Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[linux-2.6.git] / fs / xfs / xfs_inode_item.c
blobf76ff52e43c0a4f5536163a61230f1ac89f77358
1 /*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_log.h"
22 #include "xfs_trans.h"
23 #include "xfs_sb.h"
24 #include "xfs_ag.h"
25 #include "xfs_mount.h"
26 #include "xfs_trans_priv.h"
27 #include "xfs_bmap_btree.h"
28 #include "xfs_dinode.h"
29 #include "xfs_inode.h"
30 #include "xfs_inode_item.h"
31 #include "xfs_error.h"
32 #include "xfs_trace.h"
35 kmem_zone_t *xfs_ili_zone; /* inode log item zone */
37 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
39 return container_of(lip, struct xfs_inode_log_item, ili_item);
44 * This returns the number of iovecs needed to log the given inode item.
46 * We need one iovec for the inode log format structure, one for the
47 * inode core, and possibly one for the inode data/extents/b-tree root
48 * and one for the inode attribute data/extents/b-tree root.
50 STATIC uint
51 xfs_inode_item_size(
52 struct xfs_log_item *lip)
54 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
55 struct xfs_inode *ip = iip->ili_inode;
56 uint nvecs = 2;
58 switch (ip->i_d.di_format) {
59 case XFS_DINODE_FMT_EXTENTS:
60 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
61 ip->i_d.di_nextents > 0 &&
62 ip->i_df.if_bytes > 0)
63 nvecs++;
64 break;
66 case XFS_DINODE_FMT_BTREE:
67 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
68 ip->i_df.if_broot_bytes > 0)
69 nvecs++;
70 break;
72 case XFS_DINODE_FMT_LOCAL:
73 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
74 ip->i_df.if_bytes > 0)
75 nvecs++;
76 break;
78 case XFS_DINODE_FMT_DEV:
79 case XFS_DINODE_FMT_UUID:
80 break;
82 default:
83 ASSERT(0);
84 break;
87 if (!XFS_IFORK_Q(ip))
88 return nvecs;
92 * Log any necessary attribute data.
94 switch (ip->i_d.di_aformat) {
95 case XFS_DINODE_FMT_EXTENTS:
96 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
97 ip->i_d.di_anextents > 0 &&
98 ip->i_afp->if_bytes > 0)
99 nvecs++;
100 break;
102 case XFS_DINODE_FMT_BTREE:
103 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
104 ip->i_afp->if_broot_bytes > 0)
105 nvecs++;
106 break;
108 case XFS_DINODE_FMT_LOCAL:
109 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
110 ip->i_afp->if_bytes > 0)
111 nvecs++;
112 break;
114 default:
115 ASSERT(0);
116 break;
119 return nvecs;
123 * xfs_inode_item_format_extents - convert in-core extents to on-disk form
125 * For either the data or attr fork in extent format, we need to endian convert
126 * the in-core extent as we place them into the on-disk inode. In this case, we
127 * need to do this conversion before we write the extents into the log. Because
128 * we don't have the disk inode to write into here, we allocate a buffer and
129 * format the extents into it via xfs_iextents_copy(). We free the buffer in
130 * the unlock routine after the copy for the log has been made.
132 * In the case of the data fork, the in-core and on-disk fork sizes can be
133 * different due to delayed allocation extents. We only log on-disk extents
134 * here, so always use the physical fork size to determine the size of the
135 * buffer we need to allocate.
137 STATIC void
138 xfs_inode_item_format_extents(
139 struct xfs_inode *ip,
140 struct xfs_log_iovec *vecp,
141 int whichfork,
142 int type)
144 xfs_bmbt_rec_t *ext_buffer;
146 ext_buffer = kmem_alloc(XFS_IFORK_SIZE(ip, whichfork), KM_SLEEP);
147 if (whichfork == XFS_DATA_FORK)
148 ip->i_itemp->ili_extents_buf = ext_buffer;
149 else
150 ip->i_itemp->ili_aextents_buf = ext_buffer;
152 vecp->i_addr = ext_buffer;
153 vecp->i_len = xfs_iextents_copy(ip, ext_buffer, whichfork);
154 vecp->i_type = type;
158 * This is called to fill in the vector of log iovecs for the
159 * given inode log item. It fills the first item with an inode
160 * log format structure, the second with the on-disk inode structure,
161 * and a possible third and/or fourth with the inode data/extents/b-tree
162 * root and inode attributes data/extents/b-tree root.
164 STATIC void
165 xfs_inode_item_format(
166 struct xfs_log_item *lip,
167 struct xfs_log_iovec *vecp)
169 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
170 struct xfs_inode *ip = iip->ili_inode;
171 uint nvecs;
172 size_t data_bytes;
173 xfs_mount_t *mp;
175 vecp->i_addr = &iip->ili_format;
176 vecp->i_len = sizeof(xfs_inode_log_format_t);
177 vecp->i_type = XLOG_REG_TYPE_IFORMAT;
178 vecp++;
179 nvecs = 1;
181 vecp->i_addr = &ip->i_d;
182 vecp->i_len = xfs_icdinode_size(ip->i_d.di_version);
183 vecp->i_type = XLOG_REG_TYPE_ICORE;
184 vecp++;
185 nvecs++;
188 * If this is really an old format inode, then we need to
189 * log it as such. This means that we have to copy the link
190 * count from the new field to the old. We don't have to worry
191 * about the new fields, because nothing trusts them as long as
192 * the old inode version number is there. If the superblock already
193 * has a new version number, then we don't bother converting back.
195 mp = ip->i_mount;
196 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
197 if (ip->i_d.di_version == 1) {
198 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
200 * Convert it back.
202 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
203 ip->i_d.di_onlink = ip->i_d.di_nlink;
204 } else {
206 * The superblock version has already been bumped,
207 * so just make the conversion to the new inode
208 * format permanent.
210 ip->i_d.di_version = 2;
211 ip->i_d.di_onlink = 0;
212 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
216 switch (ip->i_d.di_format) {
217 case XFS_DINODE_FMT_EXTENTS:
218 iip->ili_fields &=
219 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
220 XFS_ILOG_DEV | XFS_ILOG_UUID);
222 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
223 ip->i_d.di_nextents > 0 &&
224 ip->i_df.if_bytes > 0) {
225 ASSERT(ip->i_df.if_u1.if_extents != NULL);
226 ASSERT(ip->i_df.if_bytes / sizeof(xfs_bmbt_rec_t) > 0);
227 ASSERT(iip->ili_extents_buf == NULL);
229 #ifdef XFS_NATIVE_HOST
230 if (ip->i_d.di_nextents == ip->i_df.if_bytes /
231 (uint)sizeof(xfs_bmbt_rec_t)) {
233 * There are no delayed allocation
234 * extents, so just point to the
235 * real extents array.
237 vecp->i_addr = ip->i_df.if_u1.if_extents;
238 vecp->i_len = ip->i_df.if_bytes;
239 vecp->i_type = XLOG_REG_TYPE_IEXT;
240 } else
241 #endif
243 xfs_inode_item_format_extents(ip, vecp,
244 XFS_DATA_FORK, XLOG_REG_TYPE_IEXT);
246 ASSERT(vecp->i_len <= ip->i_df.if_bytes);
247 iip->ili_format.ilf_dsize = vecp->i_len;
248 vecp++;
249 nvecs++;
250 } else {
251 iip->ili_fields &= ~XFS_ILOG_DEXT;
253 break;
255 case XFS_DINODE_FMT_BTREE:
256 iip->ili_fields &=
257 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
258 XFS_ILOG_DEV | XFS_ILOG_UUID);
260 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
261 ip->i_df.if_broot_bytes > 0) {
262 ASSERT(ip->i_df.if_broot != NULL);
263 vecp->i_addr = ip->i_df.if_broot;
264 vecp->i_len = ip->i_df.if_broot_bytes;
265 vecp->i_type = XLOG_REG_TYPE_IBROOT;
266 vecp++;
267 nvecs++;
268 iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes;
269 } else {
270 ASSERT(!(iip->ili_fields &
271 XFS_ILOG_DBROOT));
272 iip->ili_fields &= ~XFS_ILOG_DBROOT;
274 break;
276 case XFS_DINODE_FMT_LOCAL:
277 iip->ili_fields &=
278 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
279 XFS_ILOG_DEV | XFS_ILOG_UUID);
280 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
281 ip->i_df.if_bytes > 0) {
282 ASSERT(ip->i_df.if_u1.if_data != NULL);
283 ASSERT(ip->i_d.di_size > 0);
285 vecp->i_addr = ip->i_df.if_u1.if_data;
287 * Round i_bytes up to a word boundary.
288 * The underlying memory is guaranteed to
289 * to be there by xfs_idata_realloc().
291 data_bytes = roundup(ip->i_df.if_bytes, 4);
292 ASSERT((ip->i_df.if_real_bytes == 0) ||
293 (ip->i_df.if_real_bytes == data_bytes));
294 vecp->i_len = (int)data_bytes;
295 vecp->i_type = XLOG_REG_TYPE_ILOCAL;
296 vecp++;
297 nvecs++;
298 iip->ili_format.ilf_dsize = (unsigned)data_bytes;
299 } else {
300 iip->ili_fields &= ~XFS_ILOG_DDATA;
302 break;
304 case XFS_DINODE_FMT_DEV:
305 iip->ili_fields &=
306 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
307 XFS_ILOG_DEXT | XFS_ILOG_UUID);
308 if (iip->ili_fields & XFS_ILOG_DEV) {
309 iip->ili_format.ilf_u.ilfu_rdev =
310 ip->i_df.if_u2.if_rdev;
312 break;
314 case XFS_DINODE_FMT_UUID:
315 iip->ili_fields &=
316 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
317 XFS_ILOG_DEXT | XFS_ILOG_DEV);
318 if (iip->ili_fields & XFS_ILOG_UUID) {
319 iip->ili_format.ilf_u.ilfu_uuid =
320 ip->i_df.if_u2.if_uuid;
322 break;
324 default:
325 ASSERT(0);
326 break;
330 * If there are no attributes associated with the file, then we're done.
332 if (!XFS_IFORK_Q(ip)) {
333 iip->ili_fields &=
334 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
335 goto out;
338 switch (ip->i_d.di_aformat) {
339 case XFS_DINODE_FMT_EXTENTS:
340 iip->ili_fields &=
341 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
343 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
344 ip->i_d.di_anextents > 0 &&
345 ip->i_afp->if_bytes > 0) {
346 ASSERT(ip->i_afp->if_bytes / sizeof(xfs_bmbt_rec_t) ==
347 ip->i_d.di_anextents);
348 ASSERT(ip->i_afp->if_u1.if_extents != NULL);
349 #ifdef XFS_NATIVE_HOST
351 * There are not delayed allocation extents
352 * for attributes, so just point at the array.
354 vecp->i_addr = ip->i_afp->if_u1.if_extents;
355 vecp->i_len = ip->i_afp->if_bytes;
356 vecp->i_type = XLOG_REG_TYPE_IATTR_EXT;
357 #else
358 ASSERT(iip->ili_aextents_buf == NULL);
359 xfs_inode_item_format_extents(ip, vecp,
360 XFS_ATTR_FORK, XLOG_REG_TYPE_IATTR_EXT);
361 #endif
362 iip->ili_format.ilf_asize = vecp->i_len;
363 vecp++;
364 nvecs++;
365 } else {
366 iip->ili_fields &= ~XFS_ILOG_AEXT;
368 break;
370 case XFS_DINODE_FMT_BTREE:
371 iip->ili_fields &=
372 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
374 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
375 ip->i_afp->if_broot_bytes > 0) {
376 ASSERT(ip->i_afp->if_broot != NULL);
378 vecp->i_addr = ip->i_afp->if_broot;
379 vecp->i_len = ip->i_afp->if_broot_bytes;
380 vecp->i_type = XLOG_REG_TYPE_IATTR_BROOT;
381 vecp++;
382 nvecs++;
383 iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes;
384 } else {
385 iip->ili_fields &= ~XFS_ILOG_ABROOT;
387 break;
389 case XFS_DINODE_FMT_LOCAL:
390 iip->ili_fields &=
391 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
393 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
394 ip->i_afp->if_bytes > 0) {
395 ASSERT(ip->i_afp->if_u1.if_data != NULL);
397 vecp->i_addr = ip->i_afp->if_u1.if_data;
399 * Round i_bytes up to a word boundary.
400 * The underlying memory is guaranteed to
401 * to be there by xfs_idata_realloc().
403 data_bytes = roundup(ip->i_afp->if_bytes, 4);
404 ASSERT((ip->i_afp->if_real_bytes == 0) ||
405 (ip->i_afp->if_real_bytes == data_bytes));
406 vecp->i_len = (int)data_bytes;
407 vecp->i_type = XLOG_REG_TYPE_IATTR_LOCAL;
408 vecp++;
409 nvecs++;
410 iip->ili_format.ilf_asize = (unsigned)data_bytes;
411 } else {
412 iip->ili_fields &= ~XFS_ILOG_ADATA;
414 break;
416 default:
417 ASSERT(0);
418 break;
421 out:
423 * Now update the log format that goes out to disk from the in-core
424 * values. We always write the inode core to make the arithmetic
425 * games in recovery easier, which isn't a big deal as just about any
426 * transaction would dirty it anyway.
428 iip->ili_format.ilf_fields = XFS_ILOG_CORE |
429 (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
430 iip->ili_format.ilf_size = nvecs;
435 * This is called to pin the inode associated with the inode log
436 * item in memory so it cannot be written out.
438 STATIC void
439 xfs_inode_item_pin(
440 struct xfs_log_item *lip)
442 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
444 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
446 trace_xfs_inode_pin(ip, _RET_IP_);
447 atomic_inc(&ip->i_pincount);
452 * This is called to unpin the inode associated with the inode log
453 * item which was previously pinned with a call to xfs_inode_item_pin().
455 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
457 STATIC void
458 xfs_inode_item_unpin(
459 struct xfs_log_item *lip,
460 int remove)
462 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
464 trace_xfs_inode_unpin(ip, _RET_IP_);
465 ASSERT(atomic_read(&ip->i_pincount) > 0);
466 if (atomic_dec_and_test(&ip->i_pincount))
467 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
470 STATIC uint
471 xfs_inode_item_push(
472 struct xfs_log_item *lip,
473 struct list_head *buffer_list)
475 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
476 struct xfs_inode *ip = iip->ili_inode;
477 struct xfs_buf *bp = NULL;
478 uint rval = XFS_ITEM_SUCCESS;
479 int error;
481 if (xfs_ipincount(ip) > 0)
482 return XFS_ITEM_PINNED;
484 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
485 return XFS_ITEM_LOCKED;
488 * Re-check the pincount now that we stabilized the value by
489 * taking the ilock.
491 if (xfs_ipincount(ip) > 0) {
492 rval = XFS_ITEM_PINNED;
493 goto out_unlock;
497 * Stale inode items should force out the iclog.
499 if (ip->i_flags & XFS_ISTALE) {
500 rval = XFS_ITEM_PINNED;
501 goto out_unlock;
505 * Someone else is already flushing the inode. Nothing we can do
506 * here but wait for the flush to finish and remove the item from
507 * the AIL.
509 if (!xfs_iflock_nowait(ip)) {
510 rval = XFS_ITEM_FLUSHING;
511 goto out_unlock;
514 ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
515 ASSERT(iip->ili_logged == 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
517 spin_unlock(&lip->li_ailp->xa_lock);
519 error = xfs_iflush(ip, &bp);
520 if (!error) {
521 if (!xfs_buf_delwri_queue(bp, buffer_list))
522 rval = XFS_ITEM_FLUSHING;
523 xfs_buf_relse(bp);
526 spin_lock(&lip->li_ailp->xa_lock);
527 out_unlock:
528 xfs_iunlock(ip, XFS_ILOCK_SHARED);
529 return rval;
533 * Unlock the inode associated with the inode log item.
534 * Clear the fields of the inode and inode log item that
535 * are specific to the current transaction. If the
536 * hold flags is set, do not unlock the inode.
538 STATIC void
539 xfs_inode_item_unlock(
540 struct xfs_log_item *lip)
542 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
543 struct xfs_inode *ip = iip->ili_inode;
544 unsigned short lock_flags;
546 ASSERT(ip->i_itemp != NULL);
547 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
550 * If the inode needed a separate buffer with which to log
551 * its extents, then free it now.
553 if (iip->ili_extents_buf != NULL) {
554 ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS);
555 ASSERT(ip->i_d.di_nextents > 0);
556 ASSERT(iip->ili_fields & XFS_ILOG_DEXT);
557 ASSERT(ip->i_df.if_bytes > 0);
558 kmem_free(iip->ili_extents_buf);
559 iip->ili_extents_buf = NULL;
561 if (iip->ili_aextents_buf != NULL) {
562 ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS);
563 ASSERT(ip->i_d.di_anextents > 0);
564 ASSERT(iip->ili_fields & XFS_ILOG_AEXT);
565 ASSERT(ip->i_afp->if_bytes > 0);
566 kmem_free(iip->ili_aextents_buf);
567 iip->ili_aextents_buf = NULL;
570 lock_flags = iip->ili_lock_flags;
571 iip->ili_lock_flags = 0;
572 if (lock_flags)
573 xfs_iunlock(ip, lock_flags);
577 * This is called to find out where the oldest active copy of the inode log
578 * item in the on disk log resides now that the last log write of it completed
579 * at the given lsn. Since we always re-log all dirty data in an inode, the
580 * latest copy in the on disk log is the only one that matters. Therefore,
581 * simply return the given lsn.
583 * If the inode has been marked stale because the cluster is being freed, we
584 * don't want to (re-)insert this inode into the AIL. There is a race condition
585 * where the cluster buffer may be unpinned before the inode is inserted into
586 * the AIL during transaction committed processing. If the buffer is unpinned
587 * before the inode item has been committed and inserted, then it is possible
588 * for the buffer to be written and IO completes before the inode is inserted
589 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
590 * AIL which will never get removed. It will, however, get reclaimed which
591 * triggers an assert in xfs_inode_free() complaining about freein an inode
592 * still in the AIL.
594 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
595 * transaction committed code knows that it does not need to do any further
596 * processing on the item.
598 STATIC xfs_lsn_t
599 xfs_inode_item_committed(
600 struct xfs_log_item *lip,
601 xfs_lsn_t lsn)
603 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
604 struct xfs_inode *ip = iip->ili_inode;
606 if (xfs_iflags_test(ip, XFS_ISTALE)) {
607 xfs_inode_item_unpin(lip, 0);
608 return -1;
610 return lsn;
614 * XXX rcc - this one really has to do something. Probably needs
615 * to stamp in a new field in the incore inode.
617 STATIC void
618 xfs_inode_item_committing(
619 struct xfs_log_item *lip,
620 xfs_lsn_t lsn)
622 INODE_ITEM(lip)->ili_last_lsn = lsn;
626 * This is the ops vector shared by all buf log items.
628 static const struct xfs_item_ops xfs_inode_item_ops = {
629 .iop_size = xfs_inode_item_size,
630 .iop_format = xfs_inode_item_format,
631 .iop_pin = xfs_inode_item_pin,
632 .iop_unpin = xfs_inode_item_unpin,
633 .iop_unlock = xfs_inode_item_unlock,
634 .iop_committed = xfs_inode_item_committed,
635 .iop_push = xfs_inode_item_push,
636 .iop_committing = xfs_inode_item_committing
641 * Initialize the inode log item for a newly allocated (in-core) inode.
643 void
644 xfs_inode_item_init(
645 struct xfs_inode *ip,
646 struct xfs_mount *mp)
648 struct xfs_inode_log_item *iip;
650 ASSERT(ip->i_itemp == NULL);
651 iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
653 iip->ili_inode = ip;
654 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
655 &xfs_inode_item_ops);
656 iip->ili_format.ilf_type = XFS_LI_INODE;
657 iip->ili_format.ilf_ino = ip->i_ino;
658 iip->ili_format.ilf_blkno = ip->i_imap.im_blkno;
659 iip->ili_format.ilf_len = ip->i_imap.im_len;
660 iip->ili_format.ilf_boffset = ip->i_imap.im_boffset;
664 * Free the inode log item and any memory hanging off of it.
666 void
667 xfs_inode_item_destroy(
668 xfs_inode_t *ip)
670 kmem_zone_free(xfs_ili_zone, ip->i_itemp);
675 * This is the inode flushing I/O completion routine. It is called
676 * from interrupt level when the buffer containing the inode is
677 * flushed to disk. It is responsible for removing the inode item
678 * from the AIL if it has not been re-logged, and unlocking the inode's
679 * flush lock.
681 * To reduce AIL lock traffic as much as possible, we scan the buffer log item
682 * list for other inodes that will run this function. We remove them from the
683 * buffer list so we can process all the inode IO completions in one AIL lock
684 * traversal.
686 void
687 xfs_iflush_done(
688 struct xfs_buf *bp,
689 struct xfs_log_item *lip)
691 struct xfs_inode_log_item *iip;
692 struct xfs_log_item *blip;
693 struct xfs_log_item *next;
694 struct xfs_log_item *prev;
695 struct xfs_ail *ailp = lip->li_ailp;
696 int need_ail = 0;
699 * Scan the buffer IO completions for other inodes being completed and
700 * attach them to the current inode log item.
702 blip = bp->b_fspriv;
703 prev = NULL;
704 while (blip != NULL) {
705 if (lip->li_cb != xfs_iflush_done) {
706 prev = blip;
707 blip = blip->li_bio_list;
708 continue;
711 /* remove from list */
712 next = blip->li_bio_list;
713 if (!prev) {
714 bp->b_fspriv = next;
715 } else {
716 prev->li_bio_list = next;
719 /* add to current list */
720 blip->li_bio_list = lip->li_bio_list;
721 lip->li_bio_list = blip;
724 * while we have the item, do the unlocked check for needing
725 * the AIL lock.
727 iip = INODE_ITEM(blip);
728 if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn)
729 need_ail++;
731 blip = next;
734 /* make sure we capture the state of the initial inode. */
735 iip = INODE_ITEM(lip);
736 if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn)
737 need_ail++;
740 * We only want to pull the item from the AIL if it is
741 * actually there and its location in the log has not
742 * changed since we started the flush. Thus, we only bother
743 * if the ili_logged flag is set and the inode's lsn has not
744 * changed. First we check the lsn outside
745 * the lock since it's cheaper, and then we recheck while
746 * holding the lock before removing the inode from the AIL.
748 if (need_ail) {
749 struct xfs_log_item *log_items[need_ail];
750 int i = 0;
751 spin_lock(&ailp->xa_lock);
752 for (blip = lip; blip; blip = blip->li_bio_list) {
753 iip = INODE_ITEM(blip);
754 if (iip->ili_logged &&
755 blip->li_lsn == iip->ili_flush_lsn) {
756 log_items[i++] = blip;
758 ASSERT(i <= need_ail);
760 /* xfs_trans_ail_delete_bulk() drops the AIL lock. */
761 xfs_trans_ail_delete_bulk(ailp, log_items, i,
762 SHUTDOWN_CORRUPT_INCORE);
767 * clean up and unlock the flush lock now we are done. We can clear the
768 * ili_last_fields bits now that we know that the data corresponding to
769 * them is safely on disk.
771 for (blip = lip; blip; blip = next) {
772 next = blip->li_bio_list;
773 blip->li_bio_list = NULL;
775 iip = INODE_ITEM(blip);
776 iip->ili_logged = 0;
777 iip->ili_last_fields = 0;
778 xfs_ifunlock(iip->ili_inode);
783 * This is the inode flushing abort routine. It is called from xfs_iflush when
784 * the filesystem is shutting down to clean up the inode state. It is
785 * responsible for removing the inode item from the AIL if it has not been
786 * re-logged, and unlocking the inode's flush lock.
788 void
789 xfs_iflush_abort(
790 xfs_inode_t *ip,
791 bool stale)
793 xfs_inode_log_item_t *iip = ip->i_itemp;
795 if (iip) {
796 struct xfs_ail *ailp = iip->ili_item.li_ailp;
797 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
798 spin_lock(&ailp->xa_lock);
799 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
800 /* xfs_trans_ail_delete() drops the AIL lock. */
801 xfs_trans_ail_delete(ailp, &iip->ili_item,
802 stale ?
803 SHUTDOWN_LOG_IO_ERROR :
804 SHUTDOWN_CORRUPT_INCORE);
805 } else
806 spin_unlock(&ailp->xa_lock);
808 iip->ili_logged = 0;
810 * Clear the ili_last_fields bits now that we know that the
811 * data corresponding to them is safely on disk.
813 iip->ili_last_fields = 0;
815 * Clear the inode logging fields so no more flushes are
816 * attempted.
818 iip->ili_fields = 0;
821 * Release the inode's flush lock since we're done with it.
823 xfs_ifunlock(ip);
826 void
827 xfs_istale_done(
828 struct xfs_buf *bp,
829 struct xfs_log_item *lip)
831 xfs_iflush_abort(INODE_ITEM(lip)->ili_inode, true);
835 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
836 * (which can have different field alignments) to the native version
839 xfs_inode_item_format_convert(
840 xfs_log_iovec_t *buf,
841 xfs_inode_log_format_t *in_f)
843 if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
844 xfs_inode_log_format_32_t *in_f32 = buf->i_addr;
846 in_f->ilf_type = in_f32->ilf_type;
847 in_f->ilf_size = in_f32->ilf_size;
848 in_f->ilf_fields = in_f32->ilf_fields;
849 in_f->ilf_asize = in_f32->ilf_asize;
850 in_f->ilf_dsize = in_f32->ilf_dsize;
851 in_f->ilf_ino = in_f32->ilf_ino;
852 /* copy biggest field of ilf_u */
853 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
854 in_f32->ilf_u.ilfu_uuid.__u_bits,
855 sizeof(uuid_t));
856 in_f->ilf_blkno = in_f32->ilf_blkno;
857 in_f->ilf_len = in_f32->ilf_len;
858 in_f->ilf_boffset = in_f32->ilf_boffset;
859 return 0;
860 } else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
861 xfs_inode_log_format_64_t *in_f64 = buf->i_addr;
863 in_f->ilf_type = in_f64->ilf_type;
864 in_f->ilf_size = in_f64->ilf_size;
865 in_f->ilf_fields = in_f64->ilf_fields;
866 in_f->ilf_asize = in_f64->ilf_asize;
867 in_f->ilf_dsize = in_f64->ilf_dsize;
868 in_f->ilf_ino = in_f64->ilf_ino;
869 /* copy biggest field of ilf_u */
870 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
871 in_f64->ilf_u.ilfu_uuid.__u_bits,
872 sizeof(uuid_t));
873 in_f->ilf_blkno = in_f64->ilf_blkno;
874 in_f->ilf_len = in_f64->ilf_len;
875 in_f->ilf_boffset = in_f64->ilf_boffset;
876 return 0;
878 return EFSCORRUPTED;