ide: use ide_destroy_dmatable() instead of pci_unmap_sg() (take 2)
[linux-2.6.git] / drivers / ide / ppc / pmac.c
blob1d6af88242190a46cd5b282e2e02c933ccd7a25d
1 /*
2 * linux/drivers/ide/ppc/pmac.c
4 * Support for IDE interfaces on PowerMacs.
5 * These IDE interfaces are memory-mapped and have a DBDMA channel
6 * for doing DMA.
8 * Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt
9 * Copyright (C) 2007 Bartlomiej Zolnierkiewicz
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
16 * Some code taken from drivers/ide/ide-dma.c:
18 * Copyright (c) 1995-1998 Mark Lord
20 * TODO: - Use pre-calculated (kauai) timing tables all the time and
21 * get rid of the "rounded" tables used previously, so we have the
22 * same table format for all controllers and can then just have one
23 * big table
26 #include <linux/types.h>
27 #include <linux/kernel.h>
28 #include <linux/init.h>
29 #include <linux/delay.h>
30 #include <linux/ide.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <linux/pci.h>
34 #include <linux/adb.h>
35 #include <linux/pmu.h>
36 #include <linux/scatterlist.h>
38 #include <asm/prom.h>
39 #include <asm/io.h>
40 #include <asm/dbdma.h>
41 #include <asm/ide.h>
42 #include <asm/pci-bridge.h>
43 #include <asm/machdep.h>
44 #include <asm/pmac_feature.h>
45 #include <asm/sections.h>
46 #include <asm/irq.h>
48 #ifndef CONFIG_PPC64
49 #include <asm/mediabay.h>
50 #endif
52 #include "../ide-timing.h"
54 #undef IDE_PMAC_DEBUG
56 #define DMA_WAIT_TIMEOUT 50
58 typedef struct pmac_ide_hwif {
59 unsigned long regbase;
60 int irq;
61 int kind;
62 int aapl_bus_id;
63 unsigned cable_80 : 1;
64 unsigned mediabay : 1;
65 unsigned broken_dma : 1;
66 unsigned broken_dma_warn : 1;
67 struct device_node* node;
68 struct macio_dev *mdev;
69 u32 timings[4];
70 volatile u32 __iomem * *kauai_fcr;
71 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
72 /* Those fields are duplicating what is in hwif. We currently
73 * can't use the hwif ones because of some assumptions that are
74 * beeing done by the generic code about the kind of dma controller
75 * and format of the dma table. This will have to be fixed though.
77 volatile struct dbdma_regs __iomem * dma_regs;
78 struct dbdma_cmd* dma_table_cpu;
79 #endif
81 } pmac_ide_hwif_t;
83 static pmac_ide_hwif_t pmac_ide[MAX_HWIFS];
84 static int pmac_ide_count;
86 enum {
87 controller_ohare, /* OHare based */
88 controller_heathrow, /* Heathrow/Paddington */
89 controller_kl_ata3, /* KeyLargo ATA-3 */
90 controller_kl_ata4, /* KeyLargo ATA-4 */
91 controller_un_ata6, /* UniNorth2 ATA-6 */
92 controller_k2_ata6, /* K2 ATA-6 */
93 controller_sh_ata6, /* Shasta ATA-6 */
96 static const char* model_name[] = {
97 "OHare ATA", /* OHare based */
98 "Heathrow ATA", /* Heathrow/Paddington */
99 "KeyLargo ATA-3", /* KeyLargo ATA-3 (MDMA only) */
100 "KeyLargo ATA-4", /* KeyLargo ATA-4 (UDMA/66) */
101 "UniNorth ATA-6", /* UniNorth2 ATA-6 (UDMA/100) */
102 "K2 ATA-6", /* K2 ATA-6 (UDMA/100) */
103 "Shasta ATA-6", /* Shasta ATA-6 (UDMA/133) */
107 * Extra registers, both 32-bit little-endian
109 #define IDE_TIMING_CONFIG 0x200
110 #define IDE_INTERRUPT 0x300
112 /* Kauai (U2) ATA has different register setup */
113 #define IDE_KAUAI_PIO_CONFIG 0x200
114 #define IDE_KAUAI_ULTRA_CONFIG 0x210
115 #define IDE_KAUAI_POLL_CONFIG 0x220
118 * Timing configuration register definitions
121 /* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */
122 #define SYSCLK_TICKS(t) (((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS)
123 #define SYSCLK_TICKS_66(t) (((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS)
124 #define IDE_SYSCLK_NS 30 /* 33Mhz cell */
125 #define IDE_SYSCLK_66_NS 15 /* 66Mhz cell */
127 /* 133Mhz cell, found in shasta.
128 * See comments about 100 Mhz Uninorth 2...
129 * Note that PIO_MASK and MDMA_MASK seem to overlap
131 #define TR_133_PIOREG_PIO_MASK 0xff000fff
132 #define TR_133_PIOREG_MDMA_MASK 0x00fff800
133 #define TR_133_UDMAREG_UDMA_MASK 0x0003ffff
134 #define TR_133_UDMAREG_UDMA_EN 0x00000001
136 /* 100Mhz cell, found in Uninorth 2. I don't have much infos about
137 * this one yet, it appears as a pci device (106b/0033) on uninorth
138 * internal PCI bus and it's clock is controlled like gem or fw. It
139 * appears to be an evolution of keylargo ATA4 with a timing register
140 * extended to 2 32bits registers and a similar DBDMA channel. Other
141 * registers seem to exist but I can't tell much about them.
143 * So far, I'm using pre-calculated tables for this extracted from
144 * the values used by the MacOS X driver.
146 * The "PIO" register controls PIO and MDMA timings, the "ULTRA"
147 * register controls the UDMA timings. At least, it seems bit 0
148 * of this one enables UDMA vs. MDMA, and bits 4..7 are the
149 * cycle time in units of 10ns. Bits 8..15 are used by I don't
150 * know their meaning yet
152 #define TR_100_PIOREG_PIO_MASK 0xff000fff
153 #define TR_100_PIOREG_MDMA_MASK 0x00fff000
154 #define TR_100_UDMAREG_UDMA_MASK 0x0000ffff
155 #define TR_100_UDMAREG_UDMA_EN 0x00000001
158 /* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on
159 * 40 connector cable and to 4 on 80 connector one.
160 * Clock unit is 15ns (66Mhz)
162 * 3 Values can be programmed:
163 * - Write data setup, which appears to match the cycle time. They
164 * also call it DIOW setup.
165 * - Ready to pause time (from spec)
166 * - Address setup. That one is weird. I don't see where exactly
167 * it fits in UDMA cycles, I got it's name from an obscure piece
168 * of commented out code in Darwin. They leave it to 0, we do as
169 * well, despite a comment that would lead to think it has a
170 * min value of 45ns.
171 * Apple also add 60ns to the write data setup (or cycle time ?) on
172 * reads.
174 #define TR_66_UDMA_MASK 0xfff00000
175 #define TR_66_UDMA_EN 0x00100000 /* Enable Ultra mode for DMA */
176 #define TR_66_UDMA_ADDRSETUP_MASK 0xe0000000 /* Address setup */
177 #define TR_66_UDMA_ADDRSETUP_SHIFT 29
178 #define TR_66_UDMA_RDY2PAUS_MASK 0x1e000000 /* Ready 2 pause time */
179 #define TR_66_UDMA_RDY2PAUS_SHIFT 25
180 #define TR_66_UDMA_WRDATASETUP_MASK 0x01e00000 /* Write data setup time */
181 #define TR_66_UDMA_WRDATASETUP_SHIFT 21
182 #define TR_66_MDMA_MASK 0x000ffc00
183 #define TR_66_MDMA_RECOVERY_MASK 0x000f8000
184 #define TR_66_MDMA_RECOVERY_SHIFT 15
185 #define TR_66_MDMA_ACCESS_MASK 0x00007c00
186 #define TR_66_MDMA_ACCESS_SHIFT 10
187 #define TR_66_PIO_MASK 0x000003ff
188 #define TR_66_PIO_RECOVERY_MASK 0x000003e0
189 #define TR_66_PIO_RECOVERY_SHIFT 5
190 #define TR_66_PIO_ACCESS_MASK 0x0000001f
191 #define TR_66_PIO_ACCESS_SHIFT 0
193 /* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo
194 * Can do pio & mdma modes, clock unit is 30ns (33Mhz)
196 * The access time and recovery time can be programmed. Some older
197 * Darwin code base limit OHare to 150ns cycle time. I decided to do
198 * the same here fore safety against broken old hardware ;)
199 * The HalfTick bit, when set, adds half a clock (15ns) to the access
200 * time and removes one from recovery. It's not supported on KeyLargo
201 * implementation afaik. The E bit appears to be set for PIO mode 0 and
202 * is used to reach long timings used in this mode.
204 #define TR_33_MDMA_MASK 0x003ff800
205 #define TR_33_MDMA_RECOVERY_MASK 0x001f0000
206 #define TR_33_MDMA_RECOVERY_SHIFT 16
207 #define TR_33_MDMA_ACCESS_MASK 0x0000f800
208 #define TR_33_MDMA_ACCESS_SHIFT 11
209 #define TR_33_MDMA_HALFTICK 0x00200000
210 #define TR_33_PIO_MASK 0x000007ff
211 #define TR_33_PIO_E 0x00000400
212 #define TR_33_PIO_RECOVERY_MASK 0x000003e0
213 #define TR_33_PIO_RECOVERY_SHIFT 5
214 #define TR_33_PIO_ACCESS_MASK 0x0000001f
215 #define TR_33_PIO_ACCESS_SHIFT 0
218 * Interrupt register definitions
220 #define IDE_INTR_DMA 0x80000000
221 #define IDE_INTR_DEVICE 0x40000000
224 * FCR Register on Kauai. Not sure what bit 0x4 is ...
226 #define KAUAI_FCR_UATA_MAGIC 0x00000004
227 #define KAUAI_FCR_UATA_RESET_N 0x00000002
228 #define KAUAI_FCR_UATA_ENABLE 0x00000001
230 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
232 /* Rounded Multiword DMA timings
234 * I gave up finding a generic formula for all controller
235 * types and instead, built tables based on timing values
236 * used by Apple in Darwin's implementation.
238 struct mdma_timings_t {
239 int accessTime;
240 int recoveryTime;
241 int cycleTime;
244 struct mdma_timings_t mdma_timings_33[] =
246 { 240, 240, 480 },
247 { 180, 180, 360 },
248 { 135, 135, 270 },
249 { 120, 120, 240 },
250 { 105, 105, 210 },
251 { 90, 90, 180 },
252 { 75, 75, 150 },
253 { 75, 45, 120 },
254 { 0, 0, 0 }
257 struct mdma_timings_t mdma_timings_33k[] =
259 { 240, 240, 480 },
260 { 180, 180, 360 },
261 { 150, 150, 300 },
262 { 120, 120, 240 },
263 { 90, 120, 210 },
264 { 90, 90, 180 },
265 { 90, 60, 150 },
266 { 90, 30, 120 },
267 { 0, 0, 0 }
270 struct mdma_timings_t mdma_timings_66[] =
272 { 240, 240, 480 },
273 { 180, 180, 360 },
274 { 135, 135, 270 },
275 { 120, 120, 240 },
276 { 105, 105, 210 },
277 { 90, 90, 180 },
278 { 90, 75, 165 },
279 { 75, 45, 120 },
280 { 0, 0, 0 }
283 /* KeyLargo ATA-4 Ultra DMA timings (rounded) */
284 struct {
285 int addrSetup; /* ??? */
286 int rdy2pause;
287 int wrDataSetup;
288 } kl66_udma_timings[] =
290 { 0, 180, 120 }, /* Mode 0 */
291 { 0, 150, 90 }, /* 1 */
292 { 0, 120, 60 }, /* 2 */
293 { 0, 90, 45 }, /* 3 */
294 { 0, 90, 30 } /* 4 */
297 /* UniNorth 2 ATA/100 timings */
298 struct kauai_timing {
299 int cycle_time;
300 u32 timing_reg;
303 static struct kauai_timing kauai_pio_timings[] =
305 { 930 , 0x08000fff },
306 { 600 , 0x08000a92 },
307 { 383 , 0x0800060f },
308 { 360 , 0x08000492 },
309 { 330 , 0x0800048f },
310 { 300 , 0x080003cf },
311 { 270 , 0x080003cc },
312 { 240 , 0x0800038b },
313 { 239 , 0x0800030c },
314 { 180 , 0x05000249 },
315 { 120 , 0x04000148 },
316 { 0 , 0 },
319 static struct kauai_timing kauai_mdma_timings[] =
321 { 1260 , 0x00fff000 },
322 { 480 , 0x00618000 },
323 { 360 , 0x00492000 },
324 { 270 , 0x0038e000 },
325 { 240 , 0x0030c000 },
326 { 210 , 0x002cb000 },
327 { 180 , 0x00249000 },
328 { 150 , 0x00209000 },
329 { 120 , 0x00148000 },
330 { 0 , 0 },
333 static struct kauai_timing kauai_udma_timings[] =
335 { 120 , 0x000070c0 },
336 { 90 , 0x00005d80 },
337 { 60 , 0x00004a60 },
338 { 45 , 0x00003a50 },
339 { 30 , 0x00002a30 },
340 { 20 , 0x00002921 },
341 { 0 , 0 },
344 static struct kauai_timing shasta_pio_timings[] =
346 { 930 , 0x08000fff },
347 { 600 , 0x0A000c97 },
348 { 383 , 0x07000712 },
349 { 360 , 0x040003cd },
350 { 330 , 0x040003cd },
351 { 300 , 0x040003cd },
352 { 270 , 0x040003cd },
353 { 240 , 0x040003cd },
354 { 239 , 0x040003cd },
355 { 180 , 0x0400028b },
356 { 120 , 0x0400010a },
357 { 0 , 0 },
360 static struct kauai_timing shasta_mdma_timings[] =
362 { 1260 , 0x00fff000 },
363 { 480 , 0x00820800 },
364 { 360 , 0x00820800 },
365 { 270 , 0x00820800 },
366 { 240 , 0x00820800 },
367 { 210 , 0x00820800 },
368 { 180 , 0x00820800 },
369 { 150 , 0x0028b000 },
370 { 120 , 0x001ca000 },
371 { 0 , 0 },
374 static struct kauai_timing shasta_udma133_timings[] =
376 { 120 , 0x00035901, },
377 { 90 , 0x000348b1, },
378 { 60 , 0x00033881, },
379 { 45 , 0x00033861, },
380 { 30 , 0x00033841, },
381 { 20 , 0x00033031, },
382 { 15 , 0x00033021, },
383 { 0 , 0 },
387 static inline u32
388 kauai_lookup_timing(struct kauai_timing* table, int cycle_time)
390 int i;
392 for (i=0; table[i].cycle_time; i++)
393 if (cycle_time > table[i+1].cycle_time)
394 return table[i].timing_reg;
395 BUG();
396 return 0;
399 /* allow up to 256 DBDMA commands per xfer */
400 #define MAX_DCMDS 256
403 * Wait 1s for disk to answer on IDE bus after a hard reset
404 * of the device (via GPIO/FCR).
406 * Some devices seem to "pollute" the bus even after dropping
407 * the BSY bit (typically some combo drives slave on the UDMA
408 * bus) after a hard reset. Since we hard reset all drives on
409 * KeyLargo ATA66, we have to keep that delay around. I may end
410 * up not hard resetting anymore on these and keep the delay only
411 * for older interfaces instead (we have to reset when coming
412 * from MacOS...) --BenH.
414 #define IDE_WAKEUP_DELAY (1*HZ)
416 static void pmac_ide_setup_dma(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif);
417 static int pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq);
418 static void pmac_ide_selectproc(ide_drive_t *drive);
419 static void pmac_ide_kauai_selectproc(ide_drive_t *drive);
421 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
424 * N.B. this can't be an initfunc, because the media-bay task can
425 * call ide_[un]register at any time.
427 void
428 pmac_ide_init_hwif_ports(hw_regs_t *hw,
429 unsigned long data_port, unsigned long ctrl_port,
430 int *irq)
432 int i, ix;
434 if (data_port == 0)
435 return;
437 for (ix = 0; ix < MAX_HWIFS; ++ix)
438 if (data_port == pmac_ide[ix].regbase)
439 break;
441 if (ix >= MAX_HWIFS)
442 return; /* not an IDE PMAC interface */
444 for (i = 0; i < 8; ++i)
445 hw->io_ports[i] = data_port + i * 0x10;
446 hw->io_ports[8] = data_port + 0x160;
448 if (irq != NULL)
449 *irq = pmac_ide[ix].irq;
451 hw->dev = &pmac_ide[ix].mdev->ofdev.dev;
454 #define PMAC_IDE_REG(x) ((void __iomem *)(IDE_DATA_REG+(x)))
457 * Apply the timings of the proper unit (master/slave) to the shared
458 * timing register when selecting that unit. This version is for
459 * ASICs with a single timing register
461 static void
462 pmac_ide_selectproc(ide_drive_t *drive)
464 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
466 if (pmif == NULL)
467 return;
469 if (drive->select.b.unit & 0x01)
470 writel(pmif->timings[1], PMAC_IDE_REG(IDE_TIMING_CONFIG));
471 else
472 writel(pmif->timings[0], PMAC_IDE_REG(IDE_TIMING_CONFIG));
473 (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
477 * Apply the timings of the proper unit (master/slave) to the shared
478 * timing register when selecting that unit. This version is for
479 * ASICs with a dual timing register (Kauai)
481 static void
482 pmac_ide_kauai_selectproc(ide_drive_t *drive)
484 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
486 if (pmif == NULL)
487 return;
489 if (drive->select.b.unit & 0x01) {
490 writel(pmif->timings[1], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
491 writel(pmif->timings[3], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
492 } else {
493 writel(pmif->timings[0], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
494 writel(pmif->timings[2], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
496 (void)readl(PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
500 * Force an update of controller timing values for a given drive
502 static void
503 pmac_ide_do_update_timings(ide_drive_t *drive)
505 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
507 if (pmif == NULL)
508 return;
510 if (pmif->kind == controller_sh_ata6 ||
511 pmif->kind == controller_un_ata6 ||
512 pmif->kind == controller_k2_ata6)
513 pmac_ide_kauai_selectproc(drive);
514 else
515 pmac_ide_selectproc(drive);
518 static void
519 pmac_outbsync(ide_drive_t *drive, u8 value, unsigned long port)
521 u32 tmp;
523 writeb(value, (void __iomem *) port);
524 tmp = readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
528 * Old tuning functions (called on hdparm -p), sets up drive PIO timings
530 static void
531 pmac_ide_set_pio_mode(ide_drive_t *drive, const u8 pio)
533 u32 *timings, t;
534 unsigned accessTicks, recTicks;
535 unsigned accessTime, recTime;
536 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
537 unsigned int cycle_time;
539 if (pmif == NULL)
540 return;
542 /* which drive is it ? */
543 timings = &pmif->timings[drive->select.b.unit & 0x01];
544 t = *timings;
546 cycle_time = ide_pio_cycle_time(drive, pio);
548 switch (pmif->kind) {
549 case controller_sh_ata6: {
550 /* 133Mhz cell */
551 u32 tr = kauai_lookup_timing(shasta_pio_timings, cycle_time);
552 t = (t & ~TR_133_PIOREG_PIO_MASK) | tr;
553 break;
555 case controller_un_ata6:
556 case controller_k2_ata6: {
557 /* 100Mhz cell */
558 u32 tr = kauai_lookup_timing(kauai_pio_timings, cycle_time);
559 t = (t & ~TR_100_PIOREG_PIO_MASK) | tr;
560 break;
562 case controller_kl_ata4:
563 /* 66Mhz cell */
564 recTime = cycle_time - ide_pio_timings[pio].active_time
565 - ide_pio_timings[pio].setup_time;
566 recTime = max(recTime, 150U);
567 accessTime = ide_pio_timings[pio].active_time;
568 accessTime = max(accessTime, 150U);
569 accessTicks = SYSCLK_TICKS_66(accessTime);
570 accessTicks = min(accessTicks, 0x1fU);
571 recTicks = SYSCLK_TICKS_66(recTime);
572 recTicks = min(recTicks, 0x1fU);
573 t = (t & ~TR_66_PIO_MASK) |
574 (accessTicks << TR_66_PIO_ACCESS_SHIFT) |
575 (recTicks << TR_66_PIO_RECOVERY_SHIFT);
576 break;
577 default: {
578 /* 33Mhz cell */
579 int ebit = 0;
580 recTime = cycle_time - ide_pio_timings[pio].active_time
581 - ide_pio_timings[pio].setup_time;
582 recTime = max(recTime, 150U);
583 accessTime = ide_pio_timings[pio].active_time;
584 accessTime = max(accessTime, 150U);
585 accessTicks = SYSCLK_TICKS(accessTime);
586 accessTicks = min(accessTicks, 0x1fU);
587 accessTicks = max(accessTicks, 4U);
588 recTicks = SYSCLK_TICKS(recTime);
589 recTicks = min(recTicks, 0x1fU);
590 recTicks = max(recTicks, 5U) - 4;
591 if (recTicks > 9) {
592 recTicks--; /* guess, but it's only for PIO0, so... */
593 ebit = 1;
595 t = (t & ~TR_33_PIO_MASK) |
596 (accessTicks << TR_33_PIO_ACCESS_SHIFT) |
597 (recTicks << TR_33_PIO_RECOVERY_SHIFT);
598 if (ebit)
599 t |= TR_33_PIO_E;
600 break;
604 #ifdef IDE_PMAC_DEBUG
605 printk(KERN_ERR "%s: Set PIO timing for mode %d, reg: 0x%08x\n",
606 drive->name, pio, *timings);
607 #endif
609 *timings = t;
610 pmac_ide_do_update_timings(drive);
613 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
616 * Calculate KeyLargo ATA/66 UDMA timings
618 static int
619 set_timings_udma_ata4(u32 *timings, u8 speed)
621 unsigned rdyToPauseTicks, wrDataSetupTicks, addrTicks;
623 if (speed > XFER_UDMA_4)
624 return 1;
626 rdyToPauseTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].rdy2pause);
627 wrDataSetupTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].wrDataSetup);
628 addrTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].addrSetup);
630 *timings = ((*timings) & ~(TR_66_UDMA_MASK | TR_66_MDMA_MASK)) |
631 (wrDataSetupTicks << TR_66_UDMA_WRDATASETUP_SHIFT) |
632 (rdyToPauseTicks << TR_66_UDMA_RDY2PAUS_SHIFT) |
633 (addrTicks <<TR_66_UDMA_ADDRSETUP_SHIFT) |
634 TR_66_UDMA_EN;
635 #ifdef IDE_PMAC_DEBUG
636 printk(KERN_ERR "ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n",
637 speed & 0xf, *timings);
638 #endif
640 return 0;
644 * Calculate Kauai ATA/100 UDMA timings
646 static int
647 set_timings_udma_ata6(u32 *pio_timings, u32 *ultra_timings, u8 speed)
649 struct ide_timing *t = ide_timing_find_mode(speed);
650 u32 tr;
652 if (speed > XFER_UDMA_5 || t == NULL)
653 return 1;
654 tr = kauai_lookup_timing(kauai_udma_timings, (int)t->udma);
655 *ultra_timings = ((*ultra_timings) & ~TR_100_UDMAREG_UDMA_MASK) | tr;
656 *ultra_timings = (*ultra_timings) | TR_100_UDMAREG_UDMA_EN;
658 return 0;
662 * Calculate Shasta ATA/133 UDMA timings
664 static int
665 set_timings_udma_shasta(u32 *pio_timings, u32 *ultra_timings, u8 speed)
667 struct ide_timing *t = ide_timing_find_mode(speed);
668 u32 tr;
670 if (speed > XFER_UDMA_6 || t == NULL)
671 return 1;
672 tr = kauai_lookup_timing(shasta_udma133_timings, (int)t->udma);
673 *ultra_timings = ((*ultra_timings) & ~TR_133_UDMAREG_UDMA_MASK) | tr;
674 *ultra_timings = (*ultra_timings) | TR_133_UDMAREG_UDMA_EN;
676 return 0;
680 * Calculate MDMA timings for all cells
682 static void
683 set_timings_mdma(ide_drive_t *drive, int intf_type, u32 *timings, u32 *timings2,
684 u8 speed)
686 int cycleTime, accessTime = 0, recTime = 0;
687 unsigned accessTicks, recTicks;
688 struct hd_driveid *id = drive->id;
689 struct mdma_timings_t* tm = NULL;
690 int i;
692 /* Get default cycle time for mode */
693 switch(speed & 0xf) {
694 case 0: cycleTime = 480; break;
695 case 1: cycleTime = 150; break;
696 case 2: cycleTime = 120; break;
697 default:
698 BUG();
699 break;
702 /* Check if drive provides explicit DMA cycle time */
703 if ((id->field_valid & 2) && id->eide_dma_time)
704 cycleTime = max_t(int, id->eide_dma_time, cycleTime);
706 /* OHare limits according to some old Apple sources */
707 if ((intf_type == controller_ohare) && (cycleTime < 150))
708 cycleTime = 150;
709 /* Get the proper timing array for this controller */
710 switch(intf_type) {
711 case controller_sh_ata6:
712 case controller_un_ata6:
713 case controller_k2_ata6:
714 break;
715 case controller_kl_ata4:
716 tm = mdma_timings_66;
717 break;
718 case controller_kl_ata3:
719 tm = mdma_timings_33k;
720 break;
721 default:
722 tm = mdma_timings_33;
723 break;
725 if (tm != NULL) {
726 /* Lookup matching access & recovery times */
727 i = -1;
728 for (;;) {
729 if (tm[i+1].cycleTime < cycleTime)
730 break;
731 i++;
733 cycleTime = tm[i].cycleTime;
734 accessTime = tm[i].accessTime;
735 recTime = tm[i].recoveryTime;
737 #ifdef IDE_PMAC_DEBUG
738 printk(KERN_ERR "%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n",
739 drive->name, cycleTime, accessTime, recTime);
740 #endif
742 switch(intf_type) {
743 case controller_sh_ata6: {
744 /* 133Mhz cell */
745 u32 tr = kauai_lookup_timing(shasta_mdma_timings, cycleTime);
746 *timings = ((*timings) & ~TR_133_PIOREG_MDMA_MASK) | tr;
747 *timings2 = (*timings2) & ~TR_133_UDMAREG_UDMA_EN;
749 case controller_un_ata6:
750 case controller_k2_ata6: {
751 /* 100Mhz cell */
752 u32 tr = kauai_lookup_timing(kauai_mdma_timings, cycleTime);
753 *timings = ((*timings) & ~TR_100_PIOREG_MDMA_MASK) | tr;
754 *timings2 = (*timings2) & ~TR_100_UDMAREG_UDMA_EN;
756 break;
757 case controller_kl_ata4:
758 /* 66Mhz cell */
759 accessTicks = SYSCLK_TICKS_66(accessTime);
760 accessTicks = min(accessTicks, 0x1fU);
761 accessTicks = max(accessTicks, 0x1U);
762 recTicks = SYSCLK_TICKS_66(recTime);
763 recTicks = min(recTicks, 0x1fU);
764 recTicks = max(recTicks, 0x3U);
765 /* Clear out mdma bits and disable udma */
766 *timings = ((*timings) & ~(TR_66_MDMA_MASK | TR_66_UDMA_MASK)) |
767 (accessTicks << TR_66_MDMA_ACCESS_SHIFT) |
768 (recTicks << TR_66_MDMA_RECOVERY_SHIFT);
769 break;
770 case controller_kl_ata3:
771 /* 33Mhz cell on KeyLargo */
772 accessTicks = SYSCLK_TICKS(accessTime);
773 accessTicks = max(accessTicks, 1U);
774 accessTicks = min(accessTicks, 0x1fU);
775 accessTime = accessTicks * IDE_SYSCLK_NS;
776 recTicks = SYSCLK_TICKS(recTime);
777 recTicks = max(recTicks, 1U);
778 recTicks = min(recTicks, 0x1fU);
779 *timings = ((*timings) & ~TR_33_MDMA_MASK) |
780 (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
781 (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
782 break;
783 default: {
784 /* 33Mhz cell on others */
785 int halfTick = 0;
786 int origAccessTime = accessTime;
787 int origRecTime = recTime;
789 accessTicks = SYSCLK_TICKS(accessTime);
790 accessTicks = max(accessTicks, 1U);
791 accessTicks = min(accessTicks, 0x1fU);
792 accessTime = accessTicks * IDE_SYSCLK_NS;
793 recTicks = SYSCLK_TICKS(recTime);
794 recTicks = max(recTicks, 2U) - 1;
795 recTicks = min(recTicks, 0x1fU);
796 recTime = (recTicks + 1) * IDE_SYSCLK_NS;
797 if ((accessTicks > 1) &&
798 ((accessTime - IDE_SYSCLK_NS/2) >= origAccessTime) &&
799 ((recTime - IDE_SYSCLK_NS/2) >= origRecTime)) {
800 halfTick = 1;
801 accessTicks--;
803 *timings = ((*timings) & ~TR_33_MDMA_MASK) |
804 (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
805 (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
806 if (halfTick)
807 *timings |= TR_33_MDMA_HALFTICK;
810 #ifdef IDE_PMAC_DEBUG
811 printk(KERN_ERR "%s: Set MDMA timing for mode %d, reg: 0x%08x\n",
812 drive->name, speed & 0xf, *timings);
813 #endif
815 #endif /* #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC */
817 static void pmac_ide_set_dma_mode(ide_drive_t *drive, const u8 speed)
819 int unit = (drive->select.b.unit & 0x01);
820 int ret = 0;
821 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
822 u32 *timings, *timings2, tl[2];
824 timings = &pmif->timings[unit];
825 timings2 = &pmif->timings[unit+2];
827 /* Copy timings to local image */
828 tl[0] = *timings;
829 tl[1] = *timings2;
831 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
832 if (speed >= XFER_UDMA_0) {
833 if (pmif->kind == controller_kl_ata4)
834 ret = set_timings_udma_ata4(&tl[0], speed);
835 else if (pmif->kind == controller_un_ata6
836 || pmif->kind == controller_k2_ata6)
837 ret = set_timings_udma_ata6(&tl[0], &tl[1], speed);
838 else if (pmif->kind == controller_sh_ata6)
839 ret = set_timings_udma_shasta(&tl[0], &tl[1], speed);
840 else
841 ret = -1;
842 } else
843 set_timings_mdma(drive, pmif->kind, &tl[0], &tl[1], speed);
844 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
845 if (ret)
846 return;
848 /* Apply timings to controller */
849 *timings = tl[0];
850 *timings2 = tl[1];
852 pmac_ide_do_update_timings(drive);
856 * Blast some well known "safe" values to the timing registers at init or
857 * wakeup from sleep time, before we do real calculation
859 static void
860 sanitize_timings(pmac_ide_hwif_t *pmif)
862 unsigned int value, value2 = 0;
864 switch(pmif->kind) {
865 case controller_sh_ata6:
866 value = 0x0a820c97;
867 value2 = 0x00033031;
868 break;
869 case controller_un_ata6:
870 case controller_k2_ata6:
871 value = 0x08618a92;
872 value2 = 0x00002921;
873 break;
874 case controller_kl_ata4:
875 value = 0x0008438c;
876 break;
877 case controller_kl_ata3:
878 value = 0x00084526;
879 break;
880 case controller_heathrow:
881 case controller_ohare:
882 default:
883 value = 0x00074526;
884 break;
886 pmif->timings[0] = pmif->timings[1] = value;
887 pmif->timings[2] = pmif->timings[3] = value2;
890 unsigned long
891 pmac_ide_get_base(int index)
893 return pmac_ide[index].regbase;
897 pmac_ide_check_base(unsigned long base)
899 int ix;
901 for (ix = 0; ix < MAX_HWIFS; ++ix)
902 if (base == pmac_ide[ix].regbase)
903 return ix;
904 return -1;
908 pmac_ide_get_irq(unsigned long base)
910 int ix;
912 for (ix = 0; ix < MAX_HWIFS; ++ix)
913 if (base == pmac_ide[ix].regbase)
914 return pmac_ide[ix].irq;
915 return 0;
918 static int ide_majors[] = { 3, 22, 33, 34, 56, 57 };
920 dev_t __init
921 pmac_find_ide_boot(char *bootdevice, int n)
923 int i;
926 * Look through the list of IDE interfaces for this one.
928 for (i = 0; i < pmac_ide_count; ++i) {
929 char *name;
930 if (!pmac_ide[i].node || !pmac_ide[i].node->full_name)
931 continue;
932 name = pmac_ide[i].node->full_name;
933 if (memcmp(name, bootdevice, n) == 0 && name[n] == 0) {
934 /* XXX should cope with the 2nd drive as well... */
935 return MKDEV(ide_majors[i], 0);
939 return 0;
942 /* Suspend call back, should be called after the child devices
943 * have actually been suspended
945 static int
946 pmac_ide_do_suspend(ide_hwif_t *hwif)
948 pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
950 /* We clear the timings */
951 pmif->timings[0] = 0;
952 pmif->timings[1] = 0;
954 disable_irq(pmif->irq);
956 /* The media bay will handle itself just fine */
957 if (pmif->mediabay)
958 return 0;
960 /* Kauai has bus control FCRs directly here */
961 if (pmif->kauai_fcr) {
962 u32 fcr = readl(pmif->kauai_fcr);
963 fcr &= ~(KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE);
964 writel(fcr, pmif->kauai_fcr);
967 /* Disable the bus on older machines and the cell on kauai */
968 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id,
971 return 0;
974 /* Resume call back, should be called before the child devices
975 * are resumed
977 static int
978 pmac_ide_do_resume(ide_hwif_t *hwif)
980 pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
982 /* Hard reset & re-enable controller (do we really need to reset ? -BenH) */
983 if (!pmif->mediabay) {
984 ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 1);
985 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, 1);
986 msleep(10);
987 ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 0);
989 /* Kauai has it different */
990 if (pmif->kauai_fcr) {
991 u32 fcr = readl(pmif->kauai_fcr);
992 fcr |= KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE;
993 writel(fcr, pmif->kauai_fcr);
996 msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
999 /* Sanitize drive timings */
1000 sanitize_timings(pmif);
1002 enable_irq(pmif->irq);
1004 return 0;
1008 * Setup, register & probe an IDE channel driven by this driver, this is
1009 * called by one of the 2 probe functions (macio or PCI). Note that a channel
1010 * that ends up beeing free of any device is not kept around by this driver
1011 * (it is kept in 2.4). This introduce an interface numbering change on some
1012 * rare machines unfortunately, but it's better this way.
1014 static int __devinit
1015 pmac_ide_setup_device(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif, hw_regs_t *hw)
1017 struct device_node *np = pmif->node;
1018 const int *bidp;
1019 u8 idx[4] = { 0xff, 0xff, 0xff, 0xff };
1021 pmif->cable_80 = 0;
1022 pmif->broken_dma = pmif->broken_dma_warn = 0;
1023 if (of_device_is_compatible(np, "shasta-ata"))
1024 pmif->kind = controller_sh_ata6;
1025 else if (of_device_is_compatible(np, "kauai-ata"))
1026 pmif->kind = controller_un_ata6;
1027 else if (of_device_is_compatible(np, "K2-UATA"))
1028 pmif->kind = controller_k2_ata6;
1029 else if (of_device_is_compatible(np, "keylargo-ata")) {
1030 if (strcmp(np->name, "ata-4") == 0)
1031 pmif->kind = controller_kl_ata4;
1032 else
1033 pmif->kind = controller_kl_ata3;
1034 } else if (of_device_is_compatible(np, "heathrow-ata"))
1035 pmif->kind = controller_heathrow;
1036 else {
1037 pmif->kind = controller_ohare;
1038 pmif->broken_dma = 1;
1041 bidp = of_get_property(np, "AAPL,bus-id", NULL);
1042 pmif->aapl_bus_id = bidp ? *bidp : 0;
1044 /* Get cable type from device-tree */
1045 if (pmif->kind == controller_kl_ata4 || pmif->kind == controller_un_ata6
1046 || pmif->kind == controller_k2_ata6
1047 || pmif->kind == controller_sh_ata6) {
1048 const char* cable = of_get_property(np, "cable-type", NULL);
1049 if (cable && !strncmp(cable, "80-", 3))
1050 pmif->cable_80 = 1;
1052 /* G5's seem to have incorrect cable type in device-tree. Let's assume
1053 * they have a 80 conductor cable, this seem to be always the case unless
1054 * the user mucked around
1056 if (of_device_is_compatible(np, "K2-UATA") ||
1057 of_device_is_compatible(np, "shasta-ata"))
1058 pmif->cable_80 = 1;
1060 /* On Kauai-type controllers, we make sure the FCR is correct */
1061 if (pmif->kauai_fcr)
1062 writel(KAUAI_FCR_UATA_MAGIC |
1063 KAUAI_FCR_UATA_RESET_N |
1064 KAUAI_FCR_UATA_ENABLE, pmif->kauai_fcr);
1066 pmif->mediabay = 0;
1068 /* Make sure we have sane timings */
1069 sanitize_timings(pmif);
1071 #ifndef CONFIG_PPC64
1072 /* XXX FIXME: Media bay stuff need re-organizing */
1073 if (np->parent && np->parent->name
1074 && strcasecmp(np->parent->name, "media-bay") == 0) {
1075 #ifdef CONFIG_PMAC_MEDIABAY
1076 media_bay_set_ide_infos(np->parent, pmif->regbase, pmif->irq, hwif->index);
1077 #endif /* CONFIG_PMAC_MEDIABAY */
1078 pmif->mediabay = 1;
1079 if (!bidp)
1080 pmif->aapl_bus_id = 1;
1081 } else if (pmif->kind == controller_ohare) {
1082 /* The code below is having trouble on some ohare machines
1083 * (timing related ?). Until I can put my hand on one of these
1084 * units, I keep the old way
1086 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, 0, 1);
1087 } else
1088 #endif
1090 /* This is necessary to enable IDE when net-booting */
1091 ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 1);
1092 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 1);
1093 msleep(10);
1094 ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 0);
1095 msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
1098 /* Setup MMIO ops */
1099 default_hwif_mmiops(hwif);
1100 hwif->OUTBSYNC = pmac_outbsync;
1102 /* Tell common code _not_ to mess with resources */
1103 hwif->mmio = 1;
1104 hwif->hwif_data = pmif;
1105 hw->chipset = ide_pmac;
1106 ide_init_port_hw(hwif, hw);
1107 hwif->noprobe = pmif->mediabay;
1108 hwif->hold = pmif->mediabay;
1109 hwif->cbl = pmif->cable_80 ? ATA_CBL_PATA80 : ATA_CBL_PATA40;
1110 hwif->drives[0].unmask = 1;
1111 hwif->drives[1].unmask = 1;
1112 hwif->drives[0].autotune = IDE_TUNE_AUTO;
1113 hwif->drives[1].autotune = IDE_TUNE_AUTO;
1114 hwif->host_flags = IDE_HFLAG_SET_PIO_MODE_KEEP_DMA |
1115 IDE_HFLAG_PIO_NO_DOWNGRADE |
1116 IDE_HFLAG_POST_SET_MODE;
1117 hwif->pio_mask = ATA_PIO4;
1118 hwif->set_pio_mode = pmac_ide_set_pio_mode;
1119 if (pmif->kind == controller_un_ata6
1120 || pmif->kind == controller_k2_ata6
1121 || pmif->kind == controller_sh_ata6)
1122 hwif->selectproc = pmac_ide_kauai_selectproc;
1123 else
1124 hwif->selectproc = pmac_ide_selectproc;
1125 hwif->set_dma_mode = pmac_ide_set_dma_mode;
1127 printk(KERN_INFO "ide%d: Found Apple %s controller, bus ID %d%s, irq %d\n",
1128 hwif->index, model_name[pmif->kind], pmif->aapl_bus_id,
1129 pmif->mediabay ? " (mediabay)" : "", hwif->irq);
1131 #ifdef CONFIG_PMAC_MEDIABAY
1132 if (pmif->mediabay && check_media_bay_by_base(pmif->regbase, MB_CD) == 0)
1133 hwif->noprobe = 0;
1134 #endif /* CONFIG_PMAC_MEDIABAY */
1136 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1137 /* has a DBDMA controller channel */
1138 if (pmif->dma_regs)
1139 pmac_ide_setup_dma(pmif, hwif);
1140 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1142 idx[0] = hwif->index;
1144 ide_device_add(idx);
1146 return 0;
1150 * Attach to a macio probed interface
1152 static int __devinit
1153 pmac_ide_macio_attach(struct macio_dev *mdev, const struct of_device_id *match)
1155 void __iomem *base;
1156 unsigned long regbase;
1157 int irq;
1158 ide_hwif_t *hwif;
1159 pmac_ide_hwif_t *pmif;
1160 int i, rc;
1161 hw_regs_t hw;
1163 i = 0;
1164 while (i < MAX_HWIFS && (ide_hwifs[i].io_ports[IDE_DATA_OFFSET] != 0
1165 || pmac_ide[i].node != NULL))
1166 ++i;
1167 if (i >= MAX_HWIFS) {
1168 printk(KERN_ERR "ide-pmac: MacIO interface attach with no slot\n");
1169 printk(KERN_ERR " %s\n", mdev->ofdev.node->full_name);
1170 return -ENODEV;
1173 pmif = &pmac_ide[i];
1174 hwif = &ide_hwifs[i];
1176 if (macio_resource_count(mdev) == 0) {
1177 printk(KERN_WARNING "ide%d: no address for %s\n",
1178 i, mdev->ofdev.node->full_name);
1179 return -ENXIO;
1182 /* Request memory resource for IO ports */
1183 if (macio_request_resource(mdev, 0, "ide-pmac (ports)")) {
1184 printk(KERN_ERR "ide%d: can't request mmio resource !\n", i);
1185 return -EBUSY;
1188 /* XXX This is bogus. Should be fixed in the registry by checking
1189 * the kind of host interrupt controller, a bit like gatwick
1190 * fixes in irq.c. That works well enough for the single case
1191 * where that happens though...
1193 if (macio_irq_count(mdev) == 0) {
1194 printk(KERN_WARNING "ide%d: no intrs for device %s, using 13\n",
1195 i, mdev->ofdev.node->full_name);
1196 irq = irq_create_mapping(NULL, 13);
1197 } else
1198 irq = macio_irq(mdev, 0);
1200 base = ioremap(macio_resource_start(mdev, 0), 0x400);
1201 regbase = (unsigned long) base;
1203 hwif->pci_dev = mdev->bus->pdev;
1205 pmif->mdev = mdev;
1206 pmif->node = mdev->ofdev.node;
1207 pmif->regbase = regbase;
1208 pmif->irq = irq;
1209 pmif->kauai_fcr = NULL;
1210 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1211 if (macio_resource_count(mdev) >= 2) {
1212 if (macio_request_resource(mdev, 1, "ide-pmac (dma)"))
1213 printk(KERN_WARNING "ide%d: can't request DMA resource !\n", i);
1214 else
1215 pmif->dma_regs = ioremap(macio_resource_start(mdev, 1), 0x1000);
1216 } else
1217 pmif->dma_regs = NULL;
1218 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1219 dev_set_drvdata(&mdev->ofdev.dev, hwif);
1221 memset(&hw, 0, sizeof(hw));
1222 pmac_ide_init_hwif_ports(&hw, pmif->regbase, 0, NULL);
1223 hw.irq = irq;
1224 hw.dev = &mdev->ofdev.dev;
1226 rc = pmac_ide_setup_device(pmif, hwif, &hw);
1227 if (rc != 0) {
1228 /* The inteface is released to the common IDE layer */
1229 dev_set_drvdata(&mdev->ofdev.dev, NULL);
1230 iounmap(base);
1231 if (pmif->dma_regs)
1232 iounmap(pmif->dma_regs);
1233 memset(pmif, 0, sizeof(*pmif));
1234 macio_release_resource(mdev, 0);
1235 if (pmif->dma_regs)
1236 macio_release_resource(mdev, 1);
1239 return rc;
1242 static int
1243 pmac_ide_macio_suspend(struct macio_dev *mdev, pm_message_t mesg)
1245 ide_hwif_t *hwif = (ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1246 int rc = 0;
1248 if (mesg.event != mdev->ofdev.dev.power.power_state.event
1249 && mesg.event == PM_EVENT_SUSPEND) {
1250 rc = pmac_ide_do_suspend(hwif);
1251 if (rc == 0)
1252 mdev->ofdev.dev.power.power_state = mesg;
1255 return rc;
1258 static int
1259 pmac_ide_macio_resume(struct macio_dev *mdev)
1261 ide_hwif_t *hwif = (ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1262 int rc = 0;
1264 if (mdev->ofdev.dev.power.power_state.event != PM_EVENT_ON) {
1265 rc = pmac_ide_do_resume(hwif);
1266 if (rc == 0)
1267 mdev->ofdev.dev.power.power_state = PMSG_ON;
1270 return rc;
1274 * Attach to a PCI probed interface
1276 static int __devinit
1277 pmac_ide_pci_attach(struct pci_dev *pdev, const struct pci_device_id *id)
1279 ide_hwif_t *hwif;
1280 struct device_node *np;
1281 pmac_ide_hwif_t *pmif;
1282 void __iomem *base;
1283 unsigned long rbase, rlen;
1284 int i, rc;
1285 hw_regs_t hw;
1287 np = pci_device_to_OF_node(pdev);
1288 if (np == NULL) {
1289 printk(KERN_ERR "ide-pmac: cannot find MacIO node for Kauai ATA interface\n");
1290 return -ENODEV;
1292 i = 0;
1293 while (i < MAX_HWIFS && (ide_hwifs[i].io_ports[IDE_DATA_OFFSET] != 0
1294 || pmac_ide[i].node != NULL))
1295 ++i;
1296 if (i >= MAX_HWIFS) {
1297 printk(KERN_ERR "ide-pmac: PCI interface attach with no slot\n");
1298 printk(KERN_ERR " %s\n", np->full_name);
1299 return -ENODEV;
1302 pmif = &pmac_ide[i];
1303 hwif = &ide_hwifs[i];
1305 if (pci_enable_device(pdev)) {
1306 printk(KERN_WARNING "ide%i: Can't enable PCI device for %s\n",
1307 i, np->full_name);
1308 return -ENXIO;
1310 pci_set_master(pdev);
1312 if (pci_request_regions(pdev, "Kauai ATA")) {
1313 printk(KERN_ERR "ide%d: Cannot obtain PCI resources for %s\n",
1314 i, np->full_name);
1315 return -ENXIO;
1318 hwif->pci_dev = pdev;
1319 pmif->mdev = NULL;
1320 pmif->node = np;
1322 rbase = pci_resource_start(pdev, 0);
1323 rlen = pci_resource_len(pdev, 0);
1325 base = ioremap(rbase, rlen);
1326 pmif->regbase = (unsigned long) base + 0x2000;
1327 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1328 pmif->dma_regs = base + 0x1000;
1329 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1330 pmif->kauai_fcr = base;
1331 pmif->irq = pdev->irq;
1333 pci_set_drvdata(pdev, hwif);
1335 memset(&hw, 0, sizeof(hw));
1336 pmac_ide_init_hwif_ports(&hw, pmif->regbase, 0, NULL);
1337 hw.irq = pdev->irq;
1338 hw.dev = &pdev->dev;
1340 rc = pmac_ide_setup_device(pmif, hwif, &hw);
1341 if (rc != 0) {
1342 /* The inteface is released to the common IDE layer */
1343 pci_set_drvdata(pdev, NULL);
1344 iounmap(base);
1345 memset(pmif, 0, sizeof(*pmif));
1346 pci_release_regions(pdev);
1349 return rc;
1352 static int
1353 pmac_ide_pci_suspend(struct pci_dev *pdev, pm_message_t mesg)
1355 ide_hwif_t *hwif = (ide_hwif_t *)pci_get_drvdata(pdev);
1356 int rc = 0;
1358 if (mesg.event != pdev->dev.power.power_state.event
1359 && mesg.event == PM_EVENT_SUSPEND) {
1360 rc = pmac_ide_do_suspend(hwif);
1361 if (rc == 0)
1362 pdev->dev.power.power_state = mesg;
1365 return rc;
1368 static int
1369 pmac_ide_pci_resume(struct pci_dev *pdev)
1371 ide_hwif_t *hwif = (ide_hwif_t *)pci_get_drvdata(pdev);
1372 int rc = 0;
1374 if (pdev->dev.power.power_state.event != PM_EVENT_ON) {
1375 rc = pmac_ide_do_resume(hwif);
1376 if (rc == 0)
1377 pdev->dev.power.power_state = PMSG_ON;
1380 return rc;
1383 static struct of_device_id pmac_ide_macio_match[] =
1386 .name = "IDE",
1389 .name = "ATA",
1392 .type = "ide",
1395 .type = "ata",
1400 static struct macio_driver pmac_ide_macio_driver =
1402 .name = "ide-pmac",
1403 .match_table = pmac_ide_macio_match,
1404 .probe = pmac_ide_macio_attach,
1405 .suspend = pmac_ide_macio_suspend,
1406 .resume = pmac_ide_macio_resume,
1409 static const struct pci_device_id pmac_ide_pci_match[] = {
1410 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_UNI_N_ATA), 0 },
1411 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID_ATA100), 0 },
1412 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_K2_ATA100), 0 },
1413 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_SH_ATA), 0 },
1414 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID2_ATA), 0 },
1418 static struct pci_driver pmac_ide_pci_driver = {
1419 .name = "ide-pmac",
1420 .id_table = pmac_ide_pci_match,
1421 .probe = pmac_ide_pci_attach,
1422 .suspend = pmac_ide_pci_suspend,
1423 .resume = pmac_ide_pci_resume,
1425 MODULE_DEVICE_TABLE(pci, pmac_ide_pci_match);
1427 int __init pmac_ide_probe(void)
1429 int error;
1431 if (!machine_is(powermac))
1432 return -ENODEV;
1434 #ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST
1435 error = pci_register_driver(&pmac_ide_pci_driver);
1436 if (error)
1437 goto out;
1438 error = macio_register_driver(&pmac_ide_macio_driver);
1439 if (error) {
1440 pci_unregister_driver(&pmac_ide_pci_driver);
1441 goto out;
1443 #else
1444 error = macio_register_driver(&pmac_ide_macio_driver);
1445 if (error)
1446 goto out;
1447 error = pci_register_driver(&pmac_ide_pci_driver);
1448 if (error) {
1449 macio_unregister_driver(&pmac_ide_macio_driver);
1450 goto out;
1452 #endif
1453 out:
1454 return error;
1457 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1460 * pmac_ide_build_dmatable builds the DBDMA command list
1461 * for a transfer and sets the DBDMA channel to point to it.
1463 static int
1464 pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq)
1466 struct dbdma_cmd *table;
1467 int i, count = 0;
1468 ide_hwif_t *hwif = HWIF(drive);
1469 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
1470 volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1471 struct scatterlist *sg;
1472 int wr = (rq_data_dir(rq) == WRITE);
1474 /* DMA table is already aligned */
1475 table = (struct dbdma_cmd *) pmif->dma_table_cpu;
1477 /* Make sure DMA controller is stopped (necessary ?) */
1478 writel((RUN|PAUSE|FLUSH|WAKE|DEAD) << 16, &dma->control);
1479 while (readl(&dma->status) & RUN)
1480 udelay(1);
1482 hwif->sg_nents = i = ide_build_sglist(drive, rq);
1484 if (!i)
1485 return 0;
1487 /* Build DBDMA commands list */
1488 sg = hwif->sg_table;
1489 while (i && sg_dma_len(sg)) {
1490 u32 cur_addr;
1491 u32 cur_len;
1493 cur_addr = sg_dma_address(sg);
1494 cur_len = sg_dma_len(sg);
1496 if (pmif->broken_dma && cur_addr & (L1_CACHE_BYTES - 1)) {
1497 if (pmif->broken_dma_warn == 0) {
1498 printk(KERN_WARNING "%s: DMA on non aligned address, "
1499 "switching to PIO on Ohare chipset\n", drive->name);
1500 pmif->broken_dma_warn = 1;
1502 goto use_pio_instead;
1504 while (cur_len) {
1505 unsigned int tc = (cur_len < 0xfe00)? cur_len: 0xfe00;
1507 if (count++ >= MAX_DCMDS) {
1508 printk(KERN_WARNING "%s: DMA table too small\n",
1509 drive->name);
1510 goto use_pio_instead;
1512 st_le16(&table->command, wr? OUTPUT_MORE: INPUT_MORE);
1513 st_le16(&table->req_count, tc);
1514 st_le32(&table->phy_addr, cur_addr);
1515 table->cmd_dep = 0;
1516 table->xfer_status = 0;
1517 table->res_count = 0;
1518 cur_addr += tc;
1519 cur_len -= tc;
1520 ++table;
1522 sg = sg_next(sg);
1523 i--;
1526 /* convert the last command to an input/output last command */
1527 if (count) {
1528 st_le16(&table[-1].command, wr? OUTPUT_LAST: INPUT_LAST);
1529 /* add the stop command to the end of the list */
1530 memset(table, 0, sizeof(struct dbdma_cmd));
1531 st_le16(&table->command, DBDMA_STOP);
1532 mb();
1533 writel(hwif->dmatable_dma, &dma->cmdptr);
1534 return 1;
1537 printk(KERN_DEBUG "%s: empty DMA table?\n", drive->name);
1539 use_pio_instead:
1540 ide_destroy_dmatable(drive);
1542 return 0; /* revert to PIO for this request */
1545 /* Teardown mappings after DMA has completed. */
1546 static void
1547 pmac_ide_destroy_dmatable (ide_drive_t *drive)
1549 ide_hwif_t *hwif = drive->hwif;
1551 if (hwif->sg_nents) {
1552 ide_destroy_dmatable(drive);
1553 hwif->sg_nents = 0;
1558 * Prepare a DMA transfer. We build the DMA table, adjust the timings for
1559 * a read on KeyLargo ATA/66 and mark us as waiting for DMA completion
1561 static int
1562 pmac_ide_dma_setup(ide_drive_t *drive)
1564 ide_hwif_t *hwif = HWIF(drive);
1565 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
1566 struct request *rq = HWGROUP(drive)->rq;
1567 u8 unit = (drive->select.b.unit & 0x01);
1568 u8 ata4;
1570 if (pmif == NULL)
1571 return 1;
1572 ata4 = (pmif->kind == controller_kl_ata4);
1574 if (!pmac_ide_build_dmatable(drive, rq)) {
1575 ide_map_sg(drive, rq);
1576 return 1;
1579 /* Apple adds 60ns to wrDataSetup on reads */
1580 if (ata4 && (pmif->timings[unit] & TR_66_UDMA_EN)) {
1581 writel(pmif->timings[unit] + (!rq_data_dir(rq) ? 0x00800000UL : 0),
1582 PMAC_IDE_REG(IDE_TIMING_CONFIG));
1583 (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
1586 drive->waiting_for_dma = 1;
1588 return 0;
1591 static void
1592 pmac_ide_dma_exec_cmd(ide_drive_t *drive, u8 command)
1594 /* issue cmd to drive */
1595 ide_execute_command(drive, command, &ide_dma_intr, 2*WAIT_CMD, NULL);
1599 * Kick the DMA controller into life after the DMA command has been issued
1600 * to the drive.
1602 static void
1603 pmac_ide_dma_start(ide_drive_t *drive)
1605 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
1606 volatile struct dbdma_regs __iomem *dma;
1608 dma = pmif->dma_regs;
1610 writel((RUN << 16) | RUN, &dma->control);
1611 /* Make sure it gets to the controller right now */
1612 (void)readl(&dma->control);
1616 * After a DMA transfer, make sure the controller is stopped
1618 static int
1619 pmac_ide_dma_end (ide_drive_t *drive)
1621 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
1622 volatile struct dbdma_regs __iomem *dma;
1623 u32 dstat;
1625 if (pmif == NULL)
1626 return 0;
1627 dma = pmif->dma_regs;
1629 drive->waiting_for_dma = 0;
1630 dstat = readl(&dma->status);
1631 writel(((RUN|WAKE|DEAD) << 16), &dma->control);
1632 pmac_ide_destroy_dmatable(drive);
1633 /* verify good dma status. we don't check for ACTIVE beeing 0. We should...
1634 * in theory, but with ATAPI decices doing buffer underruns, that would
1635 * cause us to disable DMA, which isn't what we want
1637 return (dstat & (RUN|DEAD)) != RUN;
1641 * Check out that the interrupt we got was for us. We can't always know this
1642 * for sure with those Apple interfaces (well, we could on the recent ones but
1643 * that's not implemented yet), on the other hand, we don't have shared interrupts
1644 * so it's not really a problem
1646 static int
1647 pmac_ide_dma_test_irq (ide_drive_t *drive)
1649 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
1650 volatile struct dbdma_regs __iomem *dma;
1651 unsigned long status, timeout;
1653 if (pmif == NULL)
1654 return 0;
1655 dma = pmif->dma_regs;
1657 /* We have to things to deal with here:
1659 * - The dbdma won't stop if the command was started
1660 * but completed with an error without transferring all
1661 * datas. This happens when bad blocks are met during
1662 * a multi-block transfer.
1664 * - The dbdma fifo hasn't yet finished flushing to
1665 * to system memory when the disk interrupt occurs.
1669 /* If ACTIVE is cleared, the STOP command have passed and
1670 * transfer is complete.
1672 status = readl(&dma->status);
1673 if (!(status & ACTIVE))
1674 return 1;
1675 if (!drive->waiting_for_dma)
1676 printk(KERN_WARNING "ide%d, ide_dma_test_irq \
1677 called while not waiting\n", HWIF(drive)->index);
1679 /* If dbdma didn't execute the STOP command yet, the
1680 * active bit is still set. We consider that we aren't
1681 * sharing interrupts (which is hopefully the case with
1682 * those controllers) and so we just try to flush the
1683 * channel for pending data in the fifo
1685 udelay(1);
1686 writel((FLUSH << 16) | FLUSH, &dma->control);
1687 timeout = 0;
1688 for (;;) {
1689 udelay(1);
1690 status = readl(&dma->status);
1691 if ((status & FLUSH) == 0)
1692 break;
1693 if (++timeout > 100) {
1694 printk(KERN_WARNING "ide%d, ide_dma_test_irq \
1695 timeout flushing channel\n", HWIF(drive)->index);
1696 break;
1699 return 1;
1702 static void pmac_ide_dma_host_set(ide_drive_t *drive, int on)
1706 static void
1707 pmac_ide_dma_lost_irq (ide_drive_t *drive)
1709 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
1710 volatile struct dbdma_regs __iomem *dma;
1711 unsigned long status;
1713 if (pmif == NULL)
1714 return;
1715 dma = pmif->dma_regs;
1717 status = readl(&dma->status);
1718 printk(KERN_ERR "ide-pmac lost interrupt, dma status: %lx\n", status);
1722 * Allocate the data structures needed for using DMA with an interface
1723 * and fill the proper list of functions pointers
1725 static void __devinit
1726 pmac_ide_setup_dma(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif)
1728 /* We won't need pci_dev if we switch to generic consistent
1729 * DMA routines ...
1731 if (hwif->pci_dev == NULL)
1732 return;
1734 * Allocate space for the DBDMA commands.
1735 * The +2 is +1 for the stop command and +1 to allow for
1736 * aligning the start address to a multiple of 16 bytes.
1738 pmif->dma_table_cpu = (struct dbdma_cmd*)pci_alloc_consistent(
1739 hwif->pci_dev,
1740 (MAX_DCMDS + 2) * sizeof(struct dbdma_cmd),
1741 &hwif->dmatable_dma);
1742 if (pmif->dma_table_cpu == NULL) {
1743 printk(KERN_ERR "%s: unable to allocate DMA command list\n",
1744 hwif->name);
1745 return;
1748 hwif->sg_max_nents = MAX_DCMDS;
1750 hwif->dma_host_set = &pmac_ide_dma_host_set;
1751 hwif->dma_setup = &pmac_ide_dma_setup;
1752 hwif->dma_exec_cmd = &pmac_ide_dma_exec_cmd;
1753 hwif->dma_start = &pmac_ide_dma_start;
1754 hwif->ide_dma_end = &pmac_ide_dma_end;
1755 hwif->ide_dma_test_irq = &pmac_ide_dma_test_irq;
1756 hwif->dma_timeout = &ide_dma_timeout;
1757 hwif->dma_lost_irq = &pmac_ide_dma_lost_irq;
1759 switch(pmif->kind) {
1760 case controller_sh_ata6:
1761 hwif->ultra_mask = pmif->cable_80 ? 0x7f : 0x07;
1762 hwif->mwdma_mask = 0x07;
1763 hwif->swdma_mask = 0x00;
1764 break;
1765 case controller_un_ata6:
1766 case controller_k2_ata6:
1767 hwif->ultra_mask = pmif->cable_80 ? 0x3f : 0x07;
1768 hwif->mwdma_mask = 0x07;
1769 hwif->swdma_mask = 0x00;
1770 break;
1771 case controller_kl_ata4:
1772 hwif->ultra_mask = pmif->cable_80 ? 0x1f : 0x07;
1773 hwif->mwdma_mask = 0x07;
1774 hwif->swdma_mask = 0x00;
1775 break;
1776 default:
1777 hwif->ultra_mask = 0x00;
1778 hwif->mwdma_mask = 0x07;
1779 hwif->swdma_mask = 0x00;
1780 break;
1784 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1786 module_init(pmac_ide_probe);