2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
22 #include "xfs_trans.h"
25 #include "xfs_mount.h"
26 #include "xfs_trans_priv.h"
27 #include "xfs_bmap_btree.h"
28 #include "xfs_dinode.h"
29 #include "xfs_inode.h"
30 #include "xfs_inode_item.h"
31 #include "xfs_error.h"
32 #include "xfs_trace.h"
35 kmem_zone_t
*xfs_ili_zone
; /* inode log item zone */
37 static inline struct xfs_inode_log_item
*INODE_ITEM(struct xfs_log_item
*lip
)
39 return container_of(lip
, struct xfs_inode_log_item
, ili_item
);
44 * This returns the number of iovecs needed to log the given inode item.
46 * We need one iovec for the inode log format structure, one for the
47 * inode core, and possibly one for the inode data/extents/b-tree root
48 * and one for the inode attribute data/extents/b-tree root.
52 struct xfs_log_item
*lip
)
54 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
55 struct xfs_inode
*ip
= iip
->ili_inode
;
58 switch (ip
->i_d
.di_format
) {
59 case XFS_DINODE_FMT_EXTENTS
:
60 if ((iip
->ili_fields
& XFS_ILOG_DEXT
) &&
61 ip
->i_d
.di_nextents
> 0 &&
62 ip
->i_df
.if_bytes
> 0)
66 case XFS_DINODE_FMT_BTREE
:
67 if ((iip
->ili_fields
& XFS_ILOG_DBROOT
) &&
68 ip
->i_df
.if_broot_bytes
> 0)
72 case XFS_DINODE_FMT_LOCAL
:
73 if ((iip
->ili_fields
& XFS_ILOG_DDATA
) &&
74 ip
->i_df
.if_bytes
> 0)
78 case XFS_DINODE_FMT_DEV
:
79 case XFS_DINODE_FMT_UUID
:
92 * Log any necessary attribute data.
94 switch (ip
->i_d
.di_aformat
) {
95 case XFS_DINODE_FMT_EXTENTS
:
96 if ((iip
->ili_fields
& XFS_ILOG_AEXT
) &&
97 ip
->i_d
.di_anextents
> 0 &&
98 ip
->i_afp
->if_bytes
> 0)
102 case XFS_DINODE_FMT_BTREE
:
103 if ((iip
->ili_fields
& XFS_ILOG_ABROOT
) &&
104 ip
->i_afp
->if_broot_bytes
> 0)
108 case XFS_DINODE_FMT_LOCAL
:
109 if ((iip
->ili_fields
& XFS_ILOG_ADATA
) &&
110 ip
->i_afp
->if_bytes
> 0)
123 * xfs_inode_item_format_extents - convert in-core extents to on-disk form
125 * For either the data or attr fork in extent format, we need to endian convert
126 * the in-core extent as we place them into the on-disk inode. In this case, we
127 * need to do this conversion before we write the extents into the log. Because
128 * we don't have the disk inode to write into here, we allocate a buffer and
129 * format the extents into it via xfs_iextents_copy(). We free the buffer in
130 * the unlock routine after the copy for the log has been made.
132 * In the case of the data fork, the in-core and on-disk fork sizes can be
133 * different due to delayed allocation extents. We only log on-disk extents
134 * here, so always use the physical fork size to determine the size of the
135 * buffer we need to allocate.
138 xfs_inode_item_format_extents(
139 struct xfs_inode
*ip
,
140 struct xfs_log_iovec
*vecp
,
144 xfs_bmbt_rec_t
*ext_buffer
;
146 ext_buffer
= kmem_alloc(XFS_IFORK_SIZE(ip
, whichfork
), KM_SLEEP
);
147 if (whichfork
== XFS_DATA_FORK
)
148 ip
->i_itemp
->ili_extents_buf
= ext_buffer
;
150 ip
->i_itemp
->ili_aextents_buf
= ext_buffer
;
152 vecp
->i_addr
= ext_buffer
;
153 vecp
->i_len
= xfs_iextents_copy(ip
, ext_buffer
, whichfork
);
158 * This is called to fill in the vector of log iovecs for the
159 * given inode log item. It fills the first item with an inode
160 * log format structure, the second with the on-disk inode structure,
161 * and a possible third and/or fourth with the inode data/extents/b-tree
162 * root and inode attributes data/extents/b-tree root.
165 xfs_inode_item_format(
166 struct xfs_log_item
*lip
,
167 struct xfs_log_iovec
*vecp
)
169 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
170 struct xfs_inode
*ip
= iip
->ili_inode
;
175 vecp
->i_addr
= &iip
->ili_format
;
176 vecp
->i_len
= sizeof(xfs_inode_log_format_t
);
177 vecp
->i_type
= XLOG_REG_TYPE_IFORMAT
;
181 vecp
->i_addr
= &ip
->i_d
;
182 vecp
->i_len
= xfs_icdinode_size(ip
->i_d
.di_version
);
183 vecp
->i_type
= XLOG_REG_TYPE_ICORE
;
188 * If this is really an old format inode, then we need to
189 * log it as such. This means that we have to copy the link
190 * count from the new field to the old. We don't have to worry
191 * about the new fields, because nothing trusts them as long as
192 * the old inode version number is there. If the superblock already
193 * has a new version number, then we don't bother converting back.
196 ASSERT(ip
->i_d
.di_version
== 1 || xfs_sb_version_hasnlink(&mp
->m_sb
));
197 if (ip
->i_d
.di_version
== 1) {
198 if (!xfs_sb_version_hasnlink(&mp
->m_sb
)) {
202 ASSERT(ip
->i_d
.di_nlink
<= XFS_MAXLINK_1
);
203 ip
->i_d
.di_onlink
= ip
->i_d
.di_nlink
;
206 * The superblock version has already been bumped,
207 * so just make the conversion to the new inode
210 ip
->i_d
.di_version
= 2;
211 ip
->i_d
.di_onlink
= 0;
212 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
216 switch (ip
->i_d
.di_format
) {
217 case XFS_DINODE_FMT_EXTENTS
:
219 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
220 XFS_ILOG_DEV
| XFS_ILOG_UUID
);
222 if ((iip
->ili_fields
& XFS_ILOG_DEXT
) &&
223 ip
->i_d
.di_nextents
> 0 &&
224 ip
->i_df
.if_bytes
> 0) {
225 ASSERT(ip
->i_df
.if_u1
.if_extents
!= NULL
);
226 ASSERT(ip
->i_df
.if_bytes
/ sizeof(xfs_bmbt_rec_t
) > 0);
227 ASSERT(iip
->ili_extents_buf
== NULL
);
229 #ifdef XFS_NATIVE_HOST
230 if (ip
->i_d
.di_nextents
== ip
->i_df
.if_bytes
/
231 (uint
)sizeof(xfs_bmbt_rec_t
)) {
233 * There are no delayed allocation
234 * extents, so just point to the
235 * real extents array.
237 vecp
->i_addr
= ip
->i_df
.if_u1
.if_extents
;
238 vecp
->i_len
= ip
->i_df
.if_bytes
;
239 vecp
->i_type
= XLOG_REG_TYPE_IEXT
;
243 xfs_inode_item_format_extents(ip
, vecp
,
244 XFS_DATA_FORK
, XLOG_REG_TYPE_IEXT
);
246 ASSERT(vecp
->i_len
<= ip
->i_df
.if_bytes
);
247 iip
->ili_format
.ilf_dsize
= vecp
->i_len
;
251 iip
->ili_fields
&= ~XFS_ILOG_DEXT
;
255 case XFS_DINODE_FMT_BTREE
:
257 ~(XFS_ILOG_DDATA
| XFS_ILOG_DEXT
|
258 XFS_ILOG_DEV
| XFS_ILOG_UUID
);
260 if ((iip
->ili_fields
& XFS_ILOG_DBROOT
) &&
261 ip
->i_df
.if_broot_bytes
> 0) {
262 ASSERT(ip
->i_df
.if_broot
!= NULL
);
263 vecp
->i_addr
= ip
->i_df
.if_broot
;
264 vecp
->i_len
= ip
->i_df
.if_broot_bytes
;
265 vecp
->i_type
= XLOG_REG_TYPE_IBROOT
;
268 iip
->ili_format
.ilf_dsize
= ip
->i_df
.if_broot_bytes
;
270 ASSERT(!(iip
->ili_fields
&
272 iip
->ili_fields
&= ~XFS_ILOG_DBROOT
;
276 case XFS_DINODE_FMT_LOCAL
:
278 ~(XFS_ILOG_DEXT
| XFS_ILOG_DBROOT
|
279 XFS_ILOG_DEV
| XFS_ILOG_UUID
);
280 if ((iip
->ili_fields
& XFS_ILOG_DDATA
) &&
281 ip
->i_df
.if_bytes
> 0) {
282 ASSERT(ip
->i_df
.if_u1
.if_data
!= NULL
);
283 ASSERT(ip
->i_d
.di_size
> 0);
285 vecp
->i_addr
= ip
->i_df
.if_u1
.if_data
;
287 * Round i_bytes up to a word boundary.
288 * The underlying memory is guaranteed to
289 * to be there by xfs_idata_realloc().
291 data_bytes
= roundup(ip
->i_df
.if_bytes
, 4);
292 ASSERT((ip
->i_df
.if_real_bytes
== 0) ||
293 (ip
->i_df
.if_real_bytes
== data_bytes
));
294 vecp
->i_len
= (int)data_bytes
;
295 vecp
->i_type
= XLOG_REG_TYPE_ILOCAL
;
298 iip
->ili_format
.ilf_dsize
= (unsigned)data_bytes
;
300 iip
->ili_fields
&= ~XFS_ILOG_DDATA
;
304 case XFS_DINODE_FMT_DEV
:
306 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
307 XFS_ILOG_DEXT
| XFS_ILOG_UUID
);
308 if (iip
->ili_fields
& XFS_ILOG_DEV
) {
309 iip
->ili_format
.ilf_u
.ilfu_rdev
=
310 ip
->i_df
.if_u2
.if_rdev
;
314 case XFS_DINODE_FMT_UUID
:
316 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
317 XFS_ILOG_DEXT
| XFS_ILOG_DEV
);
318 if (iip
->ili_fields
& XFS_ILOG_UUID
) {
319 iip
->ili_format
.ilf_u
.ilfu_uuid
=
320 ip
->i_df
.if_u2
.if_uuid
;
330 * If there are no attributes associated with the file, then we're done.
332 if (!XFS_IFORK_Q(ip
)) {
334 ~(XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
| XFS_ILOG_AEXT
);
338 switch (ip
->i_d
.di_aformat
) {
339 case XFS_DINODE_FMT_EXTENTS
:
341 ~(XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
);
343 if ((iip
->ili_fields
& XFS_ILOG_AEXT
) &&
344 ip
->i_d
.di_anextents
> 0 &&
345 ip
->i_afp
->if_bytes
> 0) {
346 ASSERT(ip
->i_afp
->if_bytes
/ sizeof(xfs_bmbt_rec_t
) ==
347 ip
->i_d
.di_anextents
);
348 ASSERT(ip
->i_afp
->if_u1
.if_extents
!= NULL
);
349 #ifdef XFS_NATIVE_HOST
351 * There are not delayed allocation extents
352 * for attributes, so just point at the array.
354 vecp
->i_addr
= ip
->i_afp
->if_u1
.if_extents
;
355 vecp
->i_len
= ip
->i_afp
->if_bytes
;
356 vecp
->i_type
= XLOG_REG_TYPE_IATTR_EXT
;
358 ASSERT(iip
->ili_aextents_buf
== NULL
);
359 xfs_inode_item_format_extents(ip
, vecp
,
360 XFS_ATTR_FORK
, XLOG_REG_TYPE_IATTR_EXT
);
362 iip
->ili_format
.ilf_asize
= vecp
->i_len
;
366 iip
->ili_fields
&= ~XFS_ILOG_AEXT
;
370 case XFS_DINODE_FMT_BTREE
:
372 ~(XFS_ILOG_ADATA
| XFS_ILOG_AEXT
);
374 if ((iip
->ili_fields
& XFS_ILOG_ABROOT
) &&
375 ip
->i_afp
->if_broot_bytes
> 0) {
376 ASSERT(ip
->i_afp
->if_broot
!= NULL
);
378 vecp
->i_addr
= ip
->i_afp
->if_broot
;
379 vecp
->i_len
= ip
->i_afp
->if_broot_bytes
;
380 vecp
->i_type
= XLOG_REG_TYPE_IATTR_BROOT
;
383 iip
->ili_format
.ilf_asize
= ip
->i_afp
->if_broot_bytes
;
385 iip
->ili_fields
&= ~XFS_ILOG_ABROOT
;
389 case XFS_DINODE_FMT_LOCAL
:
391 ~(XFS_ILOG_AEXT
| XFS_ILOG_ABROOT
);
393 if ((iip
->ili_fields
& XFS_ILOG_ADATA
) &&
394 ip
->i_afp
->if_bytes
> 0) {
395 ASSERT(ip
->i_afp
->if_u1
.if_data
!= NULL
);
397 vecp
->i_addr
= ip
->i_afp
->if_u1
.if_data
;
399 * Round i_bytes up to a word boundary.
400 * The underlying memory is guaranteed to
401 * to be there by xfs_idata_realloc().
403 data_bytes
= roundup(ip
->i_afp
->if_bytes
, 4);
404 ASSERT((ip
->i_afp
->if_real_bytes
== 0) ||
405 (ip
->i_afp
->if_real_bytes
== data_bytes
));
406 vecp
->i_len
= (int)data_bytes
;
407 vecp
->i_type
= XLOG_REG_TYPE_IATTR_LOCAL
;
410 iip
->ili_format
.ilf_asize
= (unsigned)data_bytes
;
412 iip
->ili_fields
&= ~XFS_ILOG_ADATA
;
423 * Now update the log format that goes out to disk from the in-core
424 * values. We always write the inode core to make the arithmetic
425 * games in recovery easier, which isn't a big deal as just about any
426 * transaction would dirty it anyway.
428 iip
->ili_format
.ilf_fields
= XFS_ILOG_CORE
|
429 (iip
->ili_fields
& ~XFS_ILOG_TIMESTAMP
);
430 iip
->ili_format
.ilf_size
= nvecs
;
435 * This is called to pin the inode associated with the inode log
436 * item in memory so it cannot be written out.
440 struct xfs_log_item
*lip
)
442 struct xfs_inode
*ip
= INODE_ITEM(lip
)->ili_inode
;
444 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
446 trace_xfs_inode_pin(ip
, _RET_IP_
);
447 atomic_inc(&ip
->i_pincount
);
452 * This is called to unpin the inode associated with the inode log
453 * item which was previously pinned with a call to xfs_inode_item_pin().
455 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
458 xfs_inode_item_unpin(
459 struct xfs_log_item
*lip
,
462 struct xfs_inode
*ip
= INODE_ITEM(lip
)->ili_inode
;
464 trace_xfs_inode_unpin(ip
, _RET_IP_
);
465 ASSERT(atomic_read(&ip
->i_pincount
) > 0);
466 if (atomic_dec_and_test(&ip
->i_pincount
))
467 wake_up_bit(&ip
->i_flags
, __XFS_IPINNED_BIT
);
472 struct xfs_log_item
*lip
,
473 struct list_head
*buffer_list
)
475 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
476 struct xfs_inode
*ip
= iip
->ili_inode
;
477 struct xfs_buf
*bp
= NULL
;
478 uint rval
= XFS_ITEM_SUCCESS
;
481 if (xfs_ipincount(ip
) > 0)
482 return XFS_ITEM_PINNED
;
484 if (!xfs_ilock_nowait(ip
, XFS_ILOCK_SHARED
))
485 return XFS_ITEM_LOCKED
;
488 * Re-check the pincount now that we stabilized the value by
491 if (xfs_ipincount(ip
) > 0) {
492 rval
= XFS_ITEM_PINNED
;
497 * Stale inode items should force out the iclog.
499 if (ip
->i_flags
& XFS_ISTALE
) {
500 rval
= XFS_ITEM_PINNED
;
505 * Someone else is already flushing the inode. Nothing we can do
506 * here but wait for the flush to finish and remove the item from
509 if (!xfs_iflock_nowait(ip
)) {
510 rval
= XFS_ITEM_FLUSHING
;
514 ASSERT(iip
->ili_fields
!= 0 || XFS_FORCED_SHUTDOWN(ip
->i_mount
));
515 ASSERT(iip
->ili_logged
== 0 || XFS_FORCED_SHUTDOWN(ip
->i_mount
));
517 spin_unlock(&lip
->li_ailp
->xa_lock
);
519 error
= xfs_iflush(ip
, &bp
);
521 if (!xfs_buf_delwri_queue(bp
, buffer_list
))
522 rval
= XFS_ITEM_FLUSHING
;
526 spin_lock(&lip
->li_ailp
->xa_lock
);
528 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
533 * Unlock the inode associated with the inode log item.
534 * Clear the fields of the inode and inode log item that
535 * are specific to the current transaction. If the
536 * hold flags is set, do not unlock the inode.
539 xfs_inode_item_unlock(
540 struct xfs_log_item
*lip
)
542 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
543 struct xfs_inode
*ip
= iip
->ili_inode
;
544 unsigned short lock_flags
;
546 ASSERT(ip
->i_itemp
!= NULL
);
547 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
550 * If the inode needed a separate buffer with which to log
551 * its extents, then free it now.
553 if (iip
->ili_extents_buf
!= NULL
) {
554 ASSERT(ip
->i_d
.di_format
== XFS_DINODE_FMT_EXTENTS
);
555 ASSERT(ip
->i_d
.di_nextents
> 0);
556 ASSERT(iip
->ili_fields
& XFS_ILOG_DEXT
);
557 ASSERT(ip
->i_df
.if_bytes
> 0);
558 kmem_free(iip
->ili_extents_buf
);
559 iip
->ili_extents_buf
= NULL
;
561 if (iip
->ili_aextents_buf
!= NULL
) {
562 ASSERT(ip
->i_d
.di_aformat
== XFS_DINODE_FMT_EXTENTS
);
563 ASSERT(ip
->i_d
.di_anextents
> 0);
564 ASSERT(iip
->ili_fields
& XFS_ILOG_AEXT
);
565 ASSERT(ip
->i_afp
->if_bytes
> 0);
566 kmem_free(iip
->ili_aextents_buf
);
567 iip
->ili_aextents_buf
= NULL
;
570 lock_flags
= iip
->ili_lock_flags
;
571 iip
->ili_lock_flags
= 0;
573 xfs_iunlock(ip
, lock_flags
);
577 * This is called to find out where the oldest active copy of the inode log
578 * item in the on disk log resides now that the last log write of it completed
579 * at the given lsn. Since we always re-log all dirty data in an inode, the
580 * latest copy in the on disk log is the only one that matters. Therefore,
581 * simply return the given lsn.
583 * If the inode has been marked stale because the cluster is being freed, we
584 * don't want to (re-)insert this inode into the AIL. There is a race condition
585 * where the cluster buffer may be unpinned before the inode is inserted into
586 * the AIL during transaction committed processing. If the buffer is unpinned
587 * before the inode item has been committed and inserted, then it is possible
588 * for the buffer to be written and IO completes before the inode is inserted
589 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
590 * AIL which will never get removed. It will, however, get reclaimed which
591 * triggers an assert in xfs_inode_free() complaining about freein an inode
594 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
595 * transaction committed code knows that it does not need to do any further
596 * processing on the item.
599 xfs_inode_item_committed(
600 struct xfs_log_item
*lip
,
603 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
604 struct xfs_inode
*ip
= iip
->ili_inode
;
606 if (xfs_iflags_test(ip
, XFS_ISTALE
)) {
607 xfs_inode_item_unpin(lip
, 0);
614 * XXX rcc - this one really has to do something. Probably needs
615 * to stamp in a new field in the incore inode.
618 xfs_inode_item_committing(
619 struct xfs_log_item
*lip
,
622 INODE_ITEM(lip
)->ili_last_lsn
= lsn
;
626 * This is the ops vector shared by all buf log items.
628 static const struct xfs_item_ops xfs_inode_item_ops
= {
629 .iop_size
= xfs_inode_item_size
,
630 .iop_format
= xfs_inode_item_format
,
631 .iop_pin
= xfs_inode_item_pin
,
632 .iop_unpin
= xfs_inode_item_unpin
,
633 .iop_unlock
= xfs_inode_item_unlock
,
634 .iop_committed
= xfs_inode_item_committed
,
635 .iop_push
= xfs_inode_item_push
,
636 .iop_committing
= xfs_inode_item_committing
641 * Initialize the inode log item for a newly allocated (in-core) inode.
645 struct xfs_inode
*ip
,
646 struct xfs_mount
*mp
)
648 struct xfs_inode_log_item
*iip
;
650 ASSERT(ip
->i_itemp
== NULL
);
651 iip
= ip
->i_itemp
= kmem_zone_zalloc(xfs_ili_zone
, KM_SLEEP
);
654 xfs_log_item_init(mp
, &iip
->ili_item
, XFS_LI_INODE
,
655 &xfs_inode_item_ops
);
656 iip
->ili_format
.ilf_type
= XFS_LI_INODE
;
657 iip
->ili_format
.ilf_ino
= ip
->i_ino
;
658 iip
->ili_format
.ilf_blkno
= ip
->i_imap
.im_blkno
;
659 iip
->ili_format
.ilf_len
= ip
->i_imap
.im_len
;
660 iip
->ili_format
.ilf_boffset
= ip
->i_imap
.im_boffset
;
664 * Free the inode log item and any memory hanging off of it.
667 xfs_inode_item_destroy(
670 kmem_zone_free(xfs_ili_zone
, ip
->i_itemp
);
675 * This is the inode flushing I/O completion routine. It is called
676 * from interrupt level when the buffer containing the inode is
677 * flushed to disk. It is responsible for removing the inode item
678 * from the AIL if it has not been re-logged, and unlocking the inode's
681 * To reduce AIL lock traffic as much as possible, we scan the buffer log item
682 * list for other inodes that will run this function. We remove them from the
683 * buffer list so we can process all the inode IO completions in one AIL lock
689 struct xfs_log_item
*lip
)
691 struct xfs_inode_log_item
*iip
;
692 struct xfs_log_item
*blip
;
693 struct xfs_log_item
*next
;
694 struct xfs_log_item
*prev
;
695 struct xfs_ail
*ailp
= lip
->li_ailp
;
699 * Scan the buffer IO completions for other inodes being completed and
700 * attach them to the current inode log item.
704 while (blip
!= NULL
) {
705 if (lip
->li_cb
!= xfs_iflush_done
) {
707 blip
= blip
->li_bio_list
;
711 /* remove from list */
712 next
= blip
->li_bio_list
;
716 prev
->li_bio_list
= next
;
719 /* add to current list */
720 blip
->li_bio_list
= lip
->li_bio_list
;
721 lip
->li_bio_list
= blip
;
724 * while we have the item, do the unlocked check for needing
727 iip
= INODE_ITEM(blip
);
728 if (iip
->ili_logged
&& blip
->li_lsn
== iip
->ili_flush_lsn
)
734 /* make sure we capture the state of the initial inode. */
735 iip
= INODE_ITEM(lip
);
736 if (iip
->ili_logged
&& lip
->li_lsn
== iip
->ili_flush_lsn
)
740 * We only want to pull the item from the AIL if it is
741 * actually there and its location in the log has not
742 * changed since we started the flush. Thus, we only bother
743 * if the ili_logged flag is set and the inode's lsn has not
744 * changed. First we check the lsn outside
745 * the lock since it's cheaper, and then we recheck while
746 * holding the lock before removing the inode from the AIL.
749 struct xfs_log_item
*log_items
[need_ail
];
751 spin_lock(&ailp
->xa_lock
);
752 for (blip
= lip
; blip
; blip
= blip
->li_bio_list
) {
753 iip
= INODE_ITEM(blip
);
754 if (iip
->ili_logged
&&
755 blip
->li_lsn
== iip
->ili_flush_lsn
) {
756 log_items
[i
++] = blip
;
758 ASSERT(i
<= need_ail
);
760 /* xfs_trans_ail_delete_bulk() drops the AIL lock. */
761 xfs_trans_ail_delete_bulk(ailp
, log_items
, i
,
762 SHUTDOWN_CORRUPT_INCORE
);
767 * clean up and unlock the flush lock now we are done. We can clear the
768 * ili_last_fields bits now that we know that the data corresponding to
769 * them is safely on disk.
771 for (blip
= lip
; blip
; blip
= next
) {
772 next
= blip
->li_bio_list
;
773 blip
->li_bio_list
= NULL
;
775 iip
= INODE_ITEM(blip
);
777 iip
->ili_last_fields
= 0;
778 xfs_ifunlock(iip
->ili_inode
);
783 * This is the inode flushing abort routine. It is called from xfs_iflush when
784 * the filesystem is shutting down to clean up the inode state. It is
785 * responsible for removing the inode item from the AIL if it has not been
786 * re-logged, and unlocking the inode's flush lock.
793 xfs_inode_log_item_t
*iip
= ip
->i_itemp
;
796 struct xfs_ail
*ailp
= iip
->ili_item
.li_ailp
;
797 if (iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) {
798 spin_lock(&ailp
->xa_lock
);
799 if (iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) {
800 /* xfs_trans_ail_delete() drops the AIL lock. */
801 xfs_trans_ail_delete(ailp
, &iip
->ili_item
,
803 SHUTDOWN_LOG_IO_ERROR
:
804 SHUTDOWN_CORRUPT_INCORE
);
806 spin_unlock(&ailp
->xa_lock
);
810 * Clear the ili_last_fields bits now that we know that the
811 * data corresponding to them is safely on disk.
813 iip
->ili_last_fields
= 0;
815 * Clear the inode logging fields so no more flushes are
821 * Release the inode's flush lock since we're done with it.
829 struct xfs_log_item
*lip
)
831 xfs_iflush_abort(INODE_ITEM(lip
)->ili_inode
, true);
835 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
836 * (which can have different field alignments) to the native version
839 xfs_inode_item_format_convert(
840 xfs_log_iovec_t
*buf
,
841 xfs_inode_log_format_t
*in_f
)
843 if (buf
->i_len
== sizeof(xfs_inode_log_format_32_t
)) {
844 xfs_inode_log_format_32_t
*in_f32
= buf
->i_addr
;
846 in_f
->ilf_type
= in_f32
->ilf_type
;
847 in_f
->ilf_size
= in_f32
->ilf_size
;
848 in_f
->ilf_fields
= in_f32
->ilf_fields
;
849 in_f
->ilf_asize
= in_f32
->ilf_asize
;
850 in_f
->ilf_dsize
= in_f32
->ilf_dsize
;
851 in_f
->ilf_ino
= in_f32
->ilf_ino
;
852 /* copy biggest field of ilf_u */
853 memcpy(in_f
->ilf_u
.ilfu_uuid
.__u_bits
,
854 in_f32
->ilf_u
.ilfu_uuid
.__u_bits
,
856 in_f
->ilf_blkno
= in_f32
->ilf_blkno
;
857 in_f
->ilf_len
= in_f32
->ilf_len
;
858 in_f
->ilf_boffset
= in_f32
->ilf_boffset
;
860 } else if (buf
->i_len
== sizeof(xfs_inode_log_format_64_t
)){
861 xfs_inode_log_format_64_t
*in_f64
= buf
->i_addr
;
863 in_f
->ilf_type
= in_f64
->ilf_type
;
864 in_f
->ilf_size
= in_f64
->ilf_size
;
865 in_f
->ilf_fields
= in_f64
->ilf_fields
;
866 in_f
->ilf_asize
= in_f64
->ilf_asize
;
867 in_f
->ilf_dsize
= in_f64
->ilf_dsize
;
868 in_f
->ilf_ino
= in_f64
->ilf_ino
;
869 /* copy biggest field of ilf_u */
870 memcpy(in_f
->ilf_u
.ilfu_uuid
.__u_bits
,
871 in_f64
->ilf_u
.ilfu_uuid
.__u_bits
,
873 in_f
->ilf_blkno
= in_f64
->ilf_blkno
;
874 in_f
->ilf_len
= in_f64
->ilf_len
;
875 in_f
->ilf_boffset
= in_f64
->ilf_boffset
;