots)
781 kvm->nmemslots = mem->slot + 1;
783 *memslot = new;
784 ++kvm->memory_config_version;
786 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
787 kvm_flush_remote_tlbs(kvm);
789 spin_unlock(&kvm->lock);
791 kvm_free_physmem_slot(&old, &new);
792 return 0;
794 out_unlock:
795 spin_unlock(&kvm->lock);
796 out_free:
797 kvm_free_physmem_slot(&new, &old);
798 out:
799 return r;
803 * Get (and clear) the dirty memory log for a memory slot.
805 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
806 struct kvm_dirty_log *log)
808 struct kvm_memory_slot *memslot;
809 int r, i;
810 int n;
811 unsigned long any = 0;
813 spin_lock(&kvm->lock);
816 * Prevent changes to guest memory configuration even while the lock
817 * is not taken.
819 ++kvm->busy;
820 spin_unlock(&kvm->lock);
821 r = -EINVAL;
822 if (log->slot >= KVM_MEMORY_SLOTS)
823 goto out;
825 memslot = &kvm->memslots[log->slot];
826 r = -ENOENT;
827 if (!memslot->dirty_bitmap)
828 goto out;
830 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
832 for (i = 0; !any && i < n/sizeof(long); ++i)
833 any = memslot->dirty_bitmap[i];
835 r = -EFAULT;
836 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
837 goto out;
839 spin_lock(&kvm->lock);
840 kvm_mmu_slot_remove_write_access(kvm, log->slot);
841 kvm_flush_remote_tlbs(kvm);
842 memset(memslot->dirty_bitmap, 0, n);
843 spin_unlock(&kvm->lock);
845 r = 0;
847 out:
848 spin_lock(&kvm->lock);
849 --kvm->busy;
850 spin_unlock(&kvm->lock);
851 return r;
855 * Set a new alias region. Aliases map a portion of physical memory into
856 * another portion. This is useful for memory windows, for example the PC
857 * VGA region.
859 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
860 struct kvm_memory_alias *alias)
862 int r, n;
863 struct kvm_mem_alias *p;
865 r = -EINVAL;
866 /* General sanity checks */
867 if (alias->memory_size & (PAGE_SIZE - 1))
868 goto out;
869 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
870 goto out;
871 if (alias->slot >= KVM_ALIAS_SLOTS)
872 goto out;
873 if (alias->guest_phys_addr + alias->memory_size
874 < alias->guest_phys_addr)
875 goto out;
876 if (alias->target_phys_addr + alias->memory_size
877 < alias->target_phys_addr)
878 goto out;
880 spin_lock(&kvm->lock);
882 p = &kvm->aliases[alias->slot];
883 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
884 p->npages = alias->memory_size >> PAGE_SHIFT;
885 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
887 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
888 if (kvm->aliases[n - 1].npages)
889 break;
890 kvm->naliases = n;
892 kvm_mmu_zap_all(kvm);
894 spin_unlock(&kvm->lock);
896 return 0;
898 out:
899 return r;
902 static gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
904 int i;
905 struct kvm_mem_alias *alias;
907 for (i = 0; i < kvm->naliases; ++i) {
908 alias = &kvm->aliases[i];
909 if (gfn >= alias->base_gfn
910 && gfn < alias->base_gfn + alias->npages)
911 return alias->target_gfn + gfn - alias->base_gfn;
913 return gfn;
916 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
918 int i;
920 for (i = 0; i < kvm->nmemslots; ++i) {
921 struct kvm_memory_slot *memslot = &kvm->memslots[i];
923 if (gfn >= memslot->base_gfn
924 && gfn < memslot->base_gfn + memslot->npages)
925 return memslot;
927 return NULL;
930 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
932 gfn = unalias_gfn(kvm, gfn);
933 return __gfn_to_memslot(kvm, gfn);
936 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
938 struct kvm_memory_slot *slot;
940 gfn = unalias_gfn(kvm, gfn);
941 slot = __gfn_to_memslot(kvm, gfn);
942 if (!slot)
943 return NULL;
944 return slot->phys_mem[gfn - slot->base_gfn];
946 EXPORT_SYMBOL_GPL(gfn_to_page);
948 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
950 int i;
951 struct kvm_memory_slot *memslot;
952 unsigned long rel_gfn;
954 for (i = 0; i < kvm->nmemslots; ++i) {
955 memslot = &kvm->memslots[i];
957 if (gfn >= memslot->base_gfn
958 && gfn < memslot->base_gfn + memslot->npages) {
960 if (!memslot->dirty_bitmap)
961 return;
963 rel_gfn = gfn - memslot->base_gfn;
965 /* avoid RMW */
966 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
967 set_bit(rel_gfn, memslot->dirty_bitmap);
968 return;
973 static int emulator_read_std(unsigned long addr,
974 void *val,
975 unsigned int bytes,
976 struct x86_emulate_ctxt *ctxt)
978 struct kvm_vcpu *vcpu = ctxt->vcpu;
979 void *data = val;
981 while (bytes) {
982 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
983 unsigned offset = addr & (PAGE_SIZE-1);
984 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
985 unsigned long pfn;
986 struct page *page;
987 void *page_virt;
989 if (gpa == UNMAPPED_GVA)
990 return X86EMUL_PROPAGATE_FAULT;
991 pfn = gpa >> PAGE_SHIFT;
992 page = gfn_to_page(vcpu->kvm, pfn);
993 if (!page)
994 return X86EMUL_UNHANDLEABLE;
995 page_virt = kmap_atomic(page, KM_USER0);
997 memcpy(data, page_virt + offset, tocopy);
999 kunmap_atomic(page_virt, KM_USER0);
1001 bytes -= tocopy;
1002 data += tocopy;
1003 addr += tocopy;
1006 return X86EMUL_CONTINUE;
1009 static int emulator_write_std(unsigned long addr,
1010 const void *val,
1011 unsigned int bytes,
1012 struct x86_emulate_ctxt *ctxt)
1014 printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
1015 addr, bytes);
1016 return X86EMUL_UNHANDLEABLE;
1019 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1020 gpa_t addr)
1023 * Note that its important to have this wrapper function because
1024 * in the very near future we will be checking for MMIOs against
1025 * the LAPIC as well as the general MMIO bus
1027 return kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
1030 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
1031 gpa_t addr)
1033 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
1036 static int emulator_read_emulated(unsigned long addr,
1037 void *val,
1038 unsigned int bytes,
1039 struct x86_emulate_ctxt *ctxt)
1041 struct kvm_vcpu *vcpu = ctxt->vcpu;
1042 struct kvm_io_device *mmio_dev;
1043 gpa_t gpa;
1045 if (vcpu->mmio_read_completed) {
1046 memcpy(val, vcpu->mmio_data, bytes);
1047 vcpu->mmio_read_completed = 0;
1048 return X86EMUL_CONTINUE;
1049 } else if (emulator_read_std(addr, val, bytes, ctxt)
1050 == X86EMUL_CONTINUE)
1051 return X86EMUL_CONTINUE;
1053 gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1054 if (gpa == UNMAPPED_GVA)
1055 return X86EMUL_PROPAGATE_FAULT;
1058 * Is this MMIO handled locally?
1060 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1061 if (mmio_dev) {
1062 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1063 return X86EMUL_CONTINUE;
1066 vcpu->mmio_needed = 1;
1067 vcpu->mmio_phys_addr = gpa;
1068 vcpu->mmio_size = bytes;
1069 vcpu->mmio_is_write = 0;
1071 return X86EMUL_UNHANDLEABLE;
1074 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1075 const void *val, int bytes)
1077 struct page *page;
1078 void *virt;
1080 if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
1081 return 0;
1082 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1083 if (!page)
1084 return 0;
1085 mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
1086 virt = kmap_atomic(page, KM_USER0);
1087 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
1088 memcpy(virt + offset_in_page(gpa), val, bytes);
1089 kunmap_atomic(virt, KM_USER0);
1090 return 1;
1093 static int emulator_write_emulated_onepage(unsigned long addr,
1094 const void *val,
1095 unsigned int bytes,
1096 struct x86_emulate_ctxt *ctxt)
1098 struct kvm_vcpu *vcpu = ctxt->vcpu;
1099 struct kvm_io_device *mmio_dev;
1100 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1102 if (gpa == UNMAPPED_GVA) {
1103 kvm_arch_ops->inject_page_fault(vcpu, addr, 2);
1104 return X86EMUL_PROPAGATE_FAULT;
1107 if (emulator_write_phys(vcpu, gpa, val, bytes))
1108 return X86EMUL_CONTINUE;
1111 * Is this MMIO handled locally?
1113 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1114 if (mmio_dev) {
1115 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1116 return X86EMUL_CONTINUE;
1119 vcpu->mmio_needed = 1;
1120 vcpu->mmio_phys_addr = gpa;
1121 vcpu->mmio_size = bytes;
1122 vcpu->mmio_is_write = 1;
1123 memcpy(vcpu->mmio_data, val, bytes);
1125 return X86EMUL_CONTINUE;
1128 static int emulator_write_emulated(unsigned long addr,
1129 const void *val,
1130 unsigned int bytes,
1131 struct x86_emulate_ctxt *ctxt)
1133 /* Crossing a page boundary? */
1134 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
1135 int rc, now;
1137 now = -addr & ~PAGE_MASK;
1138 rc = emulator_write_emulated_onepage(addr, val, now, ctxt);
1139 if (rc != X86EMUL_CONTINUE)
1140 return rc;
1141 addr += now;
1142 val += now;
1143 bytes -= now;
1145 return emulator_write_emulated_onepage(addr, val, bytes, ctxt);
1148 static int emulator_cmpxchg_emulated(unsigned long addr,
1149 const void *old,
1150 const void *new,
1151 unsigned int bytes,
1152 struct x86_emulate_ctxt *ctxt)
1154 static int reported;
1156 if (!reported) {
1157 reported = 1;
1158 printk(KERN_WARNING "kvm: emulating exchange as write\n");
1160 return emulator_write_emulated(addr, new, bytes, ctxt);
1163 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
1165 return kvm_arch_ops->get_segment_base(vcpu, seg);
1168 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1170 return X86EMUL_CONTINUE;
1173 int emulate_clts(struct kvm_vcpu *vcpu)
1175 unsigned long cr0;
1177 cr0 = vcpu->cr0 & ~X86_CR0_TS;
1178 kvm_arch_ops->set_cr0(vcpu, cr0);
1179 return X86EMUL_CONTINUE;
1182 int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
1184 struct kvm_vcpu *vcpu = ctxt->vcpu;
1186 switch (dr) {
1187 case 0 ... 3:
1188 *dest = kvm_arch_ops->get_dr(vcpu, dr);
1189 return X86EMUL_CONTINUE;
1190 default:
1191 printk(KERN_DEBUG "%s: unexpected dr %u\n",
1192 __FUNCTION__, dr);
1193 return X86EMUL_UNHANDLEABLE;
1197 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1199 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1200 int exception;
1202 kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1203 if (exception) {
1204 /* FIXME: better handling */
1205 return X86EMUL_UNHANDLEABLE;
1207 return X86EMUL_CONTINUE;
1210 static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
1212 static int reported;
1213 u8 opcodes[4];
1214 unsigned long rip = ctxt->vcpu->rip;
1215 unsigned long rip_linear;
1217 rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
1219 if (reported)
1220 return;
1222 emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
1224 printk(KERN_ERR "emulation failed but !mmio_needed?"
1225 " rip %lx %02x %02x %02x %02x\n",
1226 rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1227 reported = 1;
1230 struct x86_emulate_ops emulate_ops = {
1231 .read_std = emulator_read_std,
1232 .write_std = emulator_write_std,
1233 .read_emulated = emulator_read_emulated,
1234 .write_emulated = emulator_write_emulated,
1235 .cmpxchg_emulated = emulator_cmpxchg_emulated,
1238 int emulate_instruction(struct kvm_vcpu *vcpu,
1239 struct kvm_run *run,
1240 unsigned long cr2,
1241 u16 error_code)
1243 struct x86_emulate_ctxt emulate_ctxt;
1244 int r;
1245 int cs_db, cs_l;
1247 vcpu->mmio_fault_cr2 = cr2;
1248 kvm_arch_ops->cache_regs(vcpu);
1250 kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
1252 emulate_ctxt.vcpu = vcpu;
1253 emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
1254 emulate_ctxt.cr2 = cr2;
1255 emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
1256 ? X86EMUL_MODE_REAL : cs_l
1257 ? X86EMUL_MODE_PROT64 : cs_db
1258 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1260 if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1261 emulate_ctxt.cs_base = 0;
1262 emulate_ctxt.ds_base = 0;
1263 emulate_ctxt.es_base = 0;
1264 emulate_ctxt.ss_base = 0;
1265 } else {
1266 emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
1267 emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
1268 emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
1269 emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
1272 emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
1273 emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
1275 vcpu->mmio_is_write = 0;
1276 r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
1278 if ((r || vcpu->mmio_is_write) && run) {
1279 run->exit_reason = KVM_EXIT_MMIO;
1280 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1281 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1282 run->mmio.len = vcpu->mmio_size;
1283 run->mmio.is_write = vcpu->mmio_is_write;
1286 if (r) {
1287 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1288 return EMULATE_DONE;
1289 if (!vcpu->mmio_needed) {
1290 report_emulation_failure(&emulate_ctxt);
1291 return EMULATE_FAIL;
1293 return EMULATE_DO_MMIO;
1296 kvm_arch_ops->decache_regs(vcpu);
1297 kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
1299 if (vcpu->mmio_is_write) {
1300 vcpu->mmio_needed = 0;
1301 return EMULATE_DO_MMIO;
1304 return EMULATE_DONE;
1306 EXPORT_SYMBOL_GPL(emulate_instruction);
1308 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
1310 if (vcpu->irq_summary)
1311 return 1;
1313 vcpu->run->exit_reason = KVM_EXIT_HLT;
1314 ++vcpu->stat.halt_exits;
1315 return 0;
1317 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
1319 int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
1321 unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
1323 kvm_arch_ops->cache_regs(vcpu);
1324 ret = -KVM_EINVAL;
1325 #ifdef CONFIG_X86_64
1326 if (is_long_mode(vcpu)) {
1327 nr = vcpu->regs[VCPU_REGS_RAX];
1328 a0 = vcpu->regs[VCPU_REGS_RDI];
1329 a1 = vcpu->regs[VCPU_REGS_RSI];
1330 a2 = vcpu->regs[VCPU_REGS_RDX];
1331 a3 = vcpu->regs[VCPU_REGS_RCX];
1332 a4 = vcpu->regs[VCPU_REGS_R8];
1333 a5 = vcpu->regs[VCPU_REGS_R9];
1334 } else
1335 #endif
1337 nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
1338 a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
1339 a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
1340 a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
1341 a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
1342 a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
1343 a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
1345 switch (nr) {
1346 default:
1347 run->hypercall.args[0] = a0;
1348 run->hypercall.args[1] = a1;
1349 run->hypercall.args[2] = a2;
1350 run->hypercall.args[3] = a3;
1351 run->hypercall.args[4] = a4;
1352 run->hypercall.args[5] = a5;
1353 run->hypercall.ret = ret;
1354 run->hypercall.longmode = is_long_mode(vcpu);
1355 kvm_arch_ops->decache_regs(vcpu);
1356 return 0;
1358 vcpu->regs[VCPU_REGS_RAX] = ret;
1359 kvm_arch_ops->decache_regs(vcpu);
1360 return 1;
1362 EXPORT_SYMBOL_GPL(kvm_hypercall);
1364 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1366 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1369 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1371 struct descriptor_table dt = { limit, base };
1373 kvm_arch_ops->set_gdt(vcpu, &dt);
1376 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1378 struct descriptor_table dt = { limit, base };
1380 kvm_arch_ops->set_idt(vcpu, &dt);
1383 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1384 unsigned long *rflags)
1386 lmsw(vcpu, msw);
1387 *rflags = kvm_arch_ops->get_rflags(vcpu);
1390 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1392 kvm_arch_ops->decache_cr4_guest_bits(vcpu);
1393 switch (cr) {
1394 case 0:
1395 return vcpu->cr0;
1396 case 2:
1397 return vcpu->cr2;
1398 case 3:
1399 return vcpu->cr3;
1400 case 4:
1401 return vcpu->cr4;
1402 default:
1403 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1404 return 0;
1408 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1409 unsigned long *rflags)
1411 switch (cr) {
1412 case 0:
1413 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1414 *rflags = kvm_arch_ops->get_rflags(vcpu);
1415 break;
1416 case 2:
1417 vcpu->cr2 = val;
1418 break;
1419 case 3:
1420 set_cr3(vcpu, val);
1421 break;
1422 case 4:
1423 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1424 break;
1425 default:
1426 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1431 * Register the para guest with the host:
1433 static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
1435 struct kvm_vcpu_para_state *para_state;
1436 hpa_t para_state_hpa, hypercall_hpa;
1437 struct page *para_state_page;
1438 unsigned char *hypercall;
1439 gpa_t hypercall_gpa;
1441 printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
1442 printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
1445 * Needs to be page aligned:
1447 if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
1448 goto err_gp;
1450 para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
1451 printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
1452 if (is_error_hpa(para_state_hpa))
1453 goto err_gp;
1455 mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT);
1456 para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
1457 para_state = kmap(para_state_page);
1459 printk(KERN_DEBUG ".... guest version: %d\n", para_state->guest_version);
1460 printk(KERN_DEBUG ".... size: %d\n", para_state->size);
1462 para_state->host_version = KVM_PARA_API_VERSION;
1464 * We cannot support guests that try to register themselves
1465 * with a newer API version than the host supports:
1467 if (para_state->guest_version > KVM_PARA_API_VERSION) {
1468 para_state->ret = -KVM_EINVAL;
1469 goto err_kunmap_skip;
1472 hypercall_gpa = para_state->hypercall_gpa;
1473 hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
1474 printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
1475 if (is_error_hpa(hypercall_hpa)) {
1476 para_state->ret = -KVM_EINVAL;
1477 goto err_kunmap_skip;
1480 printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
1481 vcpu->para_state_page = para_state_page;
1482 vcpu->para_state_gpa = para_state_gpa;
1483 vcpu->hypercall_gpa = hypercall_gpa;
1485 mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT);
1486 hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
1487 KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
1488 kvm_arch_ops->patch_hypercall(vcpu, hypercall);
1489 kunmap_atomic(hypercall, KM_USER1);
1491 para_state->ret = 0;
1492 err_kunmap_skip:
1493 kunmap(para_state_page);
1494 return 0;
1495 err_gp:
1496 return 1;
1499 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1501 u64 data;
1503 switch (msr) {
1504 case 0xc0010010: /* SYSCFG */
1505 case 0xc0010015: /* HWCR */
1506 case MSR_IA32_PLATFORM_ID:
1507 case MSR_IA32_P5_MC_ADDR:
1508 case MSR_IA32_P5_MC_TYPE:
1509 case MSR_IA32_MC0_CTL:
1510 case MSR_IA32_MCG_STATUS:
1511 case MSR_IA32_MCG_CAP:
1512 case MSR_IA32_MC0_MISC:
1513 case MSR_IA32_MC0_MISC+4:
1514 case MSR_IA32_MC0_MISC+8:
1515 case MSR_IA32_MC0_MISC+12:
1516 case MSR_IA32_MC0_MISC+16:
1517 case MSR_IA32_UCODE_REV:
1518 case MSR_IA32_PERF_STATUS:
1519 case MSR_IA32_EBL_CR_POWERON:
1520 /* MTRR registers */
1521 case 0xfe:
1522 case 0x200 ... 0x2ff:
1523 data = 0;
1524 break;
1525 case 0xcd: /* fsb frequency */
1526 data = 3;
1527 break;
1528 case MSR_IA32_APICBASE:
1529 data = vcpu->apic_base;
1530 break;
1531 case MSR_IA32_MISC_ENABLE:
1532 data = vcpu->ia32_misc_enable_msr;
1533 break;
1534 #ifdef CONFIG_X86_64
1535 case MSR_EFER:
1536 data = vcpu->shadow_efer;
1537 break;
1538 #endif
1539 default:
1540 printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
1541 return 1;
1543 *pdata = data;
1544 return 0;
1546 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1549 * Reads an msr value (of 'msr_index') into 'pdata'.
1550 * Returns 0 on success, non-0 otherwise.
1551 * Assumes vcpu_load() was already called.
1553 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1555 return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
1558 #ifdef CONFIG_X86_64
1560 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
1562 if (efer & EFER_RESERVED_BITS) {
1563 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
1564 efer);
1565 inject_gp(vcpu);
1566 return;
1569 if (is_paging(vcpu)
1570 && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
1571 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
1572 inject_gp(vcpu);
1573 return;
1576 kvm_arch_ops->set_efer(vcpu, efer);
1578 efer &= ~EFER_LMA;
1579 efer |= vcpu->shadow_efer & EFER_LMA;
1581 vcpu->shadow_efer = efer;
1584 #endif
1586 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1588 switch (msr) {
1589 #ifdef CONFIG_X86_64
1590 case MSR_EFER:
1591 set_efer(vcpu, data);
1592 break;
1593 #endif
1594 case MSR_IA32_MC0_STATUS:
1595 printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1596 __FUNCTION__, data);
1597 break;
1598 case MSR_IA32_MCG_STATUS:
1599 printk(KERN_WARNING "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
1600 __FUNCTION__, data);
1601 break;
1602 case MSR_IA32_UCODE_REV:
1603 case MSR_IA32_UCODE_WRITE:
1604 case 0x200 ... 0x2ff: /* MTRRs */
1605 break;
1606 case MSR_IA32_APICBASE:
1607 vcpu->apic_base = data;
1608 break;
1609 case MSR_IA32_MISC_ENABLE:
1610 vcpu->ia32_misc_enable_msr = data;
1611 break;
1613 * This is the 'probe whether the host is KVM' logic:
1615 case MSR_KVM_API_MAGIC:
1616 return vcpu_register_para(vcpu, data);
1618 default:
1619 printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
1620 return 1;
1622 return 0;
1624 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1627 * Writes msr value into into the appropriate "register".
1628 * Returns 0 on success, non-0 otherwise.
1629 * Assumes vcpu_load() was already called.
1631 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1633 return kvm_arch_ops->set_msr(vcpu, msr_index, data);
1636 void kvm_resched(struct kvm_vcpu *vcpu)
1638 if (!need_resched())
1639 return;
1640 vcpu_put(vcpu);
1641 cond_resched();
1642 vcpu_load(vcpu);
1644 EXPORT_SYMBOL_GPL(kvm_resched);
1646 void load_msrs(struct vmx_msr_entry *e, int n)
1648 int i;
1650 for (i = 0; i < n; ++i)
1651 wrmsrl(e[i].index, e[i].data);
1653 EXPORT_SYMBOL_GPL(load_msrs);
1655 void save_msrs(struct vmx_msr_entry *e, int n)
1657 int i;
1659 for (i = 0; i < n; ++i)
1660 rdmsrl(e[i].index, e[i].data);
1662 EXPORT_SYMBOL_GPL(save_msrs);
1664 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1666 int i;
1667 u32 function;
1668 struct kvm_cpuid_entry *e, *best;
1670 kvm_arch_ops->cache_regs(vcpu);
1671 function = vcpu->regs[VCPU_REGS_RAX];
1672 vcpu->regs[VCPU_REGS_RAX] = 0;
1673 vcpu->regs[VCPU_REGS_RBX] = 0;
1674 vcpu->regs[VCPU_REGS_RCX] = 0;
1675 vcpu->regs[VCPU_REGS_RDX] = 0;
1676 best = NULL;
1677 for (i = 0; i < vcpu->cpuid_nent; ++i) {
1678 e = &vcpu->cpuid_entries[i];
1679 if (e->function == function) {
1680 best = e;
1681 break;
1684 * Both basic or both extended?
1686 if (((e->function ^ function) & 0x80000000) == 0)
1687 if (!best || e->function > best->function)
1688 best = e;
1690 if (best) {
1691 vcpu->regs[VCPU_REGS_RAX] = best->eax;
1692 vcpu->regs[VCPU_REGS_RBX] = best->ebx;
1693 vcpu->regs[VCPU_REGS_RCX] = best->ecx;
1694 vcpu->regs[VCPU_REGS_RDX] = best->edx;
1696 kvm_arch_ops->decache_regs(vcpu);
1697 kvm_arch_ops->skip_emulated_instruction(vcpu);
1699 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1701 static int pio_copy_data(struct kvm_vcpu *vcpu)
1703 void *p = vcpu->pio_data;
1704 void *q;
1705 unsigned bytes;
1706 int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
1708 kvm_arch_ops->vcpu_put(vcpu);
1709 q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
1710 PAGE_KERNEL);
1711 if (!q) {
1712 kvm_arch_ops->vcpu_load(vcpu);
1713 free_pio_guest_pages(vcpu);
1714 return -ENOMEM;
1716 q += vcpu->pio.guest_page_offset;
1717 bytes = vcpu->pio.size * vcpu->pio.cur_count;
1718 if (vcpu->pio.in)
1719 memcpy(q, p, bytes);
1720 else
1721 memcpy(p, q, bytes);
1722 q -= vcpu->pio.guest_page_offset;
1723 vunmap(q);
1724 kvm_arch_ops->vcpu_load(vcpu);
1725 free_pio_guest_pages(vcpu);
1726 return 0;
1729 static int complete_pio(struct kvm_vcpu *vcpu)
1731 struct kvm_pio_request *io = &vcpu->pio;
1732 long delta;
1733 int r;
1735 kvm_arch_ops->cache_regs(vcpu);
1737 if (!io->string) {
1738 if (io->in)
1739 memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
1740 io->size);
1741 } else {
1742 if (io->in) {
1743 r = pio_copy_data(vcpu);
1744 if (r) {
1745 kvm_arch_ops->cache_regs(vcpu);
1746 return r;
1750 delta = 1;
1751 if (io->rep) {
1752 delta *= io->cur_count;
1754 * The size of the register should really depend on
1755 * current address size.
1757 vcpu->regs[VCPU_REGS_RCX] -= delta;
1759 if (io->down)
1760 delta = -delta;
1761 delta *= io->size;
1762 if (io->in)
1763 vcpu->regs[VCPU_REGS_RDI] += delta;
1764 else
1765 vcpu->regs[VCPU_REGS_RSI] += delta;
1768 kvm_arch_ops->decache_regs(vcpu);
1770 io->count -= io->cur_count;
1771 io->cur_count = 0;
1773 if (!io->count)
1774 kvm_arch_ops->skip_emulated_instruction(vcpu);
1775 return 0;
1778 static void kernel_pio(struct kvm_io_device *pio_dev,
1779 struct kvm_vcpu *vcpu,
1780 void *pd)
1782 /* TODO: String I/O for in kernel device */
1784 if (vcpu->pio.in)
1785 kvm_iodevice_read(pio_dev, vcpu->pio.port,
1786 vcpu->pio.size,
1787 pd);
1788 else
1789 kvm_iodevice_write(pio_dev, vcpu->pio.port,
1790 vcpu->pio.size,
1791 pd);
1794 static void pio_string_write(struct kvm_io_device *pio_dev,
1795 struct kvm_vcpu *vcpu)
1797 struct kvm_pio_request *io = &vcpu->pio;
1798 void *pd = vcpu->pio_data;
1799 int i;
1801 for (i = 0; i < io->cur_count; i++) {
1802 kvm_iodevice_write(pio_dev, io->port,
1803 io->size,
1804 pd);
1805 pd += io->size;
1809 int kvm_setup_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
1810 int size, unsigned long count, int string, int down,
1811 gva_t address, int rep, unsigned port)
1813 unsigned now, in_page;
1814 int i, ret = 0;
1815 int nr_pages = 1;
1816 struct page *page;
1817 struct kvm_io_device *pio_dev;
1819 vcpu->run->exit_reason = KVM_EXIT_IO;
1820 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
1821 vcpu->run->io.size = size;
1822 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
1823 vcpu->run->io.count = count;
1824 vcpu->run->io.port = port;
1825 vcpu->pio.count = count;
1826 vcpu->pio.cur_count = count;
1827 vcpu->pio.size = size;
1828 vcpu->pio.in = in;
1829 vcpu->pio.port = port;
1830 vcpu->pio.string = string;
1831 vcpu->pio.down = down;
1832 vcpu->pio.guest_page_offset = offset_in_page(address);
1833 vcpu->pio.rep = rep;
1835 pio_dev = vcpu_find_pio_dev(vcpu, port);
1836 if (!string) {
1837 kvm_arch_ops->cache_regs(vcpu);
1838 memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
1839 kvm_arch_ops->decache_regs(vcpu);
1840 if (pio_dev) {
1841 kernel_pio(pio_dev, vcpu, vcpu->pio_data);
1842 complete_pio(vcpu);
1843 return 1;
1845 return 0;
1848 if (!count) {
1849 kvm_arch_ops->skip_emulated_instruction(vcpu);
1850 return 1;
1853 now = min(count, PAGE_SIZE / size);
1855 if (!down)
1856 in_page = PAGE_SIZE - offset_in_page(address);
1857 else
1858 in_page = offset_in_page(address) + size;
1859 now = min(count, (unsigned long)in_page / size);
1860 if (!now) {
1862 * String I/O straddles page boundary. Pin two guest pages
1863 * so that we satisfy atomicity constraints. Do just one
1864 * transaction to avoid complexity.
1866 nr_pages = 2;
1867 now = 1;
1869 if (down) {
1871 * String I/O in reverse. Yuck. Kill the guest, fix later.
1873 printk(KERN_ERR "kvm: guest string pio down\n");
1874 inject_gp(vcpu);
1875 return 1;
1877 vcpu->run->io.count = now;
1878 vcpu->pio.cur_count = now;
1880 for (i = 0; i < nr_pages; ++i) {
1881 spin_lock(&vcpu->kvm->lock);
1882 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
1883 if (page)
1884 get_page(page);
1885 vcpu->pio.guest_pages[i] = page;
1886 spin_unlock(&vcpu->kvm->lock);
1887 if (!page) {
1888 inject_gp(vcpu);
1889 free_pio_guest_pages(vcpu);
1890 return 1;
1894 if (!vcpu->pio.in) {
1895 /* string PIO write */
1896 ret = pio_copy_data(vcpu);
1897 if (ret >= 0 && pio_dev) {
1898 pio_string_write(pio_dev, vcpu);
1899 complete_pio(vcpu);
1900 if (vcpu->pio.count == 0)
1901 ret = 1;
1903 } else if (pio_dev)
1904 printk(KERN_ERR "no string pio read support yet, "
1905 "port %x size %d count %ld\n",
1906 port, size, count);
1908 return ret;
1910 EXPORT_SYMBOL_GPL(kvm_setup_pio);
1912 static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1914 int r;
1915 sigset_t sigsaved;
1917 vcpu_load(vcpu);
1919 if (vcpu->sigset_active)
1920 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
1922 /* re-sync apic's tpr */
1923 vcpu->cr8 = kvm_run->cr8;
1925 if (vcpu->pio.cur_count) {
1926 r = complete_pio(vcpu);
1927 if (r)
1928 goto out;
1931 if (vcpu->mmio_needed) {
1932 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
1933 vcpu->mmio_read_completed = 1;
1934 vcpu->mmio_needed = 0;
1935 r = emulate_instruction(vcpu, kvm_run,
1936 vcpu->mmio_fault_cr2, 0);
1937 if (r == EMULATE_DO_MMIO) {
1939 * Read-modify-write. Back to userspace.
1941 r = 0;
1942 goto out;
1946 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
1947 kvm_arch_ops->cache_regs(vcpu);
1948 vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
1949 kvm_arch_ops->decache_regs(vcpu);
1952 r = kvm_arch_ops->run(vcpu, kvm_run);
1954 out:
1955 if (vcpu->sigset_active)
1956 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1958 vcpu_put(vcpu);
1959 return r;
1962 static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
1963 struct kvm_regs *regs)
1965 vcpu_load(vcpu);
1967 kvm_arch_ops->cache_regs(vcpu);
1969 regs->rax = vcpu->regs[VCPU_REGS_RAX];
1970 regs->rbx = vcpu->regs[VCPU_REGS_RBX];
1971 regs->rcx = vcpu->regs[VCPU_REGS_RCX];
1972 regs->rdx = vcpu->regs[VCPU_REGS_RDX];
1973 regs->rsi = vcpu->regs[VCPU_REGS_RSI];
1974 regs->rdi = vcpu->regs[VCPU_REGS_RDI];
1975 regs->rsp = vcpu->regs[VCPU_REGS_RSP];
1976 regs->rbp = vcpu->regs[VCPU_REGS_RBP];
1977 #ifdef CONFIG_X86_64
1978 regs->r8 = vcpu->regs[VCPU_REGS_R8];
1979 regs->r9 = vcpu->regs[VCPU_REGS_R9];
1980 regs->r10 = vcpu->regs[VCPU_REGS_R10];
1981 regs->r11 = vcpu->regs[VCPU_REGS_R11];
1982 regs->r12 = vcpu->regs[VCPU_REGS_R12];
1983 regs->r13 = vcpu->regs[VCPU_REGS_R13];
1984 regs->r14 = vcpu->regs[VCPU_REGS_R14];
1985 regs->r15 = vcpu->regs[VCPU_REGS_R15];
1986 #endif
1988 regs->rip = vcpu->rip;
1989 regs->rflags = kvm_arch_ops->get_rflags(vcpu);
1992 * Don't leak debug flags in case they were set for guest debugging
1994 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
1995 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1997 vcpu_put(vcpu);
1999 return 0;
2002 static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
2003 struct kvm_regs *regs)
2005 vcpu_load(vcpu);
2007 vcpu->regs[VCPU_REGS_RAX] = regs->rax;
2008 vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
2009 vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
2010 vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
2011 vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
2012 vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
2013 vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
2014 vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
2015 #ifdef CONFIG_X86_64
2016 vcpu->regs[VCPU_REGS_R8] = regs->r8;
2017 vcpu->regs[VCPU_REGS_R9] = regs->r9;
2018 vcpu->regs[VCPU_REGS_R10] = regs->r10;
2019 vcpu->regs[VCPU_REGS_R11] = regs->r11;
2020 vcpu->regs[VCPU_REGS_R12] = regs->r12;
2021 vcpu->regs[VCPU_REGS_R13] = regs->r13;
2022 vcpu->regs[VCPU_REGS_R14] = regs->r14;
2023 vcpu->regs[VCPU_REGS_R15] = regs->r15;
2024 #endif
2026 vcpu->rip = regs->rip;
2027 kvm_arch_ops->set_rflags(vcpu, regs->rflags);
2029 kvm_arch_ops->decache_regs(vcpu);
2031 vcpu_put(vcpu);
2033 return 0;
2036 static void get_segment(struct kvm_vcpu *vcpu,
2037 struct kvm_segment *var, int seg)
2039 return kvm_arch_ops->get_segment(vcpu, var, seg);
2042 static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
2043 struct kvm_sregs *sregs)
2045 struct descriptor_table dt;
2047 vcpu_load(vcpu);
2049 get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2050 get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2051 get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2052 get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2053 get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2054 get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2056 get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2057 get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2059 kvm_arch_ops->get_idt(vcpu, &dt);
2060 sregs->idt.limit = dt.limit;
2061 sregs->idt.base = dt.base;
2062 kvm_arch_ops->get_gdt(vcpu, &dt);
2063 sregs->gdt.limit = dt.limit;
2064 sregs->gdt.base = dt.base;
2066 kvm_arch_ops->decache_cr4_guest_bits(vcpu);
2067 sregs->cr0 = vcpu->cr0;
2068 sregs->cr2 = vcpu->cr2;
2069 sregs->cr3 = vcpu->cr3;
2070 sregs->cr4 = vcpu->cr4;
2071 sregs->cr8 = vcpu->cr8;
2072 sregs->efer = vcpu->shadow_efer;
2073 sregs->apic_base = vcpu->apic_base;
2075 memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
2076 sizeof sregs->interrupt_bitmap);
2078 vcpu_put(vcpu);
2080 return 0;
2083 static void set_segment(struct kvm_vcpu *vcpu,
2084 struct kvm_segment *var, int seg)
2086 return kvm_arch_ops->set_segment(vcpu, var, seg);
2089 static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
2090 struct kvm_sregs *sregs)
2092 int mmu_reset_needed = 0;
2093 int i;
2094 struct descriptor_table dt;
2096 vcpu_load(vcpu);
2098 dt.limit = sregs->idt.limit;
2099 dt.base = sregs->idt.base;
2100 kvm_arch_ops->set_idt(vcpu, &dt);
2101 dt.limit = sregs->gdt.limit;
2102 dt.base = sregs->gdt.base;
2103 kvm_arch_ops->set_gdt(vcpu, &dt);
2105 vcpu->cr2 = sregs->cr2;
2106 mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
2107 vcpu->cr3 = sregs->cr3;
2109 vcpu->cr8 = sregs->cr8;
2111 mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
2112 #ifdef CONFIG_X86_64
2113 kvm_arch_ops->set_efer(vcpu, sregs->efer);
2114 #endif
2115 vcpu->apic_base = sregs->apic_base;
2117 kvm_arch_ops->decache_cr4_guest_bits(vcpu);
2119 mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
2120 kvm_arch_ops->set_cr0(vcpu, sregs->cr0);
2122 mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
2123 kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
2124 if (!is_long_mode(vcpu) && is_pae(vcpu))
2125 load_pdptrs(vcpu, vcpu->cr3);
2127 if (mmu_reset_needed)
2128 kvm_mmu_reset_context(vcpu);
2130 memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
2131 sizeof vcpu->irq_pending);
2132 vcpu->irq_summary = 0;
2133 for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
2134 if (vcpu->irq_pending[i])
2135 __set_bit(i, &vcpu->irq_summary);
2137 set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2138 set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2139 set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2140 set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2141 set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2142 set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2144 set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2145 set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2147 vcpu_put(vcpu);
2149 return 0;
2153 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
2154 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
2156 * This list is modified at module load time to reflect the
2157 * capabilities of the host cpu.
2159 static u32 msrs_to_save[] = {
2160 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
2161 MSR_K6_STAR,
2162 #ifdef CONFIG_X86_64
2163 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
2164 #endif
2165 MSR_IA32_TIME_STAMP_COUNTER,
2168 static unsigned num_msrs_to_save;
2170 static u32 emulated_msrs[] = {
2171 MSR_IA32_MISC_ENABLE,
2174 static __init void kvm_init_msr_list(void)
2176 u32 dummy[2];
2177 unsigned i, j;
2179 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2180 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2181 continue;
2182 if (j < i)
2183 msrs_to_save[j] = msrs_to_save[i];
2184 j++;
2186 num_msrs_to_save = j;
2190 * Adapt set_msr() to msr_io()'s calling convention
2192 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2194 return kvm_set_msr(vcpu, index, *data);
2198 * Read or write a bunch of msrs. All parameters are kernel addresses.
2200 * @return number of msrs set successfully.
2202 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2203 struct kvm_msr_entry *entries,
2204 int (*do_msr)(struct kvm_vcpu *vcpu,
2205 unsigned index, u64 *data))
2207 int i;
2209 vcpu_load(vcpu);
2211 for (i = 0; i < msrs->nmsrs; ++i)
2212 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2213 break;
2215 vcpu_put(vcpu);
2217 return i;
2221 * Read or write a bunch of msrs. Parameters are user addresses.
2223 * @return number of msrs set successfully.
2225 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2226 int (*do_msr)(struct kvm_vcpu *vcpu,
2227 unsigned index, u64 *data),
2228 int writeback)
2230 struct kvm_msrs msrs;
2231 struct kvm_msr_entry *entries;
2232 int r, n;
2233 unsigned size;
2235 r = -EFAULT;
2236 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2237 goto out;
2239 r = -E2BIG;
2240 if (msrs.nmsrs >= MAX_IO_MSRS)
2241 goto out;
2243 r = -ENOMEM;
2244 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2245 entries = vmalloc(size);
2246 if (!entries)
2247 goto out;
2249 r = -EFAULT;
2250 if (copy_from_user(entries, user_msrs->entries, size))
2251 goto out_free;
2253 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2254 if (r < 0)
2255 goto out_free;
2257 r = -EFAULT;
2258 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2259 goto out_free;
2261 r = n;
2263 out_free:
2264 vfree(entries);
2265 out:
2266 return r;
2270 * Translate a guest virtual address to a guest physical address.
2272 static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
2273 struct kvm_translation *tr)
2275 unsigned long vaddr = tr->linear_address;
2276 gpa_t gpa;
2278 vcpu_load(vcpu);
2279 spin_lock(&vcpu->kvm->lock);
2280 gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
2281 tr->physical_address = gpa;
2282 tr->valid = gpa != UNMAPPED_GVA;
2283 tr->writeable = 1;
2284 tr->usermode = 0;
2285 spin_unlock(&vcpu->kvm->lock);
2286 vcpu_put(vcpu);
2288 return 0;
2291 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2292 struct kvm_interrupt *irq)
2294 if (irq->irq < 0 || irq->irq >= 256)
2295 return -EINVAL;
2296 vcpu_load(vcpu);
2298 set_bit(irq->irq, vcpu->irq_pending);
2299 set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
2301 vcpu_put(vcpu);
2303 return 0;
2306 static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
2307 struct kvm_debug_guest *dbg)
2309 int r;
2311 vcpu_load(vcpu);
2313 r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
2315 vcpu_put(vcpu);
2317 return r;
2320 static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
2321 unsigned long address,
2322 int *type)
2324 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2325 unsigned long pgoff;
2326 struct page *page;
2328 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2329 if (pgoff == 0)
2330 page = virt_to_page(vcpu->run);
2331 else if (pgoff == KVM_PIO_PAGE_OFFSET)
2332 page = virt_to_page(vcpu->pio_data);
2333 else
2334 return NOPAGE_SIGBUS;
2335 get_page(page);
2336 if (type != NULL)
2337 *type = VM_FAULT_MINOR;
2339 return page;
2342 static struct vm_operations_struct kvm_vcpu_vm_ops = {
2343 .nopage = kvm_vcpu_nopage,
2346 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2348 vma->vm_ops = &kvm_vcpu_vm_ops;
2349 return 0;
2352 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2354 struct kvm_vcpu *vcpu = filp->private_data;
2356 fput(vcpu->kvm->filp);
2357 return 0;
2360 static struct file_operations kvm_vcpu_fops = {
2361 .release = kvm_vcpu_release,
2362 .unlocked_ioctl = kvm_vcpu_ioctl,
2363 .compat_ioctl = kvm_vcpu_ioctl,
2364 .mmap = kvm_vcpu_mmap,
2368 * Allocates an inode for the vcpu.
2370 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2372 int fd, r;
2373 struct inode *inode;
2374 struct file *file;
2376 r = anon_inode_getfd(&fd, &inode, &file,
2377 "kvm-vcpu", &kvm_vcpu_fops, vcpu);
2378 if (r)
2379 return r;
2380 atomic_inc(&vcpu->kvm->filp->f_count);
2381 return fd;
2385 * Creates some virtual cpus. Good luck creating more than one.
2387 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
2389 int r;
2390 struct kvm_vcpu *vcpu;
2391 struct page *page;
2393 r = -EINVAL;
2394 if (!valid_vcpu(n))
2395 goto out;
2397 vcpu = &kvm->vcpus[n];
2398 vcpu->vcpu_id = n;
2400 mutex_lock(&vcpu->mutex);
2402 if (vcpu->vmcs) {
2403 mutex_unlock(&vcpu->mutex);
2404 return -EEXIST;
2407 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2408 r = -ENOMEM;
2409 if (!page)
2410 goto out_unlock;
2411 vcpu->run = page_address(page);
2413 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2414 r = -ENOMEM;
2415 if (!page)
2416 goto out_free_run;
2417 vcpu->pio_data = page_address(page);
2419 vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
2420 FX_IMAGE_ALIGN);
2421 vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
2422 vcpu->cr0 = 0x10;
2424 r = kvm_arch_ops->vcpu_create(vcpu);
2425 if (r < 0)
2426 goto out_free_vcpus;
2428 r = kvm_mmu_create(vcpu);
2429 if (r < 0)
2430 goto out_free_vcpus;
2432 kvm_arch_ops->vcpu_load(vcpu);
2433 r = kvm_mmu_setup(vcpu);
2434 if (r >= 0)
2435 r = kvm_arch_ops->vcpu_setup(vcpu);
2436 vcpu_put(vcpu);
2438 if (r < 0)
2439 goto out_free_vcpus;
2441 r = create_vcpu_fd(vcpu);
2442 if (r < 0)
2443 goto out_free_vcpus;
2445 spin_lock(&kvm_lock);
2446 if (n >= kvm->nvcpus)
2447 kvm->nvcpus = n + 1;
2448 spin_unlock(&kvm_lock);
2450 return r;
2452 out_free_vcpus:
2453 kvm_free_vcpu(vcpu);
2454 out_free_run:
2455 free_page((unsigned long)vcpu->run);
2456 vcpu->run = NULL;
2457 out_unlock:
2458 mutex_unlock(&vcpu->mutex);
2459 out:
2460 return r;
2463 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2465 u64 efer;
2466 int i;
2467 struct kvm_cpuid_entry *e, *entry;
2469 rdmsrl(MSR_EFER, efer);
2470 entry = NULL;
2471 for (i = 0; i < vcpu->cpuid_nent; ++i) {
2472 e = &vcpu->cpuid_entries[i];
2473 if (e->function == 0x80000001) {
2474 entry = e;
2475 break;
2478 if (entry && (entry->edx & (1 << 20)) && !(efer & EFER_NX)) {
2479 entry->edx &= ~(1 << 20);
2480 printk(KERN_INFO "kvm: guest NX capability removed\n");
2484 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2485 struct kvm_cpuid *cpuid,
2486 struct kvm_cpuid_entry __user *entries)
2488 int r;
2490 r = -E2BIG;
2491 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2492 goto out;
2493 r = -EFAULT;
2494 if (copy_from_user(&vcpu->cpuid_entries, entries,
2495 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2496 goto out;
2497 vcpu->cpuid_nent = cpuid->nent;
2498 cpuid_fix_nx_cap(vcpu);
2499 return 0;
2501 out:
2502 return r;
2505 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2507 if (sigset) {
2508 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2509 vcpu->sigset_active = 1;
2510 vcpu->sigset = *sigset;
2511 } else
2512 vcpu->sigset_active = 0;
2513 return 0;
2517 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
2518 * we have asm/x86/processor.h
2520 struct fxsave {
2521 u16 cwd;
2522 u16 swd;
2523 u16 twd;
2524 u16 fop;
2525 u64 rip;
2526 u64 rdp;
2527 u32 mxcsr;
2528 u32 mxcsr_mask;
2529 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
2530 #ifdef CONFIG_X86_64
2531 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
2532 #else
2533 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
2534 #endif
2537 static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2539 struct fxsave *fxsave = (struct fxsave *)vcpu->guest_fx_image;
2541 vcpu_load(vcpu);
2543 memcpy(fpu->fpr, fxsave->st_space, 128);
2544 fpu->fcw = fxsave->cwd;
2545 fpu->fsw = fxsave->swd;
2546 fpu->ftwx = fxsave->twd;
2547 fpu->last_opcode = fxsave->fop;
2548 fpu->last_ip = fxsave->rip;
2549 fpu->last_dp = fxsave->rdp;
2550 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
2552 vcpu_put(vcpu);
2554 return 0;
2557 static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2559 struct fxsave *fxsave = (struct fxsave *)vcpu->guest_fx_image;
2561 vcpu_load(vcpu);
2563 memcpy(fxsave->st_space, fpu->fpr, 128);
2564 fxsave->cwd = fpu->fcw;
2565 fxsave->swd = fpu->fsw;
2566 fxsave->twd = fpu->ftwx;
2567 fxsave->fop = fpu->last_opcode;
2568 fxsave->rip = fpu->last_ip;
2569 fxsave->rdp = fpu->last_dp;
2570 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
2572 vcpu_put(vcpu);
2574 return 0;
2577 static long kvm_vcpu_ioctl(struct file *filp,
2578 unsigned int ioctl, unsigned long arg)
2580 struct kvm_vcpu *vcpu = filp->private_data;
2581 void __user *argp = (void __user *)arg;
2582 int r = -EINVAL;
2584 switch (ioctl) {
2585 case KVM_RUN:
2586 r = -EINVAL;
2587 if (arg)
2588 goto out;
2589 r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
2590 break;
2591 case KVM_GET_REGS: {
2592 struct kvm_regs kvm_regs;
2594 memset(&kvm_regs, 0, sizeof kvm_regs);
2595 r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
2596 if (r)
2597 goto out;
2598 r = -EFAULT;
2599 if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
2600 goto out;
2601 r = 0;
2602 break;
2604 case KVM_SET_REGS: {
2605 struct kvm_regs kvm_regs;
2607 r = -EFAULT;
2608 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
2609 goto out;
2610 r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
2611 if (r)
2612 goto out;
2613 r = 0;
2614 break;
2616 case KVM_GET_SREGS: {
2617 struct kvm_sregs kvm_sregs;
2619 memset(&kvm_sregs, 0, sizeof kvm_sregs);
2620 r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
2621 if (r)
2622 goto out;
2623 r = -EFAULT;
2624 if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
2625 goto out;
2626 r = 0;
2627 break;
2629 case KVM_SET_SREGS: {
2630 struct kvm_sregs kvm_sregs;
2632 r = -EFAULT;
2633 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
2634 goto out;
2635 r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
2636 if (r)
2637 goto out;
2638 r = 0;
2639 break;
2641 case KVM_TRANSLATE: {
2642 struct kvm_translation tr;
2644 r = -EFAULT;
2645 if (copy_from_user(&tr, argp, sizeof tr))
2646 goto out;
2647 r = kvm_vcpu_ioctl_translate(vcpu, &tr);
2648 if (r)
2649 goto out;
2650 r = -EFAULT;
2651 if (copy_to_user(argp, &tr, sizeof tr))
2652 goto out;
2653 r = 0;
2654 break;
2656 case KVM_INTERRUPT: {
2657 struct kvm_interrupt irq;
2659 r = -EFAULT;
2660 if (copy_from_user(&irq, argp, sizeof irq))
2661 goto out;
2662 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2663 if (r)
2664 goto out;
2665 r = 0;
2666 break;
2668 case KVM_DEBUG_GUEST: {
2669 struct kvm_debug_guest dbg;
2671 r = -EFAULT;
2672 if (copy_from_user(&dbg, argp, sizeof dbg))
2673 goto out;
2674 r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
2675 if (r)
2676 goto out;
2677 r = 0;
2678 break;
2680 case KVM_GET_MSRS:
2681 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2682 break;
2683 case KVM_SET_MSRS:
2684 r = msr_io(vcpu, argp, do_set_msr, 0);
2685 break;
2686 case KVM_SET_CPUID: {
2687 struct kvm_cpuid __user *cpuid_arg = argp;
2688 struct kvm_cpuid cpuid;
2690 r = -EFAULT;
2691 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2692 goto out;
2693 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2694 if (r)
2695 goto out;
2696 break;
2698 case KVM_SET_SIGNAL_MASK: {
2699 struct kvm_signal_mask __user *sigmask_arg = argp;
2700 struct kvm_signal_mask kvm_sigmask;
2701 sigset_t sigset, *p;
2703 p = NULL;
2704 if (argp) {
2705 r = -EFAULT;
2706 if (copy_from_user(&kvm_sigmask, argp,
2707 sizeof kvm_sigmask))
2708 goto out;
2709 r = -EINVAL;
2710 if (kvm_sigmask.len != sizeof sigset)
2711 goto out;
2712 r = -EFAULT;
2713 if (copy_from_user(&sigset, sigmask_arg->sigset,
2714 sizeof sigset))
2715 goto out;
2716 p = &sigset;
2718 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2719 break;
2721 case KVM_GET_FPU: {
2722 struct kvm_fpu fpu;
2724 memset(&fpu, 0, sizeof fpu);
2725 r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
2726 if (r)
2727 goto out;
2728 r = -EFAULT;
2729 if (copy_to_user(argp, &fpu, sizeof fpu))
2730 goto out;
2731 r = 0;
2732 break;
2734 case KVM_SET_FPU: {
2735 struct kvm_fpu fpu;
2737 r = -EFAULT;
2738 if (copy_from_user(&fpu, argp, sizeof fpu))
2739 goto out;
2740 r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
2741 if (r)
2742 goto out;
2743 r = 0;
2744 break;
2746 default:
2749 out:
2750 return r;
2753 static long kvm_vm_ioctl(struct file *filp,
2754 unsigned int ioctl, unsigned long arg)
2756 struct kvm *kvm = filp->private_data;
2757 void __user *argp = (void __user *)arg;
2758 int r = -EINVAL;
2760 switch (ioctl) {
2761 case KVM_CREATE_VCPU:
2762 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2763 if (r < 0)
2764 goto out;
2765 break;
2766 case KVM_SET_MEMORY_REGION: {
2767 struct kvm_memory_region kvm_mem;
2769 r = -EFAULT;
2770 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2771 goto out;
2772 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
2773 if (r)
2774 goto out;
2775 break;
2777 case KVM_GET_DIRTY_LOG: {
2778 struct kvm_dirty_log log;
2780 r = -EFAULT;
2781 if (copy_from_user(&log, argp, sizeof log))
2782 goto out;
2783 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2784 if (r)
2785 goto out;
2786 break;
2788 case KVM_SET_MEMORY_ALIAS: {
2789 struct kvm_memory_alias alias;
2791 r = -EFAULT;
2792 if (copy_from_user(&alias, argp, sizeof alias))
2793 goto out;
2794 r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
2795 if (r)
2796 goto out;
2797 break;
2799 default:
2802 out:
2803 return r;
2806 static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
2807 unsigned long address,
2808 int *type)
2810 struct kvm *kvm = vma->vm_file->private_data;
2811 unsigned long pgoff;
2812 struct page *page;
2814 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2815 page = gfn_to_page(kvm, pgoff);
2816 if (!page)
2817 return NOPAGE_SIGBUS;
2818 get_page(page);
2819 if (type != NULL)
2820 *type = VM_FAULT_MINOR;
2822 return page;
2825 static struct vm_operations_struct kvm_vm_vm_ops = {
2826 .nopage = kvm_vm_nopage,
2829 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2831 vma->vm_ops = &kvm_vm_vm_ops;
2832 return 0;
2835 static struct file_operations kvm_vm_fops = {
2836 .release = kvm_vm_release,
2837 .unlocked_ioctl = kvm_vm_ioctl,
2838 .compat_ioctl = kvm_vm_ioctl,
2839 .mmap = kvm_vm_mmap,
2842 static int kvm_dev_ioctl_create_vm(void)
2844 int fd, r;
2845 struct inode *inode;
2846 struct file *file;
2847 struct kvm *kvm;
2849 kvm = kvm_create_vm();
2850 if (IS_ERR(kvm))
2851 return PTR_ERR(kvm);
2852 r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
2853 if (r) {
2854 kvm_destroy_vm(kvm);
2855 return r;
2858 kvm->filp = file;
2860 return fd;
2863 static long kvm_dev_ioctl(struct file *filp,
2864 unsigned int ioctl, unsigned long arg)
2866 void __user *argp = (void __user *)arg;
2867 long r = -EINVAL;
2869 switch (ioctl) {
2870 case KVM_GET_API_VERSION:
2871 r = -EINVAL;
2872 if (arg)
2873 goto out;
2874 r = KVM_API_VERSION;
2875 break;
2876 case KVM_CREATE_VM:
2877 r = -EINVAL;
2878 if (arg)
2879 goto out;
2880 r = kvm_dev_ioctl_create_vm();
2881 break;
2882 case KVM_GET_MSR_INDEX_LIST: {
2883 struct kvm_msr_list __user *user_msr_list = argp;
2884 struct kvm_msr_list msr_list;
2885 unsigned n;
2887 r = -EFAULT;
2888 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2889 goto out;
2890 n = msr_list.nmsrs;
2891 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2892 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2893 goto out;
2894 r = -E2BIG;
2895 if (n < num_msrs_to_save)
2896 goto out;
2897 r = -EFAULT;
2898 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2899 num_msrs_to_save * sizeof(u32)))
2900 goto out;
2901 if (copy_to_user(user_msr_list->indices
2902 + num_msrs_to_save * sizeof(u32),
2903 &emulated_msrs,
2904 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2905 goto out;
2906 r = 0;
2907 break;
2909 case KVM_CHECK_EXTENSION:
2911 * No extensions defined at present.
2913 r = 0;
2914 break;
2915 case KVM_GET_VCPU_MMAP_SIZE:
2916 r = -EINVAL;
2917 if (arg)
2918 goto out;
2919 r = 2 * PAGE_SIZE;
2920 break;
2921 default:
2924 out:
2925 return r;
2928 static struct file_operations kvm_chardev_ops = {
2929 .open = kvm_dev_open,
2930 .release = kvm_dev_release,
2931 .unlocked_ioctl = kvm_dev_ioctl,
2932 .compat_ioctl = kvm_dev_ioctl,
2935 static struct miscdevice kvm_dev = {
2936 KVM_MINOR,
2937 "kvm",
2938 &kvm_chardev_ops,
2942 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
2943 * cached on it.
2945 static void decache_vcpus_on_cpu(int cpu)
2947 struct kvm *vm;
2948 struct kvm_vcpu *vcpu;
2949 int i;
2951 spin_lock(&kvm_lock);
2952 list_for_each_entry(vm, &vm_list, vm_list)
2953 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2954 vcpu = &vm->vcpus[i];
2956 * If the vcpu is locked, then it is running on some
2957 * other cpu and therefore it is not cached on the
2958 * cpu in question.
2960 * If it's not locked, check the last cpu it executed
2961 * on.
2963 if (mutex_trylock(&vcpu->mutex)) {
2964 if (vcpu->cpu == cpu) {
2965 kvm_arch_ops->vcpu_decache(vcpu);
2966 vcpu->cpu = -1;
2968 mutex_unlock(&vcpu->mutex);
2971 spin_unlock(&kvm_lock);
2974 static void hardware_enable(void *junk)
2976 int cpu = raw_smp_processor_id();
2978 if (cpu_isset(cpu, cpus_hardware_enabled))
2979 return;
2980 cpu_set(cpu, cpus_hardware_enabled);
2981 kvm_arch_ops->hardware_enable(NULL);
2984 static void hardware_disable(void *junk)
2986 int cpu = raw_smp_processor_id();
2988 if (!cpu_isset(cpu, cpus_hardware_enabled))
2989 return;
2990 cpu_clear(cpu, cpus_hardware_enabled);
2991 decache_vcpus_on_cpu(cpu);
2992 kvm_arch_ops->hardware_disable(NULL);
2995 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2996 void *v)
2998 int cpu = (long)v;
3000 switch (val) {
3001 case CPU_DYING:
3002 case CPU_DYING_FROZEN:
3003 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
3004 cpu);
3005 hardware_disable(NULL);
3006 break;
3007 case CPU_UP_CANCELED:
3008 case CPU_UP_CANCELED_FROZEN:
3009 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
3010 cpu);
3011 smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
3012 break;
3013 case CPU_ONLINE:
3014 case CPU_ONLINE_FROZEN:
3015 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
3016 cpu);
3017 smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
3018 break;
3020 return NOTIFY_OK;
3023 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3024 void *v)
3026 if (val == SYS_RESTART) {
3028 * Some (well, at least mine) BIOSes hang on reboot if
3029 * in vmx root mode.
3031 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
3032 on_each_cpu(hardware_disable, NULL, 0, 1);
3034 return NOTIFY_OK;
3037 static struct notifier_block kvm_reboot_notifier = {
3038 .notifier_call = kvm_reboot,
3039 .priority = 0,
3042 void kvm_io_bus_init(struct kvm_io_bus *bus)
3044 memset(bus, 0, sizeof(*bus));
3047 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3049 int i;
3051 for (i = 0; i < bus->dev_count; i++) {
3052 struct kvm_io_device *pos = bus->devs[i];
3054 kvm_iodevice_destructor(pos);
3058 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
3060 int i;
3062 for (i = 0; i < bus->dev_count; i++) {
3063 struct kvm_io_device *pos = bus->devs[i];
3065 if (pos->in_range(pos, addr))
3066 return pos;
3069 return NULL;
3072 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
3074 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
3076 bus->devs[bus->dev_count++] = dev;
3079 static struct notifier_block kvm_cpu_notifier = {
3080 .notifier_call = kvm_cpu_hotplug,
3081 .priority = 20, /* must be > scheduler priority */
3084 static u64 stat_get(void *_offset)
3086 unsigned offset = (long)_offset;
3087 u64 total = 0;
3088 struct kvm *kvm;
3089 struct kvm_vcpu *vcpu;
3090 int i;
3092 spin_lock(&kvm_lock);
3093 list_for_each_entry(kvm, &vm_list, vm_list)
3094 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3095 vcpu = &kvm->vcpus[i];
3096 total += *(u32 *)((void *)vcpu + offset);
3098 spin_unlock(&kvm_lock);
3099 return total;
3102 static void stat_set(void *offset, u64 val)
3106 DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, stat_set, "%llu\n");
3108 static __init void kvm_init_debug(void)
3110 struct kvm_stats_debugfs_item *p;
3112 debugfs_dir = debugfs_create_dir("kvm", NULL);
3113 for (p = debugfs_entries; p->name; ++p)
3114 p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
3115 (void *)(long)p->offset,
3116 &stat_fops);
3119 static void kvm_exit_debug(void)
3121 struct kvm_stats_debugfs_item *p;
3123 for (p = debugfs_entries; p->name; ++p)
3124 debugfs_remove(p->dentry);
3125 debugfs_remove(debugfs_dir);
3128 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
3130 hardware_disable(NULL);
3131 return 0;
3134 static int kvm_resume(struct sys_device *dev)
3136 hardware_enable(NULL);
3137 return 0;
3140 static struct sysdev_class kvm_sysdev_class = {
3141 set_kset_name("kvm"),
3142 .suspend = kvm_suspend,
3143 .resume = kvm_resume,
3146 static struct sys_device kvm_sysdev = {
3147 .id = 0,
3148 .cls = &kvm_sysdev_class,
3151 hpa_t bad_page_address;
3153 int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
3155 int r;
3157 if (kvm_arch_ops) {
3158 printk(KERN_ERR "kvm: already loaded the other module\n");
3159 return -EEXIST;
3162 if (!ops->cpu_has_kvm_support()) {
3163 printk(KERN_ERR "kvm: no hardware support\n");
3164 return -EOPNOTSUPP;
3166 if (ops->disabled_by_bios()) {
3167 printk(KERN_ERR "kvm: disabled by bios\n");
3168 return -EOPNOTSUPP;
3171 kvm_arch_ops = ops;
3173 r = kvm_arch_ops->hardware_setup();
3174 if (r < 0)
3175 goto out;
3177 on_each_cpu(hardware_enable, NULL, 0, 1);
3178 r = register_cpu_notifier(&kvm_cpu_notifier);
3179 if (r)
3180 goto out_free_1;
3181 register_reboot_notifier(&kvm_reboot_notifier);
3183 r = sysdev_class_register(&kvm_sysdev_class);
3184 if (r)
3185 goto out_free_2;
3187 r = sysdev_register(&kvm_sysdev);
3188 if (r)
3189 goto out_free_3;
3191 kvm_chardev_ops.owner = module;
3193 r = misc_register(&kvm_dev);
3194 if (r) {
3195 printk (KERN_ERR "kvm: misc device register failed\n");
3196 goto out_free;
3199 return r;
3201 out_free:
3202 sysdev_unregister(&kvm_sysdev);
3203 out_free_3:
3204 sysdev_class_unregister(&kvm_sysdev_class);
3205 out_free_2:
3206 unregister_reboot_notifier(&kvm_reboot_notifier);
3207 unregister_cpu_notifier(&kvm_cpu_notifier);
3208 out_free_1:
3209 on_each_cpu(hardware_disable, NULL, 0, 1);
3210 kvm_arch_ops->hardware_unsetup();
3211 out:
3212 kvm_arch_ops = NULL;
3213 return r;
3216 void kvm_exit_arch(void)
3218 misc_deregister(&kvm_dev);
3219 sysdev_unregister(&kvm_sysdev);
3220 sysdev_class_unregister(&kvm_sysdev_class);
3221 unregister_reboot_notifier(&kvm_reboot_notifier);
3222 unregister_cpu_notifier(&kvm_cpu_notifier);
3223 on_each_cpu(hardware_disable, NULL, 0, 1);
3224 kvm_arch_ops->hardware_unsetup();
3225 kvm_arch_ops = NULL;
3228 static __init int kvm_init(void)
3230 static struct page *bad_page;
3231 int r;
3233 r = kvm_mmu_module_init();
3234 if (r)
3235 goto out4;
3237 kvm_init_debug();
3239 kvm_init_msr_list();
3241 if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
3242 r = -ENOMEM;
3243 goto out;
3246 bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
3247 memset(__va(bad_page_address), 0, PAGE_SIZE);
3249 return 0;
3251 out:
3252 kvm_exit_debug();
3253 kvm_mmu_module_exit();
3254 out4:
3255 return r;
3258 static __exit void kvm_exit(void)
3260 kvm_exit_debug();
3261 __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
3262 kvm_mmu_module_exit();
3265 module_init(kvm_init)
3266 module_exit(kvm_exit)
3268 EXPORT_SYMBOL_GPL(kvm_init_arch);
3269 EXPORT_SYMBOL_GPL(kvm_exit_arch);