dm raid: restructure parse_raid_params
[linux-2.6.git] / kernel / time.c
blobba744cf80696203b65406c7aef8faae3a23048d0
1 /*
2 * linux/kernel/time.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
11 * Modification history kernel/time.c
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
30 #include <linux/export.h>
31 #include <linux/timex.h>
32 #include <linux/capability.h>
33 #include <linux/clocksource.h>
34 #include <linux/errno.h>
35 #include <linux/syscalls.h>
36 #include <linux/security.h>
37 #include <linux/fs.h>
38 #include <linux/math64.h>
39 #include <linux/ptrace.h>
41 #include <asm/uaccess.h>
42 #include <asm/unistd.h>
44 #include "timeconst.h"
47 * The timezone where the local system is located. Used as a default by some
48 * programs who obtain this value by using gettimeofday.
50 struct timezone sys_tz;
52 EXPORT_SYMBOL(sys_tz);
54 #ifdef __ARCH_WANT_SYS_TIME
57 * sys_time() can be implemented in user-level using
58 * sys_gettimeofday(). Is this for backwards compatibility? If so,
59 * why not move it into the appropriate arch directory (for those
60 * architectures that need it).
62 SYSCALL_DEFINE1(time, time_t __user *, tloc)
64 time_t i = get_seconds();
66 if (tloc) {
67 if (put_user(i,tloc))
68 return -EFAULT;
70 force_successful_syscall_return();
71 return i;
75 * sys_stime() can be implemented in user-level using
76 * sys_settimeofday(). Is this for backwards compatibility? If so,
77 * why not move it into the appropriate arch directory (for those
78 * architectures that need it).
81 SYSCALL_DEFINE1(stime, time_t __user *, tptr)
83 struct timespec tv;
84 int err;
86 if (get_user(tv.tv_sec, tptr))
87 return -EFAULT;
89 tv.tv_nsec = 0;
91 err = security_settime(&tv, NULL);
92 if (err)
93 return err;
95 do_settimeofday(&tv);
96 return 0;
99 #endif /* __ARCH_WANT_SYS_TIME */
101 SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
102 struct timezone __user *, tz)
104 if (likely(tv != NULL)) {
105 struct timeval ktv;
106 do_gettimeofday(&ktv);
107 if (copy_to_user(tv, &ktv, sizeof(ktv)))
108 return -EFAULT;
110 if (unlikely(tz != NULL)) {
111 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
112 return -EFAULT;
114 return 0;
118 * Adjust the time obtained from the CMOS to be UTC time instead of
119 * local time.
121 * This is ugly, but preferable to the alternatives. Otherwise we
122 * would either need to write a program to do it in /etc/rc (and risk
123 * confusion if the program gets run more than once; it would also be
124 * hard to make the program warp the clock precisely n hours) or
125 * compile in the timezone information into the kernel. Bad, bad....
127 * - TYT, 1992-01-01
129 * The best thing to do is to keep the CMOS clock in universal time (UTC)
130 * as real UNIX machines always do it. This avoids all headaches about
131 * daylight saving times and warping kernel clocks.
133 static inline void warp_clock(void)
135 struct timespec adjust;
137 adjust = current_kernel_time();
138 adjust.tv_sec += sys_tz.tz_minuteswest * 60;
139 do_settimeofday(&adjust);
143 * In case for some reason the CMOS clock has not already been running
144 * in UTC, but in some local time: The first time we set the timezone,
145 * we will warp the clock so that it is ticking UTC time instead of
146 * local time. Presumably, if someone is setting the timezone then we
147 * are running in an environment where the programs understand about
148 * timezones. This should be done at boot time in the /etc/rc script,
149 * as soon as possible, so that the clock can be set right. Otherwise,
150 * various programs will get confused when the clock gets warped.
153 int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz)
155 static int firsttime = 1;
156 int error = 0;
158 if (tv && !timespec_valid(tv))
159 return -EINVAL;
161 error = security_settime(tv, tz);
162 if (error)
163 return error;
165 if (tz) {
166 sys_tz = *tz;
167 update_vsyscall_tz();
168 if (firsttime) {
169 firsttime = 0;
170 if (!tv)
171 warp_clock();
174 if (tv)
175 return do_settimeofday(tv);
176 return 0;
179 SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
180 struct timezone __user *, tz)
182 struct timeval user_tv;
183 struct timespec new_ts;
184 struct timezone new_tz;
186 if (tv) {
187 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
188 return -EFAULT;
189 new_ts.tv_sec = user_tv.tv_sec;
190 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
192 if (tz) {
193 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
194 return -EFAULT;
197 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
200 SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
202 struct timex txc; /* Local copy of parameter */
203 int ret;
205 /* Copy the user data space into the kernel copy
206 * structure. But bear in mind that the structures
207 * may change
209 if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
210 return -EFAULT;
211 ret = do_adjtimex(&txc);
212 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
216 * current_fs_time - Return FS time
217 * @sb: Superblock.
219 * Return the current time truncated to the time granularity supported by
220 * the fs.
222 struct timespec current_fs_time(struct super_block *sb)
224 struct timespec now = current_kernel_time();
225 return timespec_trunc(now, sb->s_time_gran);
227 EXPORT_SYMBOL(current_fs_time);
230 * Convert jiffies to milliseconds and back.
232 * Avoid unnecessary multiplications/divisions in the
233 * two most common HZ cases:
235 inline unsigned int jiffies_to_msecs(const unsigned long j)
237 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
238 return (MSEC_PER_SEC / HZ) * j;
239 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
240 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
241 #else
242 # if BITS_PER_LONG == 32
243 return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
244 # else
245 return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
246 # endif
247 #endif
249 EXPORT_SYMBOL(jiffies_to_msecs);
251 inline unsigned int jiffies_to_usecs(const unsigned long j)
253 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
254 return (USEC_PER_SEC / HZ) * j;
255 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
256 return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
257 #else
258 # if BITS_PER_LONG == 32
259 return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
260 # else
261 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
262 # endif
263 #endif
265 EXPORT_SYMBOL(jiffies_to_usecs);
268 * timespec_trunc - Truncate timespec to a granularity
269 * @t: Timespec
270 * @gran: Granularity in ns.
272 * Truncate a timespec to a granularity. gran must be smaller than a second.
273 * Always rounds down.
275 * This function should be only used for timestamps returned by
276 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
277 * it doesn't handle the better resolution of the latter.
279 struct timespec timespec_trunc(struct timespec t, unsigned gran)
282 * Division is pretty slow so avoid it for common cases.
283 * Currently current_kernel_time() never returns better than
284 * jiffies resolution. Exploit that.
286 if (gran <= jiffies_to_usecs(1) * 1000) {
287 /* nothing */
288 } else if (gran == 1000000000) {
289 t.tv_nsec = 0;
290 } else {
291 t.tv_nsec -= t.tv_nsec % gran;
293 return t;
295 EXPORT_SYMBOL(timespec_trunc);
297 /* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
298 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
299 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
301 * [For the Julian calendar (which was used in Russia before 1917,
302 * Britain & colonies before 1752, anywhere else before 1582,
303 * and is still in use by some communities) leave out the
304 * -year/100+year/400 terms, and add 10.]
306 * This algorithm was first published by Gauss (I think).
308 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
309 * machines where long is 32-bit! (However, as time_t is signed, we
310 * will already get problems at other places on 2038-01-19 03:14:08)
312 unsigned long
313 mktime(const unsigned int year0, const unsigned int mon0,
314 const unsigned int day, const unsigned int hour,
315 const unsigned int min, const unsigned int sec)
317 unsigned int mon = mon0, year = year0;
319 /* 1..12 -> 11,12,1..10 */
320 if (0 >= (int) (mon -= 2)) {
321 mon += 12; /* Puts Feb last since it has leap day */
322 year -= 1;
325 return ((((unsigned long)
326 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
327 year*365 - 719499
328 )*24 + hour /* now have hours */
329 )*60 + min /* now have minutes */
330 )*60 + sec; /* finally seconds */
333 EXPORT_SYMBOL(mktime);
336 * set_normalized_timespec - set timespec sec and nsec parts and normalize
338 * @ts: pointer to timespec variable to be set
339 * @sec: seconds to set
340 * @nsec: nanoseconds to set
342 * Set seconds and nanoseconds field of a timespec variable and
343 * normalize to the timespec storage format
345 * Note: The tv_nsec part is always in the range of
346 * 0 <= tv_nsec < NSEC_PER_SEC
347 * For negative values only the tv_sec field is negative !
349 void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
351 while (nsec >= NSEC_PER_SEC) {
353 * The following asm() prevents the compiler from
354 * optimising this loop into a modulo operation. See
355 * also __iter_div_u64_rem() in include/linux/time.h
357 asm("" : "+rm"(nsec));
358 nsec -= NSEC_PER_SEC;
359 ++sec;
361 while (nsec < 0) {
362 asm("" : "+rm"(nsec));
363 nsec += NSEC_PER_SEC;
364 --sec;
366 ts->tv_sec = sec;
367 ts->tv_nsec = nsec;
369 EXPORT_SYMBOL(set_normalized_timespec);
372 * ns_to_timespec - Convert nanoseconds to timespec
373 * @nsec: the nanoseconds value to be converted
375 * Returns the timespec representation of the nsec parameter.
377 struct timespec ns_to_timespec(const s64 nsec)
379 struct timespec ts;
380 s32 rem;
382 if (!nsec)
383 return (struct timespec) {0, 0};
385 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
386 if (unlikely(rem < 0)) {
387 ts.tv_sec--;
388 rem += NSEC_PER_SEC;
390 ts.tv_nsec = rem;
392 return ts;
394 EXPORT_SYMBOL(ns_to_timespec);
397 * ns_to_timeval - Convert nanoseconds to timeval
398 * @nsec: the nanoseconds value to be converted
400 * Returns the timeval representation of the nsec parameter.
402 struct timeval ns_to_timeval(const s64 nsec)
404 struct timespec ts = ns_to_timespec(nsec);
405 struct timeval tv;
407 tv.tv_sec = ts.tv_sec;
408 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
410 return tv;
412 EXPORT_SYMBOL(ns_to_timeval);
415 * When we convert to jiffies then we interpret incoming values
416 * the following way:
418 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
420 * - 'too large' values [that would result in larger than
421 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
423 * - all other values are converted to jiffies by either multiplying
424 * the input value by a factor or dividing it with a factor
426 * We must also be careful about 32-bit overflows.
428 unsigned long msecs_to_jiffies(const unsigned int m)
431 * Negative value, means infinite timeout:
433 if ((int)m < 0)
434 return MAX_JIFFY_OFFSET;
436 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
438 * HZ is equal to or smaller than 1000, and 1000 is a nice
439 * round multiple of HZ, divide with the factor between them,
440 * but round upwards:
442 return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
443 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
445 * HZ is larger than 1000, and HZ is a nice round multiple of
446 * 1000 - simply multiply with the factor between them.
448 * But first make sure the multiplication result cannot
449 * overflow:
451 if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
452 return MAX_JIFFY_OFFSET;
454 return m * (HZ / MSEC_PER_SEC);
455 #else
457 * Generic case - multiply, round and divide. But first
458 * check that if we are doing a net multiplication, that
459 * we wouldn't overflow:
461 if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
462 return MAX_JIFFY_OFFSET;
464 return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
465 >> MSEC_TO_HZ_SHR32;
466 #endif
468 EXPORT_SYMBOL(msecs_to_jiffies);
470 unsigned long usecs_to_jiffies(const unsigned int u)
472 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
473 return MAX_JIFFY_OFFSET;
474 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
475 return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
476 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
477 return u * (HZ / USEC_PER_SEC);
478 #else
479 return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
480 >> USEC_TO_HZ_SHR32;
481 #endif
483 EXPORT_SYMBOL(usecs_to_jiffies);
486 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
487 * that a remainder subtract here would not do the right thing as the
488 * resolution values don't fall on second boundries. I.e. the line:
489 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
491 * Rather, we just shift the bits off the right.
493 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
494 * value to a scaled second value.
496 unsigned long
497 timespec_to_jiffies(const struct timespec *value)
499 unsigned long sec = value->tv_sec;
500 long nsec = value->tv_nsec + TICK_NSEC - 1;
502 if (sec >= MAX_SEC_IN_JIFFIES){
503 sec = MAX_SEC_IN_JIFFIES;
504 nsec = 0;
506 return (((u64)sec * SEC_CONVERSION) +
507 (((u64)nsec * NSEC_CONVERSION) >>
508 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
511 EXPORT_SYMBOL(timespec_to_jiffies);
513 void
514 jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
517 * Convert jiffies to nanoseconds and separate with
518 * one divide.
520 u32 rem;
521 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
522 NSEC_PER_SEC, &rem);
523 value->tv_nsec = rem;
525 EXPORT_SYMBOL(jiffies_to_timespec);
527 /* Same for "timeval"
529 * Well, almost. The problem here is that the real system resolution is
530 * in nanoseconds and the value being converted is in micro seconds.
531 * Also for some machines (those that use HZ = 1024, in-particular),
532 * there is a LARGE error in the tick size in microseconds.
534 * The solution we use is to do the rounding AFTER we convert the
535 * microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
536 * Instruction wise, this should cost only an additional add with carry
537 * instruction above the way it was done above.
539 unsigned long
540 timeval_to_jiffies(const struct timeval *value)
542 unsigned long sec = value->tv_sec;
543 long usec = value->tv_usec;
545 if (sec >= MAX_SEC_IN_JIFFIES){
546 sec = MAX_SEC_IN_JIFFIES;
547 usec = 0;
549 return (((u64)sec * SEC_CONVERSION) +
550 (((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
551 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
553 EXPORT_SYMBOL(timeval_to_jiffies);
555 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
558 * Convert jiffies to nanoseconds and separate with
559 * one divide.
561 u32 rem;
563 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
564 NSEC_PER_SEC, &rem);
565 value->tv_usec = rem / NSEC_PER_USEC;
567 EXPORT_SYMBOL(jiffies_to_timeval);
570 * Convert jiffies/jiffies_64 to clock_t and back.
572 clock_t jiffies_to_clock_t(unsigned long x)
574 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
575 # if HZ < USER_HZ
576 return x * (USER_HZ / HZ);
577 # else
578 return x / (HZ / USER_HZ);
579 # endif
580 #else
581 return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
582 #endif
584 EXPORT_SYMBOL(jiffies_to_clock_t);
586 unsigned long clock_t_to_jiffies(unsigned long x)
588 #if (HZ % USER_HZ)==0
589 if (x >= ~0UL / (HZ / USER_HZ))
590 return ~0UL;
591 return x * (HZ / USER_HZ);
592 #else
593 /* Don't worry about loss of precision here .. */
594 if (x >= ~0UL / HZ * USER_HZ)
595 return ~0UL;
597 /* .. but do try to contain it here */
598 return div_u64((u64)x * HZ, USER_HZ);
599 #endif
601 EXPORT_SYMBOL(clock_t_to_jiffies);
603 u64 jiffies_64_to_clock_t(u64 x)
605 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
606 # if HZ < USER_HZ
607 x = div_u64(x * USER_HZ, HZ);
608 # elif HZ > USER_HZ
609 x = div_u64(x, HZ / USER_HZ);
610 # else
611 /* Nothing to do */
612 # endif
613 #else
615 * There are better ways that don't overflow early,
616 * but even this doesn't overflow in hundreds of years
617 * in 64 bits, so..
619 x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
620 #endif
621 return x;
623 EXPORT_SYMBOL(jiffies_64_to_clock_t);
625 u64 nsec_to_clock_t(u64 x)
627 #if (NSEC_PER_SEC % USER_HZ) == 0
628 return div_u64(x, NSEC_PER_SEC / USER_HZ);
629 #elif (USER_HZ % 512) == 0
630 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
631 #else
633 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
634 * overflow after 64.99 years.
635 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
637 return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
638 #endif
642 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
644 * @n: nsecs in u64
646 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
647 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
648 * for scheduler, not for use in device drivers to calculate timeout value.
650 * note:
651 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
652 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
654 u64 nsecs_to_jiffies64(u64 n)
656 #if (NSEC_PER_SEC % HZ) == 0
657 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
658 return div_u64(n, NSEC_PER_SEC / HZ);
659 #elif (HZ % 512) == 0
660 /* overflow after 292 years if HZ = 1024 */
661 return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
662 #else
664 * Generic case - optimized for cases where HZ is a multiple of 3.
665 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
667 return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
668 #endif
672 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
674 * @n: nsecs in u64
676 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
677 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
678 * for scheduler, not for use in device drivers to calculate timeout value.
680 * note:
681 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
682 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
684 unsigned long nsecs_to_jiffies(u64 n)
686 return (unsigned long)nsecs_to_jiffies64(n);
690 * Add two timespec values and do a safety check for overflow.
691 * It's assumed that both values are valid (>= 0)
693 struct timespec timespec_add_safe(const struct timespec lhs,
694 const struct timespec rhs)
696 struct timespec res;
698 set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
699 lhs.tv_nsec + rhs.tv_nsec);
701 if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
702 res.tv_sec = TIME_T_MAX;
704 return res;