ARM: DMA-Mapping: print warning when atomic coherent allocation fails
[linux-2.6.git] / arch / arm / mm / dma-mapping.c
blobacced93321094eb326012010482a53be820b8adc
1 /*
2 * linux/arch/arm/mm/dma-mapping.c
4 * Copyright (C) 2000-2004 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 * DMA uncached mapping support.
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/gfp.h>
15 #include <linux/errno.h>
16 #include <linux/list.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/dma-contiguous.h>
21 #include <linux/highmem.h>
22 #include <linux/memblock.h>
23 #include <linux/slab.h>
24 #include <linux/iommu.h>
25 #include <linux/io.h>
26 #include <linux/vmalloc.h>
27 #include <linux/sizes.h>
29 #include <asm/memory.h>
30 #include <asm/highmem.h>
31 #include <asm/cacheflush.h>
32 #include <asm/tlbflush.h>
33 #include <asm/mach/arch.h>
34 #include <asm/dma-iommu.h>
35 #include <asm/mach/map.h>
36 #include <asm/system_info.h>
37 #include <asm/dma-contiguous.h>
39 #include "mm.h"
42 * The DMA API is built upon the notion of "buffer ownership". A buffer
43 * is either exclusively owned by the CPU (and therefore may be accessed
44 * by it) or exclusively owned by the DMA device. These helper functions
45 * represent the transitions between these two ownership states.
47 * Note, however, that on later ARMs, this notion does not work due to
48 * speculative prefetches. We model our approach on the assumption that
49 * the CPU does do speculative prefetches, which means we clean caches
50 * before transfers and delay cache invalidation until transfer completion.
53 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
54 size_t, enum dma_data_direction);
55 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
56 size_t, enum dma_data_direction);
58 /**
59 * arm_dma_map_page - map a portion of a page for streaming DMA
60 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
61 * @page: page that buffer resides in
62 * @offset: offset into page for start of buffer
63 * @size: size of buffer to map
64 * @dir: DMA transfer direction
66 * Ensure that any data held in the cache is appropriately discarded
67 * or written back.
69 * The device owns this memory once this call has completed. The CPU
70 * can regain ownership by calling dma_unmap_page().
72 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
73 unsigned long offset, size_t size, enum dma_data_direction dir,
74 struct dma_attrs *attrs)
76 if (!arch_is_coherent() && !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
77 __dma_page_cpu_to_dev(page, offset, size, dir);
78 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
81 /**
82 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
83 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
84 * @handle: DMA address of buffer
85 * @size: size of buffer (same as passed to dma_map_page)
86 * @dir: DMA transfer direction (same as passed to dma_map_page)
88 * Unmap a page streaming mode DMA translation. The handle and size
89 * must match what was provided in the previous dma_map_page() call.
90 * All other usages are undefined.
92 * After this call, reads by the CPU to the buffer are guaranteed to see
93 * whatever the device wrote there.
95 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
96 size_t size, enum dma_data_direction dir,
97 struct dma_attrs *attrs)
99 if (!arch_is_coherent() && !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
100 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
101 handle & ~PAGE_MASK, size, dir);
104 static void arm_dma_sync_single_for_cpu(struct device *dev,
105 dma_addr_t handle, size_t size, enum dma_data_direction dir)
107 unsigned int offset = handle & (PAGE_SIZE - 1);
108 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
109 if (!arch_is_coherent())
110 __dma_page_dev_to_cpu(page, offset, size, dir);
113 static void arm_dma_sync_single_for_device(struct device *dev,
114 dma_addr_t handle, size_t size, enum dma_data_direction dir)
116 unsigned int offset = handle & (PAGE_SIZE - 1);
117 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
118 if (!arch_is_coherent())
119 __dma_page_cpu_to_dev(page, offset, size, dir);
122 static int arm_dma_set_mask(struct device *dev, u64 dma_mask);
124 struct dma_map_ops arm_dma_ops = {
125 .alloc = arm_dma_alloc,
126 .free = arm_dma_free,
127 .mmap = arm_dma_mmap,
128 .get_sgtable = arm_dma_get_sgtable,
129 .map_page = arm_dma_map_page,
130 .unmap_page = arm_dma_unmap_page,
131 .map_sg = arm_dma_map_sg,
132 .unmap_sg = arm_dma_unmap_sg,
133 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
134 .sync_single_for_device = arm_dma_sync_single_for_device,
135 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
136 .sync_sg_for_device = arm_dma_sync_sg_for_device,
137 .set_dma_mask = arm_dma_set_mask,
139 EXPORT_SYMBOL(arm_dma_ops);
141 static u64 get_coherent_dma_mask(struct device *dev)
143 u64 mask = (u64)arm_dma_limit;
145 if (dev) {
146 mask = dev->coherent_dma_mask;
149 * Sanity check the DMA mask - it must be non-zero, and
150 * must be able to be satisfied by a DMA allocation.
152 if (mask == 0) {
153 dev_warn(dev, "coherent DMA mask is unset\n");
154 return 0;
157 if ((~mask) & (u64)arm_dma_limit) {
158 dev_warn(dev, "coherent DMA mask %#llx is smaller "
159 "than system GFP_DMA mask %#llx\n",
160 mask, (u64)arm_dma_limit);
161 return 0;
165 return mask;
168 static void __dma_clear_buffer(struct page *page, size_t size)
170 void *ptr;
172 * Ensure that the allocated pages are zeroed, and that any data
173 * lurking in the kernel direct-mapped region is invalidated.
175 ptr = page_address(page);
176 if (ptr) {
177 memset(ptr, 0, size);
178 dmac_flush_range(ptr, ptr + size);
179 outer_flush_range(__pa(ptr), __pa(ptr) + size);
184 * Allocate a DMA buffer for 'dev' of size 'size' using the
185 * specified gfp mask. Note that 'size' must be page aligned.
187 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
189 unsigned long order = get_order(size);
190 struct page *page, *p, *e;
192 page = alloc_pages(gfp, order);
193 if (!page)
194 return NULL;
197 * Now split the huge page and free the excess pages
199 split_page(page, order);
200 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
201 __free_page(p);
203 __dma_clear_buffer(page, size);
205 return page;
209 * Free a DMA buffer. 'size' must be page aligned.
211 static void __dma_free_buffer(struct page *page, size_t size)
213 struct page *e = page + (size >> PAGE_SHIFT);
215 while (page < e) {
216 __free_page(page);
217 page++;
221 #ifdef CONFIG_MMU
222 #ifdef CONFIG_HUGETLB_PAGE
223 #error ARM Coherent DMA allocator does not (yet) support huge TLB
224 #endif
226 static void *__alloc_from_contiguous(struct device *dev, size_t size,
227 pgprot_t prot, struct page **ret_page);
229 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
230 pgprot_t prot, struct page **ret_page,
231 const void *caller);
233 static void *
234 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
235 const void *caller)
237 struct vm_struct *area;
238 unsigned long addr;
241 * DMA allocation can be mapped to user space, so lets
242 * set VM_USERMAP flags too.
244 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
245 caller);
246 if (!area)
247 return NULL;
248 addr = (unsigned long)area->addr;
249 area->phys_addr = __pfn_to_phys(page_to_pfn(page));
251 if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
252 vunmap((void *)addr);
253 return NULL;
255 return (void *)addr;
258 static void __dma_free_remap(void *cpu_addr, size_t size)
260 unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
261 struct vm_struct *area = find_vm_area(cpu_addr);
262 if (!area || (area->flags & flags) != flags) {
263 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
264 return;
266 unmap_kernel_range((unsigned long)cpu_addr, size);
267 vunmap(cpu_addr);
270 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
272 struct dma_pool {
273 size_t size;
274 spinlock_t lock;
275 unsigned long *bitmap;
276 unsigned long nr_pages;
277 void *vaddr;
278 struct page *page;
281 static struct dma_pool atomic_pool = {
282 .size = DEFAULT_DMA_COHERENT_POOL_SIZE,
285 static int __init early_coherent_pool(char *p)
287 atomic_pool.size = memparse(p, &p);
288 return 0;
290 early_param("coherent_pool", early_coherent_pool);
292 void __init init_dma_coherent_pool_size(unsigned long size)
295 * Catch any attempt to set the pool size too late.
297 BUG_ON(atomic_pool.vaddr);
300 * Set architecture specific coherent pool size only if
301 * it has not been changed by kernel command line parameter.
303 if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)
304 atomic_pool.size = size;
308 * Initialise the coherent pool for atomic allocations.
310 static int __init atomic_pool_init(void)
312 struct dma_pool *pool = &atomic_pool;
313 pgprot_t prot = pgprot_dmacoherent(pgprot_kernel);
314 unsigned long nr_pages = pool->size >> PAGE_SHIFT;
315 unsigned long *bitmap;
316 struct page *page;
317 void *ptr;
318 int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
320 bitmap = kzalloc(bitmap_size, GFP_KERNEL);
321 if (!bitmap)
322 goto no_bitmap;
324 if (IS_ENABLED(CONFIG_CMA))
325 ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page);
326 else
327 ptr = __alloc_remap_buffer(NULL, pool->size, GFP_KERNEL, prot,
328 &page, NULL);
329 if (ptr) {
330 spin_lock_init(&pool->lock);
331 pool->vaddr = ptr;
332 pool->page = page;
333 pool->bitmap = bitmap;
334 pool->nr_pages = nr_pages;
335 pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
336 (unsigned)pool->size / 1024);
337 return 0;
339 kfree(bitmap);
340 no_bitmap:
341 pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
342 (unsigned)pool->size / 1024);
343 return -ENOMEM;
346 * CMA is activated by core_initcall, so we must be called after it.
348 postcore_initcall(atomic_pool_init);
350 struct dma_contig_early_reserve {
351 phys_addr_t base;
352 unsigned long size;
355 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
357 static int dma_mmu_remap_num __initdata;
359 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
361 dma_mmu_remap[dma_mmu_remap_num].base = base;
362 dma_mmu_remap[dma_mmu_remap_num].size = size;
363 dma_mmu_remap_num++;
366 void __init dma_contiguous_remap(void)
368 int i;
369 for (i = 0; i < dma_mmu_remap_num; i++) {
370 phys_addr_t start = dma_mmu_remap[i].base;
371 phys_addr_t end = start + dma_mmu_remap[i].size;
372 struct map_desc map;
373 unsigned long addr;
375 if (end > arm_lowmem_limit)
376 end = arm_lowmem_limit;
377 if (start >= end)
378 continue;
380 map.pfn = __phys_to_pfn(start);
381 map.virtual = __phys_to_virt(start);
382 map.length = end - start;
383 map.type = MT_MEMORY_DMA_READY;
386 * Clear previous low-memory mapping
388 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
389 addr += PMD_SIZE)
390 pmd_clear(pmd_off_k(addr));
392 iotable_init(&map, 1);
396 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
397 void *data)
399 struct page *page = virt_to_page(addr);
400 pgprot_t prot = *(pgprot_t *)data;
402 set_pte_ext(pte, mk_pte(page, prot), 0);
403 return 0;
406 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
408 unsigned long start = (unsigned long) page_address(page);
409 unsigned end = start + size;
411 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
412 dsb();
413 flush_tlb_kernel_range(start, end);
416 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
417 pgprot_t prot, struct page **ret_page,
418 const void *caller)
420 struct page *page;
421 void *ptr;
422 page = __dma_alloc_buffer(dev, size, gfp);
423 if (!page)
424 return NULL;
426 ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
427 if (!ptr) {
428 __dma_free_buffer(page, size);
429 return NULL;
432 *ret_page = page;
433 return ptr;
436 static void *__alloc_from_pool(size_t size, struct page **ret_page)
438 struct dma_pool *pool = &atomic_pool;
439 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
440 unsigned int pageno;
441 unsigned long flags;
442 void *ptr = NULL;
443 unsigned long align_mask;
445 if (!pool->vaddr) {
446 WARN(1, "coherent pool not initialised!\n");
447 return NULL;
451 * Align the region allocation - allocations from pool are rather
452 * small, so align them to their order in pages, minimum is a page
453 * size. This helps reduce fragmentation of the DMA space.
455 align_mask = (1 << get_order(size)) - 1;
457 spin_lock_irqsave(&pool->lock, flags);
458 pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
459 0, count, align_mask);
460 if (pageno < pool->nr_pages) {
461 bitmap_set(pool->bitmap, pageno, count);
462 ptr = pool->vaddr + PAGE_SIZE * pageno;
463 *ret_page = pool->page + pageno;
464 } else {
465 pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
466 "Please increase it with coherent_pool= kernel parameter!\n",
467 (unsigned)pool->size / 1024);
469 spin_unlock_irqrestore(&pool->lock, flags);
471 return ptr;
474 static int __free_from_pool(void *start, size_t size)
476 struct dma_pool *pool = &atomic_pool;
477 unsigned long pageno, count;
478 unsigned long flags;
480 if (start < pool->vaddr || start > pool->vaddr + pool->size)
481 return 0;
483 if (start + size > pool->vaddr + pool->size) {
484 WARN(1, "freeing wrong coherent size from pool\n");
485 return 0;
488 pageno = (start - pool->vaddr) >> PAGE_SHIFT;
489 count = size >> PAGE_SHIFT;
491 spin_lock_irqsave(&pool->lock, flags);
492 bitmap_clear(pool->bitmap, pageno, count);
493 spin_unlock_irqrestore(&pool->lock, flags);
495 return 1;
498 static void *__alloc_from_contiguous(struct device *dev, size_t size,
499 pgprot_t prot, struct page **ret_page)
501 unsigned long order = get_order(size);
502 size_t count = size >> PAGE_SHIFT;
503 struct page *page;
505 page = dma_alloc_from_contiguous(dev, count, order);
506 if (!page)
507 return NULL;
509 __dma_clear_buffer(page, size);
510 __dma_remap(page, size, prot);
512 *ret_page = page;
513 return page_address(page);
516 static void __free_from_contiguous(struct device *dev, struct page *page,
517 size_t size)
519 __dma_remap(page, size, pgprot_kernel);
520 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
523 static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
525 prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
526 pgprot_writecombine(prot) :
527 pgprot_dmacoherent(prot);
528 return prot;
531 #define nommu() 0
533 #else /* !CONFIG_MMU */
535 #define nommu() 1
537 #define __get_dma_pgprot(attrs, prot) __pgprot(0)
538 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c) NULL
539 #define __alloc_from_pool(size, ret_page) NULL
540 #define __alloc_from_contiguous(dev, size, prot, ret) NULL
541 #define __free_from_pool(cpu_addr, size) 0
542 #define __free_from_contiguous(dev, page, size) do { } while (0)
543 #define __dma_free_remap(cpu_addr, size) do { } while (0)
545 #endif /* CONFIG_MMU */
547 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
548 struct page **ret_page)
550 struct page *page;
551 page = __dma_alloc_buffer(dev, size, gfp);
552 if (!page)
553 return NULL;
555 *ret_page = page;
556 return page_address(page);
561 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
562 gfp_t gfp, pgprot_t prot, const void *caller)
564 u64 mask = get_coherent_dma_mask(dev);
565 struct page *page;
566 void *addr;
568 #ifdef CONFIG_DMA_API_DEBUG
569 u64 limit = (mask + 1) & ~mask;
570 if (limit && size >= limit) {
571 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
572 size, mask);
573 return NULL;
575 #endif
577 if (!mask)
578 return NULL;
580 if (mask < 0xffffffffULL)
581 gfp |= GFP_DMA;
584 * Following is a work-around (a.k.a. hack) to prevent pages
585 * with __GFP_COMP being passed to split_page() which cannot
586 * handle them. The real problem is that this flag probably
587 * should be 0 on ARM as it is not supported on this
588 * platform; see CONFIG_HUGETLBFS.
590 gfp &= ~(__GFP_COMP);
592 *handle = DMA_ERROR_CODE;
593 size = PAGE_ALIGN(size);
595 if (arch_is_coherent() || nommu())
596 addr = __alloc_simple_buffer(dev, size, gfp, &page);
597 else if (gfp & GFP_ATOMIC)
598 addr = __alloc_from_pool(size, &page);
599 else if (!IS_ENABLED(CONFIG_CMA))
600 addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
601 else
602 addr = __alloc_from_contiguous(dev, size, prot, &page);
604 if (addr)
605 *handle = pfn_to_dma(dev, page_to_pfn(page));
607 return addr;
611 * Allocate DMA-coherent memory space and return both the kernel remapped
612 * virtual and bus address for that space.
614 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
615 gfp_t gfp, struct dma_attrs *attrs)
617 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
618 void *memory;
620 if (dma_alloc_from_coherent(dev, size, handle, &memory))
621 return memory;
623 return __dma_alloc(dev, size, handle, gfp, prot,
624 __builtin_return_address(0));
628 * Create userspace mapping for the DMA-coherent memory.
630 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
631 void *cpu_addr, dma_addr_t dma_addr, size_t size,
632 struct dma_attrs *attrs)
634 int ret = -ENXIO;
635 #ifdef CONFIG_MMU
636 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
637 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
638 unsigned long pfn = dma_to_pfn(dev, dma_addr);
639 unsigned long off = vma->vm_pgoff;
641 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
643 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
644 return ret;
646 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
647 ret = remap_pfn_range(vma, vma->vm_start,
648 pfn + off,
649 vma->vm_end - vma->vm_start,
650 vma->vm_page_prot);
652 #endif /* CONFIG_MMU */
654 return ret;
658 * Free a buffer as defined by the above mapping.
660 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
661 dma_addr_t handle, struct dma_attrs *attrs)
663 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
665 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
666 return;
668 size = PAGE_ALIGN(size);
670 if (arch_is_coherent() || nommu()) {
671 __dma_free_buffer(page, size);
672 } else if (__free_from_pool(cpu_addr, size)) {
673 return;
674 } else if (!IS_ENABLED(CONFIG_CMA)) {
675 __dma_free_remap(cpu_addr, size);
676 __dma_free_buffer(page, size);
677 } else {
679 * Non-atomic allocations cannot be freed with IRQs disabled
681 WARN_ON(irqs_disabled());
682 __free_from_contiguous(dev, page, size);
686 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
687 void *cpu_addr, dma_addr_t handle, size_t size,
688 struct dma_attrs *attrs)
690 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
691 int ret;
693 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
694 if (unlikely(ret))
695 return ret;
697 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
698 return 0;
701 static void dma_cache_maint_page(struct page *page, unsigned long offset,
702 size_t size, enum dma_data_direction dir,
703 void (*op)(const void *, size_t, int))
706 * A single sg entry may refer to multiple physically contiguous
707 * pages. But we still need to process highmem pages individually.
708 * If highmem is not configured then the bulk of this loop gets
709 * optimized out.
711 size_t left = size;
712 do {
713 size_t len = left;
714 void *vaddr;
716 if (PageHighMem(page)) {
717 if (len + offset > PAGE_SIZE) {
718 if (offset >= PAGE_SIZE) {
719 page += offset / PAGE_SIZE;
720 offset %= PAGE_SIZE;
722 len = PAGE_SIZE - offset;
724 vaddr = kmap_high_get(page);
725 if (vaddr) {
726 vaddr += offset;
727 op(vaddr, len, dir);
728 kunmap_high(page);
729 } else if (cache_is_vipt()) {
730 /* unmapped pages might still be cached */
731 vaddr = kmap_atomic(page);
732 op(vaddr + offset, len, dir);
733 kunmap_atomic(vaddr);
735 } else {
736 vaddr = page_address(page) + offset;
737 op(vaddr, len, dir);
739 offset = 0;
740 page++;
741 left -= len;
742 } while (left);
746 * Make an area consistent for devices.
747 * Note: Drivers should NOT use this function directly, as it will break
748 * platforms with CONFIG_DMABOUNCE.
749 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
751 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
752 size_t size, enum dma_data_direction dir)
754 unsigned long paddr;
756 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
758 paddr = page_to_phys(page) + off;
759 if (dir == DMA_FROM_DEVICE) {
760 outer_inv_range(paddr, paddr + size);
761 } else {
762 outer_clean_range(paddr, paddr + size);
764 /* FIXME: non-speculating: flush on bidirectional mappings? */
767 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
768 size_t size, enum dma_data_direction dir)
770 unsigned long paddr = page_to_phys(page) + off;
772 /* FIXME: non-speculating: not required */
773 /* don't bother invalidating if DMA to device */
774 if (dir != DMA_TO_DEVICE)
775 outer_inv_range(paddr, paddr + size);
777 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
780 * Mark the D-cache clean for this page to avoid extra flushing.
782 if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
783 set_bit(PG_dcache_clean, &page->flags);
787 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
788 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
789 * @sg: list of buffers
790 * @nents: number of buffers to map
791 * @dir: DMA transfer direction
793 * Map a set of buffers described by scatterlist in streaming mode for DMA.
794 * This is the scatter-gather version of the dma_map_single interface.
795 * Here the scatter gather list elements are each tagged with the
796 * appropriate dma address and length. They are obtained via
797 * sg_dma_{address,length}.
799 * Device ownership issues as mentioned for dma_map_single are the same
800 * here.
802 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
803 enum dma_data_direction dir, struct dma_attrs *attrs)
805 struct dma_map_ops *ops = get_dma_ops(dev);
806 struct scatterlist *s;
807 int i, j;
809 for_each_sg(sg, s, nents, i) {
810 #ifdef CONFIG_NEED_SG_DMA_LENGTH
811 s->dma_length = s->length;
812 #endif
813 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
814 s->length, dir, attrs);
815 if (dma_mapping_error(dev, s->dma_address))
816 goto bad_mapping;
818 return nents;
820 bad_mapping:
821 for_each_sg(sg, s, i, j)
822 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
823 return 0;
827 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
828 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
829 * @sg: list of buffers
830 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
831 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
833 * Unmap a set of streaming mode DMA translations. Again, CPU access
834 * rules concerning calls here are the same as for dma_unmap_single().
836 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
837 enum dma_data_direction dir, struct dma_attrs *attrs)
839 struct dma_map_ops *ops = get_dma_ops(dev);
840 struct scatterlist *s;
842 int i;
844 for_each_sg(sg, s, nents, i)
845 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
849 * arm_dma_sync_sg_for_cpu
850 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
851 * @sg: list of buffers
852 * @nents: number of buffers to map (returned from dma_map_sg)
853 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
855 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
856 int nents, enum dma_data_direction dir)
858 struct dma_map_ops *ops = get_dma_ops(dev);
859 struct scatterlist *s;
860 int i;
862 for_each_sg(sg, s, nents, i)
863 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
864 dir);
868 * arm_dma_sync_sg_for_device
869 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
870 * @sg: list of buffers
871 * @nents: number of buffers to map (returned from dma_map_sg)
872 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
874 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
875 int nents, enum dma_data_direction dir)
877 struct dma_map_ops *ops = get_dma_ops(dev);
878 struct scatterlist *s;
879 int i;
881 for_each_sg(sg, s, nents, i)
882 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
883 dir);
887 * Return whether the given device DMA address mask can be supported
888 * properly. For example, if your device can only drive the low 24-bits
889 * during bus mastering, then you would pass 0x00ffffff as the mask
890 * to this function.
892 int dma_supported(struct device *dev, u64 mask)
894 if (mask < (u64)arm_dma_limit)
895 return 0;
896 return 1;
898 EXPORT_SYMBOL(dma_supported);
900 static int arm_dma_set_mask(struct device *dev, u64 dma_mask)
902 if (!dev->dma_mask || !dma_supported(dev, dma_mask))
903 return -EIO;
905 *dev->dma_mask = dma_mask;
907 return 0;
910 #define PREALLOC_DMA_DEBUG_ENTRIES 4096
912 static int __init dma_debug_do_init(void)
914 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
915 return 0;
917 fs_initcall(dma_debug_do_init);
919 #ifdef CONFIG_ARM_DMA_USE_IOMMU
921 /* IOMMU */
923 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
924 size_t size)
926 unsigned int order = get_order(size);
927 unsigned int align = 0;
928 unsigned int count, start;
929 unsigned long flags;
931 count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) +
932 (1 << mapping->order) - 1) >> mapping->order;
934 if (order > mapping->order)
935 align = (1 << (order - mapping->order)) - 1;
937 spin_lock_irqsave(&mapping->lock, flags);
938 start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0,
939 count, align);
940 if (start > mapping->bits) {
941 spin_unlock_irqrestore(&mapping->lock, flags);
942 return DMA_ERROR_CODE;
945 bitmap_set(mapping->bitmap, start, count);
946 spin_unlock_irqrestore(&mapping->lock, flags);
948 return mapping->base + (start << (mapping->order + PAGE_SHIFT));
951 static inline void __free_iova(struct dma_iommu_mapping *mapping,
952 dma_addr_t addr, size_t size)
954 unsigned int start = (addr - mapping->base) >>
955 (mapping->order + PAGE_SHIFT);
956 unsigned int count = ((size >> PAGE_SHIFT) +
957 (1 << mapping->order) - 1) >> mapping->order;
958 unsigned long flags;
960 spin_lock_irqsave(&mapping->lock, flags);
961 bitmap_clear(mapping->bitmap, start, count);
962 spin_unlock_irqrestore(&mapping->lock, flags);
965 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
967 struct page **pages;
968 int count = size >> PAGE_SHIFT;
969 int array_size = count * sizeof(struct page *);
970 int i = 0;
972 if (array_size <= PAGE_SIZE)
973 pages = kzalloc(array_size, gfp);
974 else
975 pages = vzalloc(array_size);
976 if (!pages)
977 return NULL;
979 while (count) {
980 int j, order = __fls(count);
982 pages[i] = alloc_pages(gfp | __GFP_NOWARN, order);
983 while (!pages[i] && order)
984 pages[i] = alloc_pages(gfp | __GFP_NOWARN, --order);
985 if (!pages[i])
986 goto error;
988 if (order)
989 split_page(pages[i], order);
990 j = 1 << order;
991 while (--j)
992 pages[i + j] = pages[i] + j;
994 __dma_clear_buffer(pages[i], PAGE_SIZE << order);
995 i += 1 << order;
996 count -= 1 << order;
999 return pages;
1000 error:
1001 while (i--)
1002 if (pages[i])
1003 __free_pages(pages[i], 0);
1004 if (array_size <= PAGE_SIZE)
1005 kfree(pages);
1006 else
1007 vfree(pages);
1008 return NULL;
1011 static int __iommu_free_buffer(struct device *dev, struct page **pages, size_t size)
1013 int count = size >> PAGE_SHIFT;
1014 int array_size = count * sizeof(struct page *);
1015 int i;
1016 for (i = 0; i < count; i++)
1017 if (pages[i])
1018 __free_pages(pages[i], 0);
1019 if (array_size <= PAGE_SIZE)
1020 kfree(pages);
1021 else
1022 vfree(pages);
1023 return 0;
1027 * Create a CPU mapping for a specified pages
1029 static void *
1030 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1031 const void *caller)
1033 unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1034 struct vm_struct *area;
1035 unsigned long p;
1037 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
1038 caller);
1039 if (!area)
1040 return NULL;
1042 area->pages = pages;
1043 area->nr_pages = nr_pages;
1044 p = (unsigned long)area->addr;
1046 for (i = 0; i < nr_pages; i++) {
1047 phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
1048 if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
1049 goto err;
1050 p += PAGE_SIZE;
1052 return area->addr;
1053 err:
1054 unmap_kernel_range((unsigned long)area->addr, size);
1055 vunmap(area->addr);
1056 return NULL;
1060 * Create a mapping in device IO address space for specified pages
1062 static dma_addr_t
1063 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1065 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1066 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1067 dma_addr_t dma_addr, iova;
1068 int i, ret = DMA_ERROR_CODE;
1070 dma_addr = __alloc_iova(mapping, size);
1071 if (dma_addr == DMA_ERROR_CODE)
1072 return dma_addr;
1074 iova = dma_addr;
1075 for (i = 0; i < count; ) {
1076 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1077 phys_addr_t phys = page_to_phys(pages[i]);
1078 unsigned int len, j;
1080 for (j = i + 1; j < count; j++, next_pfn++)
1081 if (page_to_pfn(pages[j]) != next_pfn)
1082 break;
1084 len = (j - i) << PAGE_SHIFT;
1085 ret = iommu_map(mapping->domain, iova, phys, len, 0);
1086 if (ret < 0)
1087 goto fail;
1088 iova += len;
1089 i = j;
1091 return dma_addr;
1092 fail:
1093 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1094 __free_iova(mapping, dma_addr, size);
1095 return DMA_ERROR_CODE;
1098 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1100 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1103 * add optional in-page offset from iova to size and align
1104 * result to page size
1106 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1107 iova &= PAGE_MASK;
1109 iommu_unmap(mapping->domain, iova, size);
1110 __free_iova(mapping, iova, size);
1111 return 0;
1114 static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1116 struct vm_struct *area;
1118 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1119 return cpu_addr;
1121 area = find_vm_area(cpu_addr);
1122 if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1123 return area->pages;
1124 return NULL;
1127 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1128 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1130 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
1131 struct page **pages;
1132 void *addr = NULL;
1134 *handle = DMA_ERROR_CODE;
1135 size = PAGE_ALIGN(size);
1137 pages = __iommu_alloc_buffer(dev, size, gfp);
1138 if (!pages)
1139 return NULL;
1141 *handle = __iommu_create_mapping(dev, pages, size);
1142 if (*handle == DMA_ERROR_CODE)
1143 goto err_buffer;
1145 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1146 return pages;
1148 addr = __iommu_alloc_remap(pages, size, gfp, prot,
1149 __builtin_return_address(0));
1150 if (!addr)
1151 goto err_mapping;
1153 return addr;
1155 err_mapping:
1156 __iommu_remove_mapping(dev, *handle, size);
1157 err_buffer:
1158 __iommu_free_buffer(dev, pages, size);
1159 return NULL;
1162 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1163 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1164 struct dma_attrs *attrs)
1166 unsigned long uaddr = vma->vm_start;
1167 unsigned long usize = vma->vm_end - vma->vm_start;
1168 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1170 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1172 if (!pages)
1173 return -ENXIO;
1175 do {
1176 int ret = vm_insert_page(vma, uaddr, *pages++);
1177 if (ret) {
1178 pr_err("Remapping memory failed: %d\n", ret);
1179 return ret;
1181 uaddr += PAGE_SIZE;
1182 usize -= PAGE_SIZE;
1183 } while (usize > 0);
1185 return 0;
1189 * free a page as defined by the above mapping.
1190 * Must not be called with IRQs disabled.
1192 void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1193 dma_addr_t handle, struct dma_attrs *attrs)
1195 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1196 size = PAGE_ALIGN(size);
1198 if (!pages) {
1199 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1200 return;
1203 if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1204 unmap_kernel_range((unsigned long)cpu_addr, size);
1205 vunmap(cpu_addr);
1208 __iommu_remove_mapping(dev, handle, size);
1209 __iommu_free_buffer(dev, pages, size);
1212 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1213 void *cpu_addr, dma_addr_t dma_addr,
1214 size_t size, struct dma_attrs *attrs)
1216 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1217 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1219 if (!pages)
1220 return -ENXIO;
1222 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1223 GFP_KERNEL);
1227 * Map a part of the scatter-gather list into contiguous io address space
1229 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1230 size_t size, dma_addr_t *handle,
1231 enum dma_data_direction dir, struct dma_attrs *attrs)
1233 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1234 dma_addr_t iova, iova_base;
1235 int ret = 0;
1236 unsigned int count;
1237 struct scatterlist *s;
1239 size = PAGE_ALIGN(size);
1240 *handle = DMA_ERROR_CODE;
1242 iova_base = iova = __alloc_iova(mapping, size);
1243 if (iova == DMA_ERROR_CODE)
1244 return -ENOMEM;
1246 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1247 phys_addr_t phys = page_to_phys(sg_page(s));
1248 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1250 if (!arch_is_coherent() &&
1251 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1252 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1254 ret = iommu_map(mapping->domain, iova, phys, len, 0);
1255 if (ret < 0)
1256 goto fail;
1257 count += len >> PAGE_SHIFT;
1258 iova += len;
1260 *handle = iova_base;
1262 return 0;
1263 fail:
1264 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1265 __free_iova(mapping, iova_base, size);
1266 return ret;
1270 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1271 * @dev: valid struct device pointer
1272 * @sg: list of buffers
1273 * @nents: number of buffers to map
1274 * @dir: DMA transfer direction
1276 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1277 * The scatter gather list elements are merged together (if possible) and
1278 * tagged with the appropriate dma address and length. They are obtained via
1279 * sg_dma_{address,length}.
1281 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1282 enum dma_data_direction dir, struct dma_attrs *attrs)
1284 struct scatterlist *s = sg, *dma = sg, *start = sg;
1285 int i, count = 0;
1286 unsigned int offset = s->offset;
1287 unsigned int size = s->offset + s->length;
1288 unsigned int max = dma_get_max_seg_size(dev);
1290 for (i = 1; i < nents; i++) {
1291 s = sg_next(s);
1293 s->dma_address = DMA_ERROR_CODE;
1294 s->dma_length = 0;
1296 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1297 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1298 dir, attrs) < 0)
1299 goto bad_mapping;
1301 dma->dma_address += offset;
1302 dma->dma_length = size - offset;
1304 size = offset = s->offset;
1305 start = s;
1306 dma = sg_next(dma);
1307 count += 1;
1309 size += s->length;
1311 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs) < 0)
1312 goto bad_mapping;
1314 dma->dma_address += offset;
1315 dma->dma_length = size - offset;
1317 return count+1;
1319 bad_mapping:
1320 for_each_sg(sg, s, count, i)
1321 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1322 return 0;
1326 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1327 * @dev: valid struct device pointer
1328 * @sg: list of buffers
1329 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1330 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1332 * Unmap a set of streaming mode DMA translations. Again, CPU access
1333 * rules concerning calls here are the same as for dma_unmap_single().
1335 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1336 enum dma_data_direction dir, struct dma_attrs *attrs)
1338 struct scatterlist *s;
1339 int i;
1341 for_each_sg(sg, s, nents, i) {
1342 if (sg_dma_len(s))
1343 __iommu_remove_mapping(dev, sg_dma_address(s),
1344 sg_dma_len(s));
1345 if (!arch_is_coherent() &&
1346 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1347 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1348 s->length, dir);
1353 * arm_iommu_sync_sg_for_cpu
1354 * @dev: valid struct device pointer
1355 * @sg: list of buffers
1356 * @nents: number of buffers to map (returned from dma_map_sg)
1357 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1359 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1360 int nents, enum dma_data_direction dir)
1362 struct scatterlist *s;
1363 int i;
1365 for_each_sg(sg, s, nents, i)
1366 if (!arch_is_coherent())
1367 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1372 * arm_iommu_sync_sg_for_device
1373 * @dev: valid struct device pointer
1374 * @sg: list of buffers
1375 * @nents: number of buffers to map (returned from dma_map_sg)
1376 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1378 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1379 int nents, enum dma_data_direction dir)
1381 struct scatterlist *s;
1382 int i;
1384 for_each_sg(sg, s, nents, i)
1385 if (!arch_is_coherent())
1386 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1391 * arm_iommu_map_page
1392 * @dev: valid struct device pointer
1393 * @page: page that buffer resides in
1394 * @offset: offset into page for start of buffer
1395 * @size: size of buffer to map
1396 * @dir: DMA transfer direction
1398 * IOMMU aware version of arm_dma_map_page()
1400 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1401 unsigned long offset, size_t size, enum dma_data_direction dir,
1402 struct dma_attrs *attrs)
1404 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1405 dma_addr_t dma_addr;
1406 int ret, len = PAGE_ALIGN(size + offset);
1408 if (!arch_is_coherent() && !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1409 __dma_page_cpu_to_dev(page, offset, size, dir);
1411 dma_addr = __alloc_iova(mapping, len);
1412 if (dma_addr == DMA_ERROR_CODE)
1413 return dma_addr;
1415 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, 0);
1416 if (ret < 0)
1417 goto fail;
1419 return dma_addr + offset;
1420 fail:
1421 __free_iova(mapping, dma_addr, len);
1422 return DMA_ERROR_CODE;
1426 * arm_iommu_unmap_page
1427 * @dev: valid struct device pointer
1428 * @handle: DMA address of buffer
1429 * @size: size of buffer (same as passed to dma_map_page)
1430 * @dir: DMA transfer direction (same as passed to dma_map_page)
1432 * IOMMU aware version of arm_dma_unmap_page()
1434 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1435 size_t size, enum dma_data_direction dir,
1436 struct dma_attrs *attrs)
1438 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1439 dma_addr_t iova = handle & PAGE_MASK;
1440 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1441 int offset = handle & ~PAGE_MASK;
1442 int len = PAGE_ALIGN(size + offset);
1444 if (!iova)
1445 return;
1447 if (!arch_is_coherent() && !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1448 __dma_page_dev_to_cpu(page, offset, size, dir);
1450 iommu_unmap(mapping->domain, iova, len);
1451 __free_iova(mapping, iova, len);
1454 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1455 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1457 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1458 dma_addr_t iova = handle & PAGE_MASK;
1459 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1460 unsigned int offset = handle & ~PAGE_MASK;
1462 if (!iova)
1463 return;
1465 if (!arch_is_coherent())
1466 __dma_page_dev_to_cpu(page, offset, size, dir);
1469 static void arm_iommu_sync_single_for_device(struct device *dev,
1470 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1472 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1473 dma_addr_t iova = handle & PAGE_MASK;
1474 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1475 unsigned int offset = handle & ~PAGE_MASK;
1477 if (!iova)
1478 return;
1480 __dma_page_cpu_to_dev(page, offset, size, dir);
1483 struct dma_map_ops iommu_ops = {
1484 .alloc = arm_iommu_alloc_attrs,
1485 .free = arm_iommu_free_attrs,
1486 .mmap = arm_iommu_mmap_attrs,
1487 .get_sgtable = arm_iommu_get_sgtable,
1489 .map_page = arm_iommu_map_page,
1490 .unmap_page = arm_iommu_unmap_page,
1491 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
1492 .sync_single_for_device = arm_iommu_sync_single_for_device,
1494 .map_sg = arm_iommu_map_sg,
1495 .unmap_sg = arm_iommu_unmap_sg,
1496 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
1497 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
1501 * arm_iommu_create_mapping
1502 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1503 * @base: start address of the valid IO address space
1504 * @size: size of the valid IO address space
1505 * @order: accuracy of the IO addresses allocations
1507 * Creates a mapping structure which holds information about used/unused
1508 * IO address ranges, which is required to perform memory allocation and
1509 * mapping with IOMMU aware functions.
1511 * The client device need to be attached to the mapping with
1512 * arm_iommu_attach_device function.
1514 struct dma_iommu_mapping *
1515 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size,
1516 int order)
1518 unsigned int count = size >> (PAGE_SHIFT + order);
1519 unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long);
1520 struct dma_iommu_mapping *mapping;
1521 int err = -ENOMEM;
1523 if (!count)
1524 return ERR_PTR(-EINVAL);
1526 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1527 if (!mapping)
1528 goto err;
1530 mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1531 if (!mapping->bitmap)
1532 goto err2;
1534 mapping->base = base;
1535 mapping->bits = BITS_PER_BYTE * bitmap_size;
1536 mapping->order = order;
1537 spin_lock_init(&mapping->lock);
1539 mapping->domain = iommu_domain_alloc(bus);
1540 if (!mapping->domain)
1541 goto err3;
1543 kref_init(&mapping->kref);
1544 return mapping;
1545 err3:
1546 kfree(mapping->bitmap);
1547 err2:
1548 kfree(mapping);
1549 err:
1550 return ERR_PTR(err);
1553 static void release_iommu_mapping(struct kref *kref)
1555 struct dma_iommu_mapping *mapping =
1556 container_of(kref, struct dma_iommu_mapping, kref);
1558 iommu_domain_free(mapping->domain);
1559 kfree(mapping->bitmap);
1560 kfree(mapping);
1563 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1565 if (mapping)
1566 kref_put(&mapping->kref, release_iommu_mapping);
1570 * arm_iommu_attach_device
1571 * @dev: valid struct device pointer
1572 * @mapping: io address space mapping structure (returned from
1573 * arm_iommu_create_mapping)
1575 * Attaches specified io address space mapping to the provided device,
1576 * this replaces the dma operations (dma_map_ops pointer) with the
1577 * IOMMU aware version. More than one client might be attached to
1578 * the same io address space mapping.
1580 int arm_iommu_attach_device(struct device *dev,
1581 struct dma_iommu_mapping *mapping)
1583 int err;
1585 err = iommu_attach_device(mapping->domain, dev);
1586 if (err)
1587 return err;
1589 kref_get(&mapping->kref);
1590 dev->archdata.mapping = mapping;
1591 set_dma_ops(dev, &iommu_ops);
1593 pr_info("Attached IOMMU controller to %s device.\n", dev_name(dev));
1594 return 0;
1597 #endif