2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
24 #include "xfs_trans.h"
27 #include "xfs_mount.h"
28 #include "xfs_error.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_btree.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_inode_item.h"
36 #include "xfs_alloc.h"
37 #include "xfs_ialloc.h"
38 #include "xfs_log_priv.h"
39 #include "xfs_buf_item.h"
40 #include "xfs_log_recover.h"
41 #include "xfs_extfree_item.h"
42 #include "xfs_trans_priv.h"
43 #include "xfs_quota.h"
44 #include "xfs_utils.h"
45 #include "xfs_cksum.h"
46 #include "xfs_trace.h"
47 #include "xfs_icache.h"
48 #include "xfs_icreate_item.h"
50 /* Need all the magic numbers and buffer ops structures from these headers */
51 #include "xfs_symlink.h"
52 #include "xfs_da_btree.h"
53 #include "xfs_dir2_format.h"
54 #include "xfs_dir2_priv.h"
55 #include "xfs_attr_leaf.h"
56 #include "xfs_attr_remote.h"
63 xlog_clear_stale_blocks(
68 xlog_recover_check_summary(
71 #define xlog_recover_check_summary(log)
75 * This structure is used during recovery to record the buf log items which
76 * have been canceled and should not be replayed.
78 struct xfs_buf_cancel
{
82 struct list_head bc_list
;
86 * Sector aligned buffer routines for buffer create/read/write/access
90 * Verify the given count of basic blocks is valid number of blocks
91 * to specify for an operation involving the given XFS log buffer.
92 * Returns nonzero if the count is valid, 0 otherwise.
96 xlog_buf_bbcount_valid(
100 return bbcount
> 0 && bbcount
<= log
->l_logBBsize
;
104 * Allocate a buffer to hold log data. The buffer needs to be able
105 * to map to a range of nbblks basic blocks at any valid (basic
106 * block) offset within the log.
115 if (!xlog_buf_bbcount_valid(log
, nbblks
)) {
116 xfs_warn(log
->l_mp
, "Invalid block length (0x%x) for buffer",
118 XFS_ERROR_REPORT(__func__
, XFS_ERRLEVEL_HIGH
, log
->l_mp
);
123 * We do log I/O in units of log sectors (a power-of-2
124 * multiple of the basic block size), so we round up the
125 * requested size to accommodate the basic blocks required
126 * for complete log sectors.
128 * In addition, the buffer may be used for a non-sector-
129 * aligned block offset, in which case an I/O of the
130 * requested size could extend beyond the end of the
131 * buffer. If the requested size is only 1 basic block it
132 * will never straddle a sector boundary, so this won't be
133 * an issue. Nor will this be a problem if the log I/O is
134 * done in basic blocks (sector size 1). But otherwise we
135 * extend the buffer by one extra log sector to ensure
136 * there's space to accommodate this possibility.
138 if (nbblks
> 1 && log
->l_sectBBsize
> 1)
139 nbblks
+= log
->l_sectBBsize
;
140 nbblks
= round_up(nbblks
, log
->l_sectBBsize
);
142 bp
= xfs_buf_get_uncached(log
->l_mp
->m_logdev_targp
, nbblks
, 0);
156 * Return the address of the start of the given block number's data
157 * in a log buffer. The buffer covers a log sector-aligned region.
166 xfs_daddr_t offset
= blk_no
& ((xfs_daddr_t
)log
->l_sectBBsize
- 1);
168 ASSERT(offset
+ nbblks
<= bp
->b_length
);
169 return bp
->b_addr
+ BBTOB(offset
);
174 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
185 if (!xlog_buf_bbcount_valid(log
, nbblks
)) {
186 xfs_warn(log
->l_mp
, "Invalid block length (0x%x) for buffer",
188 XFS_ERROR_REPORT(__func__
, XFS_ERRLEVEL_HIGH
, log
->l_mp
);
192 blk_no
= round_down(blk_no
, log
->l_sectBBsize
);
193 nbblks
= round_up(nbblks
, log
->l_sectBBsize
);
196 ASSERT(nbblks
<= bp
->b_length
);
198 XFS_BUF_SET_ADDR(bp
, log
->l_logBBstart
+ blk_no
);
200 bp
->b_io_length
= nbblks
;
203 xfsbdstrat(log
->l_mp
, bp
);
204 error
= xfs_buf_iowait(bp
);
206 xfs_buf_ioerror_alert(bp
, __func__
);
220 error
= xlog_bread_noalign(log
, blk_no
, nbblks
, bp
);
224 *offset
= xlog_align(log
, blk_no
, nbblks
, bp
);
229 * Read at an offset into the buffer. Returns with the buffer in it's original
230 * state regardless of the result of the read.
235 xfs_daddr_t blk_no
, /* block to read from */
236 int nbblks
, /* blocks to read */
240 xfs_caddr_t orig_offset
= bp
->b_addr
;
241 int orig_len
= BBTOB(bp
->b_length
);
244 error
= xfs_buf_associate_memory(bp
, offset
, BBTOB(nbblks
));
248 error
= xlog_bread_noalign(log
, blk_no
, nbblks
, bp
);
250 /* must reset buffer pointer even on error */
251 error2
= xfs_buf_associate_memory(bp
, orig_offset
, orig_len
);
258 * Write out the buffer at the given block for the given number of blocks.
259 * The buffer is kept locked across the write and is returned locked.
260 * This can only be used for synchronous log writes.
271 if (!xlog_buf_bbcount_valid(log
, nbblks
)) {
272 xfs_warn(log
->l_mp
, "Invalid block length (0x%x) for buffer",
274 XFS_ERROR_REPORT(__func__
, XFS_ERRLEVEL_HIGH
, log
->l_mp
);
278 blk_no
= round_down(blk_no
, log
->l_sectBBsize
);
279 nbblks
= round_up(nbblks
, log
->l_sectBBsize
);
282 ASSERT(nbblks
<= bp
->b_length
);
284 XFS_BUF_SET_ADDR(bp
, log
->l_logBBstart
+ blk_no
);
285 XFS_BUF_ZEROFLAGS(bp
);
288 bp
->b_io_length
= nbblks
;
291 error
= xfs_bwrite(bp
);
293 xfs_buf_ioerror_alert(bp
, __func__
);
300 * dump debug superblock and log record information
303 xlog_header_check_dump(
305 xlog_rec_header_t
*head
)
307 xfs_debug(mp
, "%s: SB : uuid = %pU, fmt = %d\n",
308 __func__
, &mp
->m_sb
.sb_uuid
, XLOG_FMT
);
309 xfs_debug(mp
, " log : uuid = %pU, fmt = %d\n",
310 &head
->h_fs_uuid
, be32_to_cpu(head
->h_fmt
));
313 #define xlog_header_check_dump(mp, head)
317 * check log record header for recovery
320 xlog_header_check_recover(
322 xlog_rec_header_t
*head
)
324 ASSERT(head
->h_magicno
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
));
327 * IRIX doesn't write the h_fmt field and leaves it zeroed
328 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
329 * a dirty log created in IRIX.
331 if (unlikely(head
->h_fmt
!= cpu_to_be32(XLOG_FMT
))) {
333 "dirty log written in incompatible format - can't recover");
334 xlog_header_check_dump(mp
, head
);
335 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
336 XFS_ERRLEVEL_HIGH
, mp
);
337 return XFS_ERROR(EFSCORRUPTED
);
338 } else if (unlikely(!uuid_equal(&mp
->m_sb
.sb_uuid
, &head
->h_fs_uuid
))) {
340 "dirty log entry has mismatched uuid - can't recover");
341 xlog_header_check_dump(mp
, head
);
342 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
343 XFS_ERRLEVEL_HIGH
, mp
);
344 return XFS_ERROR(EFSCORRUPTED
);
350 * read the head block of the log and check the header
353 xlog_header_check_mount(
355 xlog_rec_header_t
*head
)
357 ASSERT(head
->h_magicno
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
));
359 if (uuid_is_nil(&head
->h_fs_uuid
)) {
361 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
362 * h_fs_uuid is nil, we assume this log was last mounted
363 * by IRIX and continue.
365 xfs_warn(mp
, "nil uuid in log - IRIX style log");
366 } else if (unlikely(!uuid_equal(&mp
->m_sb
.sb_uuid
, &head
->h_fs_uuid
))) {
367 xfs_warn(mp
, "log has mismatched uuid - can't recover");
368 xlog_header_check_dump(mp
, head
);
369 XFS_ERROR_REPORT("xlog_header_check_mount",
370 XFS_ERRLEVEL_HIGH
, mp
);
371 return XFS_ERROR(EFSCORRUPTED
);
382 * We're not going to bother about retrying
383 * this during recovery. One strike!
385 xfs_buf_ioerror_alert(bp
, __func__
);
386 xfs_force_shutdown(bp
->b_target
->bt_mount
,
387 SHUTDOWN_META_IO_ERROR
);
390 xfs_buf_ioend(bp
, 0);
394 * This routine finds (to an approximation) the first block in the physical
395 * log which contains the given cycle. It uses a binary search algorithm.
396 * Note that the algorithm can not be perfect because the disk will not
397 * necessarily be perfect.
400 xlog_find_cycle_start(
403 xfs_daddr_t first_blk
,
404 xfs_daddr_t
*last_blk
,
414 mid_blk
= BLK_AVG(first_blk
, end_blk
);
415 while (mid_blk
!= first_blk
&& mid_blk
!= end_blk
) {
416 error
= xlog_bread(log
, mid_blk
, 1, bp
, &offset
);
419 mid_cycle
= xlog_get_cycle(offset
);
420 if (mid_cycle
== cycle
)
421 end_blk
= mid_blk
; /* last_half_cycle == mid_cycle */
423 first_blk
= mid_blk
; /* first_half_cycle == mid_cycle */
424 mid_blk
= BLK_AVG(first_blk
, end_blk
);
426 ASSERT((mid_blk
== first_blk
&& mid_blk
+1 == end_blk
) ||
427 (mid_blk
== end_blk
&& mid_blk
-1 == first_blk
));
435 * Check that a range of blocks does not contain stop_on_cycle_no.
436 * Fill in *new_blk with the block offset where such a block is
437 * found, or with -1 (an invalid block number) if there is no such
438 * block in the range. The scan needs to occur from front to back
439 * and the pointer into the region must be updated since a later
440 * routine will need to perform another test.
443 xlog_find_verify_cycle(
445 xfs_daddr_t start_blk
,
447 uint stop_on_cycle_no
,
448 xfs_daddr_t
*new_blk
)
454 xfs_caddr_t buf
= NULL
;
458 * Greedily allocate a buffer big enough to handle the full
459 * range of basic blocks we'll be examining. If that fails,
460 * try a smaller size. We need to be able to read at least
461 * a log sector, or we're out of luck.
463 bufblks
= 1 << ffs(nbblks
);
464 while (bufblks
> log
->l_logBBsize
)
466 while (!(bp
= xlog_get_bp(log
, bufblks
))) {
468 if (bufblks
< log
->l_sectBBsize
)
472 for (i
= start_blk
; i
< start_blk
+ nbblks
; i
+= bufblks
) {
475 bcount
= min(bufblks
, (start_blk
+ nbblks
- i
));
477 error
= xlog_bread(log
, i
, bcount
, bp
, &buf
);
481 for (j
= 0; j
< bcount
; j
++) {
482 cycle
= xlog_get_cycle(buf
);
483 if (cycle
== stop_on_cycle_no
) {
500 * Potentially backup over partial log record write.
502 * In the typical case, last_blk is the number of the block directly after
503 * a good log record. Therefore, we subtract one to get the block number
504 * of the last block in the given buffer. extra_bblks contains the number
505 * of blocks we would have read on a previous read. This happens when the
506 * last log record is split over the end of the physical log.
508 * extra_bblks is the number of blocks potentially verified on a previous
509 * call to this routine.
512 xlog_find_verify_log_record(
514 xfs_daddr_t start_blk
,
515 xfs_daddr_t
*last_blk
,
520 xfs_caddr_t offset
= NULL
;
521 xlog_rec_header_t
*head
= NULL
;
524 int num_blks
= *last_blk
- start_blk
;
527 ASSERT(start_blk
!= 0 || *last_blk
!= start_blk
);
529 if (!(bp
= xlog_get_bp(log
, num_blks
))) {
530 if (!(bp
= xlog_get_bp(log
, 1)))
534 error
= xlog_bread(log
, start_blk
, num_blks
, bp
, &offset
);
537 offset
+= ((num_blks
- 1) << BBSHIFT
);
540 for (i
= (*last_blk
) - 1; i
>= 0; i
--) {
542 /* valid log record not found */
544 "Log inconsistent (didn't find previous header)");
546 error
= XFS_ERROR(EIO
);
551 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
556 head
= (xlog_rec_header_t
*)offset
;
558 if (head
->h_magicno
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))
566 * We hit the beginning of the physical log & still no header. Return
567 * to caller. If caller can handle a return of -1, then this routine
568 * will be called again for the end of the physical log.
576 * We have the final block of the good log (the first block
577 * of the log record _before_ the head. So we check the uuid.
579 if ((error
= xlog_header_check_mount(log
->l_mp
, head
)))
583 * We may have found a log record header before we expected one.
584 * last_blk will be the 1st block # with a given cycle #. We may end
585 * up reading an entire log record. In this case, we don't want to
586 * reset last_blk. Only when last_blk points in the middle of a log
587 * record do we update last_blk.
589 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
590 uint h_size
= be32_to_cpu(head
->h_size
);
592 xhdrs
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
593 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
599 if (*last_blk
- i
+ extra_bblks
!=
600 BTOBB(be32_to_cpu(head
->h_len
)) + xhdrs
)
609 * Head is defined to be the point of the log where the next log write
610 * write could go. This means that incomplete LR writes at the end are
611 * eliminated when calculating the head. We aren't guaranteed that previous
612 * LR have complete transactions. We only know that a cycle number of
613 * current cycle number -1 won't be present in the log if we start writing
614 * from our current block number.
616 * last_blk contains the block number of the first block with a given
619 * Return: zero if normal, non-zero if error.
624 xfs_daddr_t
*return_head_blk
)
628 xfs_daddr_t new_blk
, first_blk
, start_blk
, last_blk
, head_blk
;
630 uint first_half_cycle
, last_half_cycle
;
632 int error
, log_bbnum
= log
->l_logBBsize
;
634 /* Is the end of the log device zeroed? */
635 if ((error
= xlog_find_zeroed(log
, &first_blk
)) == -1) {
636 *return_head_blk
= first_blk
;
638 /* Is the whole lot zeroed? */
640 /* Linux XFS shouldn't generate totally zeroed logs -
641 * mkfs etc write a dummy unmount record to a fresh
642 * log so we can store the uuid in there
644 xfs_warn(log
->l_mp
, "totally zeroed log");
649 xfs_warn(log
->l_mp
, "empty log check failed");
653 first_blk
= 0; /* get cycle # of 1st block */
654 bp
= xlog_get_bp(log
, 1);
658 error
= xlog_bread(log
, 0, 1, bp
, &offset
);
662 first_half_cycle
= xlog_get_cycle(offset
);
664 last_blk
= head_blk
= log_bbnum
- 1; /* get cycle # of last block */
665 error
= xlog_bread(log
, last_blk
, 1, bp
, &offset
);
669 last_half_cycle
= xlog_get_cycle(offset
);
670 ASSERT(last_half_cycle
!= 0);
673 * If the 1st half cycle number is equal to the last half cycle number,
674 * then the entire log is stamped with the same cycle number. In this
675 * case, head_blk can't be set to zero (which makes sense). The below
676 * math doesn't work out properly with head_blk equal to zero. Instead,
677 * we set it to log_bbnum which is an invalid block number, but this
678 * value makes the math correct. If head_blk doesn't changed through
679 * all the tests below, *head_blk is set to zero at the very end rather
680 * than log_bbnum. In a sense, log_bbnum and zero are the same block
681 * in a circular file.
683 if (first_half_cycle
== last_half_cycle
) {
685 * In this case we believe that the entire log should have
686 * cycle number last_half_cycle. We need to scan backwards
687 * from the end verifying that there are no holes still
688 * containing last_half_cycle - 1. If we find such a hole,
689 * then the start of that hole will be the new head. The
690 * simple case looks like
691 * x | x ... | x - 1 | x
692 * Another case that fits this picture would be
693 * x | x + 1 | x ... | x
694 * In this case the head really is somewhere at the end of the
695 * log, as one of the latest writes at the beginning was
698 * x | x + 1 | x ... | x - 1 | x
699 * This is really the combination of the above two cases, and
700 * the head has to end up at the start of the x-1 hole at the
703 * In the 256k log case, we will read from the beginning to the
704 * end of the log and search for cycle numbers equal to x-1.
705 * We don't worry about the x+1 blocks that we encounter,
706 * because we know that they cannot be the head since the log
709 head_blk
= log_bbnum
;
710 stop_on_cycle
= last_half_cycle
- 1;
713 * In this case we want to find the first block with cycle
714 * number matching last_half_cycle. We expect the log to be
716 * x + 1 ... | x ... | x
717 * The first block with cycle number x (last_half_cycle) will
718 * be where the new head belongs. First we do a binary search
719 * for the first occurrence of last_half_cycle. The binary
720 * search may not be totally accurate, so then we scan back
721 * from there looking for occurrences of last_half_cycle before
722 * us. If that backwards scan wraps around the beginning of
723 * the log, then we look for occurrences of last_half_cycle - 1
724 * at the end of the log. The cases we're looking for look
726 * v binary search stopped here
727 * x + 1 ... | x | x + 1 | x ... | x
728 * ^ but we want to locate this spot
730 * <---------> less than scan distance
731 * x + 1 ... | x ... | x - 1 | x
732 * ^ we want to locate this spot
734 stop_on_cycle
= last_half_cycle
;
735 if ((error
= xlog_find_cycle_start(log
, bp
, first_blk
,
736 &head_blk
, last_half_cycle
)))
741 * Now validate the answer. Scan back some number of maximum possible
742 * blocks and make sure each one has the expected cycle number. The
743 * maximum is determined by the total possible amount of buffering
744 * in the in-core log. The following number can be made tighter if
745 * we actually look at the block size of the filesystem.
747 num_scan_bblks
= XLOG_TOTAL_REC_SHIFT(log
);
748 if (head_blk
>= num_scan_bblks
) {
750 * We are guaranteed that the entire check can be performed
753 start_blk
= head_blk
- num_scan_bblks
;
754 if ((error
= xlog_find_verify_cycle(log
,
755 start_blk
, num_scan_bblks
,
756 stop_on_cycle
, &new_blk
)))
760 } else { /* need to read 2 parts of log */
762 * We are going to scan backwards in the log in two parts.
763 * First we scan the physical end of the log. In this part
764 * of the log, we are looking for blocks with cycle number
765 * last_half_cycle - 1.
766 * If we find one, then we know that the log starts there, as
767 * we've found a hole that didn't get written in going around
768 * the end of the physical log. The simple case for this is
769 * x + 1 ... | x ... | x - 1 | x
770 * <---------> less than scan distance
771 * If all of the blocks at the end of the log have cycle number
772 * last_half_cycle, then we check the blocks at the start of
773 * the log looking for occurrences of last_half_cycle. If we
774 * find one, then our current estimate for the location of the
775 * first occurrence of last_half_cycle is wrong and we move
776 * back to the hole we've found. This case looks like
777 * x + 1 ... | x | x + 1 | x ...
778 * ^ binary search stopped here
779 * Another case we need to handle that only occurs in 256k
781 * x + 1 ... | x ... | x+1 | x ...
782 * ^ binary search stops here
783 * In a 256k log, the scan at the end of the log will see the
784 * x + 1 blocks. We need to skip past those since that is
785 * certainly not the head of the log. By searching for
786 * last_half_cycle-1 we accomplish that.
788 ASSERT(head_blk
<= INT_MAX
&&
789 (xfs_daddr_t
) num_scan_bblks
>= head_blk
);
790 start_blk
= log_bbnum
- (num_scan_bblks
- head_blk
);
791 if ((error
= xlog_find_verify_cycle(log
, start_blk
,
792 num_scan_bblks
- (int)head_blk
,
793 (stop_on_cycle
- 1), &new_blk
)))
801 * Scan beginning of log now. The last part of the physical
802 * log is good. This scan needs to verify that it doesn't find
803 * the last_half_cycle.
806 ASSERT(head_blk
<= INT_MAX
);
807 if ((error
= xlog_find_verify_cycle(log
,
808 start_blk
, (int)head_blk
,
809 stop_on_cycle
, &new_blk
)))
817 * Now we need to make sure head_blk is not pointing to a block in
818 * the middle of a log record.
820 num_scan_bblks
= XLOG_REC_SHIFT(log
);
821 if (head_blk
>= num_scan_bblks
) {
822 start_blk
= head_blk
- num_scan_bblks
; /* don't read head_blk */
824 /* start ptr at last block ptr before head_blk */
825 if ((error
= xlog_find_verify_log_record(log
, start_blk
,
826 &head_blk
, 0)) == -1) {
827 error
= XFS_ERROR(EIO
);
833 ASSERT(head_blk
<= INT_MAX
);
834 if ((error
= xlog_find_verify_log_record(log
, start_blk
,
835 &head_blk
, 0)) == -1) {
836 /* We hit the beginning of the log during our search */
837 start_blk
= log_bbnum
- (num_scan_bblks
- head_blk
);
839 ASSERT(start_blk
<= INT_MAX
&&
840 (xfs_daddr_t
) log_bbnum
-start_blk
>= 0);
841 ASSERT(head_blk
<= INT_MAX
);
842 if ((error
= xlog_find_verify_log_record(log
,
844 (int)head_blk
)) == -1) {
845 error
= XFS_ERROR(EIO
);
849 if (new_blk
!= log_bbnum
)
856 if (head_blk
== log_bbnum
)
857 *return_head_blk
= 0;
859 *return_head_blk
= head_blk
;
861 * When returning here, we have a good block number. Bad block
862 * means that during a previous crash, we didn't have a clean break
863 * from cycle number N to cycle number N-1. In this case, we need
864 * to find the first block with cycle number N-1.
872 xfs_warn(log
->l_mp
, "failed to find log head");
877 * Find the sync block number or the tail of the log.
879 * This will be the block number of the last record to have its
880 * associated buffers synced to disk. Every log record header has
881 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
882 * to get a sync block number. The only concern is to figure out which
883 * log record header to believe.
885 * The following algorithm uses the log record header with the largest
886 * lsn. The entire log record does not need to be valid. We only care
887 * that the header is valid.
889 * We could speed up search by using current head_blk buffer, but it is not
895 xfs_daddr_t
*head_blk
,
896 xfs_daddr_t
*tail_blk
)
898 xlog_rec_header_t
*rhead
;
899 xlog_op_header_t
*op_head
;
900 xfs_caddr_t offset
= NULL
;
903 xfs_daddr_t umount_data_blk
;
904 xfs_daddr_t after_umount_blk
;
911 * Find previous log record
913 if ((error
= xlog_find_head(log
, head_blk
)))
916 bp
= xlog_get_bp(log
, 1);
919 if (*head_blk
== 0) { /* special case */
920 error
= xlog_bread(log
, 0, 1, bp
, &offset
);
924 if (xlog_get_cycle(offset
) == 0) {
926 /* leave all other log inited values alone */
932 * Search backwards looking for log record header block
934 ASSERT(*head_blk
< INT_MAX
);
935 for (i
= (int)(*head_blk
) - 1; i
>= 0; i
--) {
936 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
940 if (*(__be32
*)offset
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
)) {
946 * If we haven't found the log record header block, start looking
947 * again from the end of the physical log. XXXmiken: There should be
948 * a check here to make sure we didn't search more than N blocks in
952 for (i
= log
->l_logBBsize
- 1; i
>= (int)(*head_blk
); i
--) {
953 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
957 if (*(__be32
*)offset
==
958 cpu_to_be32(XLOG_HEADER_MAGIC_NUM
)) {
965 xfs_warn(log
->l_mp
, "%s: couldn't find sync record", __func__
);
967 return XFS_ERROR(EIO
);
970 /* find blk_no of tail of log */
971 rhead
= (xlog_rec_header_t
*)offset
;
972 *tail_blk
= BLOCK_LSN(be64_to_cpu(rhead
->h_tail_lsn
));
975 * Reset log values according to the state of the log when we
976 * crashed. In the case where head_blk == 0, we bump curr_cycle
977 * one because the next write starts a new cycle rather than
978 * continuing the cycle of the last good log record. At this
979 * point we have guaranteed that all partial log records have been
980 * accounted for. Therefore, we know that the last good log record
981 * written was complete and ended exactly on the end boundary
982 * of the physical log.
984 log
->l_prev_block
= i
;
985 log
->l_curr_block
= (int)*head_blk
;
986 log
->l_curr_cycle
= be32_to_cpu(rhead
->h_cycle
);
989 atomic64_set(&log
->l_tail_lsn
, be64_to_cpu(rhead
->h_tail_lsn
));
990 atomic64_set(&log
->l_last_sync_lsn
, be64_to_cpu(rhead
->h_lsn
));
991 xlog_assign_grant_head(&log
->l_reserve_head
.grant
, log
->l_curr_cycle
,
992 BBTOB(log
->l_curr_block
));
993 xlog_assign_grant_head(&log
->l_write_head
.grant
, log
->l_curr_cycle
,
994 BBTOB(log
->l_curr_block
));
997 * Look for unmount record. If we find it, then we know there
998 * was a clean unmount. Since 'i' could be the last block in
999 * the physical log, we convert to a log block before comparing
1002 * Save the current tail lsn to use to pass to
1003 * xlog_clear_stale_blocks() below. We won't want to clear the
1004 * unmount record if there is one, so we pass the lsn of the
1005 * unmount record rather than the block after it.
1007 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
1008 int h_size
= be32_to_cpu(rhead
->h_size
);
1009 int h_version
= be32_to_cpu(rhead
->h_version
);
1011 if ((h_version
& XLOG_VERSION_2
) &&
1012 (h_size
> XLOG_HEADER_CYCLE_SIZE
)) {
1013 hblks
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
1014 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
1022 after_umount_blk
= (i
+ hblks
+ (int)
1023 BTOBB(be32_to_cpu(rhead
->h_len
))) % log
->l_logBBsize
;
1024 tail_lsn
= atomic64_read(&log
->l_tail_lsn
);
1025 if (*head_blk
== after_umount_blk
&&
1026 be32_to_cpu(rhead
->h_num_logops
) == 1) {
1027 umount_data_blk
= (i
+ hblks
) % log
->l_logBBsize
;
1028 error
= xlog_bread(log
, umount_data_blk
, 1, bp
, &offset
);
1032 op_head
= (xlog_op_header_t
*)offset
;
1033 if (op_head
->oh_flags
& XLOG_UNMOUNT_TRANS
) {
1035 * Set tail and last sync so that newly written
1036 * log records will point recovery to after the
1037 * current unmount record.
1039 xlog_assign_atomic_lsn(&log
->l_tail_lsn
,
1040 log
->l_curr_cycle
, after_umount_blk
);
1041 xlog_assign_atomic_lsn(&log
->l_last_sync_lsn
,
1042 log
->l_curr_cycle
, after_umount_blk
);
1043 *tail_blk
= after_umount_blk
;
1046 * Note that the unmount was clean. If the unmount
1047 * was not clean, we need to know this to rebuild the
1048 * superblock counters from the perag headers if we
1049 * have a filesystem using non-persistent counters.
1051 log
->l_mp
->m_flags
|= XFS_MOUNT_WAS_CLEAN
;
1056 * Make sure that there are no blocks in front of the head
1057 * with the same cycle number as the head. This can happen
1058 * because we allow multiple outstanding log writes concurrently,
1059 * and the later writes might make it out before earlier ones.
1061 * We use the lsn from before modifying it so that we'll never
1062 * overwrite the unmount record after a clean unmount.
1064 * Do this only if we are going to recover the filesystem
1066 * NOTE: This used to say "if (!readonly)"
1067 * However on Linux, we can & do recover a read-only filesystem.
1068 * We only skip recovery if NORECOVERY is specified on mount,
1069 * in which case we would not be here.
1071 * But... if the -device- itself is readonly, just skip this.
1072 * We can't recover this device anyway, so it won't matter.
1074 if (!xfs_readonly_buftarg(log
->l_mp
->m_logdev_targp
))
1075 error
= xlog_clear_stale_blocks(log
, tail_lsn
);
1081 xfs_warn(log
->l_mp
, "failed to locate log tail");
1086 * Is the log zeroed at all?
1088 * The last binary search should be changed to perform an X block read
1089 * once X becomes small enough. You can then search linearly through
1090 * the X blocks. This will cut down on the number of reads we need to do.
1092 * If the log is partially zeroed, this routine will pass back the blkno
1093 * of the first block with cycle number 0. It won't have a complete LR
1097 * 0 => the log is completely written to
1098 * -1 => use *blk_no as the first block of the log
1099 * >0 => error has occurred
1104 xfs_daddr_t
*blk_no
)
1108 uint first_cycle
, last_cycle
;
1109 xfs_daddr_t new_blk
, last_blk
, start_blk
;
1110 xfs_daddr_t num_scan_bblks
;
1111 int error
, log_bbnum
= log
->l_logBBsize
;
1115 /* check totally zeroed log */
1116 bp
= xlog_get_bp(log
, 1);
1119 error
= xlog_bread(log
, 0, 1, bp
, &offset
);
1123 first_cycle
= xlog_get_cycle(offset
);
1124 if (first_cycle
== 0) { /* completely zeroed log */
1130 /* check partially zeroed log */
1131 error
= xlog_bread(log
, log_bbnum
-1, 1, bp
, &offset
);
1135 last_cycle
= xlog_get_cycle(offset
);
1136 if (last_cycle
!= 0) { /* log completely written to */
1139 } else if (first_cycle
!= 1) {
1141 * If the cycle of the last block is zero, the cycle of
1142 * the first block must be 1. If it's not, maybe we're
1143 * not looking at a log... Bail out.
1146 "Log inconsistent or not a log (last==0, first!=1)");
1147 return XFS_ERROR(EINVAL
);
1150 /* we have a partially zeroed log */
1151 last_blk
= log_bbnum
-1;
1152 if ((error
= xlog_find_cycle_start(log
, bp
, 0, &last_blk
, 0)))
1156 * Validate the answer. Because there is no way to guarantee that
1157 * the entire log is made up of log records which are the same size,
1158 * we scan over the defined maximum blocks. At this point, the maximum
1159 * is not chosen to mean anything special. XXXmiken
1161 num_scan_bblks
= XLOG_TOTAL_REC_SHIFT(log
);
1162 ASSERT(num_scan_bblks
<= INT_MAX
);
1164 if (last_blk
< num_scan_bblks
)
1165 num_scan_bblks
= last_blk
;
1166 start_blk
= last_blk
- num_scan_bblks
;
1169 * We search for any instances of cycle number 0 that occur before
1170 * our current estimate of the head. What we're trying to detect is
1171 * 1 ... | 0 | 1 | 0...
1172 * ^ binary search ends here
1174 if ((error
= xlog_find_verify_cycle(log
, start_blk
,
1175 (int)num_scan_bblks
, 0, &new_blk
)))
1181 * Potentially backup over partial log record write. We don't need
1182 * to search the end of the log because we know it is zero.
1184 if ((error
= xlog_find_verify_log_record(log
, start_blk
,
1185 &last_blk
, 0)) == -1) {
1186 error
= XFS_ERROR(EIO
);
1200 * These are simple subroutines used by xlog_clear_stale_blocks() below
1201 * to initialize a buffer full of empty log record headers and write
1202 * them into the log.
1213 xlog_rec_header_t
*recp
= (xlog_rec_header_t
*)buf
;
1215 memset(buf
, 0, BBSIZE
);
1216 recp
->h_magicno
= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
);
1217 recp
->h_cycle
= cpu_to_be32(cycle
);
1218 recp
->h_version
= cpu_to_be32(
1219 xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) ? 2 : 1);
1220 recp
->h_lsn
= cpu_to_be64(xlog_assign_lsn(cycle
, block
));
1221 recp
->h_tail_lsn
= cpu_to_be64(xlog_assign_lsn(tail_cycle
, tail_block
));
1222 recp
->h_fmt
= cpu_to_be32(XLOG_FMT
);
1223 memcpy(&recp
->h_fs_uuid
, &log
->l_mp
->m_sb
.sb_uuid
, sizeof(uuid_t
));
1227 xlog_write_log_records(
1238 int sectbb
= log
->l_sectBBsize
;
1239 int end_block
= start_block
+ blocks
;
1245 * Greedily allocate a buffer big enough to handle the full
1246 * range of basic blocks to be written. If that fails, try
1247 * a smaller size. We need to be able to write at least a
1248 * log sector, or we're out of luck.
1250 bufblks
= 1 << ffs(blocks
);
1251 while (bufblks
> log
->l_logBBsize
)
1253 while (!(bp
= xlog_get_bp(log
, bufblks
))) {
1255 if (bufblks
< sectbb
)
1259 /* We may need to do a read at the start to fill in part of
1260 * the buffer in the starting sector not covered by the first
1263 balign
= round_down(start_block
, sectbb
);
1264 if (balign
!= start_block
) {
1265 error
= xlog_bread_noalign(log
, start_block
, 1, bp
);
1269 j
= start_block
- balign
;
1272 for (i
= start_block
; i
< end_block
; i
+= bufblks
) {
1273 int bcount
, endcount
;
1275 bcount
= min(bufblks
, end_block
- start_block
);
1276 endcount
= bcount
- j
;
1278 /* We may need to do a read at the end to fill in part of
1279 * the buffer in the final sector not covered by the write.
1280 * If this is the same sector as the above read, skip it.
1282 ealign
= round_down(end_block
, sectbb
);
1283 if (j
== 0 && (start_block
+ endcount
> ealign
)) {
1284 offset
= bp
->b_addr
+ BBTOB(ealign
- start_block
);
1285 error
= xlog_bread_offset(log
, ealign
, sectbb
,
1292 offset
= xlog_align(log
, start_block
, endcount
, bp
);
1293 for (; j
< endcount
; j
++) {
1294 xlog_add_record(log
, offset
, cycle
, i
+j
,
1295 tail_cycle
, tail_block
);
1298 error
= xlog_bwrite(log
, start_block
, endcount
, bp
);
1301 start_block
+= endcount
;
1311 * This routine is called to blow away any incomplete log writes out
1312 * in front of the log head. We do this so that we won't become confused
1313 * if we come up, write only a little bit more, and then crash again.
1314 * If we leave the partial log records out there, this situation could
1315 * cause us to think those partial writes are valid blocks since they
1316 * have the current cycle number. We get rid of them by overwriting them
1317 * with empty log records with the old cycle number rather than the
1320 * The tail lsn is passed in rather than taken from
1321 * the log so that we will not write over the unmount record after a
1322 * clean unmount in a 512 block log. Doing so would leave the log without
1323 * any valid log records in it until a new one was written. If we crashed
1324 * during that time we would not be able to recover.
1327 xlog_clear_stale_blocks(
1331 int tail_cycle
, head_cycle
;
1332 int tail_block
, head_block
;
1333 int tail_distance
, max_distance
;
1337 tail_cycle
= CYCLE_LSN(tail_lsn
);
1338 tail_block
= BLOCK_LSN(tail_lsn
);
1339 head_cycle
= log
->l_curr_cycle
;
1340 head_block
= log
->l_curr_block
;
1343 * Figure out the distance between the new head of the log
1344 * and the tail. We want to write over any blocks beyond the
1345 * head that we may have written just before the crash, but
1346 * we don't want to overwrite the tail of the log.
1348 if (head_cycle
== tail_cycle
) {
1350 * The tail is behind the head in the physical log,
1351 * so the distance from the head to the tail is the
1352 * distance from the head to the end of the log plus
1353 * the distance from the beginning of the log to the
1356 if (unlikely(head_block
< tail_block
|| head_block
>= log
->l_logBBsize
)) {
1357 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1358 XFS_ERRLEVEL_LOW
, log
->l_mp
);
1359 return XFS_ERROR(EFSCORRUPTED
);
1361 tail_distance
= tail_block
+ (log
->l_logBBsize
- head_block
);
1364 * The head is behind the tail in the physical log,
1365 * so the distance from the head to the tail is just
1366 * the tail block minus the head block.
1368 if (unlikely(head_block
>= tail_block
|| head_cycle
!= (tail_cycle
+ 1))){
1369 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1370 XFS_ERRLEVEL_LOW
, log
->l_mp
);
1371 return XFS_ERROR(EFSCORRUPTED
);
1373 tail_distance
= tail_block
- head_block
;
1377 * If the head is right up against the tail, we can't clear
1380 if (tail_distance
<= 0) {
1381 ASSERT(tail_distance
== 0);
1385 max_distance
= XLOG_TOTAL_REC_SHIFT(log
);
1387 * Take the smaller of the maximum amount of outstanding I/O
1388 * we could have and the distance to the tail to clear out.
1389 * We take the smaller so that we don't overwrite the tail and
1390 * we don't waste all day writing from the head to the tail
1393 max_distance
= MIN(max_distance
, tail_distance
);
1395 if ((head_block
+ max_distance
) <= log
->l_logBBsize
) {
1397 * We can stomp all the blocks we need to without
1398 * wrapping around the end of the log. Just do it
1399 * in a single write. Use the cycle number of the
1400 * current cycle minus one so that the log will look like:
1403 error
= xlog_write_log_records(log
, (head_cycle
- 1),
1404 head_block
, max_distance
, tail_cycle
,
1410 * We need to wrap around the end of the physical log in
1411 * order to clear all the blocks. Do it in two separate
1412 * I/Os. The first write should be from the head to the
1413 * end of the physical log, and it should use the current
1414 * cycle number minus one just like above.
1416 distance
= log
->l_logBBsize
- head_block
;
1417 error
= xlog_write_log_records(log
, (head_cycle
- 1),
1418 head_block
, distance
, tail_cycle
,
1425 * Now write the blocks at the start of the physical log.
1426 * This writes the remainder of the blocks we want to clear.
1427 * It uses the current cycle number since we're now on the
1428 * same cycle as the head so that we get:
1429 * n ... n ... | n - 1 ...
1430 * ^^^^^ blocks we're writing
1432 distance
= max_distance
- (log
->l_logBBsize
- head_block
);
1433 error
= xlog_write_log_records(log
, head_cycle
, 0, distance
,
1434 tail_cycle
, tail_block
);
1442 /******************************************************************************
1444 * Log recover routines
1446 ******************************************************************************
1449 STATIC xlog_recover_t
*
1450 xlog_recover_find_tid(
1451 struct hlist_head
*head
,
1454 xlog_recover_t
*trans
;
1456 hlist_for_each_entry(trans
, head
, r_list
) {
1457 if (trans
->r_log_tid
== tid
)
1464 xlog_recover_new_tid(
1465 struct hlist_head
*head
,
1469 xlog_recover_t
*trans
;
1471 trans
= kmem_zalloc(sizeof(xlog_recover_t
), KM_SLEEP
);
1472 trans
->r_log_tid
= tid
;
1474 INIT_LIST_HEAD(&trans
->r_itemq
);
1476 INIT_HLIST_NODE(&trans
->r_list
);
1477 hlist_add_head(&trans
->r_list
, head
);
1481 xlog_recover_add_item(
1482 struct list_head
*head
)
1484 xlog_recover_item_t
*item
;
1486 item
= kmem_zalloc(sizeof(xlog_recover_item_t
), KM_SLEEP
);
1487 INIT_LIST_HEAD(&item
->ri_list
);
1488 list_add_tail(&item
->ri_list
, head
);
1492 xlog_recover_add_to_cont_trans(
1494 struct xlog_recover
*trans
,
1498 xlog_recover_item_t
*item
;
1499 xfs_caddr_t ptr
, old_ptr
;
1502 if (list_empty(&trans
->r_itemq
)) {
1503 /* finish copying rest of trans header */
1504 xlog_recover_add_item(&trans
->r_itemq
);
1505 ptr
= (xfs_caddr_t
) &trans
->r_theader
+
1506 sizeof(xfs_trans_header_t
) - len
;
1507 memcpy(ptr
, dp
, len
); /* d, s, l */
1510 /* take the tail entry */
1511 item
= list_entry(trans
->r_itemq
.prev
, xlog_recover_item_t
, ri_list
);
1513 old_ptr
= item
->ri_buf
[item
->ri_cnt
-1].i_addr
;
1514 old_len
= item
->ri_buf
[item
->ri_cnt
-1].i_len
;
1516 ptr
= kmem_realloc(old_ptr
, len
+old_len
, old_len
, KM_SLEEP
);
1517 memcpy(&ptr
[old_len
], dp
, len
); /* d, s, l */
1518 item
->ri_buf
[item
->ri_cnt
-1].i_len
+= len
;
1519 item
->ri_buf
[item
->ri_cnt
-1].i_addr
= ptr
;
1520 trace_xfs_log_recover_item_add_cont(log
, trans
, item
, 0);
1525 * The next region to add is the start of a new region. It could be
1526 * a whole region or it could be the first part of a new region. Because
1527 * of this, the assumption here is that the type and size fields of all
1528 * format structures fit into the first 32 bits of the structure.
1530 * This works because all regions must be 32 bit aligned. Therefore, we
1531 * either have both fields or we have neither field. In the case we have
1532 * neither field, the data part of the region is zero length. We only have
1533 * a log_op_header and can throw away the header since a new one will appear
1534 * later. If we have at least 4 bytes, then we can determine how many regions
1535 * will appear in the current log item.
1538 xlog_recover_add_to_trans(
1540 struct xlog_recover
*trans
,
1544 xfs_inode_log_format_t
*in_f
; /* any will do */
1545 xlog_recover_item_t
*item
;
1550 if (list_empty(&trans
->r_itemq
)) {
1551 /* we need to catch log corruptions here */
1552 if (*(uint
*)dp
!= XFS_TRANS_HEADER_MAGIC
) {
1553 xfs_warn(log
->l_mp
, "%s: bad header magic number",
1556 return XFS_ERROR(EIO
);
1558 if (len
== sizeof(xfs_trans_header_t
))
1559 xlog_recover_add_item(&trans
->r_itemq
);
1560 memcpy(&trans
->r_theader
, dp
, len
); /* d, s, l */
1564 ptr
= kmem_alloc(len
, KM_SLEEP
);
1565 memcpy(ptr
, dp
, len
);
1566 in_f
= (xfs_inode_log_format_t
*)ptr
;
1568 /* take the tail entry */
1569 item
= list_entry(trans
->r_itemq
.prev
, xlog_recover_item_t
, ri_list
);
1570 if (item
->ri_total
!= 0 &&
1571 item
->ri_total
== item
->ri_cnt
) {
1572 /* tail item is in use, get a new one */
1573 xlog_recover_add_item(&trans
->r_itemq
);
1574 item
= list_entry(trans
->r_itemq
.prev
,
1575 xlog_recover_item_t
, ri_list
);
1578 if (item
->ri_total
== 0) { /* first region to be added */
1579 if (in_f
->ilf_size
== 0 ||
1580 in_f
->ilf_size
> XLOG_MAX_REGIONS_IN_ITEM
) {
1582 "bad number of regions (%d) in inode log format",
1585 return XFS_ERROR(EIO
);
1588 item
->ri_total
= in_f
->ilf_size
;
1590 kmem_zalloc(item
->ri_total
* sizeof(xfs_log_iovec_t
),
1593 ASSERT(item
->ri_total
> item
->ri_cnt
);
1594 /* Description region is ri_buf[0] */
1595 item
->ri_buf
[item
->ri_cnt
].i_addr
= ptr
;
1596 item
->ri_buf
[item
->ri_cnt
].i_len
= len
;
1598 trace_xfs_log_recover_item_add(log
, trans
, item
, 0);
1603 * Sort the log items in the transaction.
1605 * The ordering constraints are defined by the inode allocation and unlink
1606 * behaviour. The rules are:
1608 * 1. Every item is only logged once in a given transaction. Hence it
1609 * represents the last logged state of the item. Hence ordering is
1610 * dependent on the order in which operations need to be performed so
1611 * required initial conditions are always met.
1613 * 2. Cancelled buffers are recorded in pass 1 in a separate table and
1614 * there's nothing to replay from them so we can simply cull them
1615 * from the transaction. However, we can't do that until after we've
1616 * replayed all the other items because they may be dependent on the
1617 * cancelled buffer and replaying the cancelled buffer can remove it
1618 * form the cancelled buffer table. Hence they have tobe done last.
1620 * 3. Inode allocation buffers must be replayed before inode items that
1621 * read the buffer and replay changes into it. For filesystems using the
1622 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1623 * treated the same as inode allocation buffers as they create and
1624 * initialise the buffers directly.
1626 * 4. Inode unlink buffers must be replayed after inode items are replayed.
1627 * This ensures that inodes are completely flushed to the inode buffer
1628 * in a "free" state before we remove the unlinked inode list pointer.
1630 * Hence the ordering needs to be inode allocation buffers first, inode items
1631 * second, inode unlink buffers third and cancelled buffers last.
1633 * But there's a problem with that - we can't tell an inode allocation buffer
1634 * apart from a regular buffer, so we can't separate them. We can, however,
1635 * tell an inode unlink buffer from the others, and so we can separate them out
1636 * from all the other buffers and move them to last.
1638 * Hence, 4 lists, in order from head to tail:
1639 * - buffer_list for all buffers except cancelled/inode unlink buffers
1640 * - item_list for all non-buffer items
1641 * - inode_buffer_list for inode unlink buffers
1642 * - cancel_list for the cancelled buffers
1644 * Note that we add objects to the tail of the lists so that first-to-last
1645 * ordering is preserved within the lists. Adding objects to the head of the
1646 * list means when we traverse from the head we walk them in last-to-first
1647 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1648 * but for all other items there may be specific ordering that we need to
1652 xlog_recover_reorder_trans(
1654 struct xlog_recover
*trans
,
1657 xlog_recover_item_t
*item
, *n
;
1658 LIST_HEAD(sort_list
);
1659 LIST_HEAD(cancel_list
);
1660 LIST_HEAD(buffer_list
);
1661 LIST_HEAD(inode_buffer_list
);
1662 LIST_HEAD(inode_list
);
1664 list_splice_init(&trans
->r_itemq
, &sort_list
);
1665 list_for_each_entry_safe(item
, n
, &sort_list
, ri_list
) {
1666 xfs_buf_log_format_t
*buf_f
= item
->ri_buf
[0].i_addr
;
1668 switch (ITEM_TYPE(item
)) {
1669 case XFS_LI_ICREATE
:
1670 list_move_tail(&item
->ri_list
, &buffer_list
);
1673 if (buf_f
->blf_flags
& XFS_BLF_CANCEL
) {
1674 trace_xfs_log_recover_item_reorder_head(log
,
1676 list_move(&item
->ri_list
, &cancel_list
);
1679 if (buf_f
->blf_flags
& XFS_BLF_INODE_BUF
) {
1680 list_move(&item
->ri_list
, &inode_buffer_list
);
1683 list_move_tail(&item
->ri_list
, &buffer_list
);
1687 case XFS_LI_QUOTAOFF
:
1690 trace_xfs_log_recover_item_reorder_tail(log
,
1692 list_move_tail(&item
->ri_list
, &inode_list
);
1696 "%s: unrecognized type of log operation",
1699 return XFS_ERROR(EIO
);
1702 ASSERT(list_empty(&sort_list
));
1703 if (!list_empty(&buffer_list
))
1704 list_splice(&buffer_list
, &trans
->r_itemq
);
1705 if (!list_empty(&inode_list
))
1706 list_splice_tail(&inode_list
, &trans
->r_itemq
);
1707 if (!list_empty(&inode_buffer_list
))
1708 list_splice_tail(&inode_buffer_list
, &trans
->r_itemq
);
1709 if (!list_empty(&cancel_list
))
1710 list_splice_tail(&cancel_list
, &trans
->r_itemq
);
1715 * Build up the table of buf cancel records so that we don't replay
1716 * cancelled data in the second pass. For buffer records that are
1717 * not cancel records, there is nothing to do here so we just return.
1719 * If we get a cancel record which is already in the table, this indicates
1720 * that the buffer was cancelled multiple times. In order to ensure
1721 * that during pass 2 we keep the record in the table until we reach its
1722 * last occurrence in the log, we keep a reference count in the cancel
1723 * record in the table to tell us how many times we expect to see this
1724 * record during the second pass.
1727 xlog_recover_buffer_pass1(
1729 struct xlog_recover_item
*item
)
1731 xfs_buf_log_format_t
*buf_f
= item
->ri_buf
[0].i_addr
;
1732 struct list_head
*bucket
;
1733 struct xfs_buf_cancel
*bcp
;
1736 * If this isn't a cancel buffer item, then just return.
1738 if (!(buf_f
->blf_flags
& XFS_BLF_CANCEL
)) {
1739 trace_xfs_log_recover_buf_not_cancel(log
, buf_f
);
1744 * Insert an xfs_buf_cancel record into the hash table of them.
1745 * If there is already an identical record, bump its reference count.
1747 bucket
= XLOG_BUF_CANCEL_BUCKET(log
, buf_f
->blf_blkno
);
1748 list_for_each_entry(bcp
, bucket
, bc_list
) {
1749 if (bcp
->bc_blkno
== buf_f
->blf_blkno
&&
1750 bcp
->bc_len
== buf_f
->blf_len
) {
1752 trace_xfs_log_recover_buf_cancel_ref_inc(log
, buf_f
);
1757 bcp
= kmem_alloc(sizeof(struct xfs_buf_cancel
), KM_SLEEP
);
1758 bcp
->bc_blkno
= buf_f
->blf_blkno
;
1759 bcp
->bc_len
= buf_f
->blf_len
;
1760 bcp
->bc_refcount
= 1;
1761 list_add_tail(&bcp
->bc_list
, bucket
);
1763 trace_xfs_log_recover_buf_cancel_add(log
, buf_f
);
1768 * Check to see whether the buffer being recovered has a corresponding
1769 * entry in the buffer cancel record table. If it does then return 1
1770 * so that it will be cancelled, otherwise return 0. If the buffer is
1771 * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
1772 * the refcount on the entry in the table and remove it from the table
1773 * if this is the last reference.
1775 * We remove the cancel record from the table when we encounter its
1776 * last occurrence in the log so that if the same buffer is re-used
1777 * again after its last cancellation we actually replay the changes
1778 * made at that point.
1781 xlog_check_buffer_cancelled(
1787 struct list_head
*bucket
;
1788 struct xfs_buf_cancel
*bcp
;
1790 if (log
->l_buf_cancel_table
== NULL
) {
1792 * There is nothing in the table built in pass one,
1793 * so this buffer must not be cancelled.
1795 ASSERT(!(flags
& XFS_BLF_CANCEL
));
1800 * Search for an entry in the cancel table that matches our buffer.
1802 bucket
= XLOG_BUF_CANCEL_BUCKET(log
, blkno
);
1803 list_for_each_entry(bcp
, bucket
, bc_list
) {
1804 if (bcp
->bc_blkno
== blkno
&& bcp
->bc_len
== len
)
1809 * We didn't find a corresponding entry in the table, so return 0 so
1810 * that the buffer is NOT cancelled.
1812 ASSERT(!(flags
& XFS_BLF_CANCEL
));
1817 * We've go a match, so return 1 so that the recovery of this buffer
1818 * is cancelled. If this buffer is actually a buffer cancel log
1819 * item, then decrement the refcount on the one in the table and
1820 * remove it if this is the last reference.
1822 if (flags
& XFS_BLF_CANCEL
) {
1823 if (--bcp
->bc_refcount
== 0) {
1824 list_del(&bcp
->bc_list
);
1832 * Perform recovery for a buffer full of inodes. In these buffers, the only
1833 * data which should be recovered is that which corresponds to the
1834 * di_next_unlinked pointers in the on disk inode structures. The rest of the
1835 * data for the inodes is always logged through the inodes themselves rather
1836 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1838 * The only time when buffers full of inodes are fully recovered is when the
1839 * buffer is full of newly allocated inodes. In this case the buffer will
1840 * not be marked as an inode buffer and so will be sent to
1841 * xlog_recover_do_reg_buffer() below during recovery.
1844 xlog_recover_do_inode_buffer(
1845 struct xfs_mount
*mp
,
1846 xlog_recover_item_t
*item
,
1848 xfs_buf_log_format_t
*buf_f
)
1854 int reg_buf_offset
= 0;
1855 int reg_buf_bytes
= 0;
1856 int next_unlinked_offset
;
1858 xfs_agino_t
*logged_nextp
;
1859 xfs_agino_t
*buffer_nextp
;
1861 trace_xfs_log_recover_buf_inode_buf(mp
->m_log
, buf_f
);
1864 * Post recovery validation only works properly on CRC enabled
1867 if (xfs_sb_version_hascrc(&mp
->m_sb
))
1868 bp
->b_ops
= &xfs_inode_buf_ops
;
1870 inodes_per_buf
= BBTOB(bp
->b_io_length
) >> mp
->m_sb
.sb_inodelog
;
1871 for (i
= 0; i
< inodes_per_buf
; i
++) {
1872 next_unlinked_offset
= (i
* mp
->m_sb
.sb_inodesize
) +
1873 offsetof(xfs_dinode_t
, di_next_unlinked
);
1875 while (next_unlinked_offset
>=
1876 (reg_buf_offset
+ reg_buf_bytes
)) {
1878 * The next di_next_unlinked field is beyond
1879 * the current logged region. Find the next
1880 * logged region that contains or is beyond
1881 * the current di_next_unlinked field.
1884 bit
= xfs_next_bit(buf_f
->blf_data_map
,
1885 buf_f
->blf_map_size
, bit
);
1888 * If there are no more logged regions in the
1889 * buffer, then we're done.
1894 nbits
= xfs_contig_bits(buf_f
->blf_data_map
,
1895 buf_f
->blf_map_size
, bit
);
1897 reg_buf_offset
= bit
<< XFS_BLF_SHIFT
;
1898 reg_buf_bytes
= nbits
<< XFS_BLF_SHIFT
;
1903 * If the current logged region starts after the current
1904 * di_next_unlinked field, then move on to the next
1905 * di_next_unlinked field.
1907 if (next_unlinked_offset
< reg_buf_offset
)
1910 ASSERT(item
->ri_buf
[item_index
].i_addr
!= NULL
);
1911 ASSERT((item
->ri_buf
[item_index
].i_len
% XFS_BLF_CHUNK
) == 0);
1912 ASSERT((reg_buf_offset
+ reg_buf_bytes
) <=
1913 BBTOB(bp
->b_io_length
));
1916 * The current logged region contains a copy of the
1917 * current di_next_unlinked field. Extract its value
1918 * and copy it to the buffer copy.
1920 logged_nextp
= item
->ri_buf
[item_index
].i_addr
+
1921 next_unlinked_offset
- reg_buf_offset
;
1922 if (unlikely(*logged_nextp
== 0)) {
1924 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1925 "Trying to replay bad (0) inode di_next_unlinked field.",
1927 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1928 XFS_ERRLEVEL_LOW
, mp
);
1929 return XFS_ERROR(EFSCORRUPTED
);
1932 buffer_nextp
= (xfs_agino_t
*)xfs_buf_offset(bp
,
1933 next_unlinked_offset
);
1934 *buffer_nextp
= *logged_nextp
;
1937 * If necessary, recalculate the CRC in the on-disk inode. We
1938 * have to leave the inode in a consistent state for whoever
1941 xfs_dinode_calc_crc(mp
, (struct xfs_dinode
*)
1942 xfs_buf_offset(bp
, i
* mp
->m_sb
.sb_inodesize
));
1950 * Validate the recovered buffer is of the correct type and attach the
1951 * appropriate buffer operations to them for writeback. Magic numbers are in a
1953 * the first 16 bits of the buffer (inode buffer, dquot buffer),
1954 * the first 32 bits of the buffer (most blocks),
1955 * inside a struct xfs_da_blkinfo at the start of the buffer.
1958 xlog_recovery_validate_buf_type(
1959 struct xfs_mount
*mp
,
1961 xfs_buf_log_format_t
*buf_f
)
1963 struct xfs_da_blkinfo
*info
= bp
->b_addr
;
1968 magic32
= be32_to_cpu(*(__be32
*)bp
->b_addr
);
1969 magic16
= be16_to_cpu(*(__be16
*)bp
->b_addr
);
1970 magicda
= be16_to_cpu(info
->magic
);
1971 switch (xfs_blft_from_flags(buf_f
)) {
1972 case XFS_BLFT_BTREE_BUF
:
1974 case XFS_ABTB_CRC_MAGIC
:
1975 case XFS_ABTC_CRC_MAGIC
:
1976 case XFS_ABTB_MAGIC
:
1977 case XFS_ABTC_MAGIC
:
1978 bp
->b_ops
= &xfs_allocbt_buf_ops
;
1980 case XFS_IBT_CRC_MAGIC
:
1982 bp
->b_ops
= &xfs_inobt_buf_ops
;
1984 case XFS_BMAP_CRC_MAGIC
:
1985 case XFS_BMAP_MAGIC
:
1986 bp
->b_ops
= &xfs_bmbt_buf_ops
;
1989 xfs_warn(mp
, "Bad btree block magic!");
1994 case XFS_BLFT_AGF_BUF
:
1995 if (magic32
!= XFS_AGF_MAGIC
) {
1996 xfs_warn(mp
, "Bad AGF block magic!");
2000 bp
->b_ops
= &xfs_agf_buf_ops
;
2002 case XFS_BLFT_AGFL_BUF
:
2003 if (!xfs_sb_version_hascrc(&mp
->m_sb
))
2005 if (magic32
!= XFS_AGFL_MAGIC
) {
2006 xfs_warn(mp
, "Bad AGFL block magic!");
2010 bp
->b_ops
= &xfs_agfl_buf_ops
;
2012 case XFS_BLFT_AGI_BUF
:
2013 if (magic32
!= XFS_AGI_MAGIC
) {
2014 xfs_warn(mp
, "Bad AGI block magic!");
2018 bp
->b_ops
= &xfs_agi_buf_ops
;
2020 case XFS_BLFT_UDQUOT_BUF
:
2021 case XFS_BLFT_PDQUOT_BUF
:
2022 case XFS_BLFT_GDQUOT_BUF
:
2023 #ifdef CONFIG_XFS_QUOTA
2024 if (magic16
!= XFS_DQUOT_MAGIC
) {
2025 xfs_warn(mp
, "Bad DQUOT block magic!");
2029 bp
->b_ops
= &xfs_dquot_buf_ops
;
2032 "Trying to recover dquots without QUOTA support built in!");
2036 case XFS_BLFT_DINO_BUF
:
2038 * we get here with inode allocation buffers, not buffers that
2039 * track unlinked list changes.
2041 if (magic16
!= XFS_DINODE_MAGIC
) {
2042 xfs_warn(mp
, "Bad INODE block magic!");
2046 bp
->b_ops
= &xfs_inode_buf_ops
;
2048 case XFS_BLFT_SYMLINK_BUF
:
2049 if (magic32
!= XFS_SYMLINK_MAGIC
) {
2050 xfs_warn(mp
, "Bad symlink block magic!");
2054 bp
->b_ops
= &xfs_symlink_buf_ops
;
2056 case XFS_BLFT_DIR_BLOCK_BUF
:
2057 if (magic32
!= XFS_DIR2_BLOCK_MAGIC
&&
2058 magic32
!= XFS_DIR3_BLOCK_MAGIC
) {
2059 xfs_warn(mp
, "Bad dir block magic!");
2063 bp
->b_ops
= &xfs_dir3_block_buf_ops
;
2065 case XFS_BLFT_DIR_DATA_BUF
:
2066 if (magic32
!= XFS_DIR2_DATA_MAGIC
&&
2067 magic32
!= XFS_DIR3_DATA_MAGIC
) {
2068 xfs_warn(mp
, "Bad dir data magic!");
2072 bp
->b_ops
= &xfs_dir3_data_buf_ops
;
2074 case XFS_BLFT_DIR_FREE_BUF
:
2075 if (magic32
!= XFS_DIR2_FREE_MAGIC
&&
2076 magic32
!= XFS_DIR3_FREE_MAGIC
) {
2077 xfs_warn(mp
, "Bad dir3 free magic!");
2081 bp
->b_ops
= &xfs_dir3_free_buf_ops
;
2083 case XFS_BLFT_DIR_LEAF1_BUF
:
2084 if (magicda
!= XFS_DIR2_LEAF1_MAGIC
&&
2085 magicda
!= XFS_DIR3_LEAF1_MAGIC
) {
2086 xfs_warn(mp
, "Bad dir leaf1 magic!");
2090 bp
->b_ops
= &xfs_dir3_leaf1_buf_ops
;
2092 case XFS_BLFT_DIR_LEAFN_BUF
:
2093 if (magicda
!= XFS_DIR2_LEAFN_MAGIC
&&
2094 magicda
!= XFS_DIR3_LEAFN_MAGIC
) {
2095 xfs_warn(mp
, "Bad dir leafn magic!");
2099 bp
->b_ops
= &xfs_dir3_leafn_buf_ops
;
2101 case XFS_BLFT_DA_NODE_BUF
:
2102 if (magicda
!= XFS_DA_NODE_MAGIC
&&
2103 magicda
!= XFS_DA3_NODE_MAGIC
) {
2104 xfs_warn(mp
, "Bad da node magic!");
2108 bp
->b_ops
= &xfs_da3_node_buf_ops
;
2110 case XFS_BLFT_ATTR_LEAF_BUF
:
2111 if (magicda
!= XFS_ATTR_LEAF_MAGIC
&&
2112 magicda
!= XFS_ATTR3_LEAF_MAGIC
) {
2113 xfs_warn(mp
, "Bad attr leaf magic!");
2117 bp
->b_ops
= &xfs_attr3_leaf_buf_ops
;
2119 case XFS_BLFT_ATTR_RMT_BUF
:
2120 if (!xfs_sb_version_hascrc(&mp
->m_sb
))
2122 if (magic32
!= XFS_ATTR3_RMT_MAGIC
) {
2123 xfs_warn(mp
, "Bad attr remote magic!");
2127 bp
->b_ops
= &xfs_attr3_rmt_buf_ops
;
2129 case XFS_BLFT_SB_BUF
:
2130 if (magic32
!= XFS_SB_MAGIC
) {
2131 xfs_warn(mp
, "Bad SB block magic!");
2135 bp
->b_ops
= &xfs_sb_buf_ops
;
2138 xfs_warn(mp
, "Unknown buffer type %d!",
2139 xfs_blft_from_flags(buf_f
));
2145 * Perform a 'normal' buffer recovery. Each logged region of the
2146 * buffer should be copied over the corresponding region in the
2147 * given buffer. The bitmap in the buf log format structure indicates
2148 * where to place the logged data.
2151 xlog_recover_do_reg_buffer(
2152 struct xfs_mount
*mp
,
2153 xlog_recover_item_t
*item
,
2155 xfs_buf_log_format_t
*buf_f
)
2162 trace_xfs_log_recover_buf_reg_buf(mp
->m_log
, buf_f
);
2165 i
= 1; /* 0 is the buf format structure */
2167 bit
= xfs_next_bit(buf_f
->blf_data_map
,
2168 buf_f
->blf_map_size
, bit
);
2171 nbits
= xfs_contig_bits(buf_f
->blf_data_map
,
2172 buf_f
->blf_map_size
, bit
);
2174 ASSERT(item
->ri_buf
[i
].i_addr
!= NULL
);
2175 ASSERT(item
->ri_buf
[i
].i_len
% XFS_BLF_CHUNK
== 0);
2176 ASSERT(BBTOB(bp
->b_io_length
) >=
2177 ((uint
)bit
<< XFS_BLF_SHIFT
) + (nbits
<< XFS_BLF_SHIFT
));
2180 * The dirty regions logged in the buffer, even though
2181 * contiguous, may span multiple chunks. This is because the
2182 * dirty region may span a physical page boundary in a buffer
2183 * and hence be split into two separate vectors for writing into
2184 * the log. Hence we need to trim nbits back to the length of
2185 * the current region being copied out of the log.
2187 if (item
->ri_buf
[i
].i_len
< (nbits
<< XFS_BLF_SHIFT
))
2188 nbits
= item
->ri_buf
[i
].i_len
>> XFS_BLF_SHIFT
;
2191 * Do a sanity check if this is a dquot buffer. Just checking
2192 * the first dquot in the buffer should do. XXXThis is
2193 * probably a good thing to do for other buf types also.
2196 if (buf_f
->blf_flags
&
2197 (XFS_BLF_UDQUOT_BUF
|XFS_BLF_PDQUOT_BUF
|XFS_BLF_GDQUOT_BUF
)) {
2198 if (item
->ri_buf
[i
].i_addr
== NULL
) {
2200 "XFS: NULL dquot in %s.", __func__
);
2203 if (item
->ri_buf
[i
].i_len
< sizeof(xfs_disk_dquot_t
)) {
2205 "XFS: dquot too small (%d) in %s.",
2206 item
->ri_buf
[i
].i_len
, __func__
);
2209 error
= xfs_qm_dqcheck(mp
, item
->ri_buf
[i
].i_addr
,
2210 -1, 0, XFS_QMOPT_DOWARN
,
2211 "dquot_buf_recover");
2216 memcpy(xfs_buf_offset(bp
,
2217 (uint
)bit
<< XFS_BLF_SHIFT
), /* dest */
2218 item
->ri_buf
[i
].i_addr
, /* source */
2219 nbits
<<XFS_BLF_SHIFT
); /* length */
2225 /* Shouldn't be any more regions */
2226 ASSERT(i
== item
->ri_total
);
2229 * We can only do post recovery validation on items on CRC enabled
2230 * fielsystems as we need to know when the buffer was written to be able
2231 * to determine if we should have replayed the item. If we replay old
2232 * metadata over a newer buffer, then it will enter a temporarily
2233 * inconsistent state resulting in verification failures. Hence for now
2234 * just avoid the verification stage for non-crc filesystems
2236 if (xfs_sb_version_hascrc(&mp
->m_sb
))
2237 xlog_recovery_validate_buf_type(mp
, bp
, buf_f
);
2241 * Do some primitive error checking on ondisk dquot data structures.
2245 struct xfs_mount
*mp
,
2246 xfs_disk_dquot_t
*ddq
,
2248 uint type
, /* used only when IO_dorepair is true */
2252 xfs_dqblk_t
*d
= (xfs_dqblk_t
*)ddq
;
2256 * We can encounter an uninitialized dquot buffer for 2 reasons:
2257 * 1. If we crash while deleting the quotainode(s), and those blks got
2258 * used for user data. This is because we take the path of regular
2259 * file deletion; however, the size field of quotainodes is never
2260 * updated, so all the tricks that we play in itruncate_finish
2261 * don't quite matter.
2263 * 2. We don't play the quota buffers when there's a quotaoff logitem.
2264 * But the allocation will be replayed so we'll end up with an
2265 * uninitialized quota block.
2267 * This is all fine; things are still consistent, and we haven't lost
2268 * any quota information. Just don't complain about bad dquot blks.
2270 if (ddq
->d_magic
!= cpu_to_be16(XFS_DQUOT_MAGIC
)) {
2271 if (flags
& XFS_QMOPT_DOWARN
)
2273 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
2274 str
, id
, be16_to_cpu(ddq
->d_magic
), XFS_DQUOT_MAGIC
);
2277 if (ddq
->d_version
!= XFS_DQUOT_VERSION
) {
2278 if (flags
& XFS_QMOPT_DOWARN
)
2280 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
2281 str
, id
, ddq
->d_version
, XFS_DQUOT_VERSION
);
2285 if (ddq
->d_flags
!= XFS_DQ_USER
&&
2286 ddq
->d_flags
!= XFS_DQ_PROJ
&&
2287 ddq
->d_flags
!= XFS_DQ_GROUP
) {
2288 if (flags
& XFS_QMOPT_DOWARN
)
2290 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
2291 str
, id
, ddq
->d_flags
);
2295 if (id
!= -1 && id
!= be32_to_cpu(ddq
->d_id
)) {
2296 if (flags
& XFS_QMOPT_DOWARN
)
2298 "%s : ondisk-dquot 0x%p, ID mismatch: "
2299 "0x%x expected, found id 0x%x",
2300 str
, ddq
, id
, be32_to_cpu(ddq
->d_id
));
2304 if (!errs
&& ddq
->d_id
) {
2305 if (ddq
->d_blk_softlimit
&&
2306 be64_to_cpu(ddq
->d_bcount
) >
2307 be64_to_cpu(ddq
->d_blk_softlimit
)) {
2308 if (!ddq
->d_btimer
) {
2309 if (flags
& XFS_QMOPT_DOWARN
)
2311 "%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
2312 str
, (int)be32_to_cpu(ddq
->d_id
), ddq
);
2316 if (ddq
->d_ino_softlimit
&&
2317 be64_to_cpu(ddq
->d_icount
) >
2318 be64_to_cpu(ddq
->d_ino_softlimit
)) {
2319 if (!ddq
->d_itimer
) {
2320 if (flags
& XFS_QMOPT_DOWARN
)
2322 "%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
2323 str
, (int)be32_to_cpu(ddq
->d_id
), ddq
);
2327 if (ddq
->d_rtb_softlimit
&&
2328 be64_to_cpu(ddq
->d_rtbcount
) >
2329 be64_to_cpu(ddq
->d_rtb_softlimit
)) {
2330 if (!ddq
->d_rtbtimer
) {
2331 if (flags
& XFS_QMOPT_DOWARN
)
2333 "%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
2334 str
, (int)be32_to_cpu(ddq
->d_id
), ddq
);
2340 if (!errs
|| !(flags
& XFS_QMOPT_DQREPAIR
))
2343 if (flags
& XFS_QMOPT_DOWARN
)
2344 xfs_notice(mp
, "Re-initializing dquot ID 0x%x", id
);
2347 * Typically, a repair is only requested by quotacheck.
2350 ASSERT(flags
& XFS_QMOPT_DQREPAIR
);
2351 memset(d
, 0, sizeof(xfs_dqblk_t
));
2353 d
->dd_diskdq
.d_magic
= cpu_to_be16(XFS_DQUOT_MAGIC
);
2354 d
->dd_diskdq
.d_version
= XFS_DQUOT_VERSION
;
2355 d
->dd_diskdq
.d_flags
= type
;
2356 d
->dd_diskdq
.d_id
= cpu_to_be32(id
);
2358 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
2359 uuid_copy(&d
->dd_uuid
, &mp
->m_sb
.sb_uuid
);
2360 xfs_update_cksum((char *)d
, sizeof(struct xfs_dqblk
),
2368 * Perform a dquot buffer recovery.
2369 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2370 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2371 * Else, treat it as a regular buffer and do recovery.
2374 xlog_recover_do_dquot_buffer(
2375 struct xfs_mount
*mp
,
2377 struct xlog_recover_item
*item
,
2379 struct xfs_buf_log_format
*buf_f
)
2383 trace_xfs_log_recover_buf_dquot_buf(log
, buf_f
);
2386 * Filesystems are required to send in quota flags at mount time.
2388 if (mp
->m_qflags
== 0) {
2393 if (buf_f
->blf_flags
& XFS_BLF_UDQUOT_BUF
)
2394 type
|= XFS_DQ_USER
;
2395 if (buf_f
->blf_flags
& XFS_BLF_PDQUOT_BUF
)
2396 type
|= XFS_DQ_PROJ
;
2397 if (buf_f
->blf_flags
& XFS_BLF_GDQUOT_BUF
)
2398 type
|= XFS_DQ_GROUP
;
2400 * This type of quotas was turned off, so ignore this buffer
2402 if (log
->l_quotaoffs_flag
& type
)
2405 xlog_recover_do_reg_buffer(mp
, item
, bp
, buf_f
);
2409 * This routine replays a modification made to a buffer at runtime.
2410 * There are actually two types of buffer, regular and inode, which
2411 * are handled differently. Inode buffers are handled differently
2412 * in that we only recover a specific set of data from them, namely
2413 * the inode di_next_unlinked fields. This is because all other inode
2414 * data is actually logged via inode records and any data we replay
2415 * here which overlaps that may be stale.
2417 * When meta-data buffers are freed at run time we log a buffer item
2418 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2419 * of the buffer in the log should not be replayed at recovery time.
2420 * This is so that if the blocks covered by the buffer are reused for
2421 * file data before we crash we don't end up replaying old, freed
2422 * meta-data into a user's file.
2424 * To handle the cancellation of buffer log items, we make two passes
2425 * over the log during recovery. During the first we build a table of
2426 * those buffers which have been cancelled, and during the second we
2427 * only replay those buffers which do not have corresponding cancel
2428 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2429 * for more details on the implementation of the table of cancel records.
2432 xlog_recover_buffer_pass2(
2434 struct list_head
*buffer_list
,
2435 struct xlog_recover_item
*item
)
2437 xfs_buf_log_format_t
*buf_f
= item
->ri_buf
[0].i_addr
;
2438 xfs_mount_t
*mp
= log
->l_mp
;
2444 * In this pass we only want to recover all the buffers which have
2445 * not been cancelled and are not cancellation buffers themselves.
2447 if (xlog_check_buffer_cancelled(log
, buf_f
->blf_blkno
,
2448 buf_f
->blf_len
, buf_f
->blf_flags
)) {
2449 trace_xfs_log_recover_buf_cancel(log
, buf_f
);
2453 trace_xfs_log_recover_buf_recover(log
, buf_f
);
2456 if (buf_f
->blf_flags
& XFS_BLF_INODE_BUF
)
2457 buf_flags
|= XBF_UNMAPPED
;
2459 bp
= xfs_buf_read(mp
->m_ddev_targp
, buf_f
->blf_blkno
, buf_f
->blf_len
,
2462 return XFS_ERROR(ENOMEM
);
2463 error
= bp
->b_error
;
2465 xfs_buf_ioerror_alert(bp
, "xlog_recover_do..(read#1)");
2470 if (buf_f
->blf_flags
& XFS_BLF_INODE_BUF
) {
2471 error
= xlog_recover_do_inode_buffer(mp
, item
, bp
, buf_f
);
2472 } else if (buf_f
->blf_flags
&
2473 (XFS_BLF_UDQUOT_BUF
|XFS_BLF_PDQUOT_BUF
|XFS_BLF_GDQUOT_BUF
)) {
2474 xlog_recover_do_dquot_buffer(mp
, log
, item
, bp
, buf_f
);
2476 xlog_recover_do_reg_buffer(mp
, item
, bp
, buf_f
);
2479 return XFS_ERROR(error
);
2482 * Perform delayed write on the buffer. Asynchronous writes will be
2483 * slower when taking into account all the buffers to be flushed.
2485 * Also make sure that only inode buffers with good sizes stay in
2486 * the buffer cache. The kernel moves inodes in buffers of 1 block
2487 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2488 * buffers in the log can be a different size if the log was generated
2489 * by an older kernel using unclustered inode buffers or a newer kernel
2490 * running with a different inode cluster size. Regardless, if the
2491 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2492 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2493 * the buffer out of the buffer cache so that the buffer won't
2494 * overlap with future reads of those inodes.
2496 if (XFS_DINODE_MAGIC
==
2497 be16_to_cpu(*((__be16
*)xfs_buf_offset(bp
, 0))) &&
2498 (BBTOB(bp
->b_io_length
) != MAX(log
->l_mp
->m_sb
.sb_blocksize
,
2499 (__uint32_t
)XFS_INODE_CLUSTER_SIZE(log
->l_mp
)))) {
2501 error
= xfs_bwrite(bp
);
2503 ASSERT(bp
->b_target
->bt_mount
== mp
);
2504 bp
->b_iodone
= xlog_recover_iodone
;
2505 xfs_buf_delwri_queue(bp
, buffer_list
);
2513 xlog_recover_inode_pass2(
2515 struct list_head
*buffer_list
,
2516 struct xlog_recover_item
*item
)
2518 xfs_inode_log_format_t
*in_f
;
2519 xfs_mount_t
*mp
= log
->l_mp
;
2528 xfs_icdinode_t
*dicp
;
2532 if (item
->ri_buf
[0].i_len
== sizeof(xfs_inode_log_format_t
)) {
2533 in_f
= item
->ri_buf
[0].i_addr
;
2535 in_f
= kmem_alloc(sizeof(xfs_inode_log_format_t
), KM_SLEEP
);
2537 error
= xfs_inode_item_format_convert(&item
->ri_buf
[0], in_f
);
2543 * Inode buffers can be freed, look out for it,
2544 * and do not replay the inode.
2546 if (xlog_check_buffer_cancelled(log
, in_f
->ilf_blkno
,
2547 in_f
->ilf_len
, 0)) {
2549 trace_xfs_log_recover_inode_cancel(log
, in_f
);
2552 trace_xfs_log_recover_inode_recover(log
, in_f
);
2554 bp
= xfs_buf_read(mp
->m_ddev_targp
, in_f
->ilf_blkno
, in_f
->ilf_len
, 0,
2555 &xfs_inode_buf_ops
);
2560 error
= bp
->b_error
;
2562 xfs_buf_ioerror_alert(bp
, "xlog_recover_do..(read#2)");
2566 ASSERT(in_f
->ilf_fields
& XFS_ILOG_CORE
);
2567 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, in_f
->ilf_boffset
);
2570 * Make sure the place we're flushing out to really looks
2573 if (unlikely(dip
->di_magic
!= cpu_to_be16(XFS_DINODE_MAGIC
))) {
2576 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2577 __func__
, dip
, bp
, in_f
->ilf_ino
);
2578 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2579 XFS_ERRLEVEL_LOW
, mp
);
2580 error
= EFSCORRUPTED
;
2583 dicp
= item
->ri_buf
[1].i_addr
;
2584 if (unlikely(dicp
->di_magic
!= XFS_DINODE_MAGIC
)) {
2587 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2588 __func__
, item
, in_f
->ilf_ino
);
2589 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2590 XFS_ERRLEVEL_LOW
, mp
);
2591 error
= EFSCORRUPTED
;
2595 /* Skip replay when the on disk inode is newer than the log one */
2596 if (dicp
->di_flushiter
< be16_to_cpu(dip
->di_flushiter
)) {
2598 * Deal with the wrap case, DI_MAX_FLUSH is less
2599 * than smaller numbers
2601 if (be16_to_cpu(dip
->di_flushiter
) == DI_MAX_FLUSH
&&
2602 dicp
->di_flushiter
< (DI_MAX_FLUSH
>> 1)) {
2606 trace_xfs_log_recover_inode_skip(log
, in_f
);
2611 /* Take the opportunity to reset the flush iteration count */
2612 dicp
->di_flushiter
= 0;
2614 if (unlikely(S_ISREG(dicp
->di_mode
))) {
2615 if ((dicp
->di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
2616 (dicp
->di_format
!= XFS_DINODE_FMT_BTREE
)) {
2617 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
2618 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2621 "%s: Bad regular inode log record, rec ptr 0x%p, "
2622 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2623 __func__
, item
, dip
, bp
, in_f
->ilf_ino
);
2624 error
= EFSCORRUPTED
;
2627 } else if (unlikely(S_ISDIR(dicp
->di_mode
))) {
2628 if ((dicp
->di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
2629 (dicp
->di_format
!= XFS_DINODE_FMT_BTREE
) &&
2630 (dicp
->di_format
!= XFS_DINODE_FMT_LOCAL
)) {
2631 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
2632 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2635 "%s: Bad dir inode log record, rec ptr 0x%p, "
2636 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2637 __func__
, item
, dip
, bp
, in_f
->ilf_ino
);
2638 error
= EFSCORRUPTED
;
2642 if (unlikely(dicp
->di_nextents
+ dicp
->di_anextents
> dicp
->di_nblocks
)){
2643 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
2644 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2647 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2648 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2649 __func__
, item
, dip
, bp
, in_f
->ilf_ino
,
2650 dicp
->di_nextents
+ dicp
->di_anextents
,
2652 error
= EFSCORRUPTED
;
2655 if (unlikely(dicp
->di_forkoff
> mp
->m_sb
.sb_inodesize
)) {
2656 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
2657 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2660 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2661 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__
,
2662 item
, dip
, bp
, in_f
->ilf_ino
, dicp
->di_forkoff
);
2663 error
= EFSCORRUPTED
;
2666 isize
= xfs_icdinode_size(dicp
->di_version
);
2667 if (unlikely(item
->ri_buf
[1].i_len
> isize
)) {
2668 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
2669 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2672 "%s: Bad inode log record length %d, rec ptr 0x%p",
2673 __func__
, item
->ri_buf
[1].i_len
, item
);
2674 error
= EFSCORRUPTED
;
2678 /* The core is in in-core format */
2679 xfs_dinode_to_disk(dip
, dicp
);
2681 /* the rest is in on-disk format */
2682 if (item
->ri_buf
[1].i_len
> isize
) {
2683 memcpy((char *)dip
+ isize
,
2684 item
->ri_buf
[1].i_addr
+ isize
,
2685 item
->ri_buf
[1].i_len
- isize
);
2688 fields
= in_f
->ilf_fields
;
2689 switch (fields
& (XFS_ILOG_DEV
| XFS_ILOG_UUID
)) {
2691 xfs_dinode_put_rdev(dip
, in_f
->ilf_u
.ilfu_rdev
);
2694 memcpy(XFS_DFORK_DPTR(dip
),
2695 &in_f
->ilf_u
.ilfu_uuid
,
2700 if (in_f
->ilf_size
== 2)
2701 goto write_inode_buffer
;
2702 len
= item
->ri_buf
[2].i_len
;
2703 src
= item
->ri_buf
[2].i_addr
;
2704 ASSERT(in_f
->ilf_size
<= 4);
2705 ASSERT((in_f
->ilf_size
== 3) || (fields
& XFS_ILOG_AFORK
));
2706 ASSERT(!(fields
& XFS_ILOG_DFORK
) ||
2707 (len
== in_f
->ilf_dsize
));
2709 switch (fields
& XFS_ILOG_DFORK
) {
2710 case XFS_ILOG_DDATA
:
2712 memcpy(XFS_DFORK_DPTR(dip
), src
, len
);
2715 case XFS_ILOG_DBROOT
:
2716 xfs_bmbt_to_bmdr(mp
, (struct xfs_btree_block
*)src
, len
,
2717 (xfs_bmdr_block_t
*)XFS_DFORK_DPTR(dip
),
2718 XFS_DFORK_DSIZE(dip
, mp
));
2723 * There are no data fork flags set.
2725 ASSERT((fields
& XFS_ILOG_DFORK
) == 0);
2730 * If we logged any attribute data, recover it. There may or
2731 * may not have been any other non-core data logged in this
2734 if (in_f
->ilf_fields
& XFS_ILOG_AFORK
) {
2735 if (in_f
->ilf_fields
& XFS_ILOG_DFORK
) {
2740 len
= item
->ri_buf
[attr_index
].i_len
;
2741 src
= item
->ri_buf
[attr_index
].i_addr
;
2742 ASSERT(len
== in_f
->ilf_asize
);
2744 switch (in_f
->ilf_fields
& XFS_ILOG_AFORK
) {
2745 case XFS_ILOG_ADATA
:
2747 dest
= XFS_DFORK_APTR(dip
);
2748 ASSERT(len
<= XFS_DFORK_ASIZE(dip
, mp
));
2749 memcpy(dest
, src
, len
);
2752 case XFS_ILOG_ABROOT
:
2753 dest
= XFS_DFORK_APTR(dip
);
2754 xfs_bmbt_to_bmdr(mp
, (struct xfs_btree_block
*)src
,
2755 len
, (xfs_bmdr_block_t
*)dest
,
2756 XFS_DFORK_ASIZE(dip
, mp
));
2760 xfs_warn(log
->l_mp
, "%s: Invalid flag", __func__
);
2769 /* re-generate the checksum. */
2770 xfs_dinode_calc_crc(log
->l_mp
, dip
);
2772 ASSERT(bp
->b_target
->bt_mount
== mp
);
2773 bp
->b_iodone
= xlog_recover_iodone
;
2774 xfs_buf_delwri_queue(bp
, buffer_list
);
2779 return XFS_ERROR(error
);
2783 * Recover QUOTAOFF records. We simply make a note of it in the xlog
2784 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2788 xlog_recover_quotaoff_pass1(
2790 struct xlog_recover_item
*item
)
2792 xfs_qoff_logformat_t
*qoff_f
= item
->ri_buf
[0].i_addr
;
2796 * The logitem format's flag tells us if this was user quotaoff,
2797 * group/project quotaoff or both.
2799 if (qoff_f
->qf_flags
& XFS_UQUOTA_ACCT
)
2800 log
->l_quotaoffs_flag
|= XFS_DQ_USER
;
2801 if (qoff_f
->qf_flags
& XFS_PQUOTA_ACCT
)
2802 log
->l_quotaoffs_flag
|= XFS_DQ_PROJ
;
2803 if (qoff_f
->qf_flags
& XFS_GQUOTA_ACCT
)
2804 log
->l_quotaoffs_flag
|= XFS_DQ_GROUP
;
2810 * Recover a dquot record
2813 xlog_recover_dquot_pass2(
2815 struct list_head
*buffer_list
,
2816 struct xlog_recover_item
*item
)
2818 xfs_mount_t
*mp
= log
->l_mp
;
2820 struct xfs_disk_dquot
*ddq
, *recddq
;
2822 xfs_dq_logformat_t
*dq_f
;
2827 * Filesystems are required to send in quota flags at mount time.
2829 if (mp
->m_qflags
== 0)
2832 recddq
= item
->ri_buf
[1].i_addr
;
2833 if (recddq
== NULL
) {
2834 xfs_alert(log
->l_mp
, "NULL dquot in %s.", __func__
);
2835 return XFS_ERROR(EIO
);
2837 if (item
->ri_buf
[1].i_len
< sizeof(xfs_disk_dquot_t
)) {
2838 xfs_alert(log
->l_mp
, "dquot too small (%d) in %s.",
2839 item
->ri_buf
[1].i_len
, __func__
);
2840 return XFS_ERROR(EIO
);
2844 * This type of quotas was turned off, so ignore this record.
2846 type
= recddq
->d_flags
& (XFS_DQ_USER
| XFS_DQ_PROJ
| XFS_DQ_GROUP
);
2848 if (log
->l_quotaoffs_flag
& type
)
2852 * At this point we know that quota was _not_ turned off.
2853 * Since the mount flags are not indicating to us otherwise, this
2854 * must mean that quota is on, and the dquot needs to be replayed.
2855 * Remember that we may not have fully recovered the superblock yet,
2856 * so we can't do the usual trick of looking at the SB quota bits.
2858 * The other possibility, of course, is that the quota subsystem was
2859 * removed since the last mount - ENOSYS.
2861 dq_f
= item
->ri_buf
[0].i_addr
;
2863 error
= xfs_qm_dqcheck(mp
, recddq
, dq_f
->qlf_id
, 0, XFS_QMOPT_DOWARN
,
2864 "xlog_recover_dquot_pass2 (log copy)");
2866 return XFS_ERROR(EIO
);
2867 ASSERT(dq_f
->qlf_len
== 1);
2869 error
= xfs_trans_read_buf(mp
, NULL
, mp
->m_ddev_targp
, dq_f
->qlf_blkno
,
2870 XFS_FSB_TO_BB(mp
, dq_f
->qlf_len
), 0, &bp
,
2876 ddq
= (xfs_disk_dquot_t
*)xfs_buf_offset(bp
, dq_f
->qlf_boffset
);
2879 * At least the magic num portion should be on disk because this
2880 * was among a chunk of dquots created earlier, and we did some
2881 * minimal initialization then.
2883 error
= xfs_qm_dqcheck(mp
, ddq
, dq_f
->qlf_id
, 0, XFS_QMOPT_DOWARN
,
2884 "xlog_recover_dquot_pass2");
2887 return XFS_ERROR(EIO
);
2890 memcpy(ddq
, recddq
, item
->ri_buf
[1].i_len
);
2891 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
2892 xfs_update_cksum((char *)ddq
, sizeof(struct xfs_dqblk
),
2896 ASSERT(dq_f
->qlf_size
== 2);
2897 ASSERT(bp
->b_target
->bt_mount
== mp
);
2898 bp
->b_iodone
= xlog_recover_iodone
;
2899 xfs_buf_delwri_queue(bp
, buffer_list
);
2906 * This routine is called to create an in-core extent free intent
2907 * item from the efi format structure which was logged on disk.
2908 * It allocates an in-core efi, copies the extents from the format
2909 * structure into it, and adds the efi to the AIL with the given
2913 xlog_recover_efi_pass2(
2915 struct xlog_recover_item
*item
,
2919 xfs_mount_t
*mp
= log
->l_mp
;
2920 xfs_efi_log_item_t
*efip
;
2921 xfs_efi_log_format_t
*efi_formatp
;
2923 efi_formatp
= item
->ri_buf
[0].i_addr
;
2925 efip
= xfs_efi_init(mp
, efi_formatp
->efi_nextents
);
2926 if ((error
= xfs_efi_copy_format(&(item
->ri_buf
[0]),
2927 &(efip
->efi_format
)))) {
2928 xfs_efi_item_free(efip
);
2931 atomic_set(&efip
->efi_next_extent
, efi_formatp
->efi_nextents
);
2933 spin_lock(&log
->l_ailp
->xa_lock
);
2935 * xfs_trans_ail_update() drops the AIL lock.
2937 xfs_trans_ail_update(log
->l_ailp
, &efip
->efi_item
, lsn
);
2943 * This routine is called when an efd format structure is found in
2944 * a committed transaction in the log. It's purpose is to cancel
2945 * the corresponding efi if it was still in the log. To do this
2946 * it searches the AIL for the efi with an id equal to that in the
2947 * efd format structure. If we find it, we remove the efi from the
2951 xlog_recover_efd_pass2(
2953 struct xlog_recover_item
*item
)
2955 xfs_efd_log_format_t
*efd_formatp
;
2956 xfs_efi_log_item_t
*efip
= NULL
;
2957 xfs_log_item_t
*lip
;
2959 struct xfs_ail_cursor cur
;
2960 struct xfs_ail
*ailp
= log
->l_ailp
;
2962 efd_formatp
= item
->ri_buf
[0].i_addr
;
2963 ASSERT((item
->ri_buf
[0].i_len
== (sizeof(xfs_efd_log_format_32_t
) +
2964 ((efd_formatp
->efd_nextents
- 1) * sizeof(xfs_extent_32_t
)))) ||
2965 (item
->ri_buf
[0].i_len
== (sizeof(xfs_efd_log_format_64_t
) +
2966 ((efd_formatp
->efd_nextents
- 1) * sizeof(xfs_extent_64_t
)))));
2967 efi_id
= efd_formatp
->efd_efi_id
;
2970 * Search for the efi with the id in the efd format structure
2973 spin_lock(&ailp
->xa_lock
);
2974 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
2975 while (lip
!= NULL
) {
2976 if (lip
->li_type
== XFS_LI_EFI
) {
2977 efip
= (xfs_efi_log_item_t
*)lip
;
2978 if (efip
->efi_format
.efi_id
== efi_id
) {
2980 * xfs_trans_ail_delete() drops the
2983 xfs_trans_ail_delete(ailp
, lip
,
2984 SHUTDOWN_CORRUPT_INCORE
);
2985 xfs_efi_item_free(efip
);
2986 spin_lock(&ailp
->xa_lock
);
2990 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
2992 xfs_trans_ail_cursor_done(ailp
, &cur
);
2993 spin_unlock(&ailp
->xa_lock
);
2999 * This routine is called when an inode create format structure is found in a
3000 * committed transaction in the log. It's purpose is to initialise the inodes
3001 * being allocated on disk. This requires us to get inode cluster buffers that
3002 * match the range to be intialised, stamped with inode templates and written
3003 * by delayed write so that subsequent modifications will hit the cached buffer
3004 * and only need writing out at the end of recovery.
3007 xlog_recover_do_icreate_pass2(
3009 struct list_head
*buffer_list
,
3010 xlog_recover_item_t
*item
)
3012 struct xfs_mount
*mp
= log
->l_mp
;
3013 struct xfs_icreate_log
*icl
;
3014 xfs_agnumber_t agno
;
3015 xfs_agblock_t agbno
;
3018 xfs_agblock_t length
;
3020 icl
= (struct xfs_icreate_log
*)item
->ri_buf
[0].i_addr
;
3021 if (icl
->icl_type
!= XFS_LI_ICREATE
) {
3022 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad type");
3026 if (icl
->icl_size
!= 1) {
3027 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad icl size");
3031 agno
= be32_to_cpu(icl
->icl_ag
);
3032 if (agno
>= mp
->m_sb
.sb_agcount
) {
3033 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad agno");
3036 agbno
= be32_to_cpu(icl
->icl_agbno
);
3037 if (!agbno
|| agbno
== NULLAGBLOCK
|| agbno
>= mp
->m_sb
.sb_agblocks
) {
3038 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad agbno");
3041 isize
= be32_to_cpu(icl
->icl_isize
);
3042 if (isize
!= mp
->m_sb
.sb_inodesize
) {
3043 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad isize");
3046 count
= be32_to_cpu(icl
->icl_count
);
3048 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad count");
3051 length
= be32_to_cpu(icl
->icl_length
);
3052 if (!length
|| length
>= mp
->m_sb
.sb_agblocks
) {
3053 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad length");
3057 /* existing allocation is fixed value */
3058 ASSERT(count
== XFS_IALLOC_INODES(mp
));
3059 ASSERT(length
== XFS_IALLOC_BLOCKS(mp
));
3060 if (count
!= XFS_IALLOC_INODES(mp
) ||
3061 length
!= XFS_IALLOC_BLOCKS(mp
)) {
3062 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad count 2");
3067 * Inode buffers can be freed. Do not replay the inode initialisation as
3068 * we could be overwriting something written after this inode buffer was
3071 * XXX: we need to iterate all buffers and only init those that are not
3072 * cancelled. I think that a more fine grained factoring of
3073 * xfs_ialloc_inode_init may be appropriate here to enable this to be
3076 if (xlog_check_buffer_cancelled(log
,
3077 XFS_AGB_TO_DADDR(mp
, agno
, agbno
), length
, 0))
3080 xfs_ialloc_inode_init(mp
, NULL
, buffer_list
, agno
, agbno
, length
,
3081 be32_to_cpu(icl
->icl_gen
));
3086 * Free up any resources allocated by the transaction
3088 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
3091 xlog_recover_free_trans(
3092 struct xlog_recover
*trans
)
3094 xlog_recover_item_t
*item
, *n
;
3097 list_for_each_entry_safe(item
, n
, &trans
->r_itemq
, ri_list
) {
3098 /* Free the regions in the item. */
3099 list_del(&item
->ri_list
);
3100 for (i
= 0; i
< item
->ri_cnt
; i
++)
3101 kmem_free(item
->ri_buf
[i
].i_addr
);
3102 /* Free the item itself */
3103 kmem_free(item
->ri_buf
);
3106 /* Free the transaction recover structure */
3111 xlog_recover_commit_pass1(
3113 struct xlog_recover
*trans
,
3114 struct xlog_recover_item
*item
)
3116 trace_xfs_log_recover_item_recover(log
, trans
, item
, XLOG_RECOVER_PASS1
);
3118 switch (ITEM_TYPE(item
)) {
3120 return xlog_recover_buffer_pass1(log
, item
);
3121 case XFS_LI_QUOTAOFF
:
3122 return xlog_recover_quotaoff_pass1(log
, item
);
3127 case XFS_LI_ICREATE
:
3128 /* nothing to do in pass 1 */
3131 xfs_warn(log
->l_mp
, "%s: invalid item type (%d)",
3132 __func__
, ITEM_TYPE(item
));
3134 return XFS_ERROR(EIO
);
3139 xlog_recover_commit_pass2(
3141 struct xlog_recover
*trans
,
3142 struct list_head
*buffer_list
,
3143 struct xlog_recover_item
*item
)
3145 trace_xfs_log_recover_item_recover(log
, trans
, item
, XLOG_RECOVER_PASS2
);
3147 switch (ITEM_TYPE(item
)) {
3149 return xlog_recover_buffer_pass2(log
, buffer_list
, item
);
3151 return xlog_recover_inode_pass2(log
, buffer_list
, item
);
3153 return xlog_recover_efi_pass2(log
, item
, trans
->r_lsn
);
3155 return xlog_recover_efd_pass2(log
, item
);
3157 return xlog_recover_dquot_pass2(log
, buffer_list
, item
);
3158 case XFS_LI_ICREATE
:
3159 return xlog_recover_do_icreate_pass2(log
, buffer_list
, item
);
3160 case XFS_LI_QUOTAOFF
:
3161 /* nothing to do in pass2 */
3164 xfs_warn(log
->l_mp
, "%s: invalid item type (%d)",
3165 __func__
, ITEM_TYPE(item
));
3167 return XFS_ERROR(EIO
);
3172 * Perform the transaction.
3174 * If the transaction modifies a buffer or inode, do it now. Otherwise,
3175 * EFIs and EFDs get queued up by adding entries into the AIL for them.
3178 xlog_recover_commit_trans(
3180 struct xlog_recover
*trans
,
3183 int error
= 0, error2
;
3184 xlog_recover_item_t
*item
;
3185 LIST_HEAD (buffer_list
);
3187 hlist_del(&trans
->r_list
);
3189 error
= xlog_recover_reorder_trans(log
, trans
, pass
);
3193 list_for_each_entry(item
, &trans
->r_itemq
, ri_list
) {
3195 case XLOG_RECOVER_PASS1
:
3196 error
= xlog_recover_commit_pass1(log
, trans
, item
);
3198 case XLOG_RECOVER_PASS2
:
3199 error
= xlog_recover_commit_pass2(log
, trans
,
3200 &buffer_list
, item
);
3210 xlog_recover_free_trans(trans
);
3213 error2
= xfs_buf_delwri_submit(&buffer_list
);
3214 return error
? error
: error2
;
3218 xlog_recover_unmount_trans(
3220 struct xlog_recover
*trans
)
3222 /* Do nothing now */
3223 xfs_warn(log
->l_mp
, "%s: Unmount LR", __func__
);
3228 * There are two valid states of the r_state field. 0 indicates that the
3229 * transaction structure is in a normal state. We have either seen the
3230 * start of the transaction or the last operation we added was not a partial
3231 * operation. If the last operation we added to the transaction was a
3232 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
3234 * NOTE: skip LRs with 0 data length.
3237 xlog_recover_process_data(
3239 struct hlist_head rhash
[],
3240 struct xlog_rec_header
*rhead
,
3246 xlog_op_header_t
*ohead
;
3247 xlog_recover_t
*trans
;
3253 lp
= dp
+ be32_to_cpu(rhead
->h_len
);
3254 num_logops
= be32_to_cpu(rhead
->h_num_logops
);
3256 /* check the log format matches our own - else we can't recover */
3257 if (xlog_header_check_recover(log
->l_mp
, rhead
))
3258 return (XFS_ERROR(EIO
));
3260 while ((dp
< lp
) && num_logops
) {
3261 ASSERT(dp
+ sizeof(xlog_op_header_t
) <= lp
);
3262 ohead
= (xlog_op_header_t
*)dp
;
3263 dp
+= sizeof(xlog_op_header_t
);
3264 if (ohead
->oh_clientid
!= XFS_TRANSACTION
&&
3265 ohead
->oh_clientid
!= XFS_LOG
) {
3266 xfs_warn(log
->l_mp
, "%s: bad clientid 0x%x",
3267 __func__
, ohead
->oh_clientid
);
3269 return (XFS_ERROR(EIO
));
3271 tid
= be32_to_cpu(ohead
->oh_tid
);
3272 hash
= XLOG_RHASH(tid
);
3273 trans
= xlog_recover_find_tid(&rhash
[hash
], tid
);
3274 if (trans
== NULL
) { /* not found; add new tid */
3275 if (ohead
->oh_flags
& XLOG_START_TRANS
)
3276 xlog_recover_new_tid(&rhash
[hash
], tid
,
3277 be64_to_cpu(rhead
->h_lsn
));
3279 if (dp
+ be32_to_cpu(ohead
->oh_len
) > lp
) {
3280 xfs_warn(log
->l_mp
, "%s: bad length 0x%x",
3281 __func__
, be32_to_cpu(ohead
->oh_len
));
3283 return (XFS_ERROR(EIO
));
3285 flags
= ohead
->oh_flags
& ~XLOG_END_TRANS
;
3286 if (flags
& XLOG_WAS_CONT_TRANS
)
3287 flags
&= ~XLOG_CONTINUE_TRANS
;
3289 case XLOG_COMMIT_TRANS
:
3290 error
= xlog_recover_commit_trans(log
,
3293 case XLOG_UNMOUNT_TRANS
:
3294 error
= xlog_recover_unmount_trans(log
, trans
);
3296 case XLOG_WAS_CONT_TRANS
:
3297 error
= xlog_recover_add_to_cont_trans(log
,
3299 be32_to_cpu(ohead
->oh_len
));
3301 case XLOG_START_TRANS
:
3302 xfs_warn(log
->l_mp
, "%s: bad transaction",
3305 error
= XFS_ERROR(EIO
);
3308 case XLOG_CONTINUE_TRANS
:
3309 error
= xlog_recover_add_to_trans(log
, trans
,
3310 dp
, be32_to_cpu(ohead
->oh_len
));
3313 xfs_warn(log
->l_mp
, "%s: bad flag 0x%x",
3316 error
= XFS_ERROR(EIO
);
3322 dp
+= be32_to_cpu(ohead
->oh_len
);
3329 * Process an extent free intent item that was recovered from
3330 * the log. We need to free the extents that it describes.
3333 xlog_recover_process_efi(
3335 xfs_efi_log_item_t
*efip
)
3337 xfs_efd_log_item_t
*efdp
;
3342 xfs_fsblock_t startblock_fsb
;
3344 ASSERT(!test_bit(XFS_EFI_RECOVERED
, &efip
->efi_flags
));
3347 * First check the validity of the extents described by the
3348 * EFI. If any are bad, then assume that all are bad and
3349 * just toss the EFI.
3351 for (i
= 0; i
< efip
->efi_format
.efi_nextents
; i
++) {
3352 extp
= &(efip
->efi_format
.efi_extents
[i
]);
3353 startblock_fsb
= XFS_BB_TO_FSB(mp
,
3354 XFS_FSB_TO_DADDR(mp
, extp
->ext_start
));
3355 if ((startblock_fsb
== 0) ||
3356 (extp
->ext_len
== 0) ||
3357 (startblock_fsb
>= mp
->m_sb
.sb_dblocks
) ||
3358 (extp
->ext_len
>= mp
->m_sb
.sb_agblocks
)) {
3360 * This will pull the EFI from the AIL and
3361 * free the memory associated with it.
3363 set_bit(XFS_EFI_RECOVERED
, &efip
->efi_flags
);
3364 xfs_efi_release(efip
, efip
->efi_format
.efi_nextents
);
3365 return XFS_ERROR(EIO
);
3369 tp
= xfs_trans_alloc(mp
, 0);
3370 error
= xfs_trans_reserve(tp
, 0, XFS_ITRUNCATE_LOG_RES(mp
), 0, 0, 0);
3373 efdp
= xfs_trans_get_efd(tp
, efip
, efip
->efi_format
.efi_nextents
);
3375 for (i
= 0; i
< efip
->efi_format
.efi_nextents
; i
++) {
3376 extp
= &(efip
->efi_format
.efi_extents
[i
]);
3377 error
= xfs_free_extent(tp
, extp
->ext_start
, extp
->ext_len
);
3380 xfs_trans_log_efd_extent(tp
, efdp
, extp
->ext_start
,
3384 set_bit(XFS_EFI_RECOVERED
, &efip
->efi_flags
);
3385 error
= xfs_trans_commit(tp
, 0);
3389 xfs_trans_cancel(tp
, XFS_TRANS_ABORT
);
3394 * When this is called, all of the EFIs which did not have
3395 * corresponding EFDs should be in the AIL. What we do now
3396 * is free the extents associated with each one.
3398 * Since we process the EFIs in normal transactions, they
3399 * will be removed at some point after the commit. This prevents
3400 * us from just walking down the list processing each one.
3401 * We'll use a flag in the EFI to skip those that we've already
3402 * processed and use the AIL iteration mechanism's generation
3403 * count to try to speed this up at least a bit.
3405 * When we start, we know that the EFIs are the only things in
3406 * the AIL. As we process them, however, other items are added
3407 * to the AIL. Since everything added to the AIL must come after
3408 * everything already in the AIL, we stop processing as soon as
3409 * we see something other than an EFI in the AIL.
3412 xlog_recover_process_efis(
3415 xfs_log_item_t
*lip
;
3416 xfs_efi_log_item_t
*efip
;
3418 struct xfs_ail_cursor cur
;
3419 struct xfs_ail
*ailp
;
3422 spin_lock(&ailp
->xa_lock
);
3423 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
3424 while (lip
!= NULL
) {
3426 * We're done when we see something other than an EFI.
3427 * There should be no EFIs left in the AIL now.
3429 if (lip
->li_type
!= XFS_LI_EFI
) {
3431 for (; lip
; lip
= xfs_trans_ail_cursor_next(ailp
, &cur
))
3432 ASSERT(lip
->li_type
!= XFS_LI_EFI
);
3438 * Skip EFIs that we've already processed.
3440 efip
= (xfs_efi_log_item_t
*)lip
;
3441 if (test_bit(XFS_EFI_RECOVERED
, &efip
->efi_flags
)) {
3442 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
3446 spin_unlock(&ailp
->xa_lock
);
3447 error
= xlog_recover_process_efi(log
->l_mp
, efip
);
3448 spin_lock(&ailp
->xa_lock
);
3451 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
3454 xfs_trans_ail_cursor_done(ailp
, &cur
);
3455 spin_unlock(&ailp
->xa_lock
);
3460 * This routine performs a transaction to null out a bad inode pointer
3461 * in an agi unlinked inode hash bucket.
3464 xlog_recover_clear_agi_bucket(
3466 xfs_agnumber_t agno
,
3475 tp
= xfs_trans_alloc(mp
, XFS_TRANS_CLEAR_AGI_BUCKET
);
3476 error
= xfs_trans_reserve(tp
, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp
),
3481 error
= xfs_read_agi(mp
, tp
, agno
, &agibp
);
3485 agi
= XFS_BUF_TO_AGI(agibp
);
3486 agi
->agi_unlinked
[bucket
] = cpu_to_be32(NULLAGINO
);
3487 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
3488 (sizeof(xfs_agino_t
) * bucket
);
3489 xfs_trans_log_buf(tp
, agibp
, offset
,
3490 (offset
+ sizeof(xfs_agino_t
) - 1));
3492 error
= xfs_trans_commit(tp
, 0);
3498 xfs_trans_cancel(tp
, XFS_TRANS_ABORT
);
3500 xfs_warn(mp
, "%s: failed to clear agi %d. Continuing.", __func__
, agno
);
3505 xlog_recover_process_one_iunlink(
3506 struct xfs_mount
*mp
,
3507 xfs_agnumber_t agno
,
3511 struct xfs_buf
*ibp
;
3512 struct xfs_dinode
*dip
;
3513 struct xfs_inode
*ip
;
3517 ino
= XFS_AGINO_TO_INO(mp
, agno
, agino
);
3518 error
= xfs_iget(mp
, NULL
, ino
, 0, 0, &ip
);
3523 * Get the on disk inode to find the next inode in the bucket.
3525 error
= xfs_imap_to_bp(mp
, NULL
, &ip
->i_imap
, &dip
, &ibp
, 0, 0);
3529 ASSERT(ip
->i_d
.di_nlink
== 0);
3530 ASSERT(ip
->i_d
.di_mode
!= 0);
3532 /* setup for the next pass */
3533 agino
= be32_to_cpu(dip
->di_next_unlinked
);
3537 * Prevent any DMAPI event from being sent when the reference on
3538 * the inode is dropped.
3540 ip
->i_d
.di_dmevmask
= 0;
3549 * We can't read in the inode this bucket points to, or this inode
3550 * is messed up. Just ditch this bucket of inodes. We will lose
3551 * some inodes and space, but at least we won't hang.
3553 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3554 * clear the inode pointer in the bucket.
3556 xlog_recover_clear_agi_bucket(mp
, agno
, bucket
);
3561 * xlog_iunlink_recover
3563 * This is called during recovery to process any inodes which
3564 * we unlinked but not freed when the system crashed. These
3565 * inodes will be on the lists in the AGI blocks. What we do
3566 * here is scan all the AGIs and fully truncate and free any
3567 * inodes found on the lists. Each inode is removed from the
3568 * lists when it has been fully truncated and is freed. The
3569 * freeing of the inode and its removal from the list must be
3573 xlog_recover_process_iunlinks(
3577 xfs_agnumber_t agno
;
3588 * Prevent any DMAPI event from being sent while in this function.
3590 mp_dmevmask
= mp
->m_dmevmask
;
3593 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
3595 * Find the agi for this ag.
3597 error
= xfs_read_agi(mp
, NULL
, agno
, &agibp
);
3600 * AGI is b0rked. Don't process it.
3602 * We should probably mark the filesystem as corrupt
3603 * after we've recovered all the ag's we can....
3608 * Unlock the buffer so that it can be acquired in the normal
3609 * course of the transaction to truncate and free each inode.
3610 * Because we are not racing with anyone else here for the AGI
3611 * buffer, we don't even need to hold it locked to read the
3612 * initial unlinked bucket entries out of the buffer. We keep
3613 * buffer reference though, so that it stays pinned in memory
3614 * while we need the buffer.
3616 agi
= XFS_BUF_TO_AGI(agibp
);
3617 xfs_buf_unlock(agibp
);
3619 for (bucket
= 0; bucket
< XFS_AGI_UNLINKED_BUCKETS
; bucket
++) {
3620 agino
= be32_to_cpu(agi
->agi_unlinked
[bucket
]);
3621 while (agino
!= NULLAGINO
) {
3622 agino
= xlog_recover_process_one_iunlink(mp
,
3623 agno
, agino
, bucket
);
3626 xfs_buf_rele(agibp
);
3629 mp
->m_dmevmask
= mp_dmevmask
;
3633 * Upack the log buffer data and crc check it. If the check fails, issue a
3634 * warning if and only if the CRC in the header is non-zero. This makes the
3635 * check an advisory warning, and the zero CRC check will prevent failure
3636 * warnings from being emitted when upgrading the kernel from one that does not
3637 * add CRCs by default.
3639 * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log
3640 * corruption failure
3643 xlog_unpack_data_crc(
3644 struct xlog_rec_header
*rhead
,
3650 crc
= xlog_cksum(log
, rhead
, dp
, be32_to_cpu(rhead
->h_len
));
3651 if (crc
!= rhead
->h_crc
) {
3652 if (rhead
->h_crc
|| xfs_sb_version_hascrc(&log
->l_mp
->m_sb
)) {
3653 xfs_alert(log
->l_mp
,
3654 "log record CRC mismatch: found 0x%x, expected 0x%x.\n",
3655 le32_to_cpu(rhead
->h_crc
),
3657 xfs_hex_dump(dp
, 32);
3661 * If we've detected a log record corruption, then we can't
3662 * recover past this point. Abort recovery if we are enforcing
3663 * CRC protection by punting an error back up the stack.
3665 if (xfs_sb_version_hascrc(&log
->l_mp
->m_sb
))
3666 return EFSCORRUPTED
;
3674 struct xlog_rec_header
*rhead
,
3681 error
= xlog_unpack_data_crc(rhead
, dp
, log
);
3685 for (i
= 0; i
< BTOBB(be32_to_cpu(rhead
->h_len
)) &&
3686 i
< (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
); i
++) {
3687 *(__be32
*)dp
= *(__be32
*)&rhead
->h_cycle_data
[i
];
3691 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
3692 xlog_in_core_2_t
*xhdr
= (xlog_in_core_2_t
*)rhead
;
3693 for ( ; i
< BTOBB(be32_to_cpu(rhead
->h_len
)); i
++) {
3694 j
= i
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3695 k
= i
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3696 *(__be32
*)dp
= xhdr
[j
].hic_xheader
.xh_cycle_data
[k
];
3705 xlog_valid_rec_header(
3707 struct xlog_rec_header
*rhead
,
3712 if (unlikely(rhead
->h_magicno
!= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))) {
3713 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3714 XFS_ERRLEVEL_LOW
, log
->l_mp
);
3715 return XFS_ERROR(EFSCORRUPTED
);
3718 (!rhead
->h_version
||
3719 (be32_to_cpu(rhead
->h_version
) & (~XLOG_VERSION_OKBITS
))))) {
3720 xfs_warn(log
->l_mp
, "%s: unrecognised log version (%d).",
3721 __func__
, be32_to_cpu(rhead
->h_version
));
3722 return XFS_ERROR(EIO
);
3725 /* LR body must have data or it wouldn't have been written */
3726 hlen
= be32_to_cpu(rhead
->h_len
);
3727 if (unlikely( hlen
<= 0 || hlen
> INT_MAX
)) {
3728 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3729 XFS_ERRLEVEL_LOW
, log
->l_mp
);
3730 return XFS_ERROR(EFSCORRUPTED
);
3732 if (unlikely( blkno
> log
->l_logBBsize
|| blkno
> INT_MAX
)) {
3733 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3734 XFS_ERRLEVEL_LOW
, log
->l_mp
);
3735 return XFS_ERROR(EFSCORRUPTED
);
3741 * Read the log from tail to head and process the log records found.
3742 * Handle the two cases where the tail and head are in the same cycle
3743 * and where the active portion of the log wraps around the end of
3744 * the physical log separately. The pass parameter is passed through
3745 * to the routines called to process the data and is not looked at
3749 xlog_do_recovery_pass(
3751 xfs_daddr_t head_blk
,
3752 xfs_daddr_t tail_blk
,
3755 xlog_rec_header_t
*rhead
;
3758 xfs_buf_t
*hbp
, *dbp
;
3759 int error
= 0, h_size
;
3760 int bblks
, split_bblks
;
3761 int hblks
, split_hblks
, wrapped_hblks
;
3762 struct hlist_head rhash
[XLOG_RHASH_SIZE
];
3764 ASSERT(head_blk
!= tail_blk
);
3767 * Read the header of the tail block and get the iclog buffer size from
3768 * h_size. Use this to tell how many sectors make up the log header.
3770 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
3772 * When using variable length iclogs, read first sector of
3773 * iclog header and extract the header size from it. Get a
3774 * new hbp that is the correct size.
3776 hbp
= xlog_get_bp(log
, 1);
3780 error
= xlog_bread(log
, tail_blk
, 1, hbp
, &offset
);
3784 rhead
= (xlog_rec_header_t
*)offset
;
3785 error
= xlog_valid_rec_header(log
, rhead
, tail_blk
);
3788 h_size
= be32_to_cpu(rhead
->h_size
);
3789 if ((be32_to_cpu(rhead
->h_version
) & XLOG_VERSION_2
) &&
3790 (h_size
> XLOG_HEADER_CYCLE_SIZE
)) {
3791 hblks
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
3792 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
3795 hbp
= xlog_get_bp(log
, hblks
);
3800 ASSERT(log
->l_sectBBsize
== 1);
3802 hbp
= xlog_get_bp(log
, 1);
3803 h_size
= XLOG_BIG_RECORD_BSIZE
;
3808 dbp
= xlog_get_bp(log
, BTOBB(h_size
));
3814 memset(rhash
, 0, sizeof(rhash
));
3815 if (tail_blk
<= head_blk
) {
3816 for (blk_no
= tail_blk
; blk_no
< head_blk
; ) {
3817 error
= xlog_bread(log
, blk_no
, hblks
, hbp
, &offset
);
3821 rhead
= (xlog_rec_header_t
*)offset
;
3822 error
= xlog_valid_rec_header(log
, rhead
, blk_no
);
3826 /* blocks in data section */
3827 bblks
= (int)BTOBB(be32_to_cpu(rhead
->h_len
));
3828 error
= xlog_bread(log
, blk_no
+ hblks
, bblks
, dbp
,
3833 error
= xlog_unpack_data(rhead
, offset
, log
);
3837 error
= xlog_recover_process_data(log
,
3838 rhash
, rhead
, offset
, pass
);
3841 blk_no
+= bblks
+ hblks
;
3845 * Perform recovery around the end of the physical log.
3846 * When the head is not on the same cycle number as the tail,
3847 * we can't do a sequential recovery as above.
3850 while (blk_no
< log
->l_logBBsize
) {
3852 * Check for header wrapping around physical end-of-log
3854 offset
= hbp
->b_addr
;
3857 if (blk_no
+ hblks
<= log
->l_logBBsize
) {
3858 /* Read header in one read */
3859 error
= xlog_bread(log
, blk_no
, hblks
, hbp
,
3864 /* This LR is split across physical log end */
3865 if (blk_no
!= log
->l_logBBsize
) {
3866 /* some data before physical log end */
3867 ASSERT(blk_no
<= INT_MAX
);
3868 split_hblks
= log
->l_logBBsize
- (int)blk_no
;
3869 ASSERT(split_hblks
> 0);
3870 error
= xlog_bread(log
, blk_no
,
3878 * Note: this black magic still works with
3879 * large sector sizes (non-512) only because:
3880 * - we increased the buffer size originally
3881 * by 1 sector giving us enough extra space
3882 * for the second read;
3883 * - the log start is guaranteed to be sector
3885 * - we read the log end (LR header start)
3886 * _first_, then the log start (LR header end)
3887 * - order is important.
3889 wrapped_hblks
= hblks
- split_hblks
;
3890 error
= xlog_bread_offset(log
, 0,
3892 offset
+ BBTOB(split_hblks
));
3896 rhead
= (xlog_rec_header_t
*)offset
;
3897 error
= xlog_valid_rec_header(log
, rhead
,
3898 split_hblks
? blk_no
: 0);
3902 bblks
= (int)BTOBB(be32_to_cpu(rhead
->h_len
));
3905 /* Read in data for log record */
3906 if (blk_no
+ bblks
<= log
->l_logBBsize
) {
3907 error
= xlog_bread(log
, blk_no
, bblks
, dbp
,
3912 /* This log record is split across the
3913 * physical end of log */
3914 offset
= dbp
->b_addr
;
3916 if (blk_no
!= log
->l_logBBsize
) {
3917 /* some data is before the physical
3919 ASSERT(!wrapped_hblks
);
3920 ASSERT(blk_no
<= INT_MAX
);
3922 log
->l_logBBsize
- (int)blk_no
;
3923 ASSERT(split_bblks
> 0);
3924 error
= xlog_bread(log
, blk_no
,
3932 * Note: this black magic still works with
3933 * large sector sizes (non-512) only because:
3934 * - we increased the buffer size originally
3935 * by 1 sector giving us enough extra space
3936 * for the second read;
3937 * - the log start is guaranteed to be sector
3939 * - we read the log end (LR header start)
3940 * _first_, then the log start (LR header end)
3941 * - order is important.
3943 error
= xlog_bread_offset(log
, 0,
3944 bblks
- split_bblks
, dbp
,
3945 offset
+ BBTOB(split_bblks
));
3950 error
= xlog_unpack_data(rhead
, offset
, log
);
3954 error
= xlog_recover_process_data(log
, rhash
,
3955 rhead
, offset
, pass
);
3961 ASSERT(blk_no
>= log
->l_logBBsize
);
3962 blk_no
-= log
->l_logBBsize
;
3964 /* read first part of physical log */
3965 while (blk_no
< head_blk
) {
3966 error
= xlog_bread(log
, blk_no
, hblks
, hbp
, &offset
);
3970 rhead
= (xlog_rec_header_t
*)offset
;
3971 error
= xlog_valid_rec_header(log
, rhead
, blk_no
);
3975 bblks
= (int)BTOBB(be32_to_cpu(rhead
->h_len
));
3976 error
= xlog_bread(log
, blk_no
+hblks
, bblks
, dbp
,
3981 error
= xlog_unpack_data(rhead
, offset
, log
);
3985 error
= xlog_recover_process_data(log
, rhash
,
3986 rhead
, offset
, pass
);
3989 blk_no
+= bblks
+ hblks
;
4001 * Do the recovery of the log. We actually do this in two phases.
4002 * The two passes are necessary in order to implement the function
4003 * of cancelling a record written into the log. The first pass
4004 * determines those things which have been cancelled, and the
4005 * second pass replays log items normally except for those which
4006 * have been cancelled. The handling of the replay and cancellations
4007 * takes place in the log item type specific routines.
4009 * The table of items which have cancel records in the log is allocated
4010 * and freed at this level, since only here do we know when all of
4011 * the log recovery has been completed.
4014 xlog_do_log_recovery(
4016 xfs_daddr_t head_blk
,
4017 xfs_daddr_t tail_blk
)
4021 ASSERT(head_blk
!= tail_blk
);
4024 * First do a pass to find all of the cancelled buf log items.
4025 * Store them in the buf_cancel_table for use in the second pass.
4027 log
->l_buf_cancel_table
= kmem_zalloc(XLOG_BC_TABLE_SIZE
*
4028 sizeof(struct list_head
),
4030 for (i
= 0; i
< XLOG_BC_TABLE_SIZE
; i
++)
4031 INIT_LIST_HEAD(&log
->l_buf_cancel_table
[i
]);
4033 error
= xlog_do_recovery_pass(log
, head_blk
, tail_blk
,
4034 XLOG_RECOVER_PASS1
);
4036 kmem_free(log
->l_buf_cancel_table
);
4037 log
->l_buf_cancel_table
= NULL
;
4041 * Then do a second pass to actually recover the items in the log.
4042 * When it is complete free the table of buf cancel items.
4044 error
= xlog_do_recovery_pass(log
, head_blk
, tail_blk
,
4045 XLOG_RECOVER_PASS2
);
4050 for (i
= 0; i
< XLOG_BC_TABLE_SIZE
; i
++)
4051 ASSERT(list_empty(&log
->l_buf_cancel_table
[i
]));
4055 kmem_free(log
->l_buf_cancel_table
);
4056 log
->l_buf_cancel_table
= NULL
;
4062 * Do the actual recovery
4067 xfs_daddr_t head_blk
,
4068 xfs_daddr_t tail_blk
)
4075 * First replay the images in the log.
4077 error
= xlog_do_log_recovery(log
, head_blk
, tail_blk
);
4082 * If IO errors happened during recovery, bail out.
4084 if (XFS_FORCED_SHUTDOWN(log
->l_mp
)) {
4089 * We now update the tail_lsn since much of the recovery has completed
4090 * and there may be space available to use. If there were no extent
4091 * or iunlinks, we can free up the entire log and set the tail_lsn to
4092 * be the last_sync_lsn. This was set in xlog_find_tail to be the
4093 * lsn of the last known good LR on disk. If there are extent frees
4094 * or iunlinks they will have some entries in the AIL; so we look at
4095 * the AIL to determine how to set the tail_lsn.
4097 xlog_assign_tail_lsn(log
->l_mp
);
4100 * Now that we've finished replaying all buffer and inode
4101 * updates, re-read in the superblock and reverify it.
4103 bp
= xfs_getsb(log
->l_mp
, 0);
4105 ASSERT(!(XFS_BUF_ISWRITE(bp
)));
4107 XFS_BUF_UNASYNC(bp
);
4108 bp
->b_ops
= &xfs_sb_buf_ops
;
4109 xfsbdstrat(log
->l_mp
, bp
);
4110 error
= xfs_buf_iowait(bp
);
4112 xfs_buf_ioerror_alert(bp
, __func__
);
4118 /* Convert superblock from on-disk format */
4119 sbp
= &log
->l_mp
->m_sb
;
4120 xfs_sb_from_disk(sbp
, XFS_BUF_TO_SBP(bp
));
4121 ASSERT(sbp
->sb_magicnum
== XFS_SB_MAGIC
);
4122 ASSERT(xfs_sb_good_version(sbp
));
4125 /* We've re-read the superblock so re-initialize per-cpu counters */
4126 xfs_icsb_reinit_counters(log
->l_mp
);
4128 xlog_recover_check_summary(log
);
4130 /* Normal transactions can now occur */
4131 log
->l_flags
&= ~XLOG_ACTIVE_RECOVERY
;
4136 * Perform recovery and re-initialize some log variables in xlog_find_tail.
4138 * Return error or zero.
4144 xfs_daddr_t head_blk
, tail_blk
;
4147 /* find the tail of the log */
4148 if ((error
= xlog_find_tail(log
, &head_blk
, &tail_blk
)))
4151 if (tail_blk
!= head_blk
) {
4152 /* There used to be a comment here:
4154 * disallow recovery on read-only mounts. note -- mount
4155 * checks for ENOSPC and turns it into an intelligent
4157 * ...but this is no longer true. Now, unless you specify
4158 * NORECOVERY (in which case this function would never be
4159 * called), we just go ahead and recover. We do this all
4160 * under the vfs layer, so we can get away with it unless
4161 * the device itself is read-only, in which case we fail.
4163 if ((error
= xfs_dev_is_read_only(log
->l_mp
, "recovery"))) {
4168 * Version 5 superblock log feature mask validation. We know the
4169 * log is dirty so check if there are any unknown log features
4170 * in what we need to recover. If there are unknown features
4171 * (e.g. unsupported transactions, then simply reject the
4172 * attempt at recovery before touching anything.
4174 if (XFS_SB_VERSION_NUM(&log
->l_mp
->m_sb
) == XFS_SB_VERSION_5
&&
4175 xfs_sb_has_incompat_log_feature(&log
->l_mp
->m_sb
,
4176 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN
)) {
4178 "Superblock has unknown incompatible log features (0x%x) enabled.\n"
4179 "The log can not be fully and/or safely recovered by this kernel.\n"
4180 "Please recover the log on a kernel that supports the unknown features.",
4181 (log
->l_mp
->m_sb
.sb_features_log_incompat
&
4182 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN
));
4186 xfs_notice(log
->l_mp
, "Starting recovery (logdev: %s)",
4187 log
->l_mp
->m_logname
? log
->l_mp
->m_logname
4190 error
= xlog_do_recover(log
, head_blk
, tail_blk
);
4191 log
->l_flags
|= XLOG_RECOVERY_NEEDED
;
4197 * In the first part of recovery we replay inodes and buffers and build
4198 * up the list of extent free items which need to be processed. Here
4199 * we process the extent free items and clean up the on disk unlinked
4200 * inode lists. This is separated from the first part of recovery so
4201 * that the root and real-time bitmap inodes can be read in from disk in
4202 * between the two stages. This is necessary so that we can free space
4203 * in the real-time portion of the file system.
4206 xlog_recover_finish(
4210 * Now we're ready to do the transactions needed for the
4211 * rest of recovery. Start with completing all the extent
4212 * free intent records and then process the unlinked inode
4213 * lists. At this point, we essentially run in normal mode
4214 * except that we're still performing recovery actions
4215 * rather than accepting new requests.
4217 if (log
->l_flags
& XLOG_RECOVERY_NEEDED
) {
4219 error
= xlog_recover_process_efis(log
);
4221 xfs_alert(log
->l_mp
, "Failed to recover EFIs");
4225 * Sync the log to get all the EFIs out of the AIL.
4226 * This isn't absolutely necessary, but it helps in
4227 * case the unlink transactions would have problems
4228 * pushing the EFIs out of the way.
4230 xfs_log_force(log
->l_mp
, XFS_LOG_SYNC
);
4232 xlog_recover_process_iunlinks(log
);
4234 xlog_recover_check_summary(log
);
4236 xfs_notice(log
->l_mp
, "Ending recovery (logdev: %s)",
4237 log
->l_mp
->m_logname
? log
->l_mp
->m_logname
4239 log
->l_flags
&= ~XLOG_RECOVERY_NEEDED
;
4241 xfs_info(log
->l_mp
, "Ending clean mount");
4249 * Read all of the agf and agi counters and check that they
4250 * are consistent with the superblock counters.
4253 xlog_recover_check_summary(
4260 xfs_agnumber_t agno
;
4261 __uint64_t freeblks
;
4271 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
4272 error
= xfs_read_agf(mp
, NULL
, agno
, 0, &agfbp
);
4274 xfs_alert(mp
, "%s agf read failed agno %d error %d",
4275 __func__
, agno
, error
);
4277 agfp
= XFS_BUF_TO_AGF(agfbp
);
4278 freeblks
+= be32_to_cpu(agfp
->agf_freeblks
) +
4279 be32_to_cpu(agfp
->agf_flcount
);
4280 xfs_buf_relse(agfbp
);
4283 error
= xfs_read_agi(mp
, NULL
, agno
, &agibp
);
4285 xfs_alert(mp
, "%s agi read failed agno %d error %d",
4286 __func__
, agno
, error
);
4288 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agibp
);
4290 itotal
+= be32_to_cpu(agi
->agi_count
);
4291 ifree
+= be32_to_cpu(agi
->agi_freecount
);
4292 xfs_buf_relse(agibp
);