sparseirq: set lock_class for legacy irq when sparse_irq is selected
[linux-2.6.git] / kernel / irq / handle.c
blobe1cf4e391caee0a8fbeb4bc259a16cb203abc876
1 /*
2 * linux/kernel/irq/handle.c
4 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
5 * Copyright (C) 2005-2006, Thomas Gleixner, Russell King
7 * This file contains the core interrupt handling code.
9 * Detailed information is available in Documentation/DocBook/genericirq
13 #include <linux/irq.h>
14 #include <linux/module.h>
15 #include <linux/random.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/rculist.h>
19 #include <linux/hash.h>
21 #include "internals.h"
24 * lockdep: we want to handle all irq_desc locks as a single lock-class:
26 struct lock_class_key irq_desc_lock_class;
28 /**
29 * handle_bad_irq - handle spurious and unhandled irqs
30 * @irq: the interrupt number
31 * @desc: description of the interrupt
33 * Handles spurious and unhandled IRQ's. It also prints a debugmessage.
35 void handle_bad_irq(unsigned int irq, struct irq_desc *desc)
37 print_irq_desc(irq, desc);
38 kstat_incr_irqs_this_cpu(irq, desc);
39 ack_bad_irq(irq);
43 * Linux has a controller-independent interrupt architecture.
44 * Every controller has a 'controller-template', that is used
45 * by the main code to do the right thing. Each driver-visible
46 * interrupt source is transparently wired to the appropriate
47 * controller. Thus drivers need not be aware of the
48 * interrupt-controller.
50 * The code is designed to be easily extended with new/different
51 * interrupt controllers, without having to do assembly magic or
52 * having to touch the generic code.
54 * Controller mappings for all interrupt sources:
56 int nr_irqs = NR_IRQS;
57 EXPORT_SYMBOL_GPL(nr_irqs);
59 #ifdef CONFIG_SPARSE_IRQ
60 static struct irq_desc irq_desc_init = {
61 .irq = -1,
62 .status = IRQ_DISABLED,
63 .chip = &no_irq_chip,
64 .handle_irq = handle_bad_irq,
65 .depth = 1,
66 .lock = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock),
67 #ifdef CONFIG_SMP
68 .affinity = CPU_MASK_ALL
69 #endif
72 void init_kstat_irqs(struct irq_desc *desc, int cpu, int nr)
74 unsigned long bytes;
75 char *ptr;
76 int node;
78 /* Compute how many bytes we need per irq and allocate them */
79 bytes = nr * sizeof(unsigned int);
81 node = cpu_to_node(cpu);
82 ptr = kzalloc_node(bytes, GFP_ATOMIC, node);
83 printk(KERN_DEBUG " alloc kstat_irqs on cpu %d node %d\n", cpu, node);
85 if (ptr)
86 desc->kstat_irqs = (unsigned int *)ptr;
89 int __weak arch_init_chip_data(struct irq_desc *desc, int cpu)
91 return 0;
94 static void init_one_irq_desc(int irq, struct irq_desc *desc, int cpu)
96 memcpy(desc, &irq_desc_init, sizeof(struct irq_desc));
98 spin_lock_init(&desc->lock);
99 desc->irq = irq;
100 #ifdef CONFIG_SMP
101 desc->cpu = cpu;
102 #endif
103 lockdep_set_class(&desc->lock, &irq_desc_lock_class);
104 init_kstat_irqs(desc, cpu, nr_cpu_ids);
105 if (!desc->kstat_irqs) {
106 printk(KERN_ERR "can not alloc kstat_irqs\n");
107 BUG_ON(1);
109 arch_init_chip_data(desc, cpu);
113 * Protect the sparse_irqs:
115 DEFINE_SPINLOCK(sparse_irq_lock);
117 struct irq_desc *irq_desc_ptrs[NR_IRQS] __read_mostly;
119 static struct irq_desc irq_desc_legacy[NR_IRQS_LEGACY] __cacheline_aligned_in_smp = {
120 [0 ... NR_IRQS_LEGACY-1] = {
121 .irq = -1,
122 .status = IRQ_DISABLED,
123 .chip = &no_irq_chip,
124 .handle_irq = handle_bad_irq,
125 .depth = 1,
126 .lock = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock),
127 #ifdef CONFIG_SMP
128 .affinity = CPU_MASK_ALL
129 #endif
133 /* FIXME: use bootmem alloc ...*/
134 static unsigned int kstat_irqs_legacy[NR_IRQS_LEGACY][NR_CPUS];
136 int __init early_irq_init(void)
138 struct irq_desc *desc;
139 int legacy_count;
140 int i;
142 desc = irq_desc_legacy;
143 legacy_count = ARRAY_SIZE(irq_desc_legacy);
145 for (i = 0; i < legacy_count; i++) {
146 desc[i].irq = i;
147 desc[i].kstat_irqs = kstat_irqs_legacy[i];
148 lockdep_set_class(&desc[i].lock, &irq_desc_lock_class);
150 irq_desc_ptrs[i] = desc + i;
153 for (i = legacy_count; i < NR_IRQS; i++)
154 irq_desc_ptrs[i] = NULL;
156 return arch_early_irq_init();
159 struct irq_desc *irq_to_desc(unsigned int irq)
161 return (irq < NR_IRQS) ? irq_desc_ptrs[irq] : NULL;
164 struct irq_desc *irq_to_desc_alloc_cpu(unsigned int irq, int cpu)
166 struct irq_desc *desc;
167 unsigned long flags;
168 int node;
170 if (irq >= NR_IRQS) {
171 printk(KERN_WARNING "irq >= NR_IRQS in irq_to_desc_alloc: %d %d\n",
172 irq, NR_IRQS);
173 WARN_ON(1);
174 return NULL;
177 desc = irq_desc_ptrs[irq];
178 if (desc)
179 return desc;
181 spin_lock_irqsave(&sparse_irq_lock, flags);
183 /* We have to check it to avoid races with another CPU */
184 desc = irq_desc_ptrs[irq];
185 if (desc)
186 goto out_unlock;
188 node = cpu_to_node(cpu);
189 desc = kzalloc_node(sizeof(*desc), GFP_ATOMIC, node);
190 printk(KERN_DEBUG " alloc irq_desc for %d on cpu %d node %d\n",
191 irq, cpu, node);
192 if (!desc) {
193 printk(KERN_ERR "can not alloc irq_desc\n");
194 BUG_ON(1);
196 init_one_irq_desc(irq, desc, cpu);
198 irq_desc_ptrs[irq] = desc;
200 out_unlock:
201 spin_unlock_irqrestore(&sparse_irq_lock, flags);
203 return desc;
206 #else /* !CONFIG_SPARSE_IRQ */
208 struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned_in_smp = {
209 [0 ... NR_IRQS-1] = {
210 .status = IRQ_DISABLED,
211 .chip = &no_irq_chip,
212 .handle_irq = handle_bad_irq,
213 .depth = 1,
214 .lock = __SPIN_LOCK_UNLOCKED(irq_desc->lock),
215 #ifdef CONFIG_SMP
216 .affinity = CPU_MASK_ALL
217 #endif
221 struct irq_desc *irq_to_desc(unsigned int irq)
223 return (irq < NR_IRQS) ? irq_desc + irq : NULL;
226 struct irq_desc *irq_to_desc_alloc_cpu(unsigned int irq, int cpu)
228 return irq_to_desc(irq);
230 #endif /* !CONFIG_SPARSE_IRQ */
233 * What should we do if we get a hw irq event on an illegal vector?
234 * Each architecture has to answer this themself.
236 static void ack_bad(unsigned int irq)
238 struct irq_desc *desc = irq_to_desc(irq);
240 print_irq_desc(irq, desc);
241 ack_bad_irq(irq);
245 * NOP functions
247 static void noop(unsigned int irq)
251 static unsigned int noop_ret(unsigned int irq)
253 return 0;
257 * Generic no controller implementation
259 struct irq_chip no_irq_chip = {
260 .name = "none",
261 .startup = noop_ret,
262 .shutdown = noop,
263 .enable = noop,
264 .disable = noop,
265 .ack = ack_bad,
266 .end = noop,
270 * Generic dummy implementation which can be used for
271 * real dumb interrupt sources
273 struct irq_chip dummy_irq_chip = {
274 .name = "dummy",
275 .startup = noop_ret,
276 .shutdown = noop,
277 .enable = noop,
278 .disable = noop,
279 .ack = noop,
280 .mask = noop,
281 .unmask = noop,
282 .end = noop,
286 * Special, empty irq handler:
288 irqreturn_t no_action(int cpl, void *dev_id)
290 return IRQ_NONE;
294 * handle_IRQ_event - irq action chain handler
295 * @irq: the interrupt number
296 * @action: the interrupt action chain for this irq
298 * Handles the action chain of an irq event
300 irqreturn_t handle_IRQ_event(unsigned int irq, struct irqaction *action)
302 irqreturn_t ret, retval = IRQ_NONE;
303 unsigned int status = 0;
305 if (!(action->flags & IRQF_DISABLED))
306 local_irq_enable_in_hardirq();
308 do {
309 ret = action->handler(irq, action->dev_id);
310 if (ret == IRQ_HANDLED)
311 status |= action->flags;
312 retval |= ret;
313 action = action->next;
314 } while (action);
316 if (status & IRQF_SAMPLE_RANDOM)
317 add_interrupt_randomness(irq);
318 local_irq_disable();
320 return retval;
323 #ifndef CONFIG_GENERIC_HARDIRQS_NO__DO_IRQ
325 * __do_IRQ - original all in one highlevel IRQ handler
326 * @irq: the interrupt number
328 * __do_IRQ handles all normal device IRQ's (the special
329 * SMP cross-CPU interrupts have their own specific
330 * handlers).
332 * This is the original x86 implementation which is used for every
333 * interrupt type.
335 unsigned int __do_IRQ(unsigned int irq)
337 struct irq_desc *desc = irq_to_desc(irq);
338 struct irqaction *action;
339 unsigned int status;
341 kstat_incr_irqs_this_cpu(irq, desc);
343 if (CHECK_IRQ_PER_CPU(desc->status)) {
344 irqreturn_t action_ret;
347 * No locking required for CPU-local interrupts:
349 if (desc->chip->ack) {
350 desc->chip->ack(irq);
351 /* get new one */
352 desc = irq_remap_to_desc(irq, desc);
354 if (likely(!(desc->status & IRQ_DISABLED))) {
355 action_ret = handle_IRQ_event(irq, desc->action);
356 if (!noirqdebug)
357 note_interrupt(irq, desc, action_ret);
359 desc->chip->end(irq);
360 return 1;
363 spin_lock(&desc->lock);
364 if (desc->chip->ack) {
365 desc->chip->ack(irq);
366 desc = irq_remap_to_desc(irq, desc);
369 * REPLAY is when Linux resends an IRQ that was dropped earlier
370 * WAITING is used by probe to mark irqs that are being tested
372 status = desc->status & ~(IRQ_REPLAY | IRQ_WAITING);
373 status |= IRQ_PENDING; /* we _want_ to handle it */
376 * If the IRQ is disabled for whatever reason, we cannot
377 * use the action we have.
379 action = NULL;
380 if (likely(!(status & (IRQ_DISABLED | IRQ_INPROGRESS)))) {
381 action = desc->action;
382 status &= ~IRQ_PENDING; /* we commit to handling */
383 status |= IRQ_INPROGRESS; /* we are handling it */
385 desc->status = status;
388 * If there is no IRQ handler or it was disabled, exit early.
389 * Since we set PENDING, if another processor is handling
390 * a different instance of this same irq, the other processor
391 * will take care of it.
393 if (unlikely(!action))
394 goto out;
397 * Edge triggered interrupts need to remember
398 * pending events.
399 * This applies to any hw interrupts that allow a second
400 * instance of the same irq to arrive while we are in do_IRQ
401 * or in the handler. But the code here only handles the _second_
402 * instance of the irq, not the third or fourth. So it is mostly
403 * useful for irq hardware that does not mask cleanly in an
404 * SMP environment.
406 for (;;) {
407 irqreturn_t action_ret;
409 spin_unlock(&desc->lock);
411 action_ret = handle_IRQ_event(irq, action);
412 if (!noirqdebug)
413 note_interrupt(irq, desc, action_ret);
415 spin_lock(&desc->lock);
416 if (likely(!(desc->status & IRQ_PENDING)))
417 break;
418 desc->status &= ~IRQ_PENDING;
420 desc->status &= ~IRQ_INPROGRESS;
422 out:
424 * The ->end() handler has to deal with interrupts which got
425 * disabled while the handler was running.
427 desc->chip->end(irq);
428 spin_unlock(&desc->lock);
430 return 1;
432 #endif
434 void early_init_irq_lock_class(void)
436 struct irq_desc *desc;
437 int i;
439 for_each_irq_desc(i, desc) {
440 lockdep_set_class(&desc->lock, &irq_desc_lock_class);
444 #ifdef CONFIG_SPARSE_IRQ
445 unsigned int kstat_irqs_cpu(unsigned int irq, int cpu)
447 struct irq_desc *desc = irq_to_desc(irq);
448 return desc ? desc->kstat_irqs[cpu] : 0;
450 #endif
451 EXPORT_SYMBOL(kstat_irqs_cpu);