2 * linux/kernel/hrtimer.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * High-resolution kernel timers
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
14 * These timers are currently used for:
18 * - precise in-kernel timing
20 * Started by: Thomas Gleixner and Ingo Molnar
23 * based on kernel/timer.c
25 * Help, testing, suggestions, bugfixes, improvements were
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
31 * For licencing details see kernel-base/COPYING
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/timer.h>
51 #include <asm/uaccess.h>
53 #include <trace/events/timer.h>
58 * There are more clockids then hrtimer bases. Thus, we index
59 * into the timer bases by the hrtimer_base_type enum. When trying
60 * to reach a base using a clockid, hrtimer_clockid_to_base()
61 * is used to convert from clockid to the proper hrtimer_base_type.
63 DEFINE_PER_CPU(struct hrtimer_cpu_base
, hrtimer_bases
) =
69 .index
= HRTIMER_BASE_MONOTONIC
,
70 .clockid
= CLOCK_MONOTONIC
,
71 .get_time
= &ktime_get
,
72 .resolution
= KTIME_LOW_RES
,
75 .index
= HRTIMER_BASE_REALTIME
,
76 .clockid
= CLOCK_REALTIME
,
77 .get_time
= &ktime_get_real
,
78 .resolution
= KTIME_LOW_RES
,
81 .index
= HRTIMER_BASE_BOOTTIME
,
82 .clockid
= CLOCK_BOOTTIME
,
83 .get_time
= &ktime_get_boottime
,
84 .resolution
= KTIME_LOW_RES
,
89 static const int hrtimer_clock_to_base_table
[MAX_CLOCKS
] = {
90 [CLOCK_REALTIME
] = HRTIMER_BASE_REALTIME
,
91 [CLOCK_MONOTONIC
] = HRTIMER_BASE_MONOTONIC
,
92 [CLOCK_BOOTTIME
] = HRTIMER_BASE_BOOTTIME
,
95 static inline int hrtimer_clockid_to_base(clockid_t clock_id
)
97 return hrtimer_clock_to_base_table
[clock_id
];
102 * Get the coarse grained time at the softirq based on xtime and
105 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base
*base
)
107 ktime_t xtim
, mono
, boot
;
108 struct timespec xts
, tom
, slp
;
110 get_xtime_and_monotonic_and_sleep_offset(&xts
, &tom
, &slp
);
112 xtim
= timespec_to_ktime(xts
);
113 mono
= ktime_add(xtim
, timespec_to_ktime(tom
));
114 boot
= ktime_add(mono
, timespec_to_ktime(slp
));
115 base
->clock_base
[HRTIMER_BASE_REALTIME
].softirq_time
= xtim
;
116 base
->clock_base
[HRTIMER_BASE_MONOTONIC
].softirq_time
= mono
;
117 base
->clock_base
[HRTIMER_BASE_BOOTTIME
].softirq_time
= boot
;
121 * Functions and macros which are different for UP/SMP systems are kept in a
127 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
128 * means that all timers which are tied to this base via timer->base are
129 * locked, and the base itself is locked too.
131 * So __run_timers/migrate_timers can safely modify all timers which could
132 * be found on the lists/queues.
134 * When the timer's base is locked, and the timer removed from list, it is
135 * possible to set timer->base = NULL and drop the lock: the timer remains
139 struct hrtimer_clock_base
*lock_hrtimer_base(const struct hrtimer
*timer
,
140 unsigned long *flags
)
142 struct hrtimer_clock_base
*base
;
146 if (likely(base
!= NULL
)) {
147 raw_spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
148 if (likely(base
== timer
->base
))
150 /* The timer has migrated to another CPU: */
151 raw_spin_unlock_irqrestore(&base
->cpu_base
->lock
, *flags
);
159 * Get the preferred target CPU for NOHZ
161 static int hrtimer_get_target(int this_cpu
, int pinned
)
164 if (!pinned
&& get_sysctl_timer_migration() && idle_cpu(this_cpu
))
165 return get_nohz_timer_target();
171 * With HIGHRES=y we do not migrate the timer when it is expiring
172 * before the next event on the target cpu because we cannot reprogram
173 * the target cpu hardware and we would cause it to fire late.
175 * Called with cpu_base->lock of target cpu held.
178 hrtimer_check_target(struct hrtimer
*timer
, struct hrtimer_clock_base
*new_base
)
180 #ifdef CONFIG_HIGH_RES_TIMERS
183 if (!new_base
->cpu_base
->hres_active
)
186 expires
= ktime_sub(hrtimer_get_expires(timer
), new_base
->offset
);
187 return expires
.tv64
<= new_base
->cpu_base
->expires_next
.tv64
;
194 * Switch the timer base to the current CPU when possible.
196 static inline struct hrtimer_clock_base
*
197 switch_hrtimer_base(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
,
200 struct hrtimer_clock_base
*new_base
;
201 struct hrtimer_cpu_base
*new_cpu_base
;
202 int this_cpu
= smp_processor_id();
203 int cpu
= hrtimer_get_target(this_cpu
, pinned
);
204 int basenum
= base
->index
;
207 new_cpu_base
= &per_cpu(hrtimer_bases
, cpu
);
208 new_base
= &new_cpu_base
->clock_base
[basenum
];
210 if (base
!= new_base
) {
212 * We are trying to move timer to new_base.
213 * However we can't change timer's base while it is running,
214 * so we keep it on the same CPU. No hassle vs. reprogramming
215 * the event source in the high resolution case. The softirq
216 * code will take care of this when the timer function has
217 * completed. There is no conflict as we hold the lock until
218 * the timer is enqueued.
220 if (unlikely(hrtimer_callback_running(timer
)))
223 /* See the comment in lock_timer_base() */
225 raw_spin_unlock(&base
->cpu_base
->lock
);
226 raw_spin_lock(&new_base
->cpu_base
->lock
);
228 if (cpu
!= this_cpu
&& hrtimer_check_target(timer
, new_base
)) {
230 raw_spin_unlock(&new_base
->cpu_base
->lock
);
231 raw_spin_lock(&base
->cpu_base
->lock
);
235 timer
->base
= new_base
;
240 #else /* CONFIG_SMP */
242 static inline struct hrtimer_clock_base
*
243 lock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
245 struct hrtimer_clock_base
*base
= timer
->base
;
247 raw_spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
252 # define switch_hrtimer_base(t, b, p) (b)
254 #endif /* !CONFIG_SMP */
257 * Functions for the union type storage format of ktime_t which are
258 * too large for inlining:
260 #if BITS_PER_LONG < 64
261 # ifndef CONFIG_KTIME_SCALAR
263 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
265 * @nsec: the scalar nsec value to add
267 * Returns the sum of kt and nsec in ktime_t format
269 ktime_t
ktime_add_ns(const ktime_t kt
, u64 nsec
)
273 if (likely(nsec
< NSEC_PER_SEC
)) {
276 unsigned long rem
= do_div(nsec
, NSEC_PER_SEC
);
278 tmp
= ktime_set((long)nsec
, rem
);
281 return ktime_add(kt
, tmp
);
284 EXPORT_SYMBOL_GPL(ktime_add_ns
);
287 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
289 * @nsec: the scalar nsec value to subtract
291 * Returns the subtraction of @nsec from @kt in ktime_t format
293 ktime_t
ktime_sub_ns(const ktime_t kt
, u64 nsec
)
297 if (likely(nsec
< NSEC_PER_SEC
)) {
300 unsigned long rem
= do_div(nsec
, NSEC_PER_SEC
);
302 tmp
= ktime_set((long)nsec
, rem
);
305 return ktime_sub(kt
, tmp
);
308 EXPORT_SYMBOL_GPL(ktime_sub_ns
);
309 # endif /* !CONFIG_KTIME_SCALAR */
312 * Divide a ktime value by a nanosecond value
314 u64
ktime_divns(const ktime_t kt
, s64 div
)
319 dclc
= ktime_to_ns(kt
);
320 /* Make sure the divisor is less than 2^32: */
326 do_div(dclc
, (unsigned long) div
);
330 #endif /* BITS_PER_LONG >= 64 */
333 * Add two ktime values and do a safety check for overflow:
335 ktime_t
ktime_add_safe(const ktime_t lhs
, const ktime_t rhs
)
337 ktime_t res
= ktime_add(lhs
, rhs
);
340 * We use KTIME_SEC_MAX here, the maximum timeout which we can
341 * return to user space in a timespec:
343 if (res
.tv64
< 0 || res
.tv64
< lhs
.tv64
|| res
.tv64
< rhs
.tv64
)
344 res
= ktime_set(KTIME_SEC_MAX
, 0);
349 EXPORT_SYMBOL_GPL(ktime_add_safe
);
351 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
353 static struct debug_obj_descr hrtimer_debug_descr
;
355 static void *hrtimer_debug_hint(void *addr
)
357 return ((struct hrtimer
*) addr
)->function
;
361 * fixup_init is called when:
362 * - an active object is initialized
364 static int hrtimer_fixup_init(void *addr
, enum debug_obj_state state
)
366 struct hrtimer
*timer
= addr
;
369 case ODEBUG_STATE_ACTIVE
:
370 hrtimer_cancel(timer
);
371 debug_object_init(timer
, &hrtimer_debug_descr
);
379 * fixup_activate is called when:
380 * - an active object is activated
381 * - an unknown object is activated (might be a statically initialized object)
383 static int hrtimer_fixup_activate(void *addr
, enum debug_obj_state state
)
387 case ODEBUG_STATE_NOTAVAILABLE
:
391 case ODEBUG_STATE_ACTIVE
:
400 * fixup_free is called when:
401 * - an active object is freed
403 static int hrtimer_fixup_free(void *addr
, enum debug_obj_state state
)
405 struct hrtimer
*timer
= addr
;
408 case ODEBUG_STATE_ACTIVE
:
409 hrtimer_cancel(timer
);
410 debug_object_free(timer
, &hrtimer_debug_descr
);
417 static struct debug_obj_descr hrtimer_debug_descr
= {
419 .debug_hint
= hrtimer_debug_hint
,
420 .fixup_init
= hrtimer_fixup_init
,
421 .fixup_activate
= hrtimer_fixup_activate
,
422 .fixup_free
= hrtimer_fixup_free
,
425 static inline void debug_hrtimer_init(struct hrtimer
*timer
)
427 debug_object_init(timer
, &hrtimer_debug_descr
);
430 static inline void debug_hrtimer_activate(struct hrtimer
*timer
)
432 debug_object_activate(timer
, &hrtimer_debug_descr
);
435 static inline void debug_hrtimer_deactivate(struct hrtimer
*timer
)
437 debug_object_deactivate(timer
, &hrtimer_debug_descr
);
440 static inline void debug_hrtimer_free(struct hrtimer
*timer
)
442 debug_object_free(timer
, &hrtimer_debug_descr
);
445 static void __hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
446 enum hrtimer_mode mode
);
448 void hrtimer_init_on_stack(struct hrtimer
*timer
, clockid_t clock_id
,
449 enum hrtimer_mode mode
)
451 debug_object_init_on_stack(timer
, &hrtimer_debug_descr
);
452 __hrtimer_init(timer
, clock_id
, mode
);
454 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack
);
456 void destroy_hrtimer_on_stack(struct hrtimer
*timer
)
458 debug_object_free(timer
, &hrtimer_debug_descr
);
462 static inline void debug_hrtimer_init(struct hrtimer
*timer
) { }
463 static inline void debug_hrtimer_activate(struct hrtimer
*timer
) { }
464 static inline void debug_hrtimer_deactivate(struct hrtimer
*timer
) { }
468 debug_init(struct hrtimer
*timer
, clockid_t clockid
,
469 enum hrtimer_mode mode
)
471 debug_hrtimer_init(timer
);
472 trace_hrtimer_init(timer
, clockid
, mode
);
475 static inline void debug_activate(struct hrtimer
*timer
)
477 debug_hrtimer_activate(timer
);
478 trace_hrtimer_start(timer
);
481 static inline void debug_deactivate(struct hrtimer
*timer
)
483 debug_hrtimer_deactivate(timer
);
484 trace_hrtimer_cancel(timer
);
487 /* High resolution timer related functions */
488 #ifdef CONFIG_HIGH_RES_TIMERS
491 * High resolution timer enabled ?
493 static int hrtimer_hres_enabled __read_mostly
= 1;
496 * Enable / Disable high resolution mode
498 static int __init
setup_hrtimer_hres(char *str
)
500 if (!strcmp(str
, "off"))
501 hrtimer_hres_enabled
= 0;
502 else if (!strcmp(str
, "on"))
503 hrtimer_hres_enabled
= 1;
509 __setup("highres=", setup_hrtimer_hres
);
512 * hrtimer_high_res_enabled - query, if the highres mode is enabled
514 static inline int hrtimer_is_hres_enabled(void)
516 return hrtimer_hres_enabled
;
520 * Is the high resolution mode active ?
522 static inline int hrtimer_hres_active(void)
524 return __this_cpu_read(hrtimer_bases
.hres_active
);
528 * Reprogram the event source with checking both queues for the
530 * Called with interrupts disabled and base->lock held
533 hrtimer_force_reprogram(struct hrtimer_cpu_base
*cpu_base
, int skip_equal
)
536 struct hrtimer_clock_base
*base
= cpu_base
->clock_base
;
537 ktime_t expires
, expires_next
;
539 expires_next
.tv64
= KTIME_MAX
;
541 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++, base
++) {
542 struct hrtimer
*timer
;
543 struct timerqueue_node
*next
;
545 next
= timerqueue_getnext(&base
->active
);
548 timer
= container_of(next
, struct hrtimer
, node
);
550 expires
= ktime_sub(hrtimer_get_expires(timer
), base
->offset
);
552 * clock_was_set() has changed base->offset so the
553 * result might be negative. Fix it up to prevent a
554 * false positive in clockevents_program_event()
556 if (expires
.tv64
< 0)
558 if (expires
.tv64
< expires_next
.tv64
)
559 expires_next
= expires
;
562 if (skip_equal
&& expires_next
.tv64
== cpu_base
->expires_next
.tv64
)
565 cpu_base
->expires_next
.tv64
= expires_next
.tv64
;
567 if (cpu_base
->expires_next
.tv64
!= KTIME_MAX
)
568 tick_program_event(cpu_base
->expires_next
, 1);
572 * Shared reprogramming for clock_realtime and clock_monotonic
574 * When a timer is enqueued and expires earlier than the already enqueued
575 * timers, we have to check, whether it expires earlier than the timer for
576 * which the clock event device was armed.
578 * Called with interrupts disabled and base->cpu_base.lock held
580 static int hrtimer_reprogram(struct hrtimer
*timer
,
581 struct hrtimer_clock_base
*base
)
583 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
584 ktime_t expires
= ktime_sub(hrtimer_get_expires(timer
), base
->offset
);
587 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer
) < 0);
590 * When the callback is running, we do not reprogram the clock event
591 * device. The timer callback is either running on a different CPU or
592 * the callback is executed in the hrtimer_interrupt context. The
593 * reprogramming is handled either by the softirq, which called the
594 * callback or at the end of the hrtimer_interrupt.
596 if (hrtimer_callback_running(timer
))
600 * CLOCK_REALTIME timer might be requested with an absolute
601 * expiry time which is less than base->offset. Nothing wrong
602 * about that, just avoid to call into the tick code, which
603 * has now objections against negative expiry values.
605 if (expires
.tv64
< 0)
608 if (expires
.tv64
>= cpu_base
->expires_next
.tv64
)
612 * If a hang was detected in the last timer interrupt then we
613 * do not schedule a timer which is earlier than the expiry
614 * which we enforced in the hang detection. We want the system
617 if (cpu_base
->hang_detected
)
621 * Clockevents returns -ETIME, when the event was in the past.
623 res
= tick_program_event(expires
, 0);
624 if (!IS_ERR_VALUE(res
))
625 cpu_base
->expires_next
= expires
;
630 * Initialize the high resolution related parts of cpu_base
632 static inline void hrtimer_init_hres(struct hrtimer_cpu_base
*base
)
634 base
->expires_next
.tv64
= KTIME_MAX
;
635 base
->hres_active
= 0;
639 * When High resolution timers are active, try to reprogram. Note, that in case
640 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
641 * check happens. The timer gets enqueued into the rbtree. The reprogramming
642 * and expiry check is done in the hrtimer_interrupt or in the softirq.
644 static inline int hrtimer_enqueue_reprogram(struct hrtimer
*timer
,
645 struct hrtimer_clock_base
*base
)
647 return base
->cpu_base
->hres_active
&& hrtimer_reprogram(timer
, base
);
650 static inline ktime_t
hrtimer_update_base(struct hrtimer_cpu_base
*base
)
652 ktime_t
*offs_real
= &base
->clock_base
[HRTIMER_BASE_REALTIME
].offset
;
653 ktime_t
*offs_boot
= &base
->clock_base
[HRTIMER_BASE_BOOTTIME
].offset
;
655 return ktime_get_update_offsets(offs_real
, offs_boot
);
659 * Retrigger next event is called after clock was set
661 * Called with interrupts disabled via on_each_cpu()
663 static void retrigger_next_event(void *arg
)
665 struct hrtimer_cpu_base
*base
= &__get_cpu_var(hrtimer_bases
);
667 if (!hrtimer_hres_active())
670 raw_spin_lock(&base
->lock
);
671 hrtimer_update_base(base
);
672 hrtimer_force_reprogram(base
, 0);
673 raw_spin_unlock(&base
->lock
);
677 * Switch to high resolution mode
679 static int hrtimer_switch_to_hres(void)
681 int i
, cpu
= smp_processor_id();
682 struct hrtimer_cpu_base
*base
= &per_cpu(hrtimer_bases
, cpu
);
685 if (base
->hres_active
)
688 local_irq_save(flags
);
690 if (tick_init_highres()) {
691 local_irq_restore(flags
);
692 printk(KERN_WARNING
"Could not switch to high resolution "
693 "mode on CPU %d\n", cpu
);
696 base
->hres_active
= 1;
697 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++)
698 base
->clock_base
[i
].resolution
= KTIME_HIGH_RES
;
700 tick_setup_sched_timer();
701 /* "Retrigger" the interrupt to get things going */
702 retrigger_next_event(NULL
);
703 local_irq_restore(flags
);
708 * Called from timekeeping code to reprogramm the hrtimer interrupt
709 * device. If called from the timer interrupt context we defer it to
712 void clock_was_set_delayed(void)
714 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
716 cpu_base
->clock_was_set
= 1;
717 __raise_softirq_irqoff(HRTIMER_SOFTIRQ
);
722 static inline int hrtimer_hres_active(void) { return 0; }
723 static inline int hrtimer_is_hres_enabled(void) { return 0; }
724 static inline int hrtimer_switch_to_hres(void) { return 0; }
726 hrtimer_force_reprogram(struct hrtimer_cpu_base
*base
, int skip_equal
) { }
727 static inline int hrtimer_enqueue_reprogram(struct hrtimer
*timer
,
728 struct hrtimer_clock_base
*base
)
732 static inline void hrtimer_init_hres(struct hrtimer_cpu_base
*base
) { }
733 static inline void retrigger_next_event(void *arg
) { }
735 #endif /* CONFIG_HIGH_RES_TIMERS */
738 * Clock realtime was set
740 * Change the offset of the realtime clock vs. the monotonic
743 * We might have to reprogram the high resolution timer interrupt. On
744 * SMP we call the architecture specific code to retrigger _all_ high
745 * resolution timer interrupts. On UP we just disable interrupts and
746 * call the high resolution interrupt code.
748 void clock_was_set(void)
750 #ifdef CONFIG_HIGH_RES_TIMERS
751 /* Retrigger the CPU local events everywhere */
752 on_each_cpu(retrigger_next_event
, NULL
, 1);
754 timerfd_clock_was_set();
758 * During resume we might have to reprogram the high resolution timer
759 * interrupt (on the local CPU):
761 void hrtimers_resume(void)
763 WARN_ONCE(!irqs_disabled(),
764 KERN_INFO
"hrtimers_resume() called with IRQs enabled!");
766 retrigger_next_event(NULL
);
767 timerfd_clock_was_set();
770 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer
*timer
)
772 #ifdef CONFIG_TIMER_STATS
773 if (timer
->start_site
)
775 timer
->start_site
= __builtin_return_address(0);
776 memcpy(timer
->start_comm
, current
->comm
, TASK_COMM_LEN
);
777 timer
->start_pid
= current
->pid
;
781 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer
*timer
)
783 #ifdef CONFIG_TIMER_STATS
784 timer
->start_site
= NULL
;
788 static inline void timer_stats_account_hrtimer(struct hrtimer
*timer
)
790 #ifdef CONFIG_TIMER_STATS
791 if (likely(!timer_stats_active
))
793 timer_stats_update_stats(timer
, timer
->start_pid
, timer
->start_site
,
794 timer
->function
, timer
->start_comm
, 0);
799 * Counterpart to lock_hrtimer_base above:
802 void unlock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
804 raw_spin_unlock_irqrestore(&timer
->base
->cpu_base
->lock
, *flags
);
808 * hrtimer_forward - forward the timer expiry
809 * @timer: hrtimer to forward
810 * @now: forward past this time
811 * @interval: the interval to forward
813 * Forward the timer expiry so it will expire in the future.
814 * Returns the number of overruns.
816 u64
hrtimer_forward(struct hrtimer
*timer
, ktime_t now
, ktime_t interval
)
821 delta
= ktime_sub(now
, hrtimer_get_expires(timer
));
826 if (interval
.tv64
< timer
->base
->resolution
.tv64
)
827 interval
.tv64
= timer
->base
->resolution
.tv64
;
829 if (unlikely(delta
.tv64
>= interval
.tv64
)) {
830 s64 incr
= ktime_to_ns(interval
);
832 orun
= ktime_divns(delta
, incr
);
833 hrtimer_add_expires_ns(timer
, incr
* orun
);
834 if (hrtimer_get_expires_tv64(timer
) > now
.tv64
)
837 * This (and the ktime_add() below) is the
838 * correction for exact:
842 hrtimer_add_expires(timer
, interval
);
846 EXPORT_SYMBOL_GPL(hrtimer_forward
);
849 * enqueue_hrtimer - internal function to (re)start a timer
851 * The timer is inserted in expiry order. Insertion into the
852 * red black tree is O(log(n)). Must hold the base lock.
854 * Returns 1 when the new timer is the leftmost timer in the tree.
856 static int enqueue_hrtimer(struct hrtimer
*timer
,
857 struct hrtimer_clock_base
*base
)
859 debug_activate(timer
);
861 timerqueue_add(&base
->active
, &timer
->node
);
862 base
->cpu_base
->active_bases
|= 1 << base
->index
;
865 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
866 * state of a possibly running callback.
868 timer
->state
|= HRTIMER_STATE_ENQUEUED
;
870 return (&timer
->node
== base
->active
.next
);
874 * __remove_hrtimer - internal function to remove a timer
876 * Caller must hold the base lock.
878 * High resolution timer mode reprograms the clock event device when the
879 * timer is the one which expires next. The caller can disable this by setting
880 * reprogram to zero. This is useful, when the context does a reprogramming
881 * anyway (e.g. timer interrupt)
883 static void __remove_hrtimer(struct hrtimer
*timer
,
884 struct hrtimer_clock_base
*base
,
885 unsigned long newstate
, int reprogram
)
887 struct timerqueue_node
*next_timer
;
888 if (!(timer
->state
& HRTIMER_STATE_ENQUEUED
))
891 next_timer
= timerqueue_getnext(&base
->active
);
892 timerqueue_del(&base
->active
, &timer
->node
);
893 if (&timer
->node
== next_timer
) {
894 #ifdef CONFIG_HIGH_RES_TIMERS
895 /* Reprogram the clock event device. if enabled */
896 if (reprogram
&& hrtimer_hres_active()) {
899 expires
= ktime_sub(hrtimer_get_expires(timer
),
901 if (base
->cpu_base
->expires_next
.tv64
== expires
.tv64
)
902 hrtimer_force_reprogram(base
->cpu_base
, 1);
906 if (!timerqueue_getnext(&base
->active
))
907 base
->cpu_base
->active_bases
&= ~(1 << base
->index
);
909 timer
->state
= newstate
;
913 * remove hrtimer, called with base lock held
916 remove_hrtimer(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
)
918 if (hrtimer_is_queued(timer
)) {
923 * Remove the timer and force reprogramming when high
924 * resolution mode is active and the timer is on the current
925 * CPU. If we remove a timer on another CPU, reprogramming is
926 * skipped. The interrupt event on this CPU is fired and
927 * reprogramming happens in the interrupt handler. This is a
928 * rare case and less expensive than a smp call.
930 debug_deactivate(timer
);
931 timer_stats_hrtimer_clear_start_info(timer
);
932 reprogram
= base
->cpu_base
== &__get_cpu_var(hrtimer_bases
);
934 * We must preserve the CALLBACK state flag here,
935 * otherwise we could move the timer base in
936 * switch_hrtimer_base.
938 state
= timer
->state
& HRTIMER_STATE_CALLBACK
;
939 __remove_hrtimer(timer
, base
, state
, reprogram
);
945 int __hrtimer_start_range_ns(struct hrtimer
*timer
, ktime_t tim
,
946 unsigned long delta_ns
, const enum hrtimer_mode mode
,
949 struct hrtimer_clock_base
*base
, *new_base
;
953 base
= lock_hrtimer_base(timer
, &flags
);
955 /* Remove an active timer from the queue: */
956 ret
= remove_hrtimer(timer
, base
);
958 /* Switch the timer base, if necessary: */
959 new_base
= switch_hrtimer_base(timer
, base
, mode
& HRTIMER_MODE_PINNED
);
961 if (mode
& HRTIMER_MODE_REL
) {
962 tim
= ktime_add_safe(tim
, new_base
->get_time());
964 * CONFIG_TIME_LOW_RES is a temporary way for architectures
965 * to signal that they simply return xtime in
966 * do_gettimeoffset(). In this case we want to round up by
967 * resolution when starting a relative timer, to avoid short
968 * timeouts. This will go away with the GTOD framework.
970 #ifdef CONFIG_TIME_LOW_RES
971 tim
= ktime_add_safe(tim
, base
->resolution
);
975 hrtimer_set_expires_range_ns(timer
, tim
, delta_ns
);
977 timer_stats_hrtimer_set_start_info(timer
);
979 leftmost
= enqueue_hrtimer(timer
, new_base
);
982 * Only allow reprogramming if the new base is on this CPU.
983 * (it might still be on another CPU if the timer was pending)
985 * XXX send_remote_softirq() ?
987 if (leftmost
&& new_base
->cpu_base
== &__get_cpu_var(hrtimer_bases
)
988 && hrtimer_enqueue_reprogram(timer
, new_base
)) {
991 * We need to drop cpu_base->lock to avoid a
992 * lock ordering issue vs. rq->lock.
994 raw_spin_unlock(&new_base
->cpu_base
->lock
);
995 raise_softirq_irqoff(HRTIMER_SOFTIRQ
);
996 local_irq_restore(flags
);
999 __raise_softirq_irqoff(HRTIMER_SOFTIRQ
);
1003 unlock_hrtimer_base(timer
, &flags
);
1009 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
1010 * @timer: the timer to be added
1012 * @delta_ns: "slack" range for the timer
1013 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1017 * 1 when the timer was active
1019 int hrtimer_start_range_ns(struct hrtimer
*timer
, ktime_t tim
,
1020 unsigned long delta_ns
, const enum hrtimer_mode mode
)
1022 return __hrtimer_start_range_ns(timer
, tim
, delta_ns
, mode
, 1);
1024 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns
);
1027 * hrtimer_start - (re)start an hrtimer on the current CPU
1028 * @timer: the timer to be added
1030 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1034 * 1 when the timer was active
1037 hrtimer_start(struct hrtimer
*timer
, ktime_t tim
, const enum hrtimer_mode mode
)
1039 return __hrtimer_start_range_ns(timer
, tim
, 0, mode
, 1);
1041 EXPORT_SYMBOL_GPL(hrtimer_start
);
1045 * hrtimer_try_to_cancel - try to deactivate a timer
1046 * @timer: hrtimer to stop
1049 * 0 when the timer was not active
1050 * 1 when the timer was active
1051 * -1 when the timer is currently excuting the callback function and
1054 int hrtimer_try_to_cancel(struct hrtimer
*timer
)
1056 struct hrtimer_clock_base
*base
;
1057 unsigned long flags
;
1060 base
= lock_hrtimer_base(timer
, &flags
);
1062 if (!hrtimer_callback_running(timer
))
1063 ret
= remove_hrtimer(timer
, base
);
1065 unlock_hrtimer_base(timer
, &flags
);
1070 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel
);
1073 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1074 * @timer: the timer to be cancelled
1077 * 0 when the timer was not active
1078 * 1 when the timer was active
1080 int hrtimer_cancel(struct hrtimer
*timer
)
1083 int ret
= hrtimer_try_to_cancel(timer
);
1090 EXPORT_SYMBOL_GPL(hrtimer_cancel
);
1093 * hrtimer_get_remaining - get remaining time for the timer
1094 * @timer: the timer to read
1096 ktime_t
hrtimer_get_remaining(const struct hrtimer
*timer
)
1098 unsigned long flags
;
1101 lock_hrtimer_base(timer
, &flags
);
1102 rem
= hrtimer_expires_remaining(timer
);
1103 unlock_hrtimer_base(timer
, &flags
);
1107 EXPORT_SYMBOL_GPL(hrtimer_get_remaining
);
1111 * hrtimer_get_next_event - get the time until next expiry event
1113 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1116 ktime_t
hrtimer_get_next_event(void)
1118 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1119 struct hrtimer_clock_base
*base
= cpu_base
->clock_base
;
1120 ktime_t delta
, mindelta
= { .tv64
= KTIME_MAX
};
1121 unsigned long flags
;
1124 raw_spin_lock_irqsave(&cpu_base
->lock
, flags
);
1126 if (!hrtimer_hres_active()) {
1127 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++, base
++) {
1128 struct hrtimer
*timer
;
1129 struct timerqueue_node
*next
;
1131 next
= timerqueue_getnext(&base
->active
);
1135 timer
= container_of(next
, struct hrtimer
, node
);
1136 delta
.tv64
= hrtimer_get_expires_tv64(timer
);
1137 delta
= ktime_sub(delta
, base
->get_time());
1138 if (delta
.tv64
< mindelta
.tv64
)
1139 mindelta
.tv64
= delta
.tv64
;
1143 raw_spin_unlock_irqrestore(&cpu_base
->lock
, flags
);
1145 if (mindelta
.tv64
< 0)
1151 static void __hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
1152 enum hrtimer_mode mode
)
1154 struct hrtimer_cpu_base
*cpu_base
;
1157 memset(timer
, 0, sizeof(struct hrtimer
));
1159 cpu_base
= &__raw_get_cpu_var(hrtimer_bases
);
1161 if (clock_id
== CLOCK_REALTIME
&& mode
!= HRTIMER_MODE_ABS
)
1162 clock_id
= CLOCK_MONOTONIC
;
1164 base
= hrtimer_clockid_to_base(clock_id
);
1165 timer
->base
= &cpu_base
->clock_base
[base
];
1166 timerqueue_init(&timer
->node
);
1168 #ifdef CONFIG_TIMER_STATS
1169 timer
->start_site
= NULL
;
1170 timer
->start_pid
= -1;
1171 memset(timer
->start_comm
, 0, TASK_COMM_LEN
);
1176 * hrtimer_init - initialize a timer to the given clock
1177 * @timer: the timer to be initialized
1178 * @clock_id: the clock to be used
1179 * @mode: timer mode abs/rel
1181 void hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
1182 enum hrtimer_mode mode
)
1184 debug_init(timer
, clock_id
, mode
);
1185 __hrtimer_init(timer
, clock_id
, mode
);
1187 EXPORT_SYMBOL_GPL(hrtimer_init
);
1190 * hrtimer_get_res - get the timer resolution for a clock
1191 * @which_clock: which clock to query
1192 * @tp: pointer to timespec variable to store the resolution
1194 * Store the resolution of the clock selected by @which_clock in the
1195 * variable pointed to by @tp.
1197 int hrtimer_get_res(const clockid_t which_clock
, struct timespec
*tp
)
1199 struct hrtimer_cpu_base
*cpu_base
;
1200 int base
= hrtimer_clockid_to_base(which_clock
);
1202 cpu_base
= &__raw_get_cpu_var(hrtimer_bases
);
1203 *tp
= ktime_to_timespec(cpu_base
->clock_base
[base
].resolution
);
1207 EXPORT_SYMBOL_GPL(hrtimer_get_res
);
1209 static void __run_hrtimer(struct hrtimer
*timer
, ktime_t
*now
)
1211 struct hrtimer_clock_base
*base
= timer
->base
;
1212 struct hrtimer_cpu_base
*cpu_base
= base
->cpu_base
;
1213 enum hrtimer_restart (*fn
)(struct hrtimer
*);
1216 WARN_ON(!irqs_disabled());
1218 debug_deactivate(timer
);
1219 __remove_hrtimer(timer
, base
, HRTIMER_STATE_CALLBACK
, 0);
1220 timer_stats_account_hrtimer(timer
);
1221 fn
= timer
->function
;
1224 * Because we run timers from hardirq context, there is no chance
1225 * they get migrated to another cpu, therefore its safe to unlock
1228 raw_spin_unlock(&cpu_base
->lock
);
1229 trace_hrtimer_expire_entry(timer
, now
);
1230 restart
= fn(timer
);
1231 trace_hrtimer_expire_exit(timer
);
1232 raw_spin_lock(&cpu_base
->lock
);
1235 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1236 * we do not reprogramm the event hardware. Happens either in
1237 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1239 if (restart
!= HRTIMER_NORESTART
) {
1240 BUG_ON(timer
->state
!= HRTIMER_STATE_CALLBACK
);
1241 enqueue_hrtimer(timer
, base
);
1244 WARN_ON_ONCE(!(timer
->state
& HRTIMER_STATE_CALLBACK
));
1246 timer
->state
&= ~HRTIMER_STATE_CALLBACK
;
1249 #ifdef CONFIG_HIGH_RES_TIMERS
1252 * High resolution timer interrupt
1253 * Called with interrupts disabled
1255 void hrtimer_interrupt(struct clock_event_device
*dev
)
1257 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1258 ktime_t expires_next
, now
, entry_time
, delta
;
1261 BUG_ON(!cpu_base
->hres_active
);
1262 cpu_base
->nr_events
++;
1263 dev
->next_event
.tv64
= KTIME_MAX
;
1265 raw_spin_lock(&cpu_base
->lock
);
1266 entry_time
= now
= hrtimer_update_base(cpu_base
);
1268 expires_next
.tv64
= KTIME_MAX
;
1270 * We set expires_next to KTIME_MAX here with cpu_base->lock
1271 * held to prevent that a timer is enqueued in our queue via
1272 * the migration code. This does not affect enqueueing of
1273 * timers which run their callback and need to be requeued on
1276 cpu_base
->expires_next
.tv64
= KTIME_MAX
;
1278 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1279 struct hrtimer_clock_base
*base
;
1280 struct timerqueue_node
*node
;
1283 if (!(cpu_base
->active_bases
& (1 << i
)))
1286 base
= cpu_base
->clock_base
+ i
;
1287 basenow
= ktime_add(now
, base
->offset
);
1289 while ((node
= timerqueue_getnext(&base
->active
))) {
1290 struct hrtimer
*timer
;
1292 timer
= container_of(node
, struct hrtimer
, node
);
1295 * The immediate goal for using the softexpires is
1296 * minimizing wakeups, not running timers at the
1297 * earliest interrupt after their soft expiration.
1298 * This allows us to avoid using a Priority Search
1299 * Tree, which can answer a stabbing querry for
1300 * overlapping intervals and instead use the simple
1301 * BST we already have.
1302 * We don't add extra wakeups by delaying timers that
1303 * are right-of a not yet expired timer, because that
1304 * timer will have to trigger a wakeup anyway.
1307 if (basenow
.tv64
< hrtimer_get_softexpires_tv64(timer
)) {
1310 expires
= ktime_sub(hrtimer_get_expires(timer
),
1312 if (expires
.tv64
< expires_next
.tv64
)
1313 expires_next
= expires
;
1317 __run_hrtimer(timer
, &basenow
);
1322 * Store the new expiry value so the migration code can verify
1325 cpu_base
->expires_next
= expires_next
;
1326 raw_spin_unlock(&cpu_base
->lock
);
1328 /* Reprogramming necessary ? */
1329 if (expires_next
.tv64
== KTIME_MAX
||
1330 !tick_program_event(expires_next
, 0)) {
1331 cpu_base
->hang_detected
= 0;
1336 * The next timer was already expired due to:
1338 * - long lasting callbacks
1339 * - being scheduled away when running in a VM
1341 * We need to prevent that we loop forever in the hrtimer
1342 * interrupt routine. We give it 3 attempts to avoid
1343 * overreacting on some spurious event.
1345 * Acquire base lock for updating the offsets and retrieving
1348 raw_spin_lock(&cpu_base
->lock
);
1349 now
= hrtimer_update_base(cpu_base
);
1350 cpu_base
->nr_retries
++;
1354 * Give the system a chance to do something else than looping
1355 * here. We stored the entry time, so we know exactly how long
1356 * we spent here. We schedule the next event this amount of
1359 cpu_base
->nr_hangs
++;
1360 cpu_base
->hang_detected
= 1;
1361 raw_spin_unlock(&cpu_base
->lock
);
1362 delta
= ktime_sub(now
, entry_time
);
1363 if (delta
.tv64
> cpu_base
->max_hang_time
.tv64
)
1364 cpu_base
->max_hang_time
= delta
;
1366 * Limit it to a sensible value as we enforce a longer
1367 * delay. Give the CPU at least 100ms to catch up.
1369 if (delta
.tv64
> 100 * NSEC_PER_MSEC
)
1370 expires_next
= ktime_add_ns(now
, 100 * NSEC_PER_MSEC
);
1372 expires_next
= ktime_add(now
, delta
);
1373 tick_program_event(expires_next
, 1);
1374 printk_once(KERN_WARNING
"hrtimer: interrupt took %llu ns\n",
1375 ktime_to_ns(delta
));
1379 * local version of hrtimer_peek_ahead_timers() called with interrupts
1382 static void __hrtimer_peek_ahead_timers(void)
1384 struct tick_device
*td
;
1386 if (!hrtimer_hres_active())
1389 td
= &__get_cpu_var(tick_cpu_device
);
1390 if (td
&& td
->evtdev
)
1391 hrtimer_interrupt(td
->evtdev
);
1395 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1397 * hrtimer_peek_ahead_timers will peek at the timer queue of
1398 * the current cpu and check if there are any timers for which
1399 * the soft expires time has passed. If any such timers exist,
1400 * they are run immediately and then removed from the timer queue.
1403 void hrtimer_peek_ahead_timers(void)
1405 unsigned long flags
;
1407 local_irq_save(flags
);
1408 __hrtimer_peek_ahead_timers();
1409 local_irq_restore(flags
);
1412 static void run_hrtimer_softirq(struct softirq_action
*h
)
1414 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1416 if (cpu_base
->clock_was_set
) {
1417 cpu_base
->clock_was_set
= 0;
1421 hrtimer_peek_ahead_timers();
1424 #else /* CONFIG_HIGH_RES_TIMERS */
1426 static inline void __hrtimer_peek_ahead_timers(void) { }
1428 #endif /* !CONFIG_HIGH_RES_TIMERS */
1431 * Called from timer softirq every jiffy, expire hrtimers:
1433 * For HRT its the fall back code to run the softirq in the timer
1434 * softirq context in case the hrtimer initialization failed or has
1435 * not been done yet.
1437 void hrtimer_run_pending(void)
1439 if (hrtimer_hres_active())
1443 * This _is_ ugly: We have to check in the softirq context,
1444 * whether we can switch to highres and / or nohz mode. The
1445 * clocksource switch happens in the timer interrupt with
1446 * xtime_lock held. Notification from there only sets the
1447 * check bit in the tick_oneshot code, otherwise we might
1448 * deadlock vs. xtime_lock.
1450 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1451 hrtimer_switch_to_hres();
1455 * Called from hardirq context every jiffy
1457 void hrtimer_run_queues(void)
1459 struct timerqueue_node
*node
;
1460 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1461 struct hrtimer_clock_base
*base
;
1462 int index
, gettime
= 1;
1464 if (hrtimer_hres_active())
1467 for (index
= 0; index
< HRTIMER_MAX_CLOCK_BASES
; index
++) {
1468 base
= &cpu_base
->clock_base
[index
];
1469 if (!timerqueue_getnext(&base
->active
))
1473 hrtimer_get_softirq_time(cpu_base
);
1477 raw_spin_lock(&cpu_base
->lock
);
1479 while ((node
= timerqueue_getnext(&base
->active
))) {
1480 struct hrtimer
*timer
;
1482 timer
= container_of(node
, struct hrtimer
, node
);
1483 if (base
->softirq_time
.tv64
<=
1484 hrtimer_get_expires_tv64(timer
))
1487 __run_hrtimer(timer
, &base
->softirq_time
);
1489 raw_spin_unlock(&cpu_base
->lock
);
1494 * Sleep related functions:
1496 static enum hrtimer_restart
hrtimer_wakeup(struct hrtimer
*timer
)
1498 struct hrtimer_sleeper
*t
=
1499 container_of(timer
, struct hrtimer_sleeper
, timer
);
1500 struct task_struct
*task
= t
->task
;
1504 wake_up_process(task
);
1506 return HRTIMER_NORESTART
;
1509 void hrtimer_init_sleeper(struct hrtimer_sleeper
*sl
, struct task_struct
*task
)
1511 sl
->timer
.function
= hrtimer_wakeup
;
1514 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper
);
1516 static int __sched
do_nanosleep(struct hrtimer_sleeper
*t
, enum hrtimer_mode mode
)
1518 hrtimer_init_sleeper(t
, current
);
1521 set_current_state(TASK_INTERRUPTIBLE
);
1522 hrtimer_start_expires(&t
->timer
, mode
);
1523 if (!hrtimer_active(&t
->timer
))
1526 if (likely(t
->task
))
1529 hrtimer_cancel(&t
->timer
);
1530 mode
= HRTIMER_MODE_ABS
;
1532 } while (t
->task
&& !signal_pending(current
));
1534 __set_current_state(TASK_RUNNING
);
1536 return t
->task
== NULL
;
1539 static int update_rmtp(struct hrtimer
*timer
, struct timespec __user
*rmtp
)
1541 struct timespec rmt
;
1544 rem
= hrtimer_expires_remaining(timer
);
1547 rmt
= ktime_to_timespec(rem
);
1549 if (copy_to_user(rmtp
, &rmt
, sizeof(*rmtp
)))
1555 long __sched
hrtimer_nanosleep_restart(struct restart_block
*restart
)
1557 struct hrtimer_sleeper t
;
1558 struct timespec __user
*rmtp
;
1561 hrtimer_init_on_stack(&t
.timer
, restart
->nanosleep
.clockid
,
1563 hrtimer_set_expires_tv64(&t
.timer
, restart
->nanosleep
.expires
);
1565 if (do_nanosleep(&t
, HRTIMER_MODE_ABS
))
1568 rmtp
= restart
->nanosleep
.rmtp
;
1570 ret
= update_rmtp(&t
.timer
, rmtp
);
1575 /* The other values in restart are already filled in */
1576 ret
= -ERESTART_RESTARTBLOCK
;
1578 destroy_hrtimer_on_stack(&t
.timer
);
1582 long hrtimer_nanosleep(struct timespec
*rqtp
, struct timespec __user
*rmtp
,
1583 const enum hrtimer_mode mode
, const clockid_t clockid
)
1585 struct restart_block
*restart
;
1586 struct hrtimer_sleeper t
;
1588 unsigned long slack
;
1590 slack
= current
->timer_slack_ns
;
1591 if (rt_task(current
))
1594 hrtimer_init_on_stack(&t
.timer
, clockid
, mode
);
1595 hrtimer_set_expires_range_ns(&t
.timer
, timespec_to_ktime(*rqtp
), slack
);
1596 if (do_nanosleep(&t
, mode
))
1599 /* Absolute timers do not update the rmtp value and restart: */
1600 if (mode
== HRTIMER_MODE_ABS
) {
1601 ret
= -ERESTARTNOHAND
;
1606 ret
= update_rmtp(&t
.timer
, rmtp
);
1611 restart
= ¤t_thread_info()->restart_block
;
1612 restart
->fn
= hrtimer_nanosleep_restart
;
1613 restart
->nanosleep
.clockid
= t
.timer
.base
->clockid
;
1614 restart
->nanosleep
.rmtp
= rmtp
;
1615 restart
->nanosleep
.expires
= hrtimer_get_expires_tv64(&t
.timer
);
1617 ret
= -ERESTART_RESTARTBLOCK
;
1619 destroy_hrtimer_on_stack(&t
.timer
);
1623 SYSCALL_DEFINE2(nanosleep
, struct timespec __user
*, rqtp
,
1624 struct timespec __user
*, rmtp
)
1628 if (copy_from_user(&tu
, rqtp
, sizeof(tu
)))
1631 if (!timespec_valid(&tu
))
1634 return hrtimer_nanosleep(&tu
, rmtp
, HRTIMER_MODE_REL
, CLOCK_MONOTONIC
);
1638 * Functions related to boot-time initialization:
1640 static void __cpuinit
init_hrtimers_cpu(int cpu
)
1642 struct hrtimer_cpu_base
*cpu_base
= &per_cpu(hrtimer_bases
, cpu
);
1645 raw_spin_lock_init(&cpu_base
->lock
);
1647 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1648 cpu_base
->clock_base
[i
].cpu_base
= cpu_base
;
1649 timerqueue_init_head(&cpu_base
->clock_base
[i
].active
);
1652 hrtimer_init_hres(cpu_base
);
1655 #ifdef CONFIG_HOTPLUG_CPU
1657 static void migrate_hrtimer_list(struct hrtimer_clock_base
*old_base
,
1658 struct hrtimer_clock_base
*new_base
)
1660 struct hrtimer
*timer
;
1661 struct timerqueue_node
*node
;
1663 while ((node
= timerqueue_getnext(&old_base
->active
))) {
1664 timer
= container_of(node
, struct hrtimer
, node
);
1665 BUG_ON(hrtimer_callback_running(timer
));
1666 debug_deactivate(timer
);
1669 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1670 * timer could be seen as !active and just vanish away
1671 * under us on another CPU
1673 __remove_hrtimer(timer
, old_base
, HRTIMER_STATE_MIGRATE
, 0);
1674 timer
->base
= new_base
;
1676 * Enqueue the timers on the new cpu. This does not
1677 * reprogram the event device in case the timer
1678 * expires before the earliest on this CPU, but we run
1679 * hrtimer_interrupt after we migrated everything to
1680 * sort out already expired timers and reprogram the
1683 enqueue_hrtimer(timer
, new_base
);
1685 /* Clear the migration state bit */
1686 timer
->state
&= ~HRTIMER_STATE_MIGRATE
;
1690 static void migrate_hrtimers(int scpu
)
1692 struct hrtimer_cpu_base
*old_base
, *new_base
;
1695 BUG_ON(cpu_online(scpu
));
1696 tick_cancel_sched_timer(scpu
);
1698 local_irq_disable();
1699 old_base
= &per_cpu(hrtimer_bases
, scpu
);
1700 new_base
= &__get_cpu_var(hrtimer_bases
);
1702 * The caller is globally serialized and nobody else
1703 * takes two locks at once, deadlock is not possible.
1705 raw_spin_lock(&new_base
->lock
);
1706 raw_spin_lock_nested(&old_base
->lock
, SINGLE_DEPTH_NESTING
);
1708 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1709 migrate_hrtimer_list(&old_base
->clock_base
[i
],
1710 &new_base
->clock_base
[i
]);
1713 raw_spin_unlock(&old_base
->lock
);
1714 raw_spin_unlock(&new_base
->lock
);
1716 /* Check, if we got expired work to do */
1717 __hrtimer_peek_ahead_timers();
1721 #endif /* CONFIG_HOTPLUG_CPU */
1723 static int __cpuinit
hrtimer_cpu_notify(struct notifier_block
*self
,
1724 unsigned long action
, void *hcpu
)
1726 int scpu
= (long)hcpu
;
1730 case CPU_UP_PREPARE
:
1731 case CPU_UP_PREPARE_FROZEN
:
1732 init_hrtimers_cpu(scpu
);
1735 #ifdef CONFIG_HOTPLUG_CPU
1737 case CPU_DYING_FROZEN
:
1738 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING
, &scpu
);
1741 case CPU_DEAD_FROZEN
:
1743 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD
, &scpu
);
1744 migrate_hrtimers(scpu
);
1756 static struct notifier_block __cpuinitdata hrtimers_nb
= {
1757 .notifier_call
= hrtimer_cpu_notify
,
1760 void __init
hrtimers_init(void)
1762 hrtimer_cpu_notify(&hrtimers_nb
, (unsigned long)CPU_UP_PREPARE
,
1763 (void *)(long)smp_processor_id());
1764 register_cpu_notifier(&hrtimers_nb
);
1765 #ifdef CONFIG_HIGH_RES_TIMERS
1766 open_softirq(HRTIMER_SOFTIRQ
, run_hrtimer_softirq
);
1771 * schedule_hrtimeout_range_clock - sleep until timeout
1772 * @expires: timeout value (ktime_t)
1773 * @delta: slack in expires timeout (ktime_t)
1774 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1775 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1778 schedule_hrtimeout_range_clock(ktime_t
*expires
, unsigned long delta
,
1779 const enum hrtimer_mode mode
, int clock
)
1781 struct hrtimer_sleeper t
;
1784 * Optimize when a zero timeout value is given. It does not
1785 * matter whether this is an absolute or a relative time.
1787 if (expires
&& !expires
->tv64
) {
1788 __set_current_state(TASK_RUNNING
);
1793 * A NULL parameter means "infinite"
1797 __set_current_state(TASK_RUNNING
);
1801 hrtimer_init_on_stack(&t
.timer
, clock
, mode
);
1802 hrtimer_set_expires_range_ns(&t
.timer
, *expires
, delta
);
1804 hrtimer_init_sleeper(&t
, current
);
1806 hrtimer_start_expires(&t
.timer
, mode
);
1807 if (!hrtimer_active(&t
.timer
))
1813 hrtimer_cancel(&t
.timer
);
1814 destroy_hrtimer_on_stack(&t
.timer
);
1816 __set_current_state(TASK_RUNNING
);
1818 return !t
.task
? 0 : -EINTR
;
1822 * schedule_hrtimeout_range - sleep until timeout
1823 * @expires: timeout value (ktime_t)
1824 * @delta: slack in expires timeout (ktime_t)
1825 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1827 * Make the current task sleep until the given expiry time has
1828 * elapsed. The routine will return immediately unless
1829 * the current task state has been set (see set_current_state()).
1831 * The @delta argument gives the kernel the freedom to schedule the
1832 * actual wakeup to a time that is both power and performance friendly.
1833 * The kernel give the normal best effort behavior for "@expires+@delta",
1834 * but may decide to fire the timer earlier, but no earlier than @expires.
1836 * You can set the task state as follows -
1838 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1839 * pass before the routine returns.
1841 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1842 * delivered to the current task.
1844 * The current task state is guaranteed to be TASK_RUNNING when this
1847 * Returns 0 when the timer has expired otherwise -EINTR
1849 int __sched
schedule_hrtimeout_range(ktime_t
*expires
, unsigned long delta
,
1850 const enum hrtimer_mode mode
)
1852 return schedule_hrtimeout_range_clock(expires
, delta
, mode
,
1855 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range
);
1858 * schedule_hrtimeout - sleep until timeout
1859 * @expires: timeout value (ktime_t)
1860 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1862 * Make the current task sleep until the given expiry time has
1863 * elapsed. The routine will return immediately unless
1864 * the current task state has been set (see set_current_state()).
1866 * You can set the task state as follows -
1868 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1869 * pass before the routine returns.
1871 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1872 * delivered to the current task.
1874 * The current task state is guaranteed to be TASK_RUNNING when this
1877 * Returns 0 when the timer has expired otherwise -EINTR
1879 int __sched
schedule_hrtimeout(ktime_t
*expires
,
1880 const enum hrtimer_mode mode
)
1882 return schedule_hrtimeout_range(expires
, 0, mode
);
1884 EXPORT_SYMBOL_GPL(schedule_hrtimeout
);