2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
22 #include "xfs_trans.h"
25 #include "xfs_mount.h"
26 #include "xfs_error.h"
27 #include "xfs_log_priv.h"
28 #include "xfs_buf_item.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_log_recover.h"
33 #include "xfs_trans_priv.h"
34 #include "xfs_dinode.h"
35 #include "xfs_inode.h"
36 #include "xfs_trace.h"
37 #include "xfs_fsops.h"
38 #include "xfs_cksum.h"
40 kmem_zone_t
*xfs_log_ticket_zone
;
42 /* Local miscellaneous function prototypes */
46 struct xlog_ticket
*ticket
,
47 struct xlog_in_core
**iclog
,
48 xfs_lsn_t
*commitlsnp
);
53 struct xfs_buftarg
*log_target
,
54 xfs_daddr_t blk_offset
,
63 struct xlog_in_core
*iclog
);
68 /* local state machine functions */
69 STATIC
void xlog_state_done_syncing(xlog_in_core_t
*iclog
, int);
71 xlog_state_do_callback(
74 struct xlog_in_core
*iclog
);
76 xlog_state_get_iclog_space(
79 struct xlog_in_core
**iclog
,
80 struct xlog_ticket
*ticket
,
84 xlog_state_release_iclog(
86 struct xlog_in_core
*iclog
);
88 xlog_state_switch_iclogs(
90 struct xlog_in_core
*iclog
,
95 struct xlog_in_core
*iclog
);
102 xlog_regrant_reserve_log_space(
104 struct xlog_ticket
*ticket
);
106 xlog_ungrant_log_space(
108 struct xlog_ticket
*ticket
);
112 xlog_verify_dest_ptr(
116 xlog_verify_grant_tail(
121 struct xlog_in_core
*iclog
,
125 xlog_verify_tail_lsn(
127 struct xlog_in_core
*iclog
,
130 #define xlog_verify_dest_ptr(a,b)
131 #define xlog_verify_grant_tail(a)
132 #define xlog_verify_iclog(a,b,c,d)
133 #define xlog_verify_tail_lsn(a,b,c)
141 xlog_grant_sub_space(
146 int64_t head_val
= atomic64_read(head
);
152 xlog_crack_grant_head_val(head_val
, &cycle
, &space
);
156 space
+= log
->l_logsize
;
161 new = xlog_assign_grant_head_val(cycle
, space
);
162 head_val
= atomic64_cmpxchg(head
, old
, new);
163 } while (head_val
!= old
);
167 xlog_grant_add_space(
172 int64_t head_val
= atomic64_read(head
);
179 xlog_crack_grant_head_val(head_val
, &cycle
, &space
);
181 tmp
= log
->l_logsize
- space
;
190 new = xlog_assign_grant_head_val(cycle
, space
);
191 head_val
= atomic64_cmpxchg(head
, old
, new);
192 } while (head_val
!= old
);
196 xlog_grant_head_init(
197 struct xlog_grant_head
*head
)
199 xlog_assign_grant_head(&head
->grant
, 1, 0);
200 INIT_LIST_HEAD(&head
->waiters
);
201 spin_lock_init(&head
->lock
);
205 xlog_grant_head_wake_all(
206 struct xlog_grant_head
*head
)
208 struct xlog_ticket
*tic
;
210 spin_lock(&head
->lock
);
211 list_for_each_entry(tic
, &head
->waiters
, t_queue
)
212 wake_up_process(tic
->t_task
);
213 spin_unlock(&head
->lock
);
217 xlog_ticket_reservation(
219 struct xlog_grant_head
*head
,
220 struct xlog_ticket
*tic
)
222 if (head
== &log
->l_write_head
) {
223 ASSERT(tic
->t_flags
& XLOG_TIC_PERM_RESERV
);
224 return tic
->t_unit_res
;
226 if (tic
->t_flags
& XLOG_TIC_PERM_RESERV
)
227 return tic
->t_unit_res
* tic
->t_cnt
;
229 return tic
->t_unit_res
;
234 xlog_grant_head_wake(
236 struct xlog_grant_head
*head
,
239 struct xlog_ticket
*tic
;
242 list_for_each_entry(tic
, &head
->waiters
, t_queue
) {
243 need_bytes
= xlog_ticket_reservation(log
, head
, tic
);
244 if (*free_bytes
< need_bytes
)
247 *free_bytes
-= need_bytes
;
248 trace_xfs_log_grant_wake_up(log
, tic
);
249 wake_up_process(tic
->t_task
);
256 xlog_grant_head_wait(
258 struct xlog_grant_head
*head
,
259 struct xlog_ticket
*tic
,
262 list_add_tail(&tic
->t_queue
, &head
->waiters
);
265 if (XLOG_FORCED_SHUTDOWN(log
))
267 xlog_grant_push_ail(log
, need_bytes
);
269 __set_current_state(TASK_UNINTERRUPTIBLE
);
270 spin_unlock(&head
->lock
);
272 XFS_STATS_INC(xs_sleep_logspace
);
274 trace_xfs_log_grant_sleep(log
, tic
);
276 trace_xfs_log_grant_wake(log
, tic
);
278 spin_lock(&head
->lock
);
279 if (XLOG_FORCED_SHUTDOWN(log
))
281 } while (xlog_space_left(log
, &head
->grant
) < need_bytes
);
283 list_del_init(&tic
->t_queue
);
286 list_del_init(&tic
->t_queue
);
287 return XFS_ERROR(EIO
);
291 * Atomically get the log space required for a log ticket.
293 * Once a ticket gets put onto head->waiters, it will only return after the
294 * needed reservation is satisfied.
296 * This function is structured so that it has a lock free fast path. This is
297 * necessary because every new transaction reservation will come through this
298 * path. Hence any lock will be globally hot if we take it unconditionally on
301 * As tickets are only ever moved on and off head->waiters under head->lock, we
302 * only need to take that lock if we are going to add the ticket to the queue
303 * and sleep. We can avoid taking the lock if the ticket was never added to
304 * head->waiters because the t_queue list head will be empty and we hold the
305 * only reference to it so it can safely be checked unlocked.
308 xlog_grant_head_check(
310 struct xlog_grant_head
*head
,
311 struct xlog_ticket
*tic
,
317 ASSERT(!(log
->l_flags
& XLOG_ACTIVE_RECOVERY
));
320 * If there are other waiters on the queue then give them a chance at
321 * logspace before us. Wake up the first waiters, if we do not wake
322 * up all the waiters then go to sleep waiting for more free space,
323 * otherwise try to get some space for this transaction.
325 *need_bytes
= xlog_ticket_reservation(log
, head
, tic
);
326 free_bytes
= xlog_space_left(log
, &head
->grant
);
327 if (!list_empty_careful(&head
->waiters
)) {
328 spin_lock(&head
->lock
);
329 if (!xlog_grant_head_wake(log
, head
, &free_bytes
) ||
330 free_bytes
< *need_bytes
) {
331 error
= xlog_grant_head_wait(log
, head
, tic
,
334 spin_unlock(&head
->lock
);
335 } else if (free_bytes
< *need_bytes
) {
336 spin_lock(&head
->lock
);
337 error
= xlog_grant_head_wait(log
, head
, tic
, *need_bytes
);
338 spin_unlock(&head
->lock
);
345 xlog_tic_reset_res(xlog_ticket_t
*tic
)
348 tic
->t_res_arr_sum
= 0;
349 tic
->t_res_num_ophdrs
= 0;
353 xlog_tic_add_region(xlog_ticket_t
*tic
, uint len
, uint type
)
355 if (tic
->t_res_num
== XLOG_TIC_LEN_MAX
) {
356 /* add to overflow and start again */
357 tic
->t_res_o_flow
+= tic
->t_res_arr_sum
;
359 tic
->t_res_arr_sum
= 0;
362 tic
->t_res_arr
[tic
->t_res_num
].r_len
= len
;
363 tic
->t_res_arr
[tic
->t_res_num
].r_type
= type
;
364 tic
->t_res_arr_sum
+= len
;
369 * Replenish the byte reservation required by moving the grant write head.
373 struct xfs_mount
*mp
,
374 struct xlog_ticket
*tic
)
376 struct xlog
*log
= mp
->m_log
;
380 if (XLOG_FORCED_SHUTDOWN(log
))
381 return XFS_ERROR(EIO
);
383 XFS_STATS_INC(xs_try_logspace
);
386 * This is a new transaction on the ticket, so we need to change the
387 * transaction ID so that the next transaction has a different TID in
388 * the log. Just add one to the existing tid so that we can see chains
389 * of rolling transactions in the log easily.
393 xlog_grant_push_ail(log
, tic
->t_unit_res
);
395 tic
->t_curr_res
= tic
->t_unit_res
;
396 xlog_tic_reset_res(tic
);
401 trace_xfs_log_regrant(log
, tic
);
403 error
= xlog_grant_head_check(log
, &log
->l_write_head
, tic
,
408 xlog_grant_add_space(log
, &log
->l_write_head
.grant
, need_bytes
);
409 trace_xfs_log_regrant_exit(log
, tic
);
410 xlog_verify_grant_tail(log
);
415 * If we are failing, make sure the ticket doesn't have any current
416 * reservations. We don't want to add this back when the ticket/
417 * transaction gets cancelled.
420 tic
->t_cnt
= 0; /* ungrant will give back unit_res * t_cnt. */
425 * Reserve log space and return a ticket corresponding the reservation.
427 * Each reservation is going to reserve extra space for a log record header.
428 * When writes happen to the on-disk log, we don't subtract the length of the
429 * log record header from any reservation. By wasting space in each
430 * reservation, we prevent over allocation problems.
434 struct xfs_mount
*mp
,
437 struct xlog_ticket
**ticp
,
442 struct xlog
*log
= mp
->m_log
;
443 struct xlog_ticket
*tic
;
447 ASSERT(client
== XFS_TRANSACTION
|| client
== XFS_LOG
);
449 if (XLOG_FORCED_SHUTDOWN(log
))
450 return XFS_ERROR(EIO
);
452 XFS_STATS_INC(xs_try_logspace
);
454 ASSERT(*ticp
== NULL
);
455 tic
= xlog_ticket_alloc(log
, unit_bytes
, cnt
, client
, permanent
,
456 KM_SLEEP
| KM_MAYFAIL
);
458 return XFS_ERROR(ENOMEM
);
460 tic
->t_trans_type
= t_type
;
463 xlog_grant_push_ail(log
, tic
->t_cnt
? tic
->t_unit_res
* tic
->t_cnt
466 trace_xfs_log_reserve(log
, tic
);
468 error
= xlog_grant_head_check(log
, &log
->l_reserve_head
, tic
,
473 xlog_grant_add_space(log
, &log
->l_reserve_head
.grant
, need_bytes
);
474 xlog_grant_add_space(log
, &log
->l_write_head
.grant
, need_bytes
);
475 trace_xfs_log_reserve_exit(log
, tic
);
476 xlog_verify_grant_tail(log
);
481 * If we are failing, make sure the ticket doesn't have any current
482 * reservations. We don't want to add this back when the ticket/
483 * transaction gets cancelled.
486 tic
->t_cnt
= 0; /* ungrant will give back unit_res * t_cnt. */
494 * 1. currblock field gets updated at startup and after in-core logs
495 * marked as with WANT_SYNC.
499 * This routine is called when a user of a log manager ticket is done with
500 * the reservation. If the ticket was ever used, then a commit record for
501 * the associated transaction is written out as a log operation header with
502 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
503 * a given ticket. If the ticket was one with a permanent reservation, then
504 * a few operations are done differently. Permanent reservation tickets by
505 * default don't release the reservation. They just commit the current
506 * transaction with the belief that the reservation is still needed. A flag
507 * must be passed in before permanent reservations are actually released.
508 * When these type of tickets are not released, they need to be set into
509 * the inited state again. By doing this, a start record will be written
510 * out when the next write occurs.
514 struct xfs_mount
*mp
,
515 struct xlog_ticket
*ticket
,
516 struct xlog_in_core
**iclog
,
519 struct xlog
*log
= mp
->m_log
;
522 if (XLOG_FORCED_SHUTDOWN(log
) ||
524 * If nothing was ever written, don't write out commit record.
525 * If we get an error, just continue and give back the log ticket.
527 (((ticket
->t_flags
& XLOG_TIC_INITED
) == 0) &&
528 (xlog_commit_record(log
, ticket
, iclog
, &lsn
)))) {
529 lsn
= (xfs_lsn_t
) -1;
530 if (ticket
->t_flags
& XLOG_TIC_PERM_RESERV
) {
531 flags
|= XFS_LOG_REL_PERM_RESERV
;
536 if ((ticket
->t_flags
& XLOG_TIC_PERM_RESERV
) == 0 ||
537 (flags
& XFS_LOG_REL_PERM_RESERV
)) {
538 trace_xfs_log_done_nonperm(log
, ticket
);
541 * Release ticket if not permanent reservation or a specific
542 * request has been made to release a permanent reservation.
544 xlog_ungrant_log_space(log
, ticket
);
545 xfs_log_ticket_put(ticket
);
547 trace_xfs_log_done_perm(log
, ticket
);
549 xlog_regrant_reserve_log_space(log
, ticket
);
550 /* If this ticket was a permanent reservation and we aren't
551 * trying to release it, reset the inited flags; so next time
552 * we write, a start record will be written out.
554 ticket
->t_flags
|= XLOG_TIC_INITED
;
561 * Attaches a new iclog I/O completion callback routine during
562 * transaction commit. If the log is in error state, a non-zero
563 * return code is handed back and the caller is responsible for
564 * executing the callback at an appropriate time.
568 struct xfs_mount
*mp
,
569 struct xlog_in_core
*iclog
,
570 xfs_log_callback_t
*cb
)
574 spin_lock(&iclog
->ic_callback_lock
);
575 abortflg
= (iclog
->ic_state
& XLOG_STATE_IOERROR
);
577 ASSERT_ALWAYS((iclog
->ic_state
== XLOG_STATE_ACTIVE
) ||
578 (iclog
->ic_state
== XLOG_STATE_WANT_SYNC
));
580 *(iclog
->ic_callback_tail
) = cb
;
581 iclog
->ic_callback_tail
= &(cb
->cb_next
);
583 spin_unlock(&iclog
->ic_callback_lock
);
588 xfs_log_release_iclog(
589 struct xfs_mount
*mp
,
590 struct xlog_in_core
*iclog
)
592 if (xlog_state_release_iclog(mp
->m_log
, iclog
)) {
593 xfs_force_shutdown(mp
, SHUTDOWN_LOG_IO_ERROR
);
601 * Mount a log filesystem
603 * mp - ubiquitous xfs mount point structure
604 * log_target - buftarg of on-disk log device
605 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
606 * num_bblocks - Number of BBSIZE blocks in on-disk log
608 * Return error or zero.
613 xfs_buftarg_t
*log_target
,
614 xfs_daddr_t blk_offset
,
619 if (!(mp
->m_flags
& XFS_MOUNT_NORECOVERY
))
620 xfs_notice(mp
, "Mounting Filesystem");
623 "Mounting filesystem in no-recovery mode. Filesystem will be inconsistent.");
624 ASSERT(mp
->m_flags
& XFS_MOUNT_RDONLY
);
627 mp
->m_log
= xlog_alloc_log(mp
, log_target
, blk_offset
, num_bblks
);
628 if (IS_ERR(mp
->m_log
)) {
629 error
= -PTR_ERR(mp
->m_log
);
634 * Initialize the AIL now we have a log.
636 error
= xfs_trans_ail_init(mp
);
638 xfs_warn(mp
, "AIL initialisation failed: error %d", error
);
641 mp
->m_log
->l_ailp
= mp
->m_ail
;
644 * skip log recovery on a norecovery mount. pretend it all
647 if (!(mp
->m_flags
& XFS_MOUNT_NORECOVERY
)) {
648 int readonly
= (mp
->m_flags
& XFS_MOUNT_RDONLY
);
651 mp
->m_flags
&= ~XFS_MOUNT_RDONLY
;
653 error
= xlog_recover(mp
->m_log
);
656 mp
->m_flags
|= XFS_MOUNT_RDONLY
;
658 xfs_warn(mp
, "log mount/recovery failed: error %d",
660 goto out_destroy_ail
;
664 /* Normal transactions can now occur */
665 mp
->m_log
->l_flags
&= ~XLOG_ACTIVE_RECOVERY
;
668 * Now the log has been fully initialised and we know were our
669 * space grant counters are, we can initialise the permanent ticket
670 * needed for delayed logging to work.
672 xlog_cil_init_post_recovery(mp
->m_log
);
677 xfs_trans_ail_destroy(mp
);
679 xlog_dealloc_log(mp
->m_log
);
685 * Finish the recovery of the file system. This is separate from the
686 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
687 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
690 * If we finish recovery successfully, start the background log work. If we are
691 * not doing recovery, then we have a RO filesystem and we don't need to start
695 xfs_log_mount_finish(xfs_mount_t
*mp
)
699 if (!(mp
->m_flags
& XFS_MOUNT_NORECOVERY
)) {
700 error
= xlog_recover_finish(mp
->m_log
);
702 xfs_log_work_queue(mp
);
704 ASSERT(mp
->m_flags
& XFS_MOUNT_RDONLY
);
712 * Final log writes as part of unmount.
714 * Mark the filesystem clean as unmount happens. Note that during relocation
715 * this routine needs to be executed as part of source-bag while the
716 * deallocation must not be done until source-end.
720 * Unmount record used to have a string "Unmount filesystem--" in the
721 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
722 * We just write the magic number now since that particular field isn't
723 * currently architecture converted and "nUmount" is a bit foo.
724 * As far as I know, there weren't any dependencies on the old behaviour.
728 xfs_log_unmount_write(xfs_mount_t
*mp
)
730 struct xlog
*log
= mp
->m_log
;
731 xlog_in_core_t
*iclog
;
733 xlog_in_core_t
*first_iclog
;
735 xlog_ticket_t
*tic
= NULL
;
740 * Don't write out unmount record on read-only mounts.
741 * Or, if we are doing a forced umount (typically because of IO errors).
743 if (mp
->m_flags
& XFS_MOUNT_RDONLY
)
746 error
= _xfs_log_force(mp
, XFS_LOG_SYNC
, NULL
);
747 ASSERT(error
|| !(XLOG_FORCED_SHUTDOWN(log
)));
750 first_iclog
= iclog
= log
->l_iclog
;
752 if (!(iclog
->ic_state
& XLOG_STATE_IOERROR
)) {
753 ASSERT(iclog
->ic_state
& XLOG_STATE_ACTIVE
);
754 ASSERT(iclog
->ic_offset
== 0);
756 iclog
= iclog
->ic_next
;
757 } while (iclog
!= first_iclog
);
759 if (! (XLOG_FORCED_SHUTDOWN(log
))) {
760 error
= xfs_log_reserve(mp
, 600, 1, &tic
,
761 XFS_LOG
, 0, XLOG_UNMOUNT_REC_TYPE
);
763 /* the data section must be 32 bit size aligned */
767 __uint32_t pad2
; /* may as well make it 64 bits */
769 .magic
= XLOG_UNMOUNT_TYPE
,
771 struct xfs_log_iovec reg
= {
773 .i_len
= sizeof(magic
),
774 .i_type
= XLOG_REG_TYPE_UNMOUNT
,
776 struct xfs_log_vec vec
= {
781 /* remove inited flag, and account for space used */
783 tic
->t_curr_res
-= sizeof(magic
);
784 error
= xlog_write(log
, &vec
, tic
, &lsn
,
785 NULL
, XLOG_UNMOUNT_TRANS
);
787 * At this point, we're umounting anyway,
788 * so there's no point in transitioning log state
789 * to IOERROR. Just continue...
794 xfs_alert(mp
, "%s: unmount record failed", __func__
);
797 spin_lock(&log
->l_icloglock
);
798 iclog
= log
->l_iclog
;
799 atomic_inc(&iclog
->ic_refcnt
);
800 xlog_state_want_sync(log
, iclog
);
801 spin_unlock(&log
->l_icloglock
);
802 error
= xlog_state_release_iclog(log
, iclog
);
804 spin_lock(&log
->l_icloglock
);
805 if (!(iclog
->ic_state
== XLOG_STATE_ACTIVE
||
806 iclog
->ic_state
== XLOG_STATE_DIRTY
)) {
807 if (!XLOG_FORCED_SHUTDOWN(log
)) {
808 xlog_wait(&iclog
->ic_force_wait
,
811 spin_unlock(&log
->l_icloglock
);
814 spin_unlock(&log
->l_icloglock
);
817 trace_xfs_log_umount_write(log
, tic
);
818 xlog_ungrant_log_space(log
, tic
);
819 xfs_log_ticket_put(tic
);
823 * We're already in forced_shutdown mode, couldn't
824 * even attempt to write out the unmount transaction.
826 * Go through the motions of sync'ing and releasing
827 * the iclog, even though no I/O will actually happen,
828 * we need to wait for other log I/Os that may already
829 * be in progress. Do this as a separate section of
830 * code so we'll know if we ever get stuck here that
831 * we're in this odd situation of trying to unmount
832 * a file system that went into forced_shutdown as
833 * the result of an unmount..
835 spin_lock(&log
->l_icloglock
);
836 iclog
= log
->l_iclog
;
837 atomic_inc(&iclog
->ic_refcnt
);
839 xlog_state_want_sync(log
, iclog
);
840 spin_unlock(&log
->l_icloglock
);
841 error
= xlog_state_release_iclog(log
, iclog
);
843 spin_lock(&log
->l_icloglock
);
845 if ( ! ( iclog
->ic_state
== XLOG_STATE_ACTIVE
846 || iclog
->ic_state
== XLOG_STATE_DIRTY
847 || iclog
->ic_state
== XLOG_STATE_IOERROR
) ) {
849 xlog_wait(&iclog
->ic_force_wait
,
852 spin_unlock(&log
->l_icloglock
);
857 } /* xfs_log_unmount_write */
860 * Empty the log for unmount/freeze.
862 * To do this, we first need to shut down the background log work so it is not
863 * trying to cover the log as we clean up. We then need to unpin all objects in
864 * the log so we can then flush them out. Once they have completed their IO and
865 * run the callbacks removing themselves from the AIL, we can write the unmount
870 struct xfs_mount
*mp
)
872 cancel_delayed_work_sync(&mp
->m_log
->l_work
);
873 xfs_log_force(mp
, XFS_LOG_SYNC
);
876 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
877 * will push it, xfs_wait_buftarg() will not wait for it. Further,
878 * xfs_buf_iowait() cannot be used because it was pushed with the
879 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
880 * the IO to complete.
882 xfs_ail_push_all_sync(mp
->m_ail
);
883 xfs_wait_buftarg(mp
->m_ddev_targp
);
884 xfs_buf_lock(mp
->m_sb_bp
);
885 xfs_buf_unlock(mp
->m_sb_bp
);
887 xfs_log_unmount_write(mp
);
891 * Shut down and release the AIL and Log.
893 * During unmount, we need to ensure we flush all the dirty metadata objects
894 * from the AIL so that the log is empty before we write the unmount record to
895 * the log. Once this is done, we can tear down the AIL and the log.
899 struct xfs_mount
*mp
)
903 xfs_trans_ail_destroy(mp
);
904 xlog_dealloc_log(mp
->m_log
);
909 struct xfs_mount
*mp
,
910 struct xfs_log_item
*item
,
912 const struct xfs_item_ops
*ops
)
914 item
->li_mountp
= mp
;
915 item
->li_ailp
= mp
->m_ail
;
916 item
->li_type
= type
;
920 INIT_LIST_HEAD(&item
->li_ail
);
921 INIT_LIST_HEAD(&item
->li_cil
);
925 * Wake up processes waiting for log space after we have moved the log tail.
929 struct xfs_mount
*mp
)
931 struct xlog
*log
= mp
->m_log
;
934 if (XLOG_FORCED_SHUTDOWN(log
))
937 if (!list_empty_careful(&log
->l_write_head
.waiters
)) {
938 ASSERT(!(log
->l_flags
& XLOG_ACTIVE_RECOVERY
));
940 spin_lock(&log
->l_write_head
.lock
);
941 free_bytes
= xlog_space_left(log
, &log
->l_write_head
.grant
);
942 xlog_grant_head_wake(log
, &log
->l_write_head
, &free_bytes
);
943 spin_unlock(&log
->l_write_head
.lock
);
946 if (!list_empty_careful(&log
->l_reserve_head
.waiters
)) {
947 ASSERT(!(log
->l_flags
& XLOG_ACTIVE_RECOVERY
));
949 spin_lock(&log
->l_reserve_head
.lock
);
950 free_bytes
= xlog_space_left(log
, &log
->l_reserve_head
.grant
);
951 xlog_grant_head_wake(log
, &log
->l_reserve_head
, &free_bytes
);
952 spin_unlock(&log
->l_reserve_head
.lock
);
957 * Determine if we have a transaction that has gone to disk
958 * that needs to be covered. To begin the transition to the idle state
959 * firstly the log needs to be idle (no AIL and nothing in the iclogs).
960 * If we are then in a state where covering is needed, the caller is informed
961 * that dummy transactions are required to move the log into the idle state.
963 * Because this is called as part of the sync process, we should also indicate
964 * that dummy transactions should be issued in anything but the covered or
965 * idle states. This ensures that the log tail is accurately reflected in
966 * the log at the end of the sync, hence if a crash occurrs avoids replay
967 * of transactions where the metadata is already on disk.
970 xfs_log_need_covered(xfs_mount_t
*mp
)
973 struct xlog
*log
= mp
->m_log
;
975 if (!xfs_fs_writable(mp
))
978 spin_lock(&log
->l_icloglock
);
979 switch (log
->l_covered_state
) {
980 case XLOG_STATE_COVER_DONE
:
981 case XLOG_STATE_COVER_DONE2
:
982 case XLOG_STATE_COVER_IDLE
:
984 case XLOG_STATE_COVER_NEED
:
985 case XLOG_STATE_COVER_NEED2
:
986 if (!xfs_ail_min_lsn(log
->l_ailp
) &&
987 xlog_iclogs_empty(log
)) {
988 if (log
->l_covered_state
== XLOG_STATE_COVER_NEED
)
989 log
->l_covered_state
= XLOG_STATE_COVER_DONE
;
991 log
->l_covered_state
= XLOG_STATE_COVER_DONE2
;
998 spin_unlock(&log
->l_icloglock
);
1003 * We may be holding the log iclog lock upon entering this routine.
1006 xlog_assign_tail_lsn_locked(
1007 struct xfs_mount
*mp
)
1009 struct xlog
*log
= mp
->m_log
;
1010 struct xfs_log_item
*lip
;
1013 assert_spin_locked(&mp
->m_ail
->xa_lock
);
1016 * To make sure we always have a valid LSN for the log tail we keep
1017 * track of the last LSN which was committed in log->l_last_sync_lsn,
1018 * and use that when the AIL was empty.
1020 lip
= xfs_ail_min(mp
->m_ail
);
1022 tail_lsn
= lip
->li_lsn
;
1024 tail_lsn
= atomic64_read(&log
->l_last_sync_lsn
);
1025 atomic64_set(&log
->l_tail_lsn
, tail_lsn
);
1030 xlog_assign_tail_lsn(
1031 struct xfs_mount
*mp
)
1035 spin_lock(&mp
->m_ail
->xa_lock
);
1036 tail_lsn
= xlog_assign_tail_lsn_locked(mp
);
1037 spin_unlock(&mp
->m_ail
->xa_lock
);
1043 * Return the space in the log between the tail and the head. The head
1044 * is passed in the cycle/bytes formal parms. In the special case where
1045 * the reserve head has wrapped passed the tail, this calculation is no
1046 * longer valid. In this case, just return 0 which means there is no space
1047 * in the log. This works for all places where this function is called
1048 * with the reserve head. Of course, if the write head were to ever
1049 * wrap the tail, we should blow up. Rather than catch this case here,
1050 * we depend on other ASSERTions in other parts of the code. XXXmiken
1052 * This code also handles the case where the reservation head is behind
1053 * the tail. The details of this case are described below, but the end
1054 * result is that we return the size of the log as the amount of space left.
1067 xlog_crack_grant_head(head
, &head_cycle
, &head_bytes
);
1068 xlog_crack_atomic_lsn(&log
->l_tail_lsn
, &tail_cycle
, &tail_bytes
);
1069 tail_bytes
= BBTOB(tail_bytes
);
1070 if (tail_cycle
== head_cycle
&& head_bytes
>= tail_bytes
)
1071 free_bytes
= log
->l_logsize
- (head_bytes
- tail_bytes
);
1072 else if (tail_cycle
+ 1 < head_cycle
)
1074 else if (tail_cycle
< head_cycle
) {
1075 ASSERT(tail_cycle
== (head_cycle
- 1));
1076 free_bytes
= tail_bytes
- head_bytes
;
1079 * The reservation head is behind the tail.
1080 * In this case we just want to return the size of the
1081 * log as the amount of space left.
1083 xfs_alert(log
->l_mp
,
1084 "xlog_space_left: head behind tail\n"
1085 " tail_cycle = %d, tail_bytes = %d\n"
1086 " GH cycle = %d, GH bytes = %d",
1087 tail_cycle
, tail_bytes
, head_cycle
, head_bytes
);
1089 free_bytes
= log
->l_logsize
;
1096 * Log function which is called when an io completes.
1098 * The log manager needs its own routine, in order to control what
1099 * happens with the buffer after the write completes.
1102 xlog_iodone(xfs_buf_t
*bp
)
1104 struct xlog_in_core
*iclog
= bp
->b_fspriv
;
1105 struct xlog
*l
= iclog
->ic_log
;
1109 * Race to shutdown the filesystem if we see an error.
1111 if (XFS_TEST_ERROR((xfs_buf_geterror(bp
)), l
->l_mp
,
1112 XFS_ERRTAG_IODONE_IOERR
, XFS_RANDOM_IODONE_IOERR
)) {
1113 xfs_buf_ioerror_alert(bp
, __func__
);
1115 xfs_force_shutdown(l
->l_mp
, SHUTDOWN_LOG_IO_ERROR
);
1117 * This flag will be propagated to the trans-committed
1118 * callback routines to let them know that the log-commit
1121 aborted
= XFS_LI_ABORTED
;
1122 } else if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
1123 aborted
= XFS_LI_ABORTED
;
1126 /* log I/O is always issued ASYNC */
1127 ASSERT(XFS_BUF_ISASYNC(bp
));
1128 xlog_state_done_syncing(iclog
, aborted
);
1130 * do not reference the buffer (bp) here as we could race
1131 * with it being freed after writing the unmount record to the
1137 * Return size of each in-core log record buffer.
1139 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1141 * If the filesystem blocksize is too large, we may need to choose a
1142 * larger size since the directory code currently logs entire blocks.
1146 xlog_get_iclog_buffer_size(
1147 struct xfs_mount
*mp
,
1153 if (mp
->m_logbufs
<= 0)
1154 log
->l_iclog_bufs
= XLOG_MAX_ICLOGS
;
1156 log
->l_iclog_bufs
= mp
->m_logbufs
;
1159 * Buffer size passed in from mount system call.
1161 if (mp
->m_logbsize
> 0) {
1162 size
= log
->l_iclog_size
= mp
->m_logbsize
;
1163 log
->l_iclog_size_log
= 0;
1165 log
->l_iclog_size_log
++;
1169 if (xfs_sb_version_haslogv2(&mp
->m_sb
)) {
1170 /* # headers = size / 32k
1171 * one header holds cycles from 32k of data
1174 xhdrs
= mp
->m_logbsize
/ XLOG_HEADER_CYCLE_SIZE
;
1175 if (mp
->m_logbsize
% XLOG_HEADER_CYCLE_SIZE
)
1177 log
->l_iclog_hsize
= xhdrs
<< BBSHIFT
;
1178 log
->l_iclog_heads
= xhdrs
;
1180 ASSERT(mp
->m_logbsize
<= XLOG_BIG_RECORD_BSIZE
);
1181 log
->l_iclog_hsize
= BBSIZE
;
1182 log
->l_iclog_heads
= 1;
1187 /* All machines use 32kB buffers by default. */
1188 log
->l_iclog_size
= XLOG_BIG_RECORD_BSIZE
;
1189 log
->l_iclog_size_log
= XLOG_BIG_RECORD_BSHIFT
;
1191 /* the default log size is 16k or 32k which is one header sector */
1192 log
->l_iclog_hsize
= BBSIZE
;
1193 log
->l_iclog_heads
= 1;
1196 /* are we being asked to make the sizes selected above visible? */
1197 if (mp
->m_logbufs
== 0)
1198 mp
->m_logbufs
= log
->l_iclog_bufs
;
1199 if (mp
->m_logbsize
== 0)
1200 mp
->m_logbsize
= log
->l_iclog_size
;
1201 } /* xlog_get_iclog_buffer_size */
1206 struct xfs_mount
*mp
)
1208 queue_delayed_work(mp
->m_log_workqueue
, &mp
->m_log
->l_work
,
1209 msecs_to_jiffies(xfs_syncd_centisecs
* 10));
1213 * Every sync period we need to unpin all items in the AIL and push them to
1214 * disk. If there is nothing dirty, then we might need to cover the log to
1215 * indicate that the filesystem is idle.
1219 struct work_struct
*work
)
1221 struct xlog
*log
= container_of(to_delayed_work(work
),
1222 struct xlog
, l_work
);
1223 struct xfs_mount
*mp
= log
->l_mp
;
1225 /* dgc: errors ignored - not fatal and nowhere to report them */
1226 if (xfs_log_need_covered(mp
))
1227 xfs_fs_log_dummy(mp
);
1229 xfs_log_force(mp
, 0);
1231 /* start pushing all the metadata that is currently dirty */
1232 xfs_ail_push_all(mp
->m_ail
);
1234 /* queue us up again */
1235 xfs_log_work_queue(mp
);
1239 * This routine initializes some of the log structure for a given mount point.
1240 * Its primary purpose is to fill in enough, so recovery can occur. However,
1241 * some other stuff may be filled in too.
1243 STATIC
struct xlog
*
1245 struct xfs_mount
*mp
,
1246 struct xfs_buftarg
*log_target
,
1247 xfs_daddr_t blk_offset
,
1251 xlog_rec_header_t
*head
;
1252 xlog_in_core_t
**iclogp
;
1253 xlog_in_core_t
*iclog
, *prev_iclog
=NULL
;
1259 log
= kmem_zalloc(sizeof(struct xlog
), KM_MAYFAIL
);
1261 xfs_warn(mp
, "Log allocation failed: No memory!");
1266 log
->l_targ
= log_target
;
1267 log
->l_logsize
= BBTOB(num_bblks
);
1268 log
->l_logBBstart
= blk_offset
;
1269 log
->l_logBBsize
= num_bblks
;
1270 log
->l_covered_state
= XLOG_STATE_COVER_IDLE
;
1271 log
->l_flags
|= XLOG_ACTIVE_RECOVERY
;
1272 INIT_DELAYED_WORK(&log
->l_work
, xfs_log_worker
);
1274 log
->l_prev_block
= -1;
1275 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1276 xlog_assign_atomic_lsn(&log
->l_tail_lsn
, 1, 0);
1277 xlog_assign_atomic_lsn(&log
->l_last_sync_lsn
, 1, 0);
1278 log
->l_curr_cycle
= 1; /* 0 is bad since this is initial value */
1280 xlog_grant_head_init(&log
->l_reserve_head
);
1281 xlog_grant_head_init(&log
->l_write_head
);
1283 error
= EFSCORRUPTED
;
1284 if (xfs_sb_version_hassector(&mp
->m_sb
)) {
1285 log2_size
= mp
->m_sb
.sb_logsectlog
;
1286 if (log2_size
< BBSHIFT
) {
1287 xfs_warn(mp
, "Log sector size too small (0x%x < 0x%x)",
1288 log2_size
, BBSHIFT
);
1292 log2_size
-= BBSHIFT
;
1293 if (log2_size
> mp
->m_sectbb_log
) {
1294 xfs_warn(mp
, "Log sector size too large (0x%x > 0x%x)",
1295 log2_size
, mp
->m_sectbb_log
);
1299 /* for larger sector sizes, must have v2 or external log */
1300 if (log2_size
&& log
->l_logBBstart
> 0 &&
1301 !xfs_sb_version_haslogv2(&mp
->m_sb
)) {
1303 "log sector size (0x%x) invalid for configuration.",
1308 log
->l_sectBBsize
= 1 << log2_size
;
1310 xlog_get_iclog_buffer_size(mp
, log
);
1313 bp
= xfs_buf_alloc(mp
->m_logdev_targp
, 0, BTOBB(log
->l_iclog_size
), 0);
1316 bp
->b_iodone
= xlog_iodone
;
1317 ASSERT(xfs_buf_islocked(bp
));
1320 spin_lock_init(&log
->l_icloglock
);
1321 init_waitqueue_head(&log
->l_flush_wait
);
1323 iclogp
= &log
->l_iclog
;
1325 * The amount of memory to allocate for the iclog structure is
1326 * rather funky due to the way the structure is defined. It is
1327 * done this way so that we can use different sizes for machines
1328 * with different amounts of memory. See the definition of
1329 * xlog_in_core_t in xfs_log_priv.h for details.
1331 ASSERT(log
->l_iclog_size
>= 4096);
1332 for (i
=0; i
< log
->l_iclog_bufs
; i
++) {
1333 *iclogp
= kmem_zalloc(sizeof(xlog_in_core_t
), KM_MAYFAIL
);
1335 goto out_free_iclog
;
1338 iclog
->ic_prev
= prev_iclog
;
1341 bp
= xfs_buf_get_uncached(mp
->m_logdev_targp
,
1342 BTOBB(log
->l_iclog_size
), 0);
1344 goto out_free_iclog
;
1346 bp
->b_iodone
= xlog_iodone
;
1348 iclog
->ic_data
= bp
->b_addr
;
1350 log
->l_iclog_bak
[i
] = (xfs_caddr_t
)&(iclog
->ic_header
);
1352 head
= &iclog
->ic_header
;
1353 memset(head
, 0, sizeof(xlog_rec_header_t
));
1354 head
->h_magicno
= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
);
1355 head
->h_version
= cpu_to_be32(
1356 xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) ? 2 : 1);
1357 head
->h_size
= cpu_to_be32(log
->l_iclog_size
);
1359 head
->h_fmt
= cpu_to_be32(XLOG_FMT
);
1360 memcpy(&head
->h_fs_uuid
, &mp
->m_sb
.sb_uuid
, sizeof(uuid_t
));
1362 iclog
->ic_size
= BBTOB(bp
->b_length
) - log
->l_iclog_hsize
;
1363 iclog
->ic_state
= XLOG_STATE_ACTIVE
;
1364 iclog
->ic_log
= log
;
1365 atomic_set(&iclog
->ic_refcnt
, 0);
1366 spin_lock_init(&iclog
->ic_callback_lock
);
1367 iclog
->ic_callback_tail
= &(iclog
->ic_callback
);
1368 iclog
->ic_datap
= (char *)iclog
->ic_data
+ log
->l_iclog_hsize
;
1370 ASSERT(xfs_buf_islocked(iclog
->ic_bp
));
1371 init_waitqueue_head(&iclog
->ic_force_wait
);
1372 init_waitqueue_head(&iclog
->ic_write_wait
);
1374 iclogp
= &iclog
->ic_next
;
1376 *iclogp
= log
->l_iclog
; /* complete ring */
1377 log
->l_iclog
->ic_prev
= prev_iclog
; /* re-write 1st prev ptr */
1379 error
= xlog_cil_init(log
);
1381 goto out_free_iclog
;
1385 for (iclog
= log
->l_iclog
; iclog
; iclog
= prev_iclog
) {
1386 prev_iclog
= iclog
->ic_next
;
1388 xfs_buf_free(iclog
->ic_bp
);
1391 spinlock_destroy(&log
->l_icloglock
);
1392 xfs_buf_free(log
->l_xbuf
);
1396 return ERR_PTR(-error
);
1397 } /* xlog_alloc_log */
1401 * Write out the commit record of a transaction associated with the given
1402 * ticket. Return the lsn of the commit record.
1407 struct xlog_ticket
*ticket
,
1408 struct xlog_in_core
**iclog
,
1409 xfs_lsn_t
*commitlsnp
)
1411 struct xfs_mount
*mp
= log
->l_mp
;
1413 struct xfs_log_iovec reg
= {
1416 .i_type
= XLOG_REG_TYPE_COMMIT
,
1418 struct xfs_log_vec vec
= {
1423 ASSERT_ALWAYS(iclog
);
1424 error
= xlog_write(log
, &vec
, ticket
, commitlsnp
, iclog
,
1427 xfs_force_shutdown(mp
, SHUTDOWN_LOG_IO_ERROR
);
1432 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1433 * log space. This code pushes on the lsn which would supposedly free up
1434 * the 25% which we want to leave free. We may need to adopt a policy which
1435 * pushes on an lsn which is further along in the log once we reach the high
1436 * water mark. In this manner, we would be creating a low water mark.
1439 xlog_grant_push_ail(
1443 xfs_lsn_t threshold_lsn
= 0;
1444 xfs_lsn_t last_sync_lsn
;
1447 int threshold_block
;
1448 int threshold_cycle
;
1451 ASSERT(BTOBB(need_bytes
) < log
->l_logBBsize
);
1453 free_bytes
= xlog_space_left(log
, &log
->l_reserve_head
.grant
);
1454 free_blocks
= BTOBBT(free_bytes
);
1457 * Set the threshold for the minimum number of free blocks in the
1458 * log to the maximum of what the caller needs, one quarter of the
1459 * log, and 256 blocks.
1461 free_threshold
= BTOBB(need_bytes
);
1462 free_threshold
= MAX(free_threshold
, (log
->l_logBBsize
>> 2));
1463 free_threshold
= MAX(free_threshold
, 256);
1464 if (free_blocks
>= free_threshold
)
1467 xlog_crack_atomic_lsn(&log
->l_tail_lsn
, &threshold_cycle
,
1469 threshold_block
+= free_threshold
;
1470 if (threshold_block
>= log
->l_logBBsize
) {
1471 threshold_block
-= log
->l_logBBsize
;
1472 threshold_cycle
+= 1;
1474 threshold_lsn
= xlog_assign_lsn(threshold_cycle
,
1477 * Don't pass in an lsn greater than the lsn of the last
1478 * log record known to be on disk. Use a snapshot of the last sync lsn
1479 * so that it doesn't change between the compare and the set.
1481 last_sync_lsn
= atomic64_read(&log
->l_last_sync_lsn
);
1482 if (XFS_LSN_CMP(threshold_lsn
, last_sync_lsn
) > 0)
1483 threshold_lsn
= last_sync_lsn
;
1486 * Get the transaction layer to kick the dirty buffers out to
1487 * disk asynchronously. No point in trying to do this if
1488 * the filesystem is shutting down.
1490 if (!XLOG_FORCED_SHUTDOWN(log
))
1491 xfs_ail_push(log
->l_ailp
, threshold_lsn
);
1495 * Stamp cycle number in every block
1500 struct xlog_in_core
*iclog
,
1504 int size
= iclog
->ic_offset
+ roundoff
;
1508 cycle_lsn
= CYCLE_LSN_DISK(iclog
->ic_header
.h_lsn
);
1510 dp
= iclog
->ic_datap
;
1511 for (i
= 0; i
< BTOBB(size
); i
++) {
1512 if (i
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
))
1514 iclog
->ic_header
.h_cycle_data
[i
] = *(__be32
*)dp
;
1515 *(__be32
*)dp
= cycle_lsn
;
1519 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
1520 xlog_in_core_2_t
*xhdr
= iclog
->ic_data
;
1522 for ( ; i
< BTOBB(size
); i
++) {
1523 j
= i
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
1524 k
= i
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
1525 xhdr
[j
].hic_xheader
.xh_cycle_data
[k
] = *(__be32
*)dp
;
1526 *(__be32
*)dp
= cycle_lsn
;
1530 for (i
= 1; i
< log
->l_iclog_heads
; i
++)
1531 xhdr
[i
].hic_xheader
.xh_cycle
= cycle_lsn
;
1536 * Calculate the checksum for a log buffer.
1538 * This is a little more complicated than it should be because the various
1539 * headers and the actual data are non-contiguous.
1544 struct xlog_rec_header
*rhead
,
1550 /* first generate the crc for the record header ... */
1551 crc
= xfs_start_cksum((char *)rhead
,
1552 sizeof(struct xlog_rec_header
),
1553 offsetof(struct xlog_rec_header
, h_crc
));
1555 /* ... then for additional cycle data for v2 logs ... */
1556 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
1557 union xlog_in_core2
*xhdr
= (union xlog_in_core2
*)rhead
;
1560 for (i
= 1; i
< log
->l_iclog_heads
; i
++) {
1561 crc
= crc32c(crc
, &xhdr
[i
].hic_xheader
,
1562 sizeof(struct xlog_rec_ext_header
));
1566 /* ... and finally for the payload */
1567 crc
= crc32c(crc
, dp
, size
);
1569 return xfs_end_cksum(crc
);
1573 * The bdstrat callback function for log bufs. This gives us a central
1574 * place to trap bufs in case we get hit by a log I/O error and need to
1575 * shutdown. Actually, in practice, even when we didn't get a log error,
1576 * we transition the iclogs to IOERROR state *after* flushing all existing
1577 * iclogs to disk. This is because we don't want anymore new transactions to be
1578 * started or completed afterwards.
1584 struct xlog_in_core
*iclog
= bp
->b_fspriv
;
1586 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
1587 xfs_buf_ioerror(bp
, EIO
);
1589 xfs_buf_ioend(bp
, 0);
1591 * It would seem logical to return EIO here, but we rely on
1592 * the log state machine to propagate I/O errors instead of
1598 xfs_buf_iorequest(bp
);
1603 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1604 * fashion. Previously, we should have moved the current iclog
1605 * ptr in the log to point to the next available iclog. This allows further
1606 * write to continue while this code syncs out an iclog ready to go.
1607 * Before an in-core log can be written out, the data section must be scanned
1608 * to save away the 1st word of each BBSIZE block into the header. We replace
1609 * it with the current cycle count. Each BBSIZE block is tagged with the
1610 * cycle count because there in an implicit assumption that drives will
1611 * guarantee that entire 512 byte blocks get written at once. In other words,
1612 * we can't have part of a 512 byte block written and part not written. By
1613 * tagging each block, we will know which blocks are valid when recovering
1614 * after an unclean shutdown.
1616 * This routine is single threaded on the iclog. No other thread can be in
1617 * this routine with the same iclog. Changing contents of iclog can there-
1618 * fore be done without grabbing the state machine lock. Updating the global
1619 * log will require grabbing the lock though.
1621 * The entire log manager uses a logical block numbering scheme. Only
1622 * log_sync (and then only bwrite()) know about the fact that the log may
1623 * not start with block zero on a given device. The log block start offset
1624 * is added immediately before calling bwrite().
1630 struct xlog_in_core
*iclog
)
1634 uint count
; /* byte count of bwrite */
1635 uint count_init
; /* initial count before roundup */
1636 int roundoff
; /* roundoff to BB or stripe */
1637 int split
= 0; /* split write into two regions */
1639 int v2
= xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
);
1642 XFS_STATS_INC(xs_log_writes
);
1643 ASSERT(atomic_read(&iclog
->ic_refcnt
) == 0);
1645 /* Add for LR header */
1646 count_init
= log
->l_iclog_hsize
+ iclog
->ic_offset
;
1648 /* Round out the log write size */
1649 if (v2
&& log
->l_mp
->m_sb
.sb_logsunit
> 1) {
1650 /* we have a v2 stripe unit to use */
1651 count
= XLOG_LSUNITTOB(log
, XLOG_BTOLSUNIT(log
, count_init
));
1653 count
= BBTOB(BTOBB(count_init
));
1655 roundoff
= count
- count_init
;
1656 ASSERT(roundoff
>= 0);
1657 ASSERT((v2
&& log
->l_mp
->m_sb
.sb_logsunit
> 1 &&
1658 roundoff
< log
->l_mp
->m_sb
.sb_logsunit
)
1660 (log
->l_mp
->m_sb
.sb_logsunit
<= 1 &&
1661 roundoff
< BBTOB(1)));
1663 /* move grant heads by roundoff in sync */
1664 xlog_grant_add_space(log
, &log
->l_reserve_head
.grant
, roundoff
);
1665 xlog_grant_add_space(log
, &log
->l_write_head
.grant
, roundoff
);
1667 /* put cycle number in every block */
1668 xlog_pack_data(log
, iclog
, roundoff
);
1670 /* real byte length */
1671 size
= iclog
->ic_offset
;
1674 iclog
->ic_header
.h_len
= cpu_to_be32(size
);
1677 XFS_BUF_SET_ADDR(bp
, BLOCK_LSN(be64_to_cpu(iclog
->ic_header
.h_lsn
)));
1679 XFS_STATS_ADD(xs_log_blocks
, BTOBB(count
));
1681 /* Do we need to split this write into 2 parts? */
1682 if (XFS_BUF_ADDR(bp
) + BTOBB(count
) > log
->l_logBBsize
) {
1685 split
= count
- (BBTOB(log
->l_logBBsize
- XFS_BUF_ADDR(bp
)));
1686 count
= BBTOB(log
->l_logBBsize
- XFS_BUF_ADDR(bp
));
1687 iclog
->ic_bwritecnt
= 2;
1690 * Bump the cycle numbers at the start of each block in the
1691 * part of the iclog that ends up in the buffer that gets
1692 * written to the start of the log.
1694 * Watch out for the header magic number case, though.
1696 dptr
= (char *)&iclog
->ic_header
+ count
;
1697 for (i
= 0; i
< split
; i
+= BBSIZE
) {
1698 __uint32_t cycle
= be32_to_cpu(*(__be32
*)dptr
);
1699 if (++cycle
== XLOG_HEADER_MAGIC_NUM
)
1701 *(__be32
*)dptr
= cpu_to_be32(cycle
);
1706 iclog
->ic_bwritecnt
= 1;
1709 /* calculcate the checksum */
1710 iclog
->ic_header
.h_crc
= xlog_cksum(log
, &iclog
->ic_header
,
1711 iclog
->ic_datap
, size
);
1713 bp
->b_io_length
= BTOBB(count
);
1714 bp
->b_fspriv
= iclog
;
1715 XFS_BUF_ZEROFLAGS(bp
);
1717 bp
->b_flags
|= XBF_SYNCIO
;
1719 if (log
->l_mp
->m_flags
& XFS_MOUNT_BARRIER
) {
1720 bp
->b_flags
|= XBF_FUA
;
1723 * Flush the data device before flushing the log to make
1724 * sure all meta data written back from the AIL actually made
1725 * it to disk before stamping the new log tail LSN into the
1726 * log buffer. For an external log we need to issue the
1727 * flush explicitly, and unfortunately synchronously here;
1728 * for an internal log we can simply use the block layer
1729 * state machine for preflushes.
1731 if (log
->l_mp
->m_logdev_targp
!= log
->l_mp
->m_ddev_targp
)
1732 xfs_blkdev_issue_flush(log
->l_mp
->m_ddev_targp
);
1734 bp
->b_flags
|= XBF_FLUSH
;
1737 ASSERT(XFS_BUF_ADDR(bp
) <= log
->l_logBBsize
-1);
1738 ASSERT(XFS_BUF_ADDR(bp
) + BTOBB(count
) <= log
->l_logBBsize
);
1740 xlog_verify_iclog(log
, iclog
, count
, true);
1742 /* account for log which doesn't start at block #0 */
1743 XFS_BUF_SET_ADDR(bp
, XFS_BUF_ADDR(bp
) + log
->l_logBBstart
);
1745 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1750 error
= xlog_bdstrat(bp
);
1752 xfs_buf_ioerror_alert(bp
, "xlog_sync");
1756 bp
= iclog
->ic_log
->l_xbuf
;
1757 XFS_BUF_SET_ADDR(bp
, 0); /* logical 0 */
1758 xfs_buf_associate_memory(bp
,
1759 (char *)&iclog
->ic_header
+ count
, split
);
1760 bp
->b_fspriv
= iclog
;
1761 XFS_BUF_ZEROFLAGS(bp
);
1763 bp
->b_flags
|= XBF_SYNCIO
;
1764 if (log
->l_mp
->m_flags
& XFS_MOUNT_BARRIER
)
1765 bp
->b_flags
|= XBF_FUA
;
1767 ASSERT(XFS_BUF_ADDR(bp
) <= log
->l_logBBsize
-1);
1768 ASSERT(XFS_BUF_ADDR(bp
) + BTOBB(count
) <= log
->l_logBBsize
);
1770 /* account for internal log which doesn't start at block #0 */
1771 XFS_BUF_SET_ADDR(bp
, XFS_BUF_ADDR(bp
) + log
->l_logBBstart
);
1773 error
= xlog_bdstrat(bp
);
1775 xfs_buf_ioerror_alert(bp
, "xlog_sync (split)");
1783 * Deallocate a log structure
1789 xlog_in_core_t
*iclog
, *next_iclog
;
1792 xlog_cil_destroy(log
);
1795 * always need to ensure that the extra buffer does not point to memory
1796 * owned by another log buffer before we free it.
1798 xfs_buf_set_empty(log
->l_xbuf
, BTOBB(log
->l_iclog_size
));
1799 xfs_buf_free(log
->l_xbuf
);
1801 iclog
= log
->l_iclog
;
1802 for (i
=0; i
<log
->l_iclog_bufs
; i
++) {
1803 xfs_buf_free(iclog
->ic_bp
);
1804 next_iclog
= iclog
->ic_next
;
1808 spinlock_destroy(&log
->l_icloglock
);
1810 log
->l_mp
->m_log
= NULL
;
1812 } /* xlog_dealloc_log */
1815 * Update counters atomically now that memcpy is done.
1819 xlog_state_finish_copy(
1821 struct xlog_in_core
*iclog
,
1825 spin_lock(&log
->l_icloglock
);
1827 be32_add_cpu(&iclog
->ic_header
.h_num_logops
, record_cnt
);
1828 iclog
->ic_offset
+= copy_bytes
;
1830 spin_unlock(&log
->l_icloglock
);
1831 } /* xlog_state_finish_copy */
1837 * print out info relating to regions written which consume
1842 struct xfs_mount
*mp
,
1843 struct xlog_ticket
*ticket
)
1846 uint ophdr_spc
= ticket
->t_res_num_ophdrs
* (uint
)sizeof(xlog_op_header_t
);
1848 /* match with XLOG_REG_TYPE_* in xfs_log.h */
1849 static char *res_type_str
[XLOG_REG_TYPE_MAX
] = {
1870 static char *trans_type_str
[XFS_TRANS_TYPE_MAX
] = {
1914 "xlog_write: reservation summary:\n"
1915 " trans type = %s (%u)\n"
1916 " unit res = %d bytes\n"
1917 " current res = %d bytes\n"
1918 " total reg = %u bytes (o/flow = %u bytes)\n"
1919 " ophdrs = %u (ophdr space = %u bytes)\n"
1920 " ophdr + reg = %u bytes\n"
1921 " num regions = %u\n",
1922 ((ticket
->t_trans_type
<= 0 ||
1923 ticket
->t_trans_type
> XFS_TRANS_TYPE_MAX
) ?
1924 "bad-trans-type" : trans_type_str
[ticket
->t_trans_type
-1]),
1925 ticket
->t_trans_type
,
1928 ticket
->t_res_arr_sum
, ticket
->t_res_o_flow
,
1929 ticket
->t_res_num_ophdrs
, ophdr_spc
,
1930 ticket
->t_res_arr_sum
+
1931 ticket
->t_res_o_flow
+ ophdr_spc
,
1934 for (i
= 0; i
< ticket
->t_res_num
; i
++) {
1935 uint r_type
= ticket
->t_res_arr
[i
].r_type
;
1936 xfs_warn(mp
, "region[%u]: %s - %u bytes\n", i
,
1937 ((r_type
<= 0 || r_type
> XLOG_REG_TYPE_MAX
) ?
1938 "bad-rtype" : res_type_str
[r_type
-1]),
1939 ticket
->t_res_arr
[i
].r_len
);
1942 xfs_alert_tag(mp
, XFS_PTAG_LOGRES
,
1943 "xlog_write: reservation ran out. Need to up reservation");
1944 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
1948 * Calculate the potential space needed by the log vector. Each region gets
1949 * its own xlog_op_header_t and may need to be double word aligned.
1952 xlog_write_calc_vec_length(
1953 struct xlog_ticket
*ticket
,
1954 struct xfs_log_vec
*log_vector
)
1956 struct xfs_log_vec
*lv
;
1961 /* acct for start rec of xact */
1962 if (ticket
->t_flags
& XLOG_TIC_INITED
)
1965 for (lv
= log_vector
; lv
; lv
= lv
->lv_next
) {
1966 /* we don't write ordered log vectors */
1967 if (lv
->lv_buf_len
== XFS_LOG_VEC_ORDERED
)
1970 headers
+= lv
->lv_niovecs
;
1972 for (i
= 0; i
< lv
->lv_niovecs
; i
++) {
1973 struct xfs_log_iovec
*vecp
= &lv
->lv_iovecp
[i
];
1976 xlog_tic_add_region(ticket
, vecp
->i_len
, vecp
->i_type
);
1980 ticket
->t_res_num_ophdrs
+= headers
;
1981 len
+= headers
* sizeof(struct xlog_op_header
);
1987 * If first write for transaction, insert start record We can't be trying to
1988 * commit if we are inited. We can't have any "partial_copy" if we are inited.
1991 xlog_write_start_rec(
1992 struct xlog_op_header
*ophdr
,
1993 struct xlog_ticket
*ticket
)
1995 if (!(ticket
->t_flags
& XLOG_TIC_INITED
))
1998 ophdr
->oh_tid
= cpu_to_be32(ticket
->t_tid
);
1999 ophdr
->oh_clientid
= ticket
->t_clientid
;
2001 ophdr
->oh_flags
= XLOG_START_TRANS
;
2004 ticket
->t_flags
&= ~XLOG_TIC_INITED
;
2006 return sizeof(struct xlog_op_header
);
2009 static xlog_op_header_t
*
2010 xlog_write_setup_ophdr(
2012 struct xlog_op_header
*ophdr
,
2013 struct xlog_ticket
*ticket
,
2016 ophdr
->oh_tid
= cpu_to_be32(ticket
->t_tid
);
2017 ophdr
->oh_clientid
= ticket
->t_clientid
;
2020 /* are we copying a commit or unmount record? */
2021 ophdr
->oh_flags
= flags
;
2024 * We've seen logs corrupted with bad transaction client ids. This
2025 * makes sure that XFS doesn't generate them on. Turn this into an EIO
2026 * and shut down the filesystem.
2028 switch (ophdr
->oh_clientid
) {
2029 case XFS_TRANSACTION
:
2035 "Bad XFS transaction clientid 0x%x in ticket 0x%p",
2036 ophdr
->oh_clientid
, ticket
);
2044 * Set up the parameters of the region copy into the log. This has
2045 * to handle region write split across multiple log buffers - this
2046 * state is kept external to this function so that this code can
2047 * can be written in an obvious, self documenting manner.
2050 xlog_write_setup_copy(
2051 struct xlog_ticket
*ticket
,
2052 struct xlog_op_header
*ophdr
,
2053 int space_available
,
2057 int *last_was_partial_copy
,
2058 int *bytes_consumed
)
2062 still_to_copy
= space_required
- *bytes_consumed
;
2063 *copy_off
= *bytes_consumed
;
2065 if (still_to_copy
<= space_available
) {
2066 /* write of region completes here */
2067 *copy_len
= still_to_copy
;
2068 ophdr
->oh_len
= cpu_to_be32(*copy_len
);
2069 if (*last_was_partial_copy
)
2070 ophdr
->oh_flags
|= (XLOG_END_TRANS
|XLOG_WAS_CONT_TRANS
);
2071 *last_was_partial_copy
= 0;
2072 *bytes_consumed
= 0;
2076 /* partial write of region, needs extra log op header reservation */
2077 *copy_len
= space_available
;
2078 ophdr
->oh_len
= cpu_to_be32(*copy_len
);
2079 ophdr
->oh_flags
|= XLOG_CONTINUE_TRANS
;
2080 if (*last_was_partial_copy
)
2081 ophdr
->oh_flags
|= XLOG_WAS_CONT_TRANS
;
2082 *bytes_consumed
+= *copy_len
;
2083 (*last_was_partial_copy
)++;
2085 /* account for new log op header */
2086 ticket
->t_curr_res
-= sizeof(struct xlog_op_header
);
2087 ticket
->t_res_num_ophdrs
++;
2089 return sizeof(struct xlog_op_header
);
2093 xlog_write_copy_finish(
2095 struct xlog_in_core
*iclog
,
2100 int *partial_copy_len
,
2102 struct xlog_in_core
**commit_iclog
)
2104 if (*partial_copy
) {
2106 * This iclog has already been marked WANT_SYNC by
2107 * xlog_state_get_iclog_space.
2109 xlog_state_finish_copy(log
, iclog
, *record_cnt
, *data_cnt
);
2112 return xlog_state_release_iclog(log
, iclog
);
2116 *partial_copy_len
= 0;
2118 if (iclog
->ic_size
- log_offset
<= sizeof(xlog_op_header_t
)) {
2119 /* no more space in this iclog - push it. */
2120 xlog_state_finish_copy(log
, iclog
, *record_cnt
, *data_cnt
);
2124 spin_lock(&log
->l_icloglock
);
2125 xlog_state_want_sync(log
, iclog
);
2126 spin_unlock(&log
->l_icloglock
);
2129 return xlog_state_release_iclog(log
, iclog
);
2130 ASSERT(flags
& XLOG_COMMIT_TRANS
);
2131 *commit_iclog
= iclog
;
2138 * Write some region out to in-core log
2140 * This will be called when writing externally provided regions or when
2141 * writing out a commit record for a given transaction.
2143 * General algorithm:
2144 * 1. Find total length of this write. This may include adding to the
2145 * lengths passed in.
2146 * 2. Check whether we violate the tickets reservation.
2147 * 3. While writing to this iclog
2148 * A. Reserve as much space in this iclog as can get
2149 * B. If this is first write, save away start lsn
2150 * C. While writing this region:
2151 * 1. If first write of transaction, write start record
2152 * 2. Write log operation header (header per region)
2153 * 3. Find out if we can fit entire region into this iclog
2154 * 4. Potentially, verify destination memcpy ptr
2155 * 5. Memcpy (partial) region
2156 * 6. If partial copy, release iclog; otherwise, continue
2157 * copying more regions into current iclog
2158 * 4. Mark want sync bit (in simulation mode)
2159 * 5. Release iclog for potential flush to on-disk log.
2162 * 1. Panic if reservation is overrun. This should never happen since
2163 * reservation amounts are generated internal to the filesystem.
2165 * 1. Tickets are single threaded data structures.
2166 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2167 * syncing routine. When a single log_write region needs to span
2168 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2169 * on all log operation writes which don't contain the end of the
2170 * region. The XLOG_END_TRANS bit is used for the in-core log
2171 * operation which contains the end of the continued log_write region.
2172 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2173 * we don't really know exactly how much space will be used. As a result,
2174 * we don't update ic_offset until the end when we know exactly how many
2175 * bytes have been written out.
2180 struct xfs_log_vec
*log_vector
,
2181 struct xlog_ticket
*ticket
,
2182 xfs_lsn_t
*start_lsn
,
2183 struct xlog_in_core
**commit_iclog
,
2186 struct xlog_in_core
*iclog
= NULL
;
2187 struct xfs_log_iovec
*vecp
;
2188 struct xfs_log_vec
*lv
;
2191 int partial_copy
= 0;
2192 int partial_copy_len
= 0;
2200 len
= xlog_write_calc_vec_length(ticket
, log_vector
);
2203 * Region headers and bytes are already accounted for.
2204 * We only need to take into account start records and
2205 * split regions in this function.
2207 if (ticket
->t_flags
& XLOG_TIC_INITED
)
2208 ticket
->t_curr_res
-= sizeof(xlog_op_header_t
);
2211 * Commit record headers need to be accounted for. These
2212 * come in as separate writes so are easy to detect.
2214 if (flags
& (XLOG_COMMIT_TRANS
| XLOG_UNMOUNT_TRANS
))
2215 ticket
->t_curr_res
-= sizeof(xlog_op_header_t
);
2217 if (ticket
->t_curr_res
< 0)
2218 xlog_print_tic_res(log
->l_mp
, ticket
);
2222 vecp
= lv
->lv_iovecp
;
2223 while (lv
&& (!lv
->lv_niovecs
|| index
< lv
->lv_niovecs
)) {
2227 error
= xlog_state_get_iclog_space(log
, len
, &iclog
, ticket
,
2228 &contwr
, &log_offset
);
2232 ASSERT(log_offset
<= iclog
->ic_size
- 1);
2233 ptr
= iclog
->ic_datap
+ log_offset
;
2235 /* start_lsn is the first lsn written to. That's all we need. */
2237 *start_lsn
= be64_to_cpu(iclog
->ic_header
.h_lsn
);
2240 * This loop writes out as many regions as can fit in the amount
2241 * of space which was allocated by xlog_state_get_iclog_space().
2243 while (lv
&& (!lv
->lv_niovecs
|| index
< lv
->lv_niovecs
)) {
2244 struct xfs_log_iovec
*reg
;
2245 struct xlog_op_header
*ophdr
;
2249 bool ordered
= false;
2251 /* ordered log vectors have no regions to write */
2252 if (lv
->lv_buf_len
== XFS_LOG_VEC_ORDERED
) {
2253 ASSERT(lv
->lv_niovecs
== 0);
2259 ASSERT(reg
->i_len
% sizeof(__int32_t
) == 0);
2260 ASSERT((unsigned long)ptr
% sizeof(__int32_t
) == 0);
2262 start_rec_copy
= xlog_write_start_rec(ptr
, ticket
);
2263 if (start_rec_copy
) {
2265 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
,
2269 ophdr
= xlog_write_setup_ophdr(log
, ptr
, ticket
, flags
);
2271 return XFS_ERROR(EIO
);
2273 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
,
2274 sizeof(struct xlog_op_header
));
2276 len
+= xlog_write_setup_copy(ticket
, ophdr
,
2277 iclog
->ic_size
-log_offset
,
2279 ©_off
, ©_len
,
2282 xlog_verify_dest_ptr(log
, ptr
);
2285 ASSERT(copy_len
>= 0);
2286 memcpy(ptr
, reg
->i_addr
+ copy_off
, copy_len
);
2287 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
, copy_len
);
2289 copy_len
+= start_rec_copy
+ sizeof(xlog_op_header_t
);
2291 data_cnt
+= contwr
? copy_len
: 0;
2293 error
= xlog_write_copy_finish(log
, iclog
, flags
,
2294 &record_cnt
, &data_cnt
,
2303 * if we had a partial copy, we need to get more iclog
2304 * space but we don't want to increment the region
2305 * index because there is still more is this region to
2308 * If we completed writing this region, and we flushed
2309 * the iclog (indicated by resetting of the record
2310 * count), then we also need to get more log space. If
2311 * this was the last record, though, we are done and
2317 if (++index
== lv
->lv_niovecs
) {
2322 vecp
= lv
->lv_iovecp
;
2324 if (record_cnt
== 0 && ordered
== false) {
2334 xlog_state_finish_copy(log
, iclog
, record_cnt
, data_cnt
);
2336 return xlog_state_release_iclog(log
, iclog
);
2338 ASSERT(flags
& XLOG_COMMIT_TRANS
);
2339 *commit_iclog
= iclog
;
2344 /*****************************************************************************
2346 * State Machine functions
2348 *****************************************************************************
2351 /* Clean iclogs starting from the head. This ordering must be
2352 * maintained, so an iclog doesn't become ACTIVE beyond one that
2353 * is SYNCING. This is also required to maintain the notion that we use
2354 * a ordered wait queue to hold off would be writers to the log when every
2355 * iclog is trying to sync to disk.
2357 * State Change: DIRTY -> ACTIVE
2360 xlog_state_clean_log(
2363 xlog_in_core_t
*iclog
;
2366 iclog
= log
->l_iclog
;
2368 if (iclog
->ic_state
== XLOG_STATE_DIRTY
) {
2369 iclog
->ic_state
= XLOG_STATE_ACTIVE
;
2370 iclog
->ic_offset
= 0;
2371 ASSERT(iclog
->ic_callback
== NULL
);
2373 * If the number of ops in this iclog indicate it just
2374 * contains the dummy transaction, we can
2375 * change state into IDLE (the second time around).
2376 * Otherwise we should change the state into
2378 * We don't need to cover the dummy.
2381 (be32_to_cpu(iclog
->ic_header
.h_num_logops
) ==
2386 * We have two dirty iclogs so start over
2387 * This could also be num of ops indicates
2388 * this is not the dummy going out.
2392 iclog
->ic_header
.h_num_logops
= 0;
2393 memset(iclog
->ic_header
.h_cycle_data
, 0,
2394 sizeof(iclog
->ic_header
.h_cycle_data
));
2395 iclog
->ic_header
.h_lsn
= 0;
2396 } else if (iclog
->ic_state
== XLOG_STATE_ACTIVE
)
2399 break; /* stop cleaning */
2400 iclog
= iclog
->ic_next
;
2401 } while (iclog
!= log
->l_iclog
);
2403 /* log is locked when we are called */
2405 * Change state for the dummy log recording.
2406 * We usually go to NEED. But we go to NEED2 if the changed indicates
2407 * we are done writing the dummy record.
2408 * If we are done with the second dummy recored (DONE2), then
2412 switch (log
->l_covered_state
) {
2413 case XLOG_STATE_COVER_IDLE
:
2414 case XLOG_STATE_COVER_NEED
:
2415 case XLOG_STATE_COVER_NEED2
:
2416 log
->l_covered_state
= XLOG_STATE_COVER_NEED
;
2419 case XLOG_STATE_COVER_DONE
:
2421 log
->l_covered_state
= XLOG_STATE_COVER_NEED2
;
2423 log
->l_covered_state
= XLOG_STATE_COVER_NEED
;
2426 case XLOG_STATE_COVER_DONE2
:
2428 log
->l_covered_state
= XLOG_STATE_COVER_IDLE
;
2430 log
->l_covered_state
= XLOG_STATE_COVER_NEED
;
2437 } /* xlog_state_clean_log */
2440 xlog_get_lowest_lsn(
2443 xlog_in_core_t
*lsn_log
;
2444 xfs_lsn_t lowest_lsn
, lsn
;
2446 lsn_log
= log
->l_iclog
;
2449 if (!(lsn_log
->ic_state
& (XLOG_STATE_ACTIVE
|XLOG_STATE_DIRTY
))) {
2450 lsn
= be64_to_cpu(lsn_log
->ic_header
.h_lsn
);
2451 if ((lsn
&& !lowest_lsn
) ||
2452 (XFS_LSN_CMP(lsn
, lowest_lsn
) < 0)) {
2456 lsn_log
= lsn_log
->ic_next
;
2457 } while (lsn_log
!= log
->l_iclog
);
2463 xlog_state_do_callback(
2466 struct xlog_in_core
*ciclog
)
2468 xlog_in_core_t
*iclog
;
2469 xlog_in_core_t
*first_iclog
; /* used to know when we've
2470 * processed all iclogs once */
2471 xfs_log_callback_t
*cb
, *cb_next
;
2473 xfs_lsn_t lowest_lsn
;
2474 int ioerrors
; /* counter: iclogs with errors */
2475 int loopdidcallbacks
; /* flag: inner loop did callbacks*/
2476 int funcdidcallbacks
; /* flag: function did callbacks */
2477 int repeats
; /* for issuing console warnings if
2478 * looping too many times */
2481 spin_lock(&log
->l_icloglock
);
2482 first_iclog
= iclog
= log
->l_iclog
;
2484 funcdidcallbacks
= 0;
2489 * Scan all iclogs starting with the one pointed to by the
2490 * log. Reset this starting point each time the log is
2491 * unlocked (during callbacks).
2493 * Keep looping through iclogs until one full pass is made
2494 * without running any callbacks.
2496 first_iclog
= log
->l_iclog
;
2497 iclog
= log
->l_iclog
;
2498 loopdidcallbacks
= 0;
2503 /* skip all iclogs in the ACTIVE & DIRTY states */
2504 if (iclog
->ic_state
&
2505 (XLOG_STATE_ACTIVE
|XLOG_STATE_DIRTY
)) {
2506 iclog
= iclog
->ic_next
;
2511 * Between marking a filesystem SHUTDOWN and stopping
2512 * the log, we do flush all iclogs to disk (if there
2513 * wasn't a log I/O error). So, we do want things to
2514 * go smoothly in case of just a SHUTDOWN w/o a
2517 if (!(iclog
->ic_state
& XLOG_STATE_IOERROR
)) {
2519 * Can only perform callbacks in order. Since
2520 * this iclog is not in the DONE_SYNC/
2521 * DO_CALLBACK state, we skip the rest and
2522 * just try to clean up. If we set our iclog
2523 * to DO_CALLBACK, we will not process it when
2524 * we retry since a previous iclog is in the
2525 * CALLBACK and the state cannot change since
2526 * we are holding the l_icloglock.
2528 if (!(iclog
->ic_state
&
2529 (XLOG_STATE_DONE_SYNC
|
2530 XLOG_STATE_DO_CALLBACK
))) {
2531 if (ciclog
&& (ciclog
->ic_state
==
2532 XLOG_STATE_DONE_SYNC
)) {
2533 ciclog
->ic_state
= XLOG_STATE_DO_CALLBACK
;
2538 * We now have an iclog that is in either the
2539 * DO_CALLBACK or DONE_SYNC states. The other
2540 * states (WANT_SYNC, SYNCING, or CALLBACK were
2541 * caught by the above if and are going to
2542 * clean (i.e. we aren't doing their callbacks)
2547 * We will do one more check here to see if we
2548 * have chased our tail around.
2551 lowest_lsn
= xlog_get_lowest_lsn(log
);
2553 XFS_LSN_CMP(lowest_lsn
,
2554 be64_to_cpu(iclog
->ic_header
.h_lsn
)) < 0) {
2555 iclog
= iclog
->ic_next
;
2556 continue; /* Leave this iclog for
2560 iclog
->ic_state
= XLOG_STATE_CALLBACK
;
2564 * Completion of a iclog IO does not imply that
2565 * a transaction has completed, as transactions
2566 * can be large enough to span many iclogs. We
2567 * cannot change the tail of the log half way
2568 * through a transaction as this may be the only
2569 * transaction in the log and moving th etail to
2570 * point to the middle of it will prevent
2571 * recovery from finding the start of the
2572 * transaction. Hence we should only update the
2573 * last_sync_lsn if this iclog contains
2574 * transaction completion callbacks on it.
2576 * We have to do this before we drop the
2577 * icloglock to ensure we are the only one that
2580 ASSERT(XFS_LSN_CMP(atomic64_read(&log
->l_last_sync_lsn
),
2581 be64_to_cpu(iclog
->ic_header
.h_lsn
)) <= 0);
2582 if (iclog
->ic_callback
)
2583 atomic64_set(&log
->l_last_sync_lsn
,
2584 be64_to_cpu(iclog
->ic_header
.h_lsn
));
2589 spin_unlock(&log
->l_icloglock
);
2592 * Keep processing entries in the callback list until
2593 * we come around and it is empty. We need to
2594 * atomically see that the list is empty and change the
2595 * state to DIRTY so that we don't miss any more
2596 * callbacks being added.
2598 spin_lock(&iclog
->ic_callback_lock
);
2599 cb
= iclog
->ic_callback
;
2601 iclog
->ic_callback_tail
= &(iclog
->ic_callback
);
2602 iclog
->ic_callback
= NULL
;
2603 spin_unlock(&iclog
->ic_callback_lock
);
2605 /* perform callbacks in the order given */
2606 for (; cb
; cb
= cb_next
) {
2607 cb_next
= cb
->cb_next
;
2608 cb
->cb_func(cb
->cb_arg
, aborted
);
2610 spin_lock(&iclog
->ic_callback_lock
);
2611 cb
= iclog
->ic_callback
;
2617 spin_lock(&log
->l_icloglock
);
2618 ASSERT(iclog
->ic_callback
== NULL
);
2619 spin_unlock(&iclog
->ic_callback_lock
);
2620 if (!(iclog
->ic_state
& XLOG_STATE_IOERROR
))
2621 iclog
->ic_state
= XLOG_STATE_DIRTY
;
2624 * Transition from DIRTY to ACTIVE if applicable.
2625 * NOP if STATE_IOERROR.
2627 xlog_state_clean_log(log
);
2629 /* wake up threads waiting in xfs_log_force() */
2630 wake_up_all(&iclog
->ic_force_wait
);
2632 iclog
= iclog
->ic_next
;
2633 } while (first_iclog
!= iclog
);
2635 if (repeats
> 5000) {
2636 flushcnt
+= repeats
;
2639 "%s: possible infinite loop (%d iterations)",
2640 __func__
, flushcnt
);
2642 } while (!ioerrors
&& loopdidcallbacks
);
2645 * make one last gasp attempt to see if iclogs are being left in
2649 if (funcdidcallbacks
) {
2650 first_iclog
= iclog
= log
->l_iclog
;
2652 ASSERT(iclog
->ic_state
!= XLOG_STATE_DO_CALLBACK
);
2654 * Terminate the loop if iclogs are found in states
2655 * which will cause other threads to clean up iclogs.
2657 * SYNCING - i/o completion will go through logs
2658 * DONE_SYNC - interrupt thread should be waiting for
2660 * IOERROR - give up hope all ye who enter here
2662 if (iclog
->ic_state
== XLOG_STATE_WANT_SYNC
||
2663 iclog
->ic_state
== XLOG_STATE_SYNCING
||
2664 iclog
->ic_state
== XLOG_STATE_DONE_SYNC
||
2665 iclog
->ic_state
== XLOG_STATE_IOERROR
)
2667 iclog
= iclog
->ic_next
;
2668 } while (first_iclog
!= iclog
);
2672 if (log
->l_iclog
->ic_state
& (XLOG_STATE_ACTIVE
|XLOG_STATE_IOERROR
))
2674 spin_unlock(&log
->l_icloglock
);
2677 wake_up_all(&log
->l_flush_wait
);
2682 * Finish transitioning this iclog to the dirty state.
2684 * Make sure that we completely execute this routine only when this is
2685 * the last call to the iclog. There is a good chance that iclog flushes,
2686 * when we reach the end of the physical log, get turned into 2 separate
2687 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2688 * routine. By using the reference count bwritecnt, we guarantee that only
2689 * the second completion goes through.
2691 * Callbacks could take time, so they are done outside the scope of the
2692 * global state machine log lock.
2695 xlog_state_done_syncing(
2696 xlog_in_core_t
*iclog
,
2699 struct xlog
*log
= iclog
->ic_log
;
2701 spin_lock(&log
->l_icloglock
);
2703 ASSERT(iclog
->ic_state
== XLOG_STATE_SYNCING
||
2704 iclog
->ic_state
== XLOG_STATE_IOERROR
);
2705 ASSERT(atomic_read(&iclog
->ic_refcnt
) == 0);
2706 ASSERT(iclog
->ic_bwritecnt
== 1 || iclog
->ic_bwritecnt
== 2);
2710 * If we got an error, either on the first buffer, or in the case of
2711 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2712 * and none should ever be attempted to be written to disk
2715 if (iclog
->ic_state
!= XLOG_STATE_IOERROR
) {
2716 if (--iclog
->ic_bwritecnt
== 1) {
2717 spin_unlock(&log
->l_icloglock
);
2720 iclog
->ic_state
= XLOG_STATE_DONE_SYNC
;
2724 * Someone could be sleeping prior to writing out the next
2725 * iclog buffer, we wake them all, one will get to do the
2726 * I/O, the others get to wait for the result.
2728 wake_up_all(&iclog
->ic_write_wait
);
2729 spin_unlock(&log
->l_icloglock
);
2730 xlog_state_do_callback(log
, aborted
, iclog
); /* also cleans log */
2731 } /* xlog_state_done_syncing */
2735 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2736 * sleep. We wait on the flush queue on the head iclog as that should be
2737 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2738 * we will wait here and all new writes will sleep until a sync completes.
2740 * The in-core logs are used in a circular fashion. They are not used
2741 * out-of-order even when an iclog past the head is free.
2744 * * log_offset where xlog_write() can start writing into the in-core
2746 * * in-core log pointer to which xlog_write() should write.
2747 * * boolean indicating this is a continued write to an in-core log.
2748 * If this is the last write, then the in-core log's offset field
2749 * needs to be incremented, depending on the amount of data which
2753 xlog_state_get_iclog_space(
2756 struct xlog_in_core
**iclogp
,
2757 struct xlog_ticket
*ticket
,
2758 int *continued_write
,
2762 xlog_rec_header_t
*head
;
2763 xlog_in_core_t
*iclog
;
2767 spin_lock(&log
->l_icloglock
);
2768 if (XLOG_FORCED_SHUTDOWN(log
)) {
2769 spin_unlock(&log
->l_icloglock
);
2770 return XFS_ERROR(EIO
);
2773 iclog
= log
->l_iclog
;
2774 if (iclog
->ic_state
!= XLOG_STATE_ACTIVE
) {
2775 XFS_STATS_INC(xs_log_noiclogs
);
2777 /* Wait for log writes to have flushed */
2778 xlog_wait(&log
->l_flush_wait
, &log
->l_icloglock
);
2782 head
= &iclog
->ic_header
;
2784 atomic_inc(&iclog
->ic_refcnt
); /* prevents sync */
2785 log_offset
= iclog
->ic_offset
;
2787 /* On the 1st write to an iclog, figure out lsn. This works
2788 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2789 * committing to. If the offset is set, that's how many blocks
2792 if (log_offset
== 0) {
2793 ticket
->t_curr_res
-= log
->l_iclog_hsize
;
2794 xlog_tic_add_region(ticket
,
2796 XLOG_REG_TYPE_LRHEADER
);
2797 head
->h_cycle
= cpu_to_be32(log
->l_curr_cycle
);
2798 head
->h_lsn
= cpu_to_be64(
2799 xlog_assign_lsn(log
->l_curr_cycle
, log
->l_curr_block
));
2800 ASSERT(log
->l_curr_block
>= 0);
2803 /* If there is enough room to write everything, then do it. Otherwise,
2804 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2805 * bit is on, so this will get flushed out. Don't update ic_offset
2806 * until you know exactly how many bytes get copied. Therefore, wait
2807 * until later to update ic_offset.
2809 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2810 * can fit into remaining data section.
2812 if (iclog
->ic_size
- iclog
->ic_offset
< 2*sizeof(xlog_op_header_t
)) {
2813 xlog_state_switch_iclogs(log
, iclog
, iclog
->ic_size
);
2816 * If I'm the only one writing to this iclog, sync it to disk.
2817 * We need to do an atomic compare and decrement here to avoid
2818 * racing with concurrent atomic_dec_and_lock() calls in
2819 * xlog_state_release_iclog() when there is more than one
2820 * reference to the iclog.
2822 if (!atomic_add_unless(&iclog
->ic_refcnt
, -1, 1)) {
2823 /* we are the only one */
2824 spin_unlock(&log
->l_icloglock
);
2825 error
= xlog_state_release_iclog(log
, iclog
);
2829 spin_unlock(&log
->l_icloglock
);
2834 /* Do we have enough room to write the full amount in the remainder
2835 * of this iclog? Or must we continue a write on the next iclog and
2836 * mark this iclog as completely taken? In the case where we switch
2837 * iclogs (to mark it taken), this particular iclog will release/sync
2838 * to disk in xlog_write().
2840 if (len
<= iclog
->ic_size
- iclog
->ic_offset
) {
2841 *continued_write
= 0;
2842 iclog
->ic_offset
+= len
;
2844 *continued_write
= 1;
2845 xlog_state_switch_iclogs(log
, iclog
, iclog
->ic_size
);
2849 ASSERT(iclog
->ic_offset
<= iclog
->ic_size
);
2850 spin_unlock(&log
->l_icloglock
);
2852 *logoffsetp
= log_offset
;
2854 } /* xlog_state_get_iclog_space */
2856 /* The first cnt-1 times through here we don't need to
2857 * move the grant write head because the permanent
2858 * reservation has reserved cnt times the unit amount.
2859 * Release part of current permanent unit reservation and
2860 * reset current reservation to be one units worth. Also
2861 * move grant reservation head forward.
2864 xlog_regrant_reserve_log_space(
2866 struct xlog_ticket
*ticket
)
2868 trace_xfs_log_regrant_reserve_enter(log
, ticket
);
2870 if (ticket
->t_cnt
> 0)
2873 xlog_grant_sub_space(log
, &log
->l_reserve_head
.grant
,
2874 ticket
->t_curr_res
);
2875 xlog_grant_sub_space(log
, &log
->l_write_head
.grant
,
2876 ticket
->t_curr_res
);
2877 ticket
->t_curr_res
= ticket
->t_unit_res
;
2878 xlog_tic_reset_res(ticket
);
2880 trace_xfs_log_regrant_reserve_sub(log
, ticket
);
2882 /* just return if we still have some of the pre-reserved space */
2883 if (ticket
->t_cnt
> 0)
2886 xlog_grant_add_space(log
, &log
->l_reserve_head
.grant
,
2887 ticket
->t_unit_res
);
2889 trace_xfs_log_regrant_reserve_exit(log
, ticket
);
2891 ticket
->t_curr_res
= ticket
->t_unit_res
;
2892 xlog_tic_reset_res(ticket
);
2893 } /* xlog_regrant_reserve_log_space */
2897 * Give back the space left from a reservation.
2899 * All the information we need to make a correct determination of space left
2900 * is present. For non-permanent reservations, things are quite easy. The
2901 * count should have been decremented to zero. We only need to deal with the
2902 * space remaining in the current reservation part of the ticket. If the
2903 * ticket contains a permanent reservation, there may be left over space which
2904 * needs to be released. A count of N means that N-1 refills of the current
2905 * reservation can be done before we need to ask for more space. The first
2906 * one goes to fill up the first current reservation. Once we run out of
2907 * space, the count will stay at zero and the only space remaining will be
2908 * in the current reservation field.
2911 xlog_ungrant_log_space(
2913 struct xlog_ticket
*ticket
)
2917 if (ticket
->t_cnt
> 0)
2920 trace_xfs_log_ungrant_enter(log
, ticket
);
2921 trace_xfs_log_ungrant_sub(log
, ticket
);
2924 * If this is a permanent reservation ticket, we may be able to free
2925 * up more space based on the remaining count.
2927 bytes
= ticket
->t_curr_res
;
2928 if (ticket
->t_cnt
> 0) {
2929 ASSERT(ticket
->t_flags
& XLOG_TIC_PERM_RESERV
);
2930 bytes
+= ticket
->t_unit_res
*ticket
->t_cnt
;
2933 xlog_grant_sub_space(log
, &log
->l_reserve_head
.grant
, bytes
);
2934 xlog_grant_sub_space(log
, &log
->l_write_head
.grant
, bytes
);
2936 trace_xfs_log_ungrant_exit(log
, ticket
);
2938 xfs_log_space_wake(log
->l_mp
);
2942 * Flush iclog to disk if this is the last reference to the given iclog and
2943 * the WANT_SYNC bit is set.
2945 * When this function is entered, the iclog is not necessarily in the
2946 * WANT_SYNC state. It may be sitting around waiting to get filled.
2951 xlog_state_release_iclog(
2953 struct xlog_in_core
*iclog
)
2955 int sync
= 0; /* do we sync? */
2957 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
2958 return XFS_ERROR(EIO
);
2960 ASSERT(atomic_read(&iclog
->ic_refcnt
) > 0);
2961 if (!atomic_dec_and_lock(&iclog
->ic_refcnt
, &log
->l_icloglock
))
2964 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
2965 spin_unlock(&log
->l_icloglock
);
2966 return XFS_ERROR(EIO
);
2968 ASSERT(iclog
->ic_state
== XLOG_STATE_ACTIVE
||
2969 iclog
->ic_state
== XLOG_STATE_WANT_SYNC
);
2971 if (iclog
->ic_state
== XLOG_STATE_WANT_SYNC
) {
2972 /* update tail before writing to iclog */
2973 xfs_lsn_t tail_lsn
= xlog_assign_tail_lsn(log
->l_mp
);
2975 iclog
->ic_state
= XLOG_STATE_SYNCING
;
2976 iclog
->ic_header
.h_tail_lsn
= cpu_to_be64(tail_lsn
);
2977 xlog_verify_tail_lsn(log
, iclog
, tail_lsn
);
2978 /* cycle incremented when incrementing curr_block */
2980 spin_unlock(&log
->l_icloglock
);
2983 * We let the log lock go, so it's possible that we hit a log I/O
2984 * error or some other SHUTDOWN condition that marks the iclog
2985 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
2986 * this iclog has consistent data, so we ignore IOERROR
2987 * flags after this point.
2990 return xlog_sync(log
, iclog
);
2992 } /* xlog_state_release_iclog */
2996 * This routine will mark the current iclog in the ring as WANT_SYNC
2997 * and move the current iclog pointer to the next iclog in the ring.
2998 * When this routine is called from xlog_state_get_iclog_space(), the
2999 * exact size of the iclog has not yet been determined. All we know is
3000 * that every data block. We have run out of space in this log record.
3003 xlog_state_switch_iclogs(
3005 struct xlog_in_core
*iclog
,
3008 ASSERT(iclog
->ic_state
== XLOG_STATE_ACTIVE
);
3010 eventual_size
= iclog
->ic_offset
;
3011 iclog
->ic_state
= XLOG_STATE_WANT_SYNC
;
3012 iclog
->ic_header
.h_prev_block
= cpu_to_be32(log
->l_prev_block
);
3013 log
->l_prev_block
= log
->l_curr_block
;
3014 log
->l_prev_cycle
= log
->l_curr_cycle
;
3016 /* roll log?: ic_offset changed later */
3017 log
->l_curr_block
+= BTOBB(eventual_size
)+BTOBB(log
->l_iclog_hsize
);
3019 /* Round up to next log-sunit */
3020 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) &&
3021 log
->l_mp
->m_sb
.sb_logsunit
> 1) {
3022 __uint32_t sunit_bb
= BTOBB(log
->l_mp
->m_sb
.sb_logsunit
);
3023 log
->l_curr_block
= roundup(log
->l_curr_block
, sunit_bb
);
3026 if (log
->l_curr_block
>= log
->l_logBBsize
) {
3027 log
->l_curr_cycle
++;
3028 if (log
->l_curr_cycle
== XLOG_HEADER_MAGIC_NUM
)
3029 log
->l_curr_cycle
++;
3030 log
->l_curr_block
-= log
->l_logBBsize
;
3031 ASSERT(log
->l_curr_block
>= 0);
3033 ASSERT(iclog
== log
->l_iclog
);
3034 log
->l_iclog
= iclog
->ic_next
;
3035 } /* xlog_state_switch_iclogs */
3038 * Write out all data in the in-core log as of this exact moment in time.
3040 * Data may be written to the in-core log during this call. However,
3041 * we don't guarantee this data will be written out. A change from past
3042 * implementation means this routine will *not* write out zero length LRs.
3044 * Basically, we try and perform an intelligent scan of the in-core logs.
3045 * If we determine there is no flushable data, we just return. There is no
3046 * flushable data if:
3048 * 1. the current iclog is active and has no data; the previous iclog
3049 * is in the active or dirty state.
3050 * 2. the current iclog is drity, and the previous iclog is in the
3051 * active or dirty state.
3055 * 1. the current iclog is not in the active nor dirty state.
3056 * 2. the current iclog dirty, and the previous iclog is not in the
3057 * active nor dirty state.
3058 * 3. the current iclog is active, and there is another thread writing
3059 * to this particular iclog.
3060 * 4. a) the current iclog is active and has no other writers
3061 * b) when we return from flushing out this iclog, it is still
3062 * not in the active nor dirty state.
3066 struct xfs_mount
*mp
,
3070 struct xlog
*log
= mp
->m_log
;
3071 struct xlog_in_core
*iclog
;
3074 XFS_STATS_INC(xs_log_force
);
3076 xlog_cil_force(log
);
3078 spin_lock(&log
->l_icloglock
);
3080 iclog
= log
->l_iclog
;
3081 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3082 spin_unlock(&log
->l_icloglock
);
3083 return XFS_ERROR(EIO
);
3086 /* If the head iclog is not active nor dirty, we just attach
3087 * ourselves to the head and go to sleep.
3089 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
||
3090 iclog
->ic_state
== XLOG_STATE_DIRTY
) {
3092 * If the head is dirty or (active and empty), then
3093 * we need to look at the previous iclog. If the previous
3094 * iclog is active or dirty we are done. There is nothing
3095 * to sync out. Otherwise, we attach ourselves to the
3096 * previous iclog and go to sleep.
3098 if (iclog
->ic_state
== XLOG_STATE_DIRTY
||
3099 (atomic_read(&iclog
->ic_refcnt
) == 0
3100 && iclog
->ic_offset
== 0)) {
3101 iclog
= iclog
->ic_prev
;
3102 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
||
3103 iclog
->ic_state
== XLOG_STATE_DIRTY
)
3108 if (atomic_read(&iclog
->ic_refcnt
) == 0) {
3109 /* We are the only one with access to this
3110 * iclog. Flush it out now. There should
3111 * be a roundoff of zero to show that someone
3112 * has already taken care of the roundoff from
3113 * the previous sync.
3115 atomic_inc(&iclog
->ic_refcnt
);
3116 lsn
= be64_to_cpu(iclog
->ic_header
.h_lsn
);
3117 xlog_state_switch_iclogs(log
, iclog
, 0);
3118 spin_unlock(&log
->l_icloglock
);
3120 if (xlog_state_release_iclog(log
, iclog
))
3121 return XFS_ERROR(EIO
);
3125 spin_lock(&log
->l_icloglock
);
3126 if (be64_to_cpu(iclog
->ic_header
.h_lsn
) == lsn
&&
3127 iclog
->ic_state
!= XLOG_STATE_DIRTY
)
3132 /* Someone else is writing to this iclog.
3133 * Use its call to flush out the data. However,
3134 * the other thread may not force out this LR,
3135 * so we mark it WANT_SYNC.
3137 xlog_state_switch_iclogs(log
, iclog
, 0);
3143 /* By the time we come around again, the iclog could've been filled
3144 * which would give it another lsn. If we have a new lsn, just
3145 * return because the relevant data has been flushed.
3148 if (flags
& XFS_LOG_SYNC
) {
3150 * We must check if we're shutting down here, before
3151 * we wait, while we're holding the l_icloglock.
3152 * Then we check again after waking up, in case our
3153 * sleep was disturbed by a bad news.
3155 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3156 spin_unlock(&log
->l_icloglock
);
3157 return XFS_ERROR(EIO
);
3159 XFS_STATS_INC(xs_log_force_sleep
);
3160 xlog_wait(&iclog
->ic_force_wait
, &log
->l_icloglock
);
3162 * No need to grab the log lock here since we're
3163 * only deciding whether or not to return EIO
3164 * and the memory read should be atomic.
3166 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
3167 return XFS_ERROR(EIO
);
3173 spin_unlock(&log
->l_icloglock
);
3179 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3180 * about errors or whether the log was flushed or not. This is the normal
3181 * interface to use when trying to unpin items or move the log forward.
3190 trace_xfs_log_force(mp
, 0);
3191 error
= _xfs_log_force(mp
, flags
, NULL
);
3193 xfs_warn(mp
, "%s: error %d returned.", __func__
, error
);
3197 * Force the in-core log to disk for a specific LSN.
3199 * Find in-core log with lsn.
3200 * If it is in the DIRTY state, just return.
3201 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3202 * state and go to sleep or return.
3203 * If it is in any other state, go to sleep or return.
3205 * Synchronous forces are implemented with a signal variable. All callers
3206 * to force a given lsn to disk will wait on a the sv attached to the
3207 * specific in-core log. When given in-core log finally completes its
3208 * write to disk, that thread will wake up all threads waiting on the
3213 struct xfs_mount
*mp
,
3218 struct xlog
*log
= mp
->m_log
;
3219 struct xlog_in_core
*iclog
;
3220 int already_slept
= 0;
3224 XFS_STATS_INC(xs_log_force
);
3226 lsn
= xlog_cil_force_lsn(log
, lsn
);
3227 if (lsn
== NULLCOMMITLSN
)
3231 spin_lock(&log
->l_icloglock
);
3232 iclog
= log
->l_iclog
;
3233 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3234 spin_unlock(&log
->l_icloglock
);
3235 return XFS_ERROR(EIO
);
3239 if (be64_to_cpu(iclog
->ic_header
.h_lsn
) != lsn
) {
3240 iclog
= iclog
->ic_next
;
3244 if (iclog
->ic_state
== XLOG_STATE_DIRTY
) {
3245 spin_unlock(&log
->l_icloglock
);
3249 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
) {
3251 * We sleep here if we haven't already slept (e.g.
3252 * this is the first time we've looked at the correct
3253 * iclog buf) and the buffer before us is going to
3254 * be sync'ed. The reason for this is that if we
3255 * are doing sync transactions here, by waiting for
3256 * the previous I/O to complete, we can allow a few
3257 * more transactions into this iclog before we close
3260 * Otherwise, we mark the buffer WANT_SYNC, and bump
3261 * up the refcnt so we can release the log (which
3262 * drops the ref count). The state switch keeps new
3263 * transaction commits from using this buffer. When
3264 * the current commits finish writing into the buffer,
3265 * the refcount will drop to zero and the buffer will
3268 if (!already_slept
&&
3269 (iclog
->ic_prev
->ic_state
&
3270 (XLOG_STATE_WANT_SYNC
| XLOG_STATE_SYNCING
))) {
3271 ASSERT(!(iclog
->ic_state
& XLOG_STATE_IOERROR
));
3273 XFS_STATS_INC(xs_log_force_sleep
);
3275 xlog_wait(&iclog
->ic_prev
->ic_write_wait
,
3282 atomic_inc(&iclog
->ic_refcnt
);
3283 xlog_state_switch_iclogs(log
, iclog
, 0);
3284 spin_unlock(&log
->l_icloglock
);
3285 if (xlog_state_release_iclog(log
, iclog
))
3286 return XFS_ERROR(EIO
);
3289 spin_lock(&log
->l_icloglock
);
3292 if ((flags
& XFS_LOG_SYNC
) && /* sleep */
3294 (XLOG_STATE_ACTIVE
| XLOG_STATE_DIRTY
))) {
3296 * Don't wait on completion if we know that we've
3297 * gotten a log write error.
3299 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3300 spin_unlock(&log
->l_icloglock
);
3301 return XFS_ERROR(EIO
);
3303 XFS_STATS_INC(xs_log_force_sleep
);
3304 xlog_wait(&iclog
->ic_force_wait
, &log
->l_icloglock
);
3306 * No need to grab the log lock here since we're
3307 * only deciding whether or not to return EIO
3308 * and the memory read should be atomic.
3310 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
3311 return XFS_ERROR(EIO
);
3315 } else { /* just return */
3316 spin_unlock(&log
->l_icloglock
);
3320 } while (iclog
!= log
->l_iclog
);
3322 spin_unlock(&log
->l_icloglock
);
3327 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3328 * about errors or whether the log was flushed or not. This is the normal
3329 * interface to use when trying to unpin items or move the log forward.
3339 trace_xfs_log_force(mp
, lsn
);
3340 error
= _xfs_log_force_lsn(mp
, lsn
, flags
, NULL
);
3342 xfs_warn(mp
, "%s: error %d returned.", __func__
, error
);
3346 * Called when we want to mark the current iclog as being ready to sync to
3350 xlog_state_want_sync(
3352 struct xlog_in_core
*iclog
)
3354 assert_spin_locked(&log
->l_icloglock
);
3356 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
) {
3357 xlog_state_switch_iclogs(log
, iclog
, 0);
3359 ASSERT(iclog
->ic_state
&
3360 (XLOG_STATE_WANT_SYNC
|XLOG_STATE_IOERROR
));
3365 /*****************************************************************************
3369 *****************************************************************************
3373 * Free a used ticket when its refcount falls to zero.
3377 xlog_ticket_t
*ticket
)
3379 ASSERT(atomic_read(&ticket
->t_ref
) > 0);
3380 if (atomic_dec_and_test(&ticket
->t_ref
))
3381 kmem_zone_free(xfs_log_ticket_zone
, ticket
);
3386 xlog_ticket_t
*ticket
)
3388 ASSERT(atomic_read(&ticket
->t_ref
) > 0);
3389 atomic_inc(&ticket
->t_ref
);
3394 * Allocate and initialise a new log ticket.
3396 struct xlog_ticket
*
3403 xfs_km_flags_t alloc_flags
)
3405 struct xlog_ticket
*tic
;
3409 tic
= kmem_zone_zalloc(xfs_log_ticket_zone
, alloc_flags
);
3414 * Permanent reservations have up to 'cnt'-1 active log operations
3415 * in the log. A unit in this case is the amount of space for one
3416 * of these log operations. Normal reservations have a cnt of 1
3417 * and their unit amount is the total amount of space required.
3419 * The following lines of code account for non-transaction data
3420 * which occupy space in the on-disk log.
3422 * Normal form of a transaction is:
3423 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3424 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3426 * We need to account for all the leadup data and trailer data
3427 * around the transaction data.
3428 * And then we need to account for the worst case in terms of using
3430 * The worst case will happen if:
3431 * - the placement of the transaction happens to be such that the
3432 * roundoff is at its maximum
3433 * - the transaction data is synced before the commit record is synced
3434 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3435 * Therefore the commit record is in its own Log Record.
3436 * This can happen as the commit record is called with its
3437 * own region to xlog_write().
3438 * This then means that in the worst case, roundoff can happen for
3439 * the commit-rec as well.
3440 * The commit-rec is smaller than padding in this scenario and so it is
3441 * not added separately.
3444 /* for trans header */
3445 unit_bytes
+= sizeof(xlog_op_header_t
);
3446 unit_bytes
+= sizeof(xfs_trans_header_t
);
3449 unit_bytes
+= sizeof(xlog_op_header_t
);
3452 * for LR headers - the space for data in an iclog is the size minus
3453 * the space used for the headers. If we use the iclog size, then we
3454 * undercalculate the number of headers required.
3456 * Furthermore - the addition of op headers for split-recs might
3457 * increase the space required enough to require more log and op
3458 * headers, so take that into account too.
3460 * IMPORTANT: This reservation makes the assumption that if this
3461 * transaction is the first in an iclog and hence has the LR headers
3462 * accounted to it, then the remaining space in the iclog is
3463 * exclusively for this transaction. i.e. if the transaction is larger
3464 * than the iclog, it will be the only thing in that iclog.
3465 * Fundamentally, this means we must pass the entire log vector to
3466 * xlog_write to guarantee this.
3468 iclog_space
= log
->l_iclog_size
- log
->l_iclog_hsize
;
3469 num_headers
= howmany(unit_bytes
, iclog_space
);
3471 /* for split-recs - ophdrs added when data split over LRs */
3472 unit_bytes
+= sizeof(xlog_op_header_t
) * num_headers
;
3474 /* add extra header reservations if we overrun */
3475 while (!num_headers
||
3476 howmany(unit_bytes
, iclog_space
) > num_headers
) {
3477 unit_bytes
+= sizeof(xlog_op_header_t
);
3480 unit_bytes
+= log
->l_iclog_hsize
* num_headers
;
3482 /* for commit-rec LR header - note: padding will subsume the ophdr */
3483 unit_bytes
+= log
->l_iclog_hsize
;
3485 /* for roundoff padding for transaction data and one for commit record */
3486 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) &&
3487 log
->l_mp
->m_sb
.sb_logsunit
> 1) {
3488 /* log su roundoff */
3489 unit_bytes
+= 2*log
->l_mp
->m_sb
.sb_logsunit
;
3492 unit_bytes
+= 2*BBSIZE
;
3495 atomic_set(&tic
->t_ref
, 1);
3496 tic
->t_task
= current
;
3497 INIT_LIST_HEAD(&tic
->t_queue
);
3498 tic
->t_unit_res
= unit_bytes
;
3499 tic
->t_curr_res
= unit_bytes
;
3502 tic
->t_tid
= prandom_u32();
3503 tic
->t_clientid
= client
;
3504 tic
->t_flags
= XLOG_TIC_INITED
;
3505 tic
->t_trans_type
= 0;
3507 tic
->t_flags
|= XLOG_TIC_PERM_RESERV
;
3509 xlog_tic_reset_res(tic
);
3515 /******************************************************************************
3517 * Log debug routines
3519 ******************************************************************************
3523 * Make sure that the destination ptr is within the valid data region of
3524 * one of the iclogs. This uses backup pointers stored in a different
3525 * part of the log in case we trash the log structure.
3528 xlog_verify_dest_ptr(
3535 for (i
= 0; i
< log
->l_iclog_bufs
; i
++) {
3536 if (ptr
>= log
->l_iclog_bak
[i
] &&
3537 ptr
<= log
->l_iclog_bak
[i
] + log
->l_iclog_size
)
3542 xfs_emerg(log
->l_mp
, "%s: invalid ptr", __func__
);
3546 * Check to make sure the grant write head didn't just over lap the tail. If
3547 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3548 * the cycles differ by exactly one and check the byte count.
3550 * This check is run unlocked, so can give false positives. Rather than assert
3551 * on failures, use a warn-once flag and a panic tag to allow the admin to
3552 * determine if they want to panic the machine when such an error occurs. For
3553 * debug kernels this will have the same effect as using an assert but, unlinke
3554 * an assert, it can be turned off at runtime.
3557 xlog_verify_grant_tail(
3560 int tail_cycle
, tail_blocks
;
3563 xlog_crack_grant_head(&log
->l_write_head
.grant
, &cycle
, &space
);
3564 xlog_crack_atomic_lsn(&log
->l_tail_lsn
, &tail_cycle
, &tail_blocks
);
3565 if (tail_cycle
!= cycle
) {
3566 if (cycle
- 1 != tail_cycle
&&
3567 !(log
->l_flags
& XLOG_TAIL_WARN
)) {
3568 xfs_alert_tag(log
->l_mp
, XFS_PTAG_LOGRES
,
3569 "%s: cycle - 1 != tail_cycle", __func__
);
3570 log
->l_flags
|= XLOG_TAIL_WARN
;
3573 if (space
> BBTOB(tail_blocks
) &&
3574 !(log
->l_flags
& XLOG_TAIL_WARN
)) {
3575 xfs_alert_tag(log
->l_mp
, XFS_PTAG_LOGRES
,
3576 "%s: space > BBTOB(tail_blocks)", __func__
);
3577 log
->l_flags
|= XLOG_TAIL_WARN
;
3582 /* check if it will fit */
3584 xlog_verify_tail_lsn(
3586 struct xlog_in_core
*iclog
,
3591 if (CYCLE_LSN(tail_lsn
) == log
->l_prev_cycle
) {
3593 log
->l_logBBsize
- (log
->l_prev_block
- BLOCK_LSN(tail_lsn
));
3594 if (blocks
< BTOBB(iclog
->ic_offset
)+BTOBB(log
->l_iclog_hsize
))
3595 xfs_emerg(log
->l_mp
, "%s: ran out of log space", __func__
);
3597 ASSERT(CYCLE_LSN(tail_lsn
)+1 == log
->l_prev_cycle
);
3599 if (BLOCK_LSN(tail_lsn
) == log
->l_prev_block
)
3600 xfs_emerg(log
->l_mp
, "%s: tail wrapped", __func__
);
3602 blocks
= BLOCK_LSN(tail_lsn
) - log
->l_prev_block
;
3603 if (blocks
< BTOBB(iclog
->ic_offset
) + 1)
3604 xfs_emerg(log
->l_mp
, "%s: ran out of log space", __func__
);
3606 } /* xlog_verify_tail_lsn */
3609 * Perform a number of checks on the iclog before writing to disk.
3611 * 1. Make sure the iclogs are still circular
3612 * 2. Make sure we have a good magic number
3613 * 3. Make sure we don't have magic numbers in the data
3614 * 4. Check fields of each log operation header for:
3615 * A. Valid client identifier
3616 * B. tid ptr value falls in valid ptr space (user space code)
3617 * C. Length in log record header is correct according to the
3618 * individual operation headers within record.
3619 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3620 * log, check the preceding blocks of the physical log to make sure all
3621 * the cycle numbers agree with the current cycle number.
3626 struct xlog_in_core
*iclog
,
3630 xlog_op_header_t
*ophead
;
3631 xlog_in_core_t
*icptr
;
3632 xlog_in_core_2_t
*xhdr
;
3634 xfs_caddr_t base_ptr
;
3635 __psint_t field_offset
;
3637 int len
, i
, j
, k
, op_len
;
3640 /* check validity of iclog pointers */
3641 spin_lock(&log
->l_icloglock
);
3642 icptr
= log
->l_iclog
;
3643 for (i
=0; i
< log
->l_iclog_bufs
; i
++) {
3645 xfs_emerg(log
->l_mp
, "%s: invalid ptr", __func__
);
3646 icptr
= icptr
->ic_next
;
3648 if (icptr
!= log
->l_iclog
)
3649 xfs_emerg(log
->l_mp
, "%s: corrupt iclog ring", __func__
);
3650 spin_unlock(&log
->l_icloglock
);
3652 /* check log magic numbers */
3653 if (iclog
->ic_header
.h_magicno
!= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))
3654 xfs_emerg(log
->l_mp
, "%s: invalid magic num", __func__
);
3656 ptr
= (xfs_caddr_t
) &iclog
->ic_header
;
3657 for (ptr
+= BBSIZE
; ptr
< ((xfs_caddr_t
)&iclog
->ic_header
) + count
;
3659 if (*(__be32
*)ptr
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))
3660 xfs_emerg(log
->l_mp
, "%s: unexpected magic num",
3665 len
= be32_to_cpu(iclog
->ic_header
.h_num_logops
);
3666 ptr
= iclog
->ic_datap
;
3668 ophead
= (xlog_op_header_t
*)ptr
;
3669 xhdr
= iclog
->ic_data
;
3670 for (i
= 0; i
< len
; i
++) {
3671 ophead
= (xlog_op_header_t
*)ptr
;
3673 /* clientid is only 1 byte */
3674 field_offset
= (__psint_t
)
3675 ((xfs_caddr_t
)&(ophead
->oh_clientid
) - base_ptr
);
3676 if (!syncing
|| (field_offset
& 0x1ff)) {
3677 clientid
= ophead
->oh_clientid
;
3679 idx
= BTOBBT((xfs_caddr_t
)&(ophead
->oh_clientid
) - iclog
->ic_datap
);
3680 if (idx
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
)) {
3681 j
= idx
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3682 k
= idx
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3683 clientid
= xlog_get_client_id(
3684 xhdr
[j
].hic_xheader
.xh_cycle_data
[k
]);
3686 clientid
= xlog_get_client_id(
3687 iclog
->ic_header
.h_cycle_data
[idx
]);
3690 if (clientid
!= XFS_TRANSACTION
&& clientid
!= XFS_LOG
)
3692 "%s: invalid clientid %d op 0x%p offset 0x%lx",
3693 __func__
, clientid
, ophead
,
3694 (unsigned long)field_offset
);
3697 field_offset
= (__psint_t
)
3698 ((xfs_caddr_t
)&(ophead
->oh_len
) - base_ptr
);
3699 if (!syncing
|| (field_offset
& 0x1ff)) {
3700 op_len
= be32_to_cpu(ophead
->oh_len
);
3702 idx
= BTOBBT((__psint_t
)&ophead
->oh_len
-
3703 (__psint_t
)iclog
->ic_datap
);
3704 if (idx
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
)) {
3705 j
= idx
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3706 k
= idx
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3707 op_len
= be32_to_cpu(xhdr
[j
].hic_xheader
.xh_cycle_data
[k
]);
3709 op_len
= be32_to_cpu(iclog
->ic_header
.h_cycle_data
[idx
]);
3712 ptr
+= sizeof(xlog_op_header_t
) + op_len
;
3714 } /* xlog_verify_iclog */
3718 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3724 xlog_in_core_t
*iclog
, *ic
;
3726 iclog
= log
->l_iclog
;
3727 if (! (iclog
->ic_state
& XLOG_STATE_IOERROR
)) {
3729 * Mark all the incore logs IOERROR.
3730 * From now on, no log flushes will result.
3734 ic
->ic_state
= XLOG_STATE_IOERROR
;
3736 } while (ic
!= iclog
);
3740 * Return non-zero, if state transition has already happened.
3746 * This is called from xfs_force_shutdown, when we're forcibly
3747 * shutting down the filesystem, typically because of an IO error.
3748 * Our main objectives here are to make sure that:
3749 * a. the filesystem gets marked 'SHUTDOWN' for all interested
3750 * parties to find out, 'atomically'.
3751 * b. those who're sleeping on log reservations, pinned objects and
3752 * other resources get woken up, and be told the bad news.
3753 * c. nothing new gets queued up after (a) and (b) are done.
3754 * d. if !logerror, flush the iclogs to disk, then seal them off
3757 * Note: for delayed logging the !logerror case needs to flush the regions
3758 * held in memory out to the iclogs before flushing them to disk. This needs
3759 * to be done before the log is marked as shutdown, otherwise the flush to the
3763 xfs_log_force_umount(
3764 struct xfs_mount
*mp
,
3773 * If this happens during log recovery, don't worry about
3774 * locking; the log isn't open for business yet.
3777 log
->l_flags
& XLOG_ACTIVE_RECOVERY
) {
3778 mp
->m_flags
|= XFS_MOUNT_FS_SHUTDOWN
;
3780 XFS_BUF_DONE(mp
->m_sb_bp
);
3785 * Somebody could've already done the hard work for us.
3786 * No need to get locks for this.
3788 if (logerror
&& log
->l_iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3789 ASSERT(XLOG_FORCED_SHUTDOWN(log
));
3795 * Flush the in memory commit item list before marking the log as
3796 * being shut down. We need to do it in this order to ensure all the
3797 * completed transactions are flushed to disk with the xfs_log_force()
3801 xlog_cil_force(log
);
3804 * mark the filesystem and the as in a shutdown state and wake
3805 * everybody up to tell them the bad news.
3807 spin_lock(&log
->l_icloglock
);
3808 mp
->m_flags
|= XFS_MOUNT_FS_SHUTDOWN
;
3810 XFS_BUF_DONE(mp
->m_sb_bp
);
3813 * This flag is sort of redundant because of the mount flag, but
3814 * it's good to maintain the separation between the log and the rest
3817 log
->l_flags
|= XLOG_IO_ERROR
;
3820 * If we hit a log error, we want to mark all the iclogs IOERROR
3821 * while we're still holding the loglock.
3824 retval
= xlog_state_ioerror(log
);
3825 spin_unlock(&log
->l_icloglock
);
3828 * We don't want anybody waiting for log reservations after this. That
3829 * means we have to wake up everybody queued up on reserveq as well as
3830 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3831 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3832 * action is protected by the grant locks.
3834 xlog_grant_head_wake_all(&log
->l_reserve_head
);
3835 xlog_grant_head_wake_all(&log
->l_write_head
);
3837 if (!(log
->l_iclog
->ic_state
& XLOG_STATE_IOERROR
)) {
3840 * Force the incore logs to disk before shutting the
3841 * log down completely.
3843 _xfs_log_force(mp
, XFS_LOG_SYNC
, NULL
);
3845 spin_lock(&log
->l_icloglock
);
3846 retval
= xlog_state_ioerror(log
);
3847 spin_unlock(&log
->l_icloglock
);
3850 * Wake up everybody waiting on xfs_log_force.
3851 * Callback all log item committed functions as if the
3852 * log writes were completed.
3854 xlog_state_do_callback(log
, XFS_LI_ABORTED
, NULL
);
3856 #ifdef XFSERRORDEBUG
3858 xlog_in_core_t
*iclog
;
3860 spin_lock(&log
->l_icloglock
);
3861 iclog
= log
->l_iclog
;
3863 ASSERT(iclog
->ic_callback
== 0);
3864 iclog
= iclog
->ic_next
;
3865 } while (iclog
!= log
->l_iclog
);
3866 spin_unlock(&log
->l_icloglock
);
3869 /* return non-zero if log IOERROR transition had already happened */
3877 xlog_in_core_t
*iclog
;
3879 iclog
= log
->l_iclog
;
3881 /* endianness does not matter here, zero is zero in
3884 if (iclog
->ic_header
.h_num_logops
)
3886 iclog
= iclog
->ic_next
;
3887 } while (iclog
!= log
->l_iclog
);