e1000e: update copyright year
[linux-2.6.git] / mm / memory.c
blobfa2f04e0337c437e739e75a683ff5b80a070a95a
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
61 #include <asm/io.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/tlb.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
68 #include "internal.h"
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
73 struct page *mem_map;
75 EXPORT_SYMBOL(max_mapnr);
76 EXPORT_SYMBOL(mem_map);
77 #endif
79 unsigned long num_physpages;
81 * A number of key systems in x86 including ioremap() rely on the assumption
82 * that high_memory defines the upper bound on direct map memory, then end
83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85 * and ZONE_HIGHMEM.
87 void * high_memory;
89 EXPORT_SYMBOL(num_physpages);
90 EXPORT_SYMBOL(high_memory);
93 * Randomize the address space (stacks, mmaps, brk, etc.).
95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96 * as ancient (libc5 based) binaries can segfault. )
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
101 #else
103 #endif
105 static int __init disable_randmaps(char *s)
107 randomize_va_space = 0;
108 return 1;
110 __setup("norandmaps", disable_randmaps);
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
118 static int __init init_zero_pfn(void)
120 zero_pfn = page_to_pfn(ZERO_PAGE(0));
121 return 0;
123 core_initcall(init_zero_pfn);
126 #if defined(SPLIT_RSS_COUNTING)
128 static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
130 int i;
132 for (i = 0; i < NR_MM_COUNTERS; i++) {
133 if (task->rss_stat.count[i]) {
134 add_mm_counter(mm, i, task->rss_stat.count[i]);
135 task->rss_stat.count[i] = 0;
138 task->rss_stat.events = 0;
141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
143 struct task_struct *task = current;
145 if (likely(task->mm == mm))
146 task->rss_stat.count[member] += val;
147 else
148 add_mm_counter(mm, member, val);
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH (64)
155 static void check_sync_rss_stat(struct task_struct *task)
157 if (unlikely(task != current))
158 return;
159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160 __sync_task_rss_stat(task, task->mm);
163 unsigned long get_mm_counter(struct mm_struct *mm, int member)
165 long val = 0;
168 * Don't use task->mm here...for avoiding to use task_get_mm()..
169 * The caller must guarantee task->mm is not invalid.
171 val = atomic_long_read(&mm->rss_stat.count[member]);
173 * counter is updated in asynchronous manner and may go to minus.
174 * But it's never be expected number for users.
176 if (val < 0)
177 return 0;
178 return (unsigned long)val;
181 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
183 __sync_task_rss_stat(task, mm);
185 #else /* SPLIT_RSS_COUNTING */
187 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
188 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
190 static void check_sync_rss_stat(struct task_struct *task)
194 #endif /* SPLIT_RSS_COUNTING */
196 #ifdef HAVE_GENERIC_MMU_GATHER
198 static int tlb_next_batch(struct mmu_gather *tlb)
200 struct mmu_gather_batch *batch;
202 batch = tlb->active;
203 if (batch->next) {
204 tlb->active = batch->next;
205 return 1;
208 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
209 if (!batch)
210 return 0;
212 batch->next = NULL;
213 batch->nr = 0;
214 batch->max = MAX_GATHER_BATCH;
216 tlb->active->next = batch;
217 tlb->active = batch;
219 return 1;
222 /* tlb_gather_mmu
223 * Called to initialize an (on-stack) mmu_gather structure for page-table
224 * tear-down from @mm. The @fullmm argument is used when @mm is without
225 * users and we're going to destroy the full address space (exit/execve).
227 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
229 tlb->mm = mm;
231 tlb->fullmm = fullmm;
232 tlb->need_flush = 0;
233 tlb->fast_mode = (num_possible_cpus() == 1);
234 tlb->local.next = NULL;
235 tlb->local.nr = 0;
236 tlb->local.max = ARRAY_SIZE(tlb->__pages);
237 tlb->active = &tlb->local;
239 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
240 tlb->batch = NULL;
241 #endif
244 void tlb_flush_mmu(struct mmu_gather *tlb)
246 struct mmu_gather_batch *batch;
248 if (!tlb->need_flush)
249 return;
250 tlb->need_flush = 0;
251 tlb_flush(tlb);
252 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
253 tlb_table_flush(tlb);
254 #endif
256 if (tlb_fast_mode(tlb))
257 return;
259 for (batch = &tlb->local; batch; batch = batch->next) {
260 free_pages_and_swap_cache(batch->pages, batch->nr);
261 batch->nr = 0;
263 tlb->active = &tlb->local;
266 /* tlb_finish_mmu
267 * Called at the end of the shootdown operation to free up any resources
268 * that were required.
270 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
272 struct mmu_gather_batch *batch, *next;
274 tlb_flush_mmu(tlb);
276 /* keep the page table cache within bounds */
277 check_pgt_cache();
279 for (batch = tlb->local.next; batch; batch = next) {
280 next = batch->next;
281 free_pages((unsigned long)batch, 0);
283 tlb->local.next = NULL;
286 /* __tlb_remove_page
287 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
288 * handling the additional races in SMP caused by other CPUs caching valid
289 * mappings in their TLBs. Returns the number of free page slots left.
290 * When out of page slots we must call tlb_flush_mmu().
292 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
294 struct mmu_gather_batch *batch;
296 VM_BUG_ON(!tlb->need_flush);
298 if (tlb_fast_mode(tlb)) {
299 free_page_and_swap_cache(page);
300 return 1; /* avoid calling tlb_flush_mmu() */
303 batch = tlb->active;
304 batch->pages[batch->nr++] = page;
305 if (batch->nr == batch->max) {
306 if (!tlb_next_batch(tlb))
307 return 0;
308 batch = tlb->active;
310 VM_BUG_ON(batch->nr > batch->max);
312 return batch->max - batch->nr;
315 #endif /* HAVE_GENERIC_MMU_GATHER */
317 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
320 * See the comment near struct mmu_table_batch.
323 static void tlb_remove_table_smp_sync(void *arg)
325 /* Simply deliver the interrupt */
328 static void tlb_remove_table_one(void *table)
331 * This isn't an RCU grace period and hence the page-tables cannot be
332 * assumed to be actually RCU-freed.
334 * It is however sufficient for software page-table walkers that rely on
335 * IRQ disabling. See the comment near struct mmu_table_batch.
337 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
338 __tlb_remove_table(table);
341 static void tlb_remove_table_rcu(struct rcu_head *head)
343 struct mmu_table_batch *batch;
344 int i;
346 batch = container_of(head, struct mmu_table_batch, rcu);
348 for (i = 0; i < batch->nr; i++)
349 __tlb_remove_table(batch->tables[i]);
351 free_page((unsigned long)batch);
354 void tlb_table_flush(struct mmu_gather *tlb)
356 struct mmu_table_batch **batch = &tlb->batch;
358 if (*batch) {
359 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
360 *batch = NULL;
364 void tlb_remove_table(struct mmu_gather *tlb, void *table)
366 struct mmu_table_batch **batch = &tlb->batch;
368 tlb->need_flush = 1;
371 * When there's less then two users of this mm there cannot be a
372 * concurrent page-table walk.
374 if (atomic_read(&tlb->mm->mm_users) < 2) {
375 __tlb_remove_table(table);
376 return;
379 if (*batch == NULL) {
380 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
381 if (*batch == NULL) {
382 tlb_remove_table_one(table);
383 return;
385 (*batch)->nr = 0;
387 (*batch)->tables[(*batch)->nr++] = table;
388 if ((*batch)->nr == MAX_TABLE_BATCH)
389 tlb_table_flush(tlb);
392 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
395 * If a p?d_bad entry is found while walking page tables, report
396 * the error, before resetting entry to p?d_none. Usually (but
397 * very seldom) called out from the p?d_none_or_clear_bad macros.
400 void pgd_clear_bad(pgd_t *pgd)
402 pgd_ERROR(*pgd);
403 pgd_clear(pgd);
406 void pud_clear_bad(pud_t *pud)
408 pud_ERROR(*pud);
409 pud_clear(pud);
412 void pmd_clear_bad(pmd_t *pmd)
414 pmd_ERROR(*pmd);
415 pmd_clear(pmd);
419 * Note: this doesn't free the actual pages themselves. That
420 * has been handled earlier when unmapping all the memory regions.
422 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
423 unsigned long addr)
425 pgtable_t token = pmd_pgtable(*pmd);
426 pmd_clear(pmd);
427 pte_free_tlb(tlb, token, addr);
428 tlb->mm->nr_ptes--;
431 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
432 unsigned long addr, unsigned long end,
433 unsigned long floor, unsigned long ceiling)
435 pmd_t *pmd;
436 unsigned long next;
437 unsigned long start;
439 start = addr;
440 pmd = pmd_offset(pud, addr);
441 do {
442 next = pmd_addr_end(addr, end);
443 if (pmd_none_or_clear_bad(pmd))
444 continue;
445 free_pte_range(tlb, pmd, addr);
446 } while (pmd++, addr = next, addr != end);
448 start &= PUD_MASK;
449 if (start < floor)
450 return;
451 if (ceiling) {
452 ceiling &= PUD_MASK;
453 if (!ceiling)
454 return;
456 if (end - 1 > ceiling - 1)
457 return;
459 pmd = pmd_offset(pud, start);
460 pud_clear(pud);
461 pmd_free_tlb(tlb, pmd, start);
464 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
465 unsigned long addr, unsigned long end,
466 unsigned long floor, unsigned long ceiling)
468 pud_t *pud;
469 unsigned long next;
470 unsigned long start;
472 start = addr;
473 pud = pud_offset(pgd, addr);
474 do {
475 next = pud_addr_end(addr, end);
476 if (pud_none_or_clear_bad(pud))
477 continue;
478 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
479 } while (pud++, addr = next, addr != end);
481 start &= PGDIR_MASK;
482 if (start < floor)
483 return;
484 if (ceiling) {
485 ceiling &= PGDIR_MASK;
486 if (!ceiling)
487 return;
489 if (end - 1 > ceiling - 1)
490 return;
492 pud = pud_offset(pgd, start);
493 pgd_clear(pgd);
494 pud_free_tlb(tlb, pud, start);
498 * This function frees user-level page tables of a process.
500 * Must be called with pagetable lock held.
502 void free_pgd_range(struct mmu_gather *tlb,
503 unsigned long addr, unsigned long end,
504 unsigned long floor, unsigned long ceiling)
506 pgd_t *pgd;
507 unsigned long next;
510 * The next few lines have given us lots of grief...
512 * Why are we testing PMD* at this top level? Because often
513 * there will be no work to do at all, and we'd prefer not to
514 * go all the way down to the bottom just to discover that.
516 * Why all these "- 1"s? Because 0 represents both the bottom
517 * of the address space and the top of it (using -1 for the
518 * top wouldn't help much: the masks would do the wrong thing).
519 * The rule is that addr 0 and floor 0 refer to the bottom of
520 * the address space, but end 0 and ceiling 0 refer to the top
521 * Comparisons need to use "end - 1" and "ceiling - 1" (though
522 * that end 0 case should be mythical).
524 * Wherever addr is brought up or ceiling brought down, we must
525 * be careful to reject "the opposite 0" before it confuses the
526 * subsequent tests. But what about where end is brought down
527 * by PMD_SIZE below? no, end can't go down to 0 there.
529 * Whereas we round start (addr) and ceiling down, by different
530 * masks at different levels, in order to test whether a table
531 * now has no other vmas using it, so can be freed, we don't
532 * bother to round floor or end up - the tests don't need that.
535 addr &= PMD_MASK;
536 if (addr < floor) {
537 addr += PMD_SIZE;
538 if (!addr)
539 return;
541 if (ceiling) {
542 ceiling &= PMD_MASK;
543 if (!ceiling)
544 return;
546 if (end - 1 > ceiling - 1)
547 end -= PMD_SIZE;
548 if (addr > end - 1)
549 return;
551 pgd = pgd_offset(tlb->mm, addr);
552 do {
553 next = pgd_addr_end(addr, end);
554 if (pgd_none_or_clear_bad(pgd))
555 continue;
556 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
557 } while (pgd++, addr = next, addr != end);
560 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
561 unsigned long floor, unsigned long ceiling)
563 while (vma) {
564 struct vm_area_struct *next = vma->vm_next;
565 unsigned long addr = vma->vm_start;
568 * Hide vma from rmap and truncate_pagecache before freeing
569 * pgtables
571 unlink_anon_vmas(vma);
572 unlink_file_vma(vma);
574 if (is_vm_hugetlb_page(vma)) {
575 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
576 floor, next? next->vm_start: ceiling);
577 } else {
579 * Optimization: gather nearby vmas into one call down
581 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
582 && !is_vm_hugetlb_page(next)) {
583 vma = next;
584 next = vma->vm_next;
585 unlink_anon_vmas(vma);
586 unlink_file_vma(vma);
588 free_pgd_range(tlb, addr, vma->vm_end,
589 floor, next? next->vm_start: ceiling);
591 vma = next;
595 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
596 pmd_t *pmd, unsigned long address)
598 pgtable_t new = pte_alloc_one(mm, address);
599 int wait_split_huge_page;
600 if (!new)
601 return -ENOMEM;
604 * Ensure all pte setup (eg. pte page lock and page clearing) are
605 * visible before the pte is made visible to other CPUs by being
606 * put into page tables.
608 * The other side of the story is the pointer chasing in the page
609 * table walking code (when walking the page table without locking;
610 * ie. most of the time). Fortunately, these data accesses consist
611 * of a chain of data-dependent loads, meaning most CPUs (alpha
612 * being the notable exception) will already guarantee loads are
613 * seen in-order. See the alpha page table accessors for the
614 * smp_read_barrier_depends() barriers in page table walking code.
616 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
618 spin_lock(&mm->page_table_lock);
619 wait_split_huge_page = 0;
620 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
621 mm->nr_ptes++;
622 pmd_populate(mm, pmd, new);
623 new = NULL;
624 } else if (unlikely(pmd_trans_splitting(*pmd)))
625 wait_split_huge_page = 1;
626 spin_unlock(&mm->page_table_lock);
627 if (new)
628 pte_free(mm, new);
629 if (wait_split_huge_page)
630 wait_split_huge_page(vma->anon_vma, pmd);
631 return 0;
634 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
636 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
637 if (!new)
638 return -ENOMEM;
640 smp_wmb(); /* See comment in __pte_alloc */
642 spin_lock(&init_mm.page_table_lock);
643 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
644 pmd_populate_kernel(&init_mm, pmd, new);
645 new = NULL;
646 } else
647 VM_BUG_ON(pmd_trans_splitting(*pmd));
648 spin_unlock(&init_mm.page_table_lock);
649 if (new)
650 pte_free_kernel(&init_mm, new);
651 return 0;
654 static inline void init_rss_vec(int *rss)
656 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
659 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
661 int i;
663 if (current->mm == mm)
664 sync_mm_rss(current, mm);
665 for (i = 0; i < NR_MM_COUNTERS; i++)
666 if (rss[i])
667 add_mm_counter(mm, i, rss[i]);
671 * This function is called to print an error when a bad pte
672 * is found. For example, we might have a PFN-mapped pte in
673 * a region that doesn't allow it.
675 * The calling function must still handle the error.
677 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
678 pte_t pte, struct page *page)
680 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
681 pud_t *pud = pud_offset(pgd, addr);
682 pmd_t *pmd = pmd_offset(pud, addr);
683 struct address_space *mapping;
684 pgoff_t index;
685 static unsigned long resume;
686 static unsigned long nr_shown;
687 static unsigned long nr_unshown;
690 * Allow a burst of 60 reports, then keep quiet for that minute;
691 * or allow a steady drip of one report per second.
693 if (nr_shown == 60) {
694 if (time_before(jiffies, resume)) {
695 nr_unshown++;
696 return;
698 if (nr_unshown) {
699 printk(KERN_ALERT
700 "BUG: Bad page map: %lu messages suppressed\n",
701 nr_unshown);
702 nr_unshown = 0;
704 nr_shown = 0;
706 if (nr_shown++ == 0)
707 resume = jiffies + 60 * HZ;
709 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
710 index = linear_page_index(vma, addr);
712 printk(KERN_ALERT
713 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
714 current->comm,
715 (long long)pte_val(pte), (long long)pmd_val(*pmd));
716 if (page)
717 dump_page(page);
718 printk(KERN_ALERT
719 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
720 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
722 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
724 if (vma->vm_ops)
725 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
726 (unsigned long)vma->vm_ops->fault);
727 if (vma->vm_file && vma->vm_file->f_op)
728 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
729 (unsigned long)vma->vm_file->f_op->mmap);
730 dump_stack();
731 add_taint(TAINT_BAD_PAGE);
734 static inline int is_cow_mapping(vm_flags_t flags)
736 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
739 #ifndef is_zero_pfn
740 static inline int is_zero_pfn(unsigned long pfn)
742 return pfn == zero_pfn;
744 #endif
746 #ifndef my_zero_pfn
747 static inline unsigned long my_zero_pfn(unsigned long addr)
749 return zero_pfn;
751 #endif
754 * vm_normal_page -- This function gets the "struct page" associated with a pte.
756 * "Special" mappings do not wish to be associated with a "struct page" (either
757 * it doesn't exist, or it exists but they don't want to touch it). In this
758 * case, NULL is returned here. "Normal" mappings do have a struct page.
760 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
761 * pte bit, in which case this function is trivial. Secondly, an architecture
762 * may not have a spare pte bit, which requires a more complicated scheme,
763 * described below.
765 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
766 * special mapping (even if there are underlying and valid "struct pages").
767 * COWed pages of a VM_PFNMAP are always normal.
769 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
770 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
771 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
772 * mapping will always honor the rule
774 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
776 * And for normal mappings this is false.
778 * This restricts such mappings to be a linear translation from virtual address
779 * to pfn. To get around this restriction, we allow arbitrary mappings so long
780 * as the vma is not a COW mapping; in that case, we know that all ptes are
781 * special (because none can have been COWed).
784 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
786 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
787 * page" backing, however the difference is that _all_ pages with a struct
788 * page (that is, those where pfn_valid is true) are refcounted and considered
789 * normal pages by the VM. The disadvantage is that pages are refcounted
790 * (which can be slower and simply not an option for some PFNMAP users). The
791 * advantage is that we don't have to follow the strict linearity rule of
792 * PFNMAP mappings in order to support COWable mappings.
795 #ifdef __HAVE_ARCH_PTE_SPECIAL
796 # define HAVE_PTE_SPECIAL 1
797 #else
798 # define HAVE_PTE_SPECIAL 0
799 #endif
800 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
801 pte_t pte)
803 unsigned long pfn = pte_pfn(pte);
805 if (HAVE_PTE_SPECIAL) {
806 if (likely(!pte_special(pte)))
807 goto check_pfn;
808 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
809 return NULL;
810 if (!is_zero_pfn(pfn))
811 print_bad_pte(vma, addr, pte, NULL);
812 return NULL;
815 /* !HAVE_PTE_SPECIAL case follows: */
817 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
818 if (vma->vm_flags & VM_MIXEDMAP) {
819 if (!pfn_valid(pfn))
820 return NULL;
821 goto out;
822 } else {
823 unsigned long off;
824 off = (addr - vma->vm_start) >> PAGE_SHIFT;
825 if (pfn == vma->vm_pgoff + off)
826 return NULL;
827 if (!is_cow_mapping(vma->vm_flags))
828 return NULL;
832 if (is_zero_pfn(pfn))
833 return NULL;
834 check_pfn:
835 if (unlikely(pfn > highest_memmap_pfn)) {
836 print_bad_pte(vma, addr, pte, NULL);
837 return NULL;
841 * NOTE! We still have PageReserved() pages in the page tables.
842 * eg. VDSO mappings can cause them to exist.
844 out:
845 return pfn_to_page(pfn);
849 * copy one vm_area from one task to the other. Assumes the page tables
850 * already present in the new task to be cleared in the whole range
851 * covered by this vma.
854 static inline unsigned long
855 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
856 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
857 unsigned long addr, int *rss)
859 unsigned long vm_flags = vma->vm_flags;
860 pte_t pte = *src_pte;
861 struct page *page;
863 /* pte contains position in swap or file, so copy. */
864 if (unlikely(!pte_present(pte))) {
865 if (!pte_file(pte)) {
866 swp_entry_t entry = pte_to_swp_entry(pte);
868 if (swap_duplicate(entry) < 0)
869 return entry.val;
871 /* make sure dst_mm is on swapoff's mmlist. */
872 if (unlikely(list_empty(&dst_mm->mmlist))) {
873 spin_lock(&mmlist_lock);
874 if (list_empty(&dst_mm->mmlist))
875 list_add(&dst_mm->mmlist,
876 &src_mm->mmlist);
877 spin_unlock(&mmlist_lock);
879 if (likely(!non_swap_entry(entry)))
880 rss[MM_SWAPENTS]++;
881 else if (is_migration_entry(entry)) {
882 page = migration_entry_to_page(entry);
884 if (PageAnon(page))
885 rss[MM_ANONPAGES]++;
886 else
887 rss[MM_FILEPAGES]++;
889 if (is_write_migration_entry(entry) &&
890 is_cow_mapping(vm_flags)) {
892 * COW mappings require pages in both
893 * parent and child to be set to read.
895 make_migration_entry_read(&entry);
896 pte = swp_entry_to_pte(entry);
897 set_pte_at(src_mm, addr, src_pte, pte);
901 goto out_set_pte;
905 * If it's a COW mapping, write protect it both
906 * in the parent and the child
908 if (is_cow_mapping(vm_flags)) {
909 ptep_set_wrprotect(src_mm, addr, src_pte);
910 pte = pte_wrprotect(pte);
914 * If it's a shared mapping, mark it clean in
915 * the child
917 if (vm_flags & VM_SHARED)
918 pte = pte_mkclean(pte);
919 pte = pte_mkold(pte);
921 page = vm_normal_page(vma, addr, pte);
922 if (page) {
923 get_page(page);
924 page_dup_rmap(page);
925 if (PageAnon(page))
926 rss[MM_ANONPAGES]++;
927 else
928 rss[MM_FILEPAGES]++;
931 out_set_pte:
932 set_pte_at(dst_mm, addr, dst_pte, pte);
933 return 0;
936 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
937 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
938 unsigned long addr, unsigned long end)
940 pte_t *orig_src_pte, *orig_dst_pte;
941 pte_t *src_pte, *dst_pte;
942 spinlock_t *src_ptl, *dst_ptl;
943 int progress = 0;
944 int rss[NR_MM_COUNTERS];
945 swp_entry_t entry = (swp_entry_t){0};
947 again:
948 init_rss_vec(rss);
950 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
951 if (!dst_pte)
952 return -ENOMEM;
953 src_pte = pte_offset_map(src_pmd, addr);
954 src_ptl = pte_lockptr(src_mm, src_pmd);
955 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
956 orig_src_pte = src_pte;
957 orig_dst_pte = dst_pte;
958 arch_enter_lazy_mmu_mode();
960 do {
962 * We are holding two locks at this point - either of them
963 * could generate latencies in another task on another CPU.
965 if (progress >= 32) {
966 progress = 0;
967 if (need_resched() ||
968 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
969 break;
971 if (pte_none(*src_pte)) {
972 progress++;
973 continue;
975 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
976 vma, addr, rss);
977 if (entry.val)
978 break;
979 progress += 8;
980 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
982 arch_leave_lazy_mmu_mode();
983 spin_unlock(src_ptl);
984 pte_unmap(orig_src_pte);
985 add_mm_rss_vec(dst_mm, rss);
986 pte_unmap_unlock(orig_dst_pte, dst_ptl);
987 cond_resched();
989 if (entry.val) {
990 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
991 return -ENOMEM;
992 progress = 0;
994 if (addr != end)
995 goto again;
996 return 0;
999 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1000 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1001 unsigned long addr, unsigned long end)
1003 pmd_t *src_pmd, *dst_pmd;
1004 unsigned long next;
1006 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1007 if (!dst_pmd)
1008 return -ENOMEM;
1009 src_pmd = pmd_offset(src_pud, addr);
1010 do {
1011 next = pmd_addr_end(addr, end);
1012 if (pmd_trans_huge(*src_pmd)) {
1013 int err;
1014 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
1015 err = copy_huge_pmd(dst_mm, src_mm,
1016 dst_pmd, src_pmd, addr, vma);
1017 if (err == -ENOMEM)
1018 return -ENOMEM;
1019 if (!err)
1020 continue;
1021 /* fall through */
1023 if (pmd_none_or_clear_bad(src_pmd))
1024 continue;
1025 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1026 vma, addr, next))
1027 return -ENOMEM;
1028 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1029 return 0;
1032 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1033 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1034 unsigned long addr, unsigned long end)
1036 pud_t *src_pud, *dst_pud;
1037 unsigned long next;
1039 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1040 if (!dst_pud)
1041 return -ENOMEM;
1042 src_pud = pud_offset(src_pgd, addr);
1043 do {
1044 next = pud_addr_end(addr, end);
1045 if (pud_none_or_clear_bad(src_pud))
1046 continue;
1047 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1048 vma, addr, next))
1049 return -ENOMEM;
1050 } while (dst_pud++, src_pud++, addr = next, addr != end);
1051 return 0;
1054 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1055 struct vm_area_struct *vma)
1057 pgd_t *src_pgd, *dst_pgd;
1058 unsigned long next;
1059 unsigned long addr = vma->vm_start;
1060 unsigned long end = vma->vm_end;
1061 int ret;
1064 * Don't copy ptes where a page fault will fill them correctly.
1065 * Fork becomes much lighter when there are big shared or private
1066 * readonly mappings. The tradeoff is that copy_page_range is more
1067 * efficient than faulting.
1069 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
1070 if (!vma->anon_vma)
1071 return 0;
1074 if (is_vm_hugetlb_page(vma))
1075 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1077 if (unlikely(is_pfn_mapping(vma))) {
1079 * We do not free on error cases below as remove_vma
1080 * gets called on error from higher level routine
1082 ret = track_pfn_vma_copy(vma);
1083 if (ret)
1084 return ret;
1088 * We need to invalidate the secondary MMU mappings only when
1089 * there could be a permission downgrade on the ptes of the
1090 * parent mm. And a permission downgrade will only happen if
1091 * is_cow_mapping() returns true.
1093 if (is_cow_mapping(vma->vm_flags))
1094 mmu_notifier_invalidate_range_start(src_mm, addr, end);
1096 ret = 0;
1097 dst_pgd = pgd_offset(dst_mm, addr);
1098 src_pgd = pgd_offset(src_mm, addr);
1099 do {
1100 next = pgd_addr_end(addr, end);
1101 if (pgd_none_or_clear_bad(src_pgd))
1102 continue;
1103 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1104 vma, addr, next))) {
1105 ret = -ENOMEM;
1106 break;
1108 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1110 if (is_cow_mapping(vma->vm_flags))
1111 mmu_notifier_invalidate_range_end(src_mm,
1112 vma->vm_start, end);
1113 return ret;
1116 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1117 struct vm_area_struct *vma, pmd_t *pmd,
1118 unsigned long addr, unsigned long end,
1119 struct zap_details *details)
1121 struct mm_struct *mm = tlb->mm;
1122 int force_flush = 0;
1123 int rss[NR_MM_COUNTERS];
1124 spinlock_t *ptl;
1125 pte_t *start_pte;
1126 pte_t *pte;
1128 again:
1129 init_rss_vec(rss);
1130 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1131 pte = start_pte;
1132 arch_enter_lazy_mmu_mode();
1133 do {
1134 pte_t ptent = *pte;
1135 if (pte_none(ptent)) {
1136 continue;
1139 if (pte_present(ptent)) {
1140 struct page *page;
1142 page = vm_normal_page(vma, addr, ptent);
1143 if (unlikely(details) && page) {
1145 * unmap_shared_mapping_pages() wants to
1146 * invalidate cache without truncating:
1147 * unmap shared but keep private pages.
1149 if (details->check_mapping &&
1150 details->check_mapping != page->mapping)
1151 continue;
1153 * Each page->index must be checked when
1154 * invalidating or truncating nonlinear.
1156 if (details->nonlinear_vma &&
1157 (page->index < details->first_index ||
1158 page->index > details->last_index))
1159 continue;
1161 ptent = ptep_get_and_clear_full(mm, addr, pte,
1162 tlb->fullmm);
1163 tlb_remove_tlb_entry(tlb, pte, addr);
1164 if (unlikely(!page))
1165 continue;
1166 if (unlikely(details) && details->nonlinear_vma
1167 && linear_page_index(details->nonlinear_vma,
1168 addr) != page->index)
1169 set_pte_at(mm, addr, pte,
1170 pgoff_to_pte(page->index));
1171 if (PageAnon(page))
1172 rss[MM_ANONPAGES]--;
1173 else {
1174 if (pte_dirty(ptent))
1175 set_page_dirty(page);
1176 if (pte_young(ptent) &&
1177 likely(!VM_SequentialReadHint(vma)))
1178 mark_page_accessed(page);
1179 rss[MM_FILEPAGES]--;
1181 page_remove_rmap(page);
1182 if (unlikely(page_mapcount(page) < 0))
1183 print_bad_pte(vma, addr, ptent, page);
1184 force_flush = !__tlb_remove_page(tlb, page);
1185 if (force_flush)
1186 break;
1187 continue;
1190 * If details->check_mapping, we leave swap entries;
1191 * if details->nonlinear_vma, we leave file entries.
1193 if (unlikely(details))
1194 continue;
1195 if (pte_file(ptent)) {
1196 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1197 print_bad_pte(vma, addr, ptent, NULL);
1198 } else {
1199 swp_entry_t entry = pte_to_swp_entry(ptent);
1201 if (!non_swap_entry(entry))
1202 rss[MM_SWAPENTS]--;
1203 else if (is_migration_entry(entry)) {
1204 struct page *page;
1206 page = migration_entry_to_page(entry);
1208 if (PageAnon(page))
1209 rss[MM_ANONPAGES]--;
1210 else
1211 rss[MM_FILEPAGES]--;
1213 if (unlikely(!free_swap_and_cache(entry)))
1214 print_bad_pte(vma, addr, ptent, NULL);
1216 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1217 } while (pte++, addr += PAGE_SIZE, addr != end);
1219 add_mm_rss_vec(mm, rss);
1220 arch_leave_lazy_mmu_mode();
1221 pte_unmap_unlock(start_pte, ptl);
1224 * mmu_gather ran out of room to batch pages, we break out of
1225 * the PTE lock to avoid doing the potential expensive TLB invalidate
1226 * and page-free while holding it.
1228 if (force_flush) {
1229 force_flush = 0;
1230 tlb_flush_mmu(tlb);
1231 if (addr != end)
1232 goto again;
1235 return addr;
1238 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1239 struct vm_area_struct *vma, pud_t *pud,
1240 unsigned long addr, unsigned long end,
1241 struct zap_details *details)
1243 pmd_t *pmd;
1244 unsigned long next;
1246 pmd = pmd_offset(pud, addr);
1247 do {
1248 next = pmd_addr_end(addr, end);
1249 if (pmd_trans_huge(*pmd)) {
1250 if (next-addr != HPAGE_PMD_SIZE) {
1251 VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
1252 split_huge_page_pmd(vma->vm_mm, pmd);
1253 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1254 continue;
1255 /* fall through */
1257 if (pmd_none_or_clear_bad(pmd))
1258 continue;
1259 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1260 cond_resched();
1261 } while (pmd++, addr = next, addr != end);
1263 return addr;
1266 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1267 struct vm_area_struct *vma, pgd_t *pgd,
1268 unsigned long addr, unsigned long end,
1269 struct zap_details *details)
1271 pud_t *pud;
1272 unsigned long next;
1274 pud = pud_offset(pgd, addr);
1275 do {
1276 next = pud_addr_end(addr, end);
1277 if (pud_none_or_clear_bad(pud))
1278 continue;
1279 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1280 } while (pud++, addr = next, addr != end);
1282 return addr;
1285 static unsigned long unmap_page_range(struct mmu_gather *tlb,
1286 struct vm_area_struct *vma,
1287 unsigned long addr, unsigned long end,
1288 struct zap_details *details)
1290 pgd_t *pgd;
1291 unsigned long next;
1293 if (details && !details->check_mapping && !details->nonlinear_vma)
1294 details = NULL;
1296 BUG_ON(addr >= end);
1297 mem_cgroup_uncharge_start();
1298 tlb_start_vma(tlb, vma);
1299 pgd = pgd_offset(vma->vm_mm, addr);
1300 do {
1301 next = pgd_addr_end(addr, end);
1302 if (pgd_none_or_clear_bad(pgd))
1303 continue;
1304 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1305 } while (pgd++, addr = next, addr != end);
1306 tlb_end_vma(tlb, vma);
1307 mem_cgroup_uncharge_end();
1309 return addr;
1313 * unmap_vmas - unmap a range of memory covered by a list of vma's
1314 * @tlb: address of the caller's struct mmu_gather
1315 * @vma: the starting vma
1316 * @start_addr: virtual address at which to start unmapping
1317 * @end_addr: virtual address at which to end unmapping
1318 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1319 * @details: details of nonlinear truncation or shared cache invalidation
1321 * Returns the end address of the unmapping (restart addr if interrupted).
1323 * Unmap all pages in the vma list.
1325 * Only addresses between `start' and `end' will be unmapped.
1327 * The VMA list must be sorted in ascending virtual address order.
1329 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1330 * range after unmap_vmas() returns. So the only responsibility here is to
1331 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1332 * drops the lock and schedules.
1334 unsigned long unmap_vmas(struct mmu_gather *tlb,
1335 struct vm_area_struct *vma, unsigned long start_addr,
1336 unsigned long end_addr, unsigned long *nr_accounted,
1337 struct zap_details *details)
1339 unsigned long start = start_addr;
1340 struct mm_struct *mm = vma->vm_mm;
1342 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1343 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1344 unsigned long end;
1346 start = max(vma->vm_start, start_addr);
1347 if (start >= vma->vm_end)
1348 continue;
1349 end = min(vma->vm_end, end_addr);
1350 if (end <= vma->vm_start)
1351 continue;
1353 if (vma->vm_flags & VM_ACCOUNT)
1354 *nr_accounted += (end - start) >> PAGE_SHIFT;
1356 if (unlikely(is_pfn_mapping(vma)))
1357 untrack_pfn_vma(vma, 0, 0);
1359 while (start != end) {
1360 if (unlikely(is_vm_hugetlb_page(vma))) {
1362 * It is undesirable to test vma->vm_file as it
1363 * should be non-null for valid hugetlb area.
1364 * However, vm_file will be NULL in the error
1365 * cleanup path of do_mmap_pgoff. When
1366 * hugetlbfs ->mmap method fails,
1367 * do_mmap_pgoff() nullifies vma->vm_file
1368 * before calling this function to clean up.
1369 * Since no pte has actually been setup, it is
1370 * safe to do nothing in this case.
1372 if (vma->vm_file)
1373 unmap_hugepage_range(vma, start, end, NULL);
1375 start = end;
1376 } else
1377 start = unmap_page_range(tlb, vma, start, end, details);
1381 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1382 return start; /* which is now the end (or restart) address */
1386 * zap_page_range - remove user pages in a given range
1387 * @vma: vm_area_struct holding the applicable pages
1388 * @address: starting address of pages to zap
1389 * @size: number of bytes to zap
1390 * @details: details of nonlinear truncation or shared cache invalidation
1392 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1393 unsigned long size, struct zap_details *details)
1395 struct mm_struct *mm = vma->vm_mm;
1396 struct mmu_gather tlb;
1397 unsigned long end = address + size;
1398 unsigned long nr_accounted = 0;
1400 lru_add_drain();
1401 tlb_gather_mmu(&tlb, mm, 0);
1402 update_hiwater_rss(mm);
1403 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1404 tlb_finish_mmu(&tlb, address, end);
1405 return end;
1409 * zap_vma_ptes - remove ptes mapping the vma
1410 * @vma: vm_area_struct holding ptes to be zapped
1411 * @address: starting address of pages to zap
1412 * @size: number of bytes to zap
1414 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1416 * The entire address range must be fully contained within the vma.
1418 * Returns 0 if successful.
1420 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1421 unsigned long size)
1423 if (address < vma->vm_start || address + size > vma->vm_end ||
1424 !(vma->vm_flags & VM_PFNMAP))
1425 return -1;
1426 zap_page_range(vma, address, size, NULL);
1427 return 0;
1429 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1432 * follow_page - look up a page descriptor from a user-virtual address
1433 * @vma: vm_area_struct mapping @address
1434 * @address: virtual address to look up
1435 * @flags: flags modifying lookup behaviour
1437 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1439 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1440 * an error pointer if there is a mapping to something not represented
1441 * by a page descriptor (see also vm_normal_page()).
1443 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1444 unsigned int flags)
1446 pgd_t *pgd;
1447 pud_t *pud;
1448 pmd_t *pmd;
1449 pte_t *ptep, pte;
1450 spinlock_t *ptl;
1451 struct page *page;
1452 struct mm_struct *mm = vma->vm_mm;
1454 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1455 if (!IS_ERR(page)) {
1456 BUG_ON(flags & FOLL_GET);
1457 goto out;
1460 page = NULL;
1461 pgd = pgd_offset(mm, address);
1462 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1463 goto no_page_table;
1465 pud = pud_offset(pgd, address);
1466 if (pud_none(*pud))
1467 goto no_page_table;
1468 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1469 BUG_ON(flags & FOLL_GET);
1470 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1471 goto out;
1473 if (unlikely(pud_bad(*pud)))
1474 goto no_page_table;
1476 pmd = pmd_offset(pud, address);
1477 if (pmd_none(*pmd))
1478 goto no_page_table;
1479 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1480 BUG_ON(flags & FOLL_GET);
1481 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1482 goto out;
1484 if (pmd_trans_huge(*pmd)) {
1485 if (flags & FOLL_SPLIT) {
1486 split_huge_page_pmd(mm, pmd);
1487 goto split_fallthrough;
1489 spin_lock(&mm->page_table_lock);
1490 if (likely(pmd_trans_huge(*pmd))) {
1491 if (unlikely(pmd_trans_splitting(*pmd))) {
1492 spin_unlock(&mm->page_table_lock);
1493 wait_split_huge_page(vma->anon_vma, pmd);
1494 } else {
1495 page = follow_trans_huge_pmd(mm, address,
1496 pmd, flags);
1497 spin_unlock(&mm->page_table_lock);
1498 goto out;
1500 } else
1501 spin_unlock(&mm->page_table_lock);
1502 /* fall through */
1504 split_fallthrough:
1505 if (unlikely(pmd_bad(*pmd)))
1506 goto no_page_table;
1508 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1510 pte = *ptep;
1511 if (!pte_present(pte))
1512 goto no_page;
1513 if ((flags & FOLL_WRITE) && !pte_write(pte))
1514 goto unlock;
1516 page = vm_normal_page(vma, address, pte);
1517 if (unlikely(!page)) {
1518 if ((flags & FOLL_DUMP) ||
1519 !is_zero_pfn(pte_pfn(pte)))
1520 goto bad_page;
1521 page = pte_page(pte);
1524 if (flags & FOLL_GET)
1525 get_page_foll(page);
1526 if (flags & FOLL_TOUCH) {
1527 if ((flags & FOLL_WRITE) &&
1528 !pte_dirty(pte) && !PageDirty(page))
1529 set_page_dirty(page);
1531 * pte_mkyoung() would be more correct here, but atomic care
1532 * is needed to avoid losing the dirty bit: it is easier to use
1533 * mark_page_accessed().
1535 mark_page_accessed(page);
1537 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1539 * The preliminary mapping check is mainly to avoid the
1540 * pointless overhead of lock_page on the ZERO_PAGE
1541 * which might bounce very badly if there is contention.
1543 * If the page is already locked, we don't need to
1544 * handle it now - vmscan will handle it later if and
1545 * when it attempts to reclaim the page.
1547 if (page->mapping && trylock_page(page)) {
1548 lru_add_drain(); /* push cached pages to LRU */
1550 * Because we lock page here and migration is
1551 * blocked by the pte's page reference, we need
1552 * only check for file-cache page truncation.
1554 if (page->mapping)
1555 mlock_vma_page(page);
1556 unlock_page(page);
1559 unlock:
1560 pte_unmap_unlock(ptep, ptl);
1561 out:
1562 return page;
1564 bad_page:
1565 pte_unmap_unlock(ptep, ptl);
1566 return ERR_PTR(-EFAULT);
1568 no_page:
1569 pte_unmap_unlock(ptep, ptl);
1570 if (!pte_none(pte))
1571 return page;
1573 no_page_table:
1575 * When core dumping an enormous anonymous area that nobody
1576 * has touched so far, we don't want to allocate unnecessary pages or
1577 * page tables. Return error instead of NULL to skip handle_mm_fault,
1578 * then get_dump_page() will return NULL to leave a hole in the dump.
1579 * But we can only make this optimization where a hole would surely
1580 * be zero-filled if handle_mm_fault() actually did handle it.
1582 if ((flags & FOLL_DUMP) &&
1583 (!vma->vm_ops || !vma->vm_ops->fault))
1584 return ERR_PTR(-EFAULT);
1585 return page;
1588 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1590 return stack_guard_page_start(vma, addr) ||
1591 stack_guard_page_end(vma, addr+PAGE_SIZE);
1595 * __get_user_pages() - pin user pages in memory
1596 * @tsk: task_struct of target task
1597 * @mm: mm_struct of target mm
1598 * @start: starting user address
1599 * @nr_pages: number of pages from start to pin
1600 * @gup_flags: flags modifying pin behaviour
1601 * @pages: array that receives pointers to the pages pinned.
1602 * Should be at least nr_pages long. Or NULL, if caller
1603 * only intends to ensure the pages are faulted in.
1604 * @vmas: array of pointers to vmas corresponding to each page.
1605 * Or NULL if the caller does not require them.
1606 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1608 * Returns number of pages pinned. This may be fewer than the number
1609 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1610 * were pinned, returns -errno. Each page returned must be released
1611 * with a put_page() call when it is finished with. vmas will only
1612 * remain valid while mmap_sem is held.
1614 * Must be called with mmap_sem held for read or write.
1616 * __get_user_pages walks a process's page tables and takes a reference to
1617 * each struct page that each user address corresponds to at a given
1618 * instant. That is, it takes the page that would be accessed if a user
1619 * thread accesses the given user virtual address at that instant.
1621 * This does not guarantee that the page exists in the user mappings when
1622 * __get_user_pages returns, and there may even be a completely different
1623 * page there in some cases (eg. if mmapped pagecache has been invalidated
1624 * and subsequently re faulted). However it does guarantee that the page
1625 * won't be freed completely. And mostly callers simply care that the page
1626 * contains data that was valid *at some point in time*. Typically, an IO
1627 * or similar operation cannot guarantee anything stronger anyway because
1628 * locks can't be held over the syscall boundary.
1630 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1631 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1632 * appropriate) must be called after the page is finished with, and
1633 * before put_page is called.
1635 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1636 * or mmap_sem contention, and if waiting is needed to pin all pages,
1637 * *@nonblocking will be set to 0.
1639 * In most cases, get_user_pages or get_user_pages_fast should be used
1640 * instead of __get_user_pages. __get_user_pages should be used only if
1641 * you need some special @gup_flags.
1643 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1644 unsigned long start, int nr_pages, unsigned int gup_flags,
1645 struct page **pages, struct vm_area_struct **vmas,
1646 int *nonblocking)
1648 int i;
1649 unsigned long vm_flags;
1651 if (nr_pages <= 0)
1652 return 0;
1654 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1657 * Require read or write permissions.
1658 * If FOLL_FORCE is set, we only require the "MAY" flags.
1660 vm_flags = (gup_flags & FOLL_WRITE) ?
1661 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1662 vm_flags &= (gup_flags & FOLL_FORCE) ?
1663 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1664 i = 0;
1666 do {
1667 struct vm_area_struct *vma;
1669 vma = find_extend_vma(mm, start);
1670 if (!vma && in_gate_area(mm, start)) {
1671 unsigned long pg = start & PAGE_MASK;
1672 pgd_t *pgd;
1673 pud_t *pud;
1674 pmd_t *pmd;
1675 pte_t *pte;
1677 /* user gate pages are read-only */
1678 if (gup_flags & FOLL_WRITE)
1679 return i ? : -EFAULT;
1680 if (pg > TASK_SIZE)
1681 pgd = pgd_offset_k(pg);
1682 else
1683 pgd = pgd_offset_gate(mm, pg);
1684 BUG_ON(pgd_none(*pgd));
1685 pud = pud_offset(pgd, pg);
1686 BUG_ON(pud_none(*pud));
1687 pmd = pmd_offset(pud, pg);
1688 if (pmd_none(*pmd))
1689 return i ? : -EFAULT;
1690 VM_BUG_ON(pmd_trans_huge(*pmd));
1691 pte = pte_offset_map(pmd, pg);
1692 if (pte_none(*pte)) {
1693 pte_unmap(pte);
1694 return i ? : -EFAULT;
1696 vma = get_gate_vma(mm);
1697 if (pages) {
1698 struct page *page;
1700 page = vm_normal_page(vma, start, *pte);
1701 if (!page) {
1702 if (!(gup_flags & FOLL_DUMP) &&
1703 is_zero_pfn(pte_pfn(*pte)))
1704 page = pte_page(*pte);
1705 else {
1706 pte_unmap(pte);
1707 return i ? : -EFAULT;
1710 pages[i] = page;
1711 get_page(page);
1713 pte_unmap(pte);
1714 goto next_page;
1717 if (!vma ||
1718 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1719 !(vm_flags & vma->vm_flags))
1720 return i ? : -EFAULT;
1722 if (is_vm_hugetlb_page(vma)) {
1723 i = follow_hugetlb_page(mm, vma, pages, vmas,
1724 &start, &nr_pages, i, gup_flags);
1725 continue;
1728 do {
1729 struct page *page;
1730 unsigned int foll_flags = gup_flags;
1733 * If we have a pending SIGKILL, don't keep faulting
1734 * pages and potentially allocating memory.
1736 if (unlikely(fatal_signal_pending(current)))
1737 return i ? i : -ERESTARTSYS;
1739 cond_resched();
1740 while (!(page = follow_page(vma, start, foll_flags))) {
1741 int ret;
1742 unsigned int fault_flags = 0;
1744 /* For mlock, just skip the stack guard page. */
1745 if (foll_flags & FOLL_MLOCK) {
1746 if (stack_guard_page(vma, start))
1747 goto next_page;
1749 if (foll_flags & FOLL_WRITE)
1750 fault_flags |= FAULT_FLAG_WRITE;
1751 if (nonblocking)
1752 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1753 if (foll_flags & FOLL_NOWAIT)
1754 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1756 ret = handle_mm_fault(mm, vma, start,
1757 fault_flags);
1759 if (ret & VM_FAULT_ERROR) {
1760 if (ret & VM_FAULT_OOM)
1761 return i ? i : -ENOMEM;
1762 if (ret & (VM_FAULT_HWPOISON |
1763 VM_FAULT_HWPOISON_LARGE)) {
1764 if (i)
1765 return i;
1766 else if (gup_flags & FOLL_HWPOISON)
1767 return -EHWPOISON;
1768 else
1769 return -EFAULT;
1771 if (ret & VM_FAULT_SIGBUS)
1772 return i ? i : -EFAULT;
1773 BUG();
1776 if (tsk) {
1777 if (ret & VM_FAULT_MAJOR)
1778 tsk->maj_flt++;
1779 else
1780 tsk->min_flt++;
1783 if (ret & VM_FAULT_RETRY) {
1784 if (nonblocking)
1785 *nonblocking = 0;
1786 return i;
1790 * The VM_FAULT_WRITE bit tells us that
1791 * do_wp_page has broken COW when necessary,
1792 * even if maybe_mkwrite decided not to set
1793 * pte_write. We can thus safely do subsequent
1794 * page lookups as if they were reads. But only
1795 * do so when looping for pte_write is futile:
1796 * in some cases userspace may also be wanting
1797 * to write to the gotten user page, which a
1798 * read fault here might prevent (a readonly
1799 * page might get reCOWed by userspace write).
1801 if ((ret & VM_FAULT_WRITE) &&
1802 !(vma->vm_flags & VM_WRITE))
1803 foll_flags &= ~FOLL_WRITE;
1805 cond_resched();
1807 if (IS_ERR(page))
1808 return i ? i : PTR_ERR(page);
1809 if (pages) {
1810 pages[i] = page;
1812 flush_anon_page(vma, page, start);
1813 flush_dcache_page(page);
1815 next_page:
1816 if (vmas)
1817 vmas[i] = vma;
1818 i++;
1819 start += PAGE_SIZE;
1820 nr_pages--;
1821 } while (nr_pages && start < vma->vm_end);
1822 } while (nr_pages);
1823 return i;
1825 EXPORT_SYMBOL(__get_user_pages);
1828 * fixup_user_fault() - manually resolve a user page fault
1829 * @tsk: the task_struct to use for page fault accounting, or
1830 * NULL if faults are not to be recorded.
1831 * @mm: mm_struct of target mm
1832 * @address: user address
1833 * @fault_flags:flags to pass down to handle_mm_fault()
1835 * This is meant to be called in the specific scenario where for locking reasons
1836 * we try to access user memory in atomic context (within a pagefault_disable()
1837 * section), this returns -EFAULT, and we want to resolve the user fault before
1838 * trying again.
1840 * Typically this is meant to be used by the futex code.
1842 * The main difference with get_user_pages() is that this function will
1843 * unconditionally call handle_mm_fault() which will in turn perform all the
1844 * necessary SW fixup of the dirty and young bits in the PTE, while
1845 * handle_mm_fault() only guarantees to update these in the struct page.
1847 * This is important for some architectures where those bits also gate the
1848 * access permission to the page because they are maintained in software. On
1849 * such architectures, gup() will not be enough to make a subsequent access
1850 * succeed.
1852 * This should be called with the mm_sem held for read.
1854 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1855 unsigned long address, unsigned int fault_flags)
1857 struct vm_area_struct *vma;
1858 int ret;
1860 vma = find_extend_vma(mm, address);
1861 if (!vma || address < vma->vm_start)
1862 return -EFAULT;
1864 ret = handle_mm_fault(mm, vma, address, fault_flags);
1865 if (ret & VM_FAULT_ERROR) {
1866 if (ret & VM_FAULT_OOM)
1867 return -ENOMEM;
1868 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1869 return -EHWPOISON;
1870 if (ret & VM_FAULT_SIGBUS)
1871 return -EFAULT;
1872 BUG();
1874 if (tsk) {
1875 if (ret & VM_FAULT_MAJOR)
1876 tsk->maj_flt++;
1877 else
1878 tsk->min_flt++;
1880 return 0;
1884 * get_user_pages() - pin user pages in memory
1885 * @tsk: the task_struct to use for page fault accounting, or
1886 * NULL if faults are not to be recorded.
1887 * @mm: mm_struct of target mm
1888 * @start: starting user address
1889 * @nr_pages: number of pages from start to pin
1890 * @write: whether pages will be written to by the caller
1891 * @force: whether to force write access even if user mapping is
1892 * readonly. This will result in the page being COWed even
1893 * in MAP_SHARED mappings. You do not want this.
1894 * @pages: array that receives pointers to the pages pinned.
1895 * Should be at least nr_pages long. Or NULL, if caller
1896 * only intends to ensure the pages are faulted in.
1897 * @vmas: array of pointers to vmas corresponding to each page.
1898 * Or NULL if the caller does not require them.
1900 * Returns number of pages pinned. This may be fewer than the number
1901 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1902 * were pinned, returns -errno. Each page returned must be released
1903 * with a put_page() call when it is finished with. vmas will only
1904 * remain valid while mmap_sem is held.
1906 * Must be called with mmap_sem held for read or write.
1908 * get_user_pages walks a process's page tables and takes a reference to
1909 * each struct page that each user address corresponds to at a given
1910 * instant. That is, it takes the page that would be accessed if a user
1911 * thread accesses the given user virtual address at that instant.
1913 * This does not guarantee that the page exists in the user mappings when
1914 * get_user_pages returns, and there may even be a completely different
1915 * page there in some cases (eg. if mmapped pagecache has been invalidated
1916 * and subsequently re faulted). However it does guarantee that the page
1917 * won't be freed completely. And mostly callers simply care that the page
1918 * contains data that was valid *at some point in time*. Typically, an IO
1919 * or similar operation cannot guarantee anything stronger anyway because
1920 * locks can't be held over the syscall boundary.
1922 * If write=0, the page must not be written to. If the page is written to,
1923 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1924 * after the page is finished with, and before put_page is called.
1926 * get_user_pages is typically used for fewer-copy IO operations, to get a
1927 * handle on the memory by some means other than accesses via the user virtual
1928 * addresses. The pages may be submitted for DMA to devices or accessed via
1929 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1930 * use the correct cache flushing APIs.
1932 * See also get_user_pages_fast, for performance critical applications.
1934 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1935 unsigned long start, int nr_pages, int write, int force,
1936 struct page **pages, struct vm_area_struct **vmas)
1938 int flags = FOLL_TOUCH;
1940 if (pages)
1941 flags |= FOLL_GET;
1942 if (write)
1943 flags |= FOLL_WRITE;
1944 if (force)
1945 flags |= FOLL_FORCE;
1947 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1948 NULL);
1950 EXPORT_SYMBOL(get_user_pages);
1953 * get_dump_page() - pin user page in memory while writing it to core dump
1954 * @addr: user address
1956 * Returns struct page pointer of user page pinned for dump,
1957 * to be freed afterwards by page_cache_release() or put_page().
1959 * Returns NULL on any kind of failure - a hole must then be inserted into
1960 * the corefile, to preserve alignment with its headers; and also returns
1961 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1962 * allowing a hole to be left in the corefile to save diskspace.
1964 * Called without mmap_sem, but after all other threads have been killed.
1966 #ifdef CONFIG_ELF_CORE
1967 struct page *get_dump_page(unsigned long addr)
1969 struct vm_area_struct *vma;
1970 struct page *page;
1972 if (__get_user_pages(current, current->mm, addr, 1,
1973 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1974 NULL) < 1)
1975 return NULL;
1976 flush_cache_page(vma, addr, page_to_pfn(page));
1977 return page;
1979 #endif /* CONFIG_ELF_CORE */
1981 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1982 spinlock_t **ptl)
1984 pgd_t * pgd = pgd_offset(mm, addr);
1985 pud_t * pud = pud_alloc(mm, pgd, addr);
1986 if (pud) {
1987 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1988 if (pmd) {
1989 VM_BUG_ON(pmd_trans_huge(*pmd));
1990 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1993 return NULL;
1997 * This is the old fallback for page remapping.
1999 * For historical reasons, it only allows reserved pages. Only
2000 * old drivers should use this, and they needed to mark their
2001 * pages reserved for the old functions anyway.
2003 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2004 struct page *page, pgprot_t prot)
2006 struct mm_struct *mm = vma->vm_mm;
2007 int retval;
2008 pte_t *pte;
2009 spinlock_t *ptl;
2011 retval = -EINVAL;
2012 if (PageAnon(page))
2013 goto out;
2014 retval = -ENOMEM;
2015 flush_dcache_page(page);
2016 pte = get_locked_pte(mm, addr, &ptl);
2017 if (!pte)
2018 goto out;
2019 retval = -EBUSY;
2020 if (!pte_none(*pte))
2021 goto out_unlock;
2023 /* Ok, finally just insert the thing.. */
2024 get_page(page);
2025 inc_mm_counter_fast(mm, MM_FILEPAGES);
2026 page_add_file_rmap(page);
2027 set_pte_at(mm, addr, pte, mk_pte(page, prot));
2029 retval = 0;
2030 pte_unmap_unlock(pte, ptl);
2031 return retval;
2032 out_unlock:
2033 pte_unmap_unlock(pte, ptl);
2034 out:
2035 return retval;
2039 * vm_insert_page - insert single page into user vma
2040 * @vma: user vma to map to
2041 * @addr: target user address of this page
2042 * @page: source kernel page
2044 * This allows drivers to insert individual pages they've allocated
2045 * into a user vma.
2047 * The page has to be a nice clean _individual_ kernel allocation.
2048 * If you allocate a compound page, you need to have marked it as
2049 * such (__GFP_COMP), or manually just split the page up yourself
2050 * (see split_page()).
2052 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2053 * took an arbitrary page protection parameter. This doesn't allow
2054 * that. Your vma protection will have to be set up correctly, which
2055 * means that if you want a shared writable mapping, you'd better
2056 * ask for a shared writable mapping!
2058 * The page does not need to be reserved.
2060 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2061 struct page *page)
2063 if (addr < vma->vm_start || addr >= vma->vm_end)
2064 return -EFAULT;
2065 if (!page_count(page))
2066 return -EINVAL;
2067 vma->vm_flags |= VM_INSERTPAGE;
2068 return insert_page(vma, addr, page, vma->vm_page_prot);
2070 EXPORT_SYMBOL(vm_insert_page);
2072 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2073 unsigned long pfn, pgprot_t prot)
2075 struct mm_struct *mm = vma->vm_mm;
2076 int retval;
2077 pte_t *pte, entry;
2078 spinlock_t *ptl;
2080 retval = -ENOMEM;
2081 pte = get_locked_pte(mm, addr, &ptl);
2082 if (!pte)
2083 goto out;
2084 retval = -EBUSY;
2085 if (!pte_none(*pte))
2086 goto out_unlock;
2088 /* Ok, finally just insert the thing.. */
2089 entry = pte_mkspecial(pfn_pte(pfn, prot));
2090 set_pte_at(mm, addr, pte, entry);
2091 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2093 retval = 0;
2094 out_unlock:
2095 pte_unmap_unlock(pte, ptl);
2096 out:
2097 return retval;
2101 * vm_insert_pfn - insert single pfn into user vma
2102 * @vma: user vma to map to
2103 * @addr: target user address of this page
2104 * @pfn: source kernel pfn
2106 * Similar to vm_inert_page, this allows drivers to insert individual pages
2107 * they've allocated into a user vma. Same comments apply.
2109 * This function should only be called from a vm_ops->fault handler, and
2110 * in that case the handler should return NULL.
2112 * vma cannot be a COW mapping.
2114 * As this is called only for pages that do not currently exist, we
2115 * do not need to flush old virtual caches or the TLB.
2117 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2118 unsigned long pfn)
2120 int ret;
2121 pgprot_t pgprot = vma->vm_page_prot;
2123 * Technically, architectures with pte_special can avoid all these
2124 * restrictions (same for remap_pfn_range). However we would like
2125 * consistency in testing and feature parity among all, so we should
2126 * try to keep these invariants in place for everybody.
2128 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2129 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2130 (VM_PFNMAP|VM_MIXEDMAP));
2131 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2132 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2134 if (addr < vma->vm_start || addr >= vma->vm_end)
2135 return -EFAULT;
2136 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2137 return -EINVAL;
2139 ret = insert_pfn(vma, addr, pfn, pgprot);
2141 if (ret)
2142 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
2144 return ret;
2146 EXPORT_SYMBOL(vm_insert_pfn);
2148 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2149 unsigned long pfn)
2151 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2153 if (addr < vma->vm_start || addr >= vma->vm_end)
2154 return -EFAULT;
2157 * If we don't have pte special, then we have to use the pfn_valid()
2158 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2159 * refcount the page if pfn_valid is true (hence insert_page rather
2160 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2161 * without pte special, it would there be refcounted as a normal page.
2163 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2164 struct page *page;
2166 page = pfn_to_page(pfn);
2167 return insert_page(vma, addr, page, vma->vm_page_prot);
2169 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2171 EXPORT_SYMBOL(vm_insert_mixed);
2174 * maps a range of physical memory into the requested pages. the old
2175 * mappings are removed. any references to nonexistent pages results
2176 * in null mappings (currently treated as "copy-on-access")
2178 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2179 unsigned long addr, unsigned long end,
2180 unsigned long pfn, pgprot_t prot)
2182 pte_t *pte;
2183 spinlock_t *ptl;
2185 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2186 if (!pte)
2187 return -ENOMEM;
2188 arch_enter_lazy_mmu_mode();
2189 do {
2190 BUG_ON(!pte_none(*pte));
2191 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2192 pfn++;
2193 } while (pte++, addr += PAGE_SIZE, addr != end);
2194 arch_leave_lazy_mmu_mode();
2195 pte_unmap_unlock(pte - 1, ptl);
2196 return 0;
2199 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2200 unsigned long addr, unsigned long end,
2201 unsigned long pfn, pgprot_t prot)
2203 pmd_t *pmd;
2204 unsigned long next;
2206 pfn -= addr >> PAGE_SHIFT;
2207 pmd = pmd_alloc(mm, pud, addr);
2208 if (!pmd)
2209 return -ENOMEM;
2210 VM_BUG_ON(pmd_trans_huge(*pmd));
2211 do {
2212 next = pmd_addr_end(addr, end);
2213 if (remap_pte_range(mm, pmd, addr, next,
2214 pfn + (addr >> PAGE_SHIFT), prot))
2215 return -ENOMEM;
2216 } while (pmd++, addr = next, addr != end);
2217 return 0;
2220 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2221 unsigned long addr, unsigned long end,
2222 unsigned long pfn, pgprot_t prot)
2224 pud_t *pud;
2225 unsigned long next;
2227 pfn -= addr >> PAGE_SHIFT;
2228 pud = pud_alloc(mm, pgd, addr);
2229 if (!pud)
2230 return -ENOMEM;
2231 do {
2232 next = pud_addr_end(addr, end);
2233 if (remap_pmd_range(mm, pud, addr, next,
2234 pfn + (addr >> PAGE_SHIFT), prot))
2235 return -ENOMEM;
2236 } while (pud++, addr = next, addr != end);
2237 return 0;
2241 * remap_pfn_range - remap kernel memory to userspace
2242 * @vma: user vma to map to
2243 * @addr: target user address to start at
2244 * @pfn: physical address of kernel memory
2245 * @size: size of map area
2246 * @prot: page protection flags for this mapping
2248 * Note: this is only safe if the mm semaphore is held when called.
2250 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2251 unsigned long pfn, unsigned long size, pgprot_t prot)
2253 pgd_t *pgd;
2254 unsigned long next;
2255 unsigned long end = addr + PAGE_ALIGN(size);
2256 struct mm_struct *mm = vma->vm_mm;
2257 int err;
2260 * Physically remapped pages are special. Tell the
2261 * rest of the world about it:
2262 * VM_IO tells people not to look at these pages
2263 * (accesses can have side effects).
2264 * VM_RESERVED is specified all over the place, because
2265 * in 2.4 it kept swapout's vma scan off this vma; but
2266 * in 2.6 the LRU scan won't even find its pages, so this
2267 * flag means no more than count its pages in reserved_vm,
2268 * and omit it from core dump, even when VM_IO turned off.
2269 * VM_PFNMAP tells the core MM that the base pages are just
2270 * raw PFN mappings, and do not have a "struct page" associated
2271 * with them.
2273 * There's a horrible special case to handle copy-on-write
2274 * behaviour that some programs depend on. We mark the "original"
2275 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2277 if (addr == vma->vm_start && end == vma->vm_end) {
2278 vma->vm_pgoff = pfn;
2279 vma->vm_flags |= VM_PFN_AT_MMAP;
2280 } else if (is_cow_mapping(vma->vm_flags))
2281 return -EINVAL;
2283 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
2285 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
2286 if (err) {
2288 * To indicate that track_pfn related cleanup is not
2289 * needed from higher level routine calling unmap_vmas
2291 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
2292 vma->vm_flags &= ~VM_PFN_AT_MMAP;
2293 return -EINVAL;
2296 BUG_ON(addr >= end);
2297 pfn -= addr >> PAGE_SHIFT;
2298 pgd = pgd_offset(mm, addr);
2299 flush_cache_range(vma, addr, end);
2300 do {
2301 next = pgd_addr_end(addr, end);
2302 err = remap_pud_range(mm, pgd, addr, next,
2303 pfn + (addr >> PAGE_SHIFT), prot);
2304 if (err)
2305 break;
2306 } while (pgd++, addr = next, addr != end);
2308 if (err)
2309 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2311 return err;
2313 EXPORT_SYMBOL(remap_pfn_range);
2315 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2316 unsigned long addr, unsigned long end,
2317 pte_fn_t fn, void *data)
2319 pte_t *pte;
2320 int err;
2321 pgtable_t token;
2322 spinlock_t *uninitialized_var(ptl);
2324 pte = (mm == &init_mm) ?
2325 pte_alloc_kernel(pmd, addr) :
2326 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2327 if (!pte)
2328 return -ENOMEM;
2330 BUG_ON(pmd_huge(*pmd));
2332 arch_enter_lazy_mmu_mode();
2334 token = pmd_pgtable(*pmd);
2336 do {
2337 err = fn(pte++, token, addr, data);
2338 if (err)
2339 break;
2340 } while (addr += PAGE_SIZE, addr != end);
2342 arch_leave_lazy_mmu_mode();
2344 if (mm != &init_mm)
2345 pte_unmap_unlock(pte-1, ptl);
2346 return err;
2349 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2350 unsigned long addr, unsigned long end,
2351 pte_fn_t fn, void *data)
2353 pmd_t *pmd;
2354 unsigned long next;
2355 int err;
2357 BUG_ON(pud_huge(*pud));
2359 pmd = pmd_alloc(mm, pud, addr);
2360 if (!pmd)
2361 return -ENOMEM;
2362 do {
2363 next = pmd_addr_end(addr, end);
2364 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2365 if (err)
2366 break;
2367 } while (pmd++, addr = next, addr != end);
2368 return err;
2371 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2372 unsigned long addr, unsigned long end,
2373 pte_fn_t fn, void *data)
2375 pud_t *pud;
2376 unsigned long next;
2377 int err;
2379 pud = pud_alloc(mm, pgd, addr);
2380 if (!pud)
2381 return -ENOMEM;
2382 do {
2383 next = pud_addr_end(addr, end);
2384 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2385 if (err)
2386 break;
2387 } while (pud++, addr = next, addr != end);
2388 return err;
2392 * Scan a region of virtual memory, filling in page tables as necessary
2393 * and calling a provided function on each leaf page table.
2395 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2396 unsigned long size, pte_fn_t fn, void *data)
2398 pgd_t *pgd;
2399 unsigned long next;
2400 unsigned long end = addr + size;
2401 int err;
2403 BUG_ON(addr >= end);
2404 pgd = pgd_offset(mm, addr);
2405 do {
2406 next = pgd_addr_end(addr, end);
2407 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2408 if (err)
2409 break;
2410 } while (pgd++, addr = next, addr != end);
2412 return err;
2414 EXPORT_SYMBOL_GPL(apply_to_page_range);
2417 * handle_pte_fault chooses page fault handler according to an entry
2418 * which was read non-atomically. Before making any commitment, on
2419 * those architectures or configurations (e.g. i386 with PAE) which
2420 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2421 * must check under lock before unmapping the pte and proceeding
2422 * (but do_wp_page is only called after already making such a check;
2423 * and do_anonymous_page can safely check later on).
2425 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2426 pte_t *page_table, pte_t orig_pte)
2428 int same = 1;
2429 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2430 if (sizeof(pte_t) > sizeof(unsigned long)) {
2431 spinlock_t *ptl = pte_lockptr(mm, pmd);
2432 spin_lock(ptl);
2433 same = pte_same(*page_table, orig_pte);
2434 spin_unlock(ptl);
2436 #endif
2437 pte_unmap(page_table);
2438 return same;
2441 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2444 * If the source page was a PFN mapping, we don't have
2445 * a "struct page" for it. We do a best-effort copy by
2446 * just copying from the original user address. If that
2447 * fails, we just zero-fill it. Live with it.
2449 if (unlikely(!src)) {
2450 void *kaddr = kmap_atomic(dst, KM_USER0);
2451 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2454 * This really shouldn't fail, because the page is there
2455 * in the page tables. But it might just be unreadable,
2456 * in which case we just give up and fill the result with
2457 * zeroes.
2459 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2460 clear_page(kaddr);
2461 kunmap_atomic(kaddr, KM_USER0);
2462 flush_dcache_page(dst);
2463 } else
2464 copy_user_highpage(dst, src, va, vma);
2468 * This routine handles present pages, when users try to write
2469 * to a shared page. It is done by copying the page to a new address
2470 * and decrementing the shared-page counter for the old page.
2472 * Note that this routine assumes that the protection checks have been
2473 * done by the caller (the low-level page fault routine in most cases).
2474 * Thus we can safely just mark it writable once we've done any necessary
2475 * COW.
2477 * We also mark the page dirty at this point even though the page will
2478 * change only once the write actually happens. This avoids a few races,
2479 * and potentially makes it more efficient.
2481 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2482 * but allow concurrent faults), with pte both mapped and locked.
2483 * We return with mmap_sem still held, but pte unmapped and unlocked.
2485 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2486 unsigned long address, pte_t *page_table, pmd_t *pmd,
2487 spinlock_t *ptl, pte_t orig_pte)
2488 __releases(ptl)
2490 struct page *old_page, *new_page;
2491 pte_t entry;
2492 int ret = 0;
2493 int page_mkwrite = 0;
2494 struct page *dirty_page = NULL;
2496 old_page = vm_normal_page(vma, address, orig_pte);
2497 if (!old_page) {
2499 * VM_MIXEDMAP !pfn_valid() case
2501 * We should not cow pages in a shared writeable mapping.
2502 * Just mark the pages writable as we can't do any dirty
2503 * accounting on raw pfn maps.
2505 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2506 (VM_WRITE|VM_SHARED))
2507 goto reuse;
2508 goto gotten;
2512 * Take out anonymous pages first, anonymous shared vmas are
2513 * not dirty accountable.
2515 if (PageAnon(old_page) && !PageKsm(old_page)) {
2516 if (!trylock_page(old_page)) {
2517 page_cache_get(old_page);
2518 pte_unmap_unlock(page_table, ptl);
2519 lock_page(old_page);
2520 page_table = pte_offset_map_lock(mm, pmd, address,
2521 &ptl);
2522 if (!pte_same(*page_table, orig_pte)) {
2523 unlock_page(old_page);
2524 goto unlock;
2526 page_cache_release(old_page);
2528 if (reuse_swap_page(old_page)) {
2530 * The page is all ours. Move it to our anon_vma so
2531 * the rmap code will not search our parent or siblings.
2532 * Protected against the rmap code by the page lock.
2534 page_move_anon_rmap(old_page, vma, address);
2535 unlock_page(old_page);
2536 goto reuse;
2538 unlock_page(old_page);
2539 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2540 (VM_WRITE|VM_SHARED))) {
2542 * Only catch write-faults on shared writable pages,
2543 * read-only shared pages can get COWed by
2544 * get_user_pages(.write=1, .force=1).
2546 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2547 struct vm_fault vmf;
2548 int tmp;
2550 vmf.virtual_address = (void __user *)(address &
2551 PAGE_MASK);
2552 vmf.pgoff = old_page->index;
2553 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2554 vmf.page = old_page;
2557 * Notify the address space that the page is about to
2558 * become writable so that it can prohibit this or wait
2559 * for the page to get into an appropriate state.
2561 * We do this without the lock held, so that it can
2562 * sleep if it needs to.
2564 page_cache_get(old_page);
2565 pte_unmap_unlock(page_table, ptl);
2567 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2568 if (unlikely(tmp &
2569 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2570 ret = tmp;
2571 goto unwritable_page;
2573 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2574 lock_page(old_page);
2575 if (!old_page->mapping) {
2576 ret = 0; /* retry the fault */
2577 unlock_page(old_page);
2578 goto unwritable_page;
2580 } else
2581 VM_BUG_ON(!PageLocked(old_page));
2584 * Since we dropped the lock we need to revalidate
2585 * the PTE as someone else may have changed it. If
2586 * they did, we just return, as we can count on the
2587 * MMU to tell us if they didn't also make it writable.
2589 page_table = pte_offset_map_lock(mm, pmd, address,
2590 &ptl);
2591 if (!pte_same(*page_table, orig_pte)) {
2592 unlock_page(old_page);
2593 goto unlock;
2596 page_mkwrite = 1;
2598 dirty_page = old_page;
2599 get_page(dirty_page);
2601 reuse:
2602 flush_cache_page(vma, address, pte_pfn(orig_pte));
2603 entry = pte_mkyoung(orig_pte);
2604 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2605 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2606 update_mmu_cache(vma, address, page_table);
2607 pte_unmap_unlock(page_table, ptl);
2608 ret |= VM_FAULT_WRITE;
2610 if (!dirty_page)
2611 return ret;
2614 * Yes, Virginia, this is actually required to prevent a race
2615 * with clear_page_dirty_for_io() from clearing the page dirty
2616 * bit after it clear all dirty ptes, but before a racing
2617 * do_wp_page installs a dirty pte.
2619 * __do_fault is protected similarly.
2621 if (!page_mkwrite) {
2622 wait_on_page_locked(dirty_page);
2623 set_page_dirty_balance(dirty_page, page_mkwrite);
2625 put_page(dirty_page);
2626 if (page_mkwrite) {
2627 struct address_space *mapping = dirty_page->mapping;
2629 set_page_dirty(dirty_page);
2630 unlock_page(dirty_page);
2631 page_cache_release(dirty_page);
2632 if (mapping) {
2634 * Some device drivers do not set page.mapping
2635 * but still dirty their pages
2637 balance_dirty_pages_ratelimited(mapping);
2641 /* file_update_time outside page_lock */
2642 if (vma->vm_file)
2643 file_update_time(vma->vm_file);
2645 return ret;
2649 * Ok, we need to copy. Oh, well..
2651 page_cache_get(old_page);
2652 gotten:
2653 pte_unmap_unlock(page_table, ptl);
2655 if (unlikely(anon_vma_prepare(vma)))
2656 goto oom;
2658 if (is_zero_pfn(pte_pfn(orig_pte))) {
2659 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2660 if (!new_page)
2661 goto oom;
2662 } else {
2663 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2664 if (!new_page)
2665 goto oom;
2666 cow_user_page(new_page, old_page, address, vma);
2668 __SetPageUptodate(new_page);
2670 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2671 goto oom_free_new;
2674 * Re-check the pte - we dropped the lock
2676 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2677 if (likely(pte_same(*page_table, orig_pte))) {
2678 if (old_page) {
2679 if (!PageAnon(old_page)) {
2680 dec_mm_counter_fast(mm, MM_FILEPAGES);
2681 inc_mm_counter_fast(mm, MM_ANONPAGES);
2683 } else
2684 inc_mm_counter_fast(mm, MM_ANONPAGES);
2685 flush_cache_page(vma, address, pte_pfn(orig_pte));
2686 entry = mk_pte(new_page, vma->vm_page_prot);
2687 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2689 * Clear the pte entry and flush it first, before updating the
2690 * pte with the new entry. This will avoid a race condition
2691 * seen in the presence of one thread doing SMC and another
2692 * thread doing COW.
2694 ptep_clear_flush(vma, address, page_table);
2695 page_add_new_anon_rmap(new_page, vma, address);
2697 * We call the notify macro here because, when using secondary
2698 * mmu page tables (such as kvm shadow page tables), we want the
2699 * new page to be mapped directly into the secondary page table.
2701 set_pte_at_notify(mm, address, page_table, entry);
2702 update_mmu_cache(vma, address, page_table);
2703 if (old_page) {
2705 * Only after switching the pte to the new page may
2706 * we remove the mapcount here. Otherwise another
2707 * process may come and find the rmap count decremented
2708 * before the pte is switched to the new page, and
2709 * "reuse" the old page writing into it while our pte
2710 * here still points into it and can be read by other
2711 * threads.
2713 * The critical issue is to order this
2714 * page_remove_rmap with the ptp_clear_flush above.
2715 * Those stores are ordered by (if nothing else,)
2716 * the barrier present in the atomic_add_negative
2717 * in page_remove_rmap.
2719 * Then the TLB flush in ptep_clear_flush ensures that
2720 * no process can access the old page before the
2721 * decremented mapcount is visible. And the old page
2722 * cannot be reused until after the decremented
2723 * mapcount is visible. So transitively, TLBs to
2724 * old page will be flushed before it can be reused.
2726 page_remove_rmap(old_page);
2729 /* Free the old page.. */
2730 new_page = old_page;
2731 ret |= VM_FAULT_WRITE;
2732 } else
2733 mem_cgroup_uncharge_page(new_page);
2735 if (new_page)
2736 page_cache_release(new_page);
2737 unlock:
2738 pte_unmap_unlock(page_table, ptl);
2739 if (old_page) {
2741 * Don't let another task, with possibly unlocked vma,
2742 * keep the mlocked page.
2744 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2745 lock_page(old_page); /* LRU manipulation */
2746 munlock_vma_page(old_page);
2747 unlock_page(old_page);
2749 page_cache_release(old_page);
2751 return ret;
2752 oom_free_new:
2753 page_cache_release(new_page);
2754 oom:
2755 if (old_page) {
2756 if (page_mkwrite) {
2757 unlock_page(old_page);
2758 page_cache_release(old_page);
2760 page_cache_release(old_page);
2762 return VM_FAULT_OOM;
2764 unwritable_page:
2765 page_cache_release(old_page);
2766 return ret;
2769 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2770 unsigned long start_addr, unsigned long end_addr,
2771 struct zap_details *details)
2773 zap_page_range(vma, start_addr, end_addr - start_addr, details);
2776 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2777 struct zap_details *details)
2779 struct vm_area_struct *vma;
2780 struct prio_tree_iter iter;
2781 pgoff_t vba, vea, zba, zea;
2783 vma_prio_tree_foreach(vma, &iter, root,
2784 details->first_index, details->last_index) {
2786 vba = vma->vm_pgoff;
2787 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2788 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2789 zba = details->first_index;
2790 if (zba < vba)
2791 zba = vba;
2792 zea = details->last_index;
2793 if (zea > vea)
2794 zea = vea;
2796 unmap_mapping_range_vma(vma,
2797 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2798 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2799 details);
2803 static inline void unmap_mapping_range_list(struct list_head *head,
2804 struct zap_details *details)
2806 struct vm_area_struct *vma;
2809 * In nonlinear VMAs there is no correspondence between virtual address
2810 * offset and file offset. So we must perform an exhaustive search
2811 * across *all* the pages in each nonlinear VMA, not just the pages
2812 * whose virtual address lies outside the file truncation point.
2814 list_for_each_entry(vma, head, shared.vm_set.list) {
2815 details->nonlinear_vma = vma;
2816 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2821 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2822 * @mapping: the address space containing mmaps to be unmapped.
2823 * @holebegin: byte in first page to unmap, relative to the start of
2824 * the underlying file. This will be rounded down to a PAGE_SIZE
2825 * boundary. Note that this is different from truncate_pagecache(), which
2826 * must keep the partial page. In contrast, we must get rid of
2827 * partial pages.
2828 * @holelen: size of prospective hole in bytes. This will be rounded
2829 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2830 * end of the file.
2831 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2832 * but 0 when invalidating pagecache, don't throw away private data.
2834 void unmap_mapping_range(struct address_space *mapping,
2835 loff_t const holebegin, loff_t const holelen, int even_cows)
2837 struct zap_details details;
2838 pgoff_t hba = holebegin >> PAGE_SHIFT;
2839 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2841 /* Check for overflow. */
2842 if (sizeof(holelen) > sizeof(hlen)) {
2843 long long holeend =
2844 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2845 if (holeend & ~(long long)ULONG_MAX)
2846 hlen = ULONG_MAX - hba + 1;
2849 details.check_mapping = even_cows? NULL: mapping;
2850 details.nonlinear_vma = NULL;
2851 details.first_index = hba;
2852 details.last_index = hba + hlen - 1;
2853 if (details.last_index < details.first_index)
2854 details.last_index = ULONG_MAX;
2857 mutex_lock(&mapping->i_mmap_mutex);
2858 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2859 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2860 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2861 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2862 mutex_unlock(&mapping->i_mmap_mutex);
2864 EXPORT_SYMBOL(unmap_mapping_range);
2867 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2868 * but allow concurrent faults), and pte mapped but not yet locked.
2869 * We return with mmap_sem still held, but pte unmapped and unlocked.
2871 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2872 unsigned long address, pte_t *page_table, pmd_t *pmd,
2873 unsigned int flags, pte_t orig_pte)
2875 spinlock_t *ptl;
2876 struct page *page, *swapcache = NULL;
2877 swp_entry_t entry;
2878 pte_t pte;
2879 int locked;
2880 struct mem_cgroup *ptr;
2881 int exclusive = 0;
2882 int ret = 0;
2884 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2885 goto out;
2887 entry = pte_to_swp_entry(orig_pte);
2888 if (unlikely(non_swap_entry(entry))) {
2889 if (is_migration_entry(entry)) {
2890 migration_entry_wait(mm, pmd, address);
2891 } else if (is_hwpoison_entry(entry)) {
2892 ret = VM_FAULT_HWPOISON;
2893 } else {
2894 print_bad_pte(vma, address, orig_pte, NULL);
2895 ret = VM_FAULT_SIGBUS;
2897 goto out;
2899 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2900 page = lookup_swap_cache(entry);
2901 if (!page) {
2902 grab_swap_token(mm); /* Contend for token _before_ read-in */
2903 page = swapin_readahead(entry,
2904 GFP_HIGHUSER_MOVABLE, vma, address);
2905 if (!page) {
2907 * Back out if somebody else faulted in this pte
2908 * while we released the pte lock.
2910 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2911 if (likely(pte_same(*page_table, orig_pte)))
2912 ret = VM_FAULT_OOM;
2913 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2914 goto unlock;
2917 /* Had to read the page from swap area: Major fault */
2918 ret = VM_FAULT_MAJOR;
2919 count_vm_event(PGMAJFAULT);
2920 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2921 } else if (PageHWPoison(page)) {
2923 * hwpoisoned dirty swapcache pages are kept for killing
2924 * owner processes (which may be unknown at hwpoison time)
2926 ret = VM_FAULT_HWPOISON;
2927 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2928 goto out_release;
2931 locked = lock_page_or_retry(page, mm, flags);
2932 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2933 if (!locked) {
2934 ret |= VM_FAULT_RETRY;
2935 goto out_release;
2939 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2940 * release the swapcache from under us. The page pin, and pte_same
2941 * test below, are not enough to exclude that. Even if it is still
2942 * swapcache, we need to check that the page's swap has not changed.
2944 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2945 goto out_page;
2947 if (ksm_might_need_to_copy(page, vma, address)) {
2948 swapcache = page;
2949 page = ksm_does_need_to_copy(page, vma, address);
2951 if (unlikely(!page)) {
2952 ret = VM_FAULT_OOM;
2953 page = swapcache;
2954 swapcache = NULL;
2955 goto out_page;
2959 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2960 ret = VM_FAULT_OOM;
2961 goto out_page;
2965 * Back out if somebody else already faulted in this pte.
2967 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2968 if (unlikely(!pte_same(*page_table, orig_pte)))
2969 goto out_nomap;
2971 if (unlikely(!PageUptodate(page))) {
2972 ret = VM_FAULT_SIGBUS;
2973 goto out_nomap;
2977 * The page isn't present yet, go ahead with the fault.
2979 * Be careful about the sequence of operations here.
2980 * To get its accounting right, reuse_swap_page() must be called
2981 * while the page is counted on swap but not yet in mapcount i.e.
2982 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2983 * must be called after the swap_free(), or it will never succeed.
2984 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2985 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2986 * in page->private. In this case, a record in swap_cgroup is silently
2987 * discarded at swap_free().
2990 inc_mm_counter_fast(mm, MM_ANONPAGES);
2991 dec_mm_counter_fast(mm, MM_SWAPENTS);
2992 pte = mk_pte(page, vma->vm_page_prot);
2993 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2994 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2995 flags &= ~FAULT_FLAG_WRITE;
2996 ret |= VM_FAULT_WRITE;
2997 exclusive = 1;
2999 flush_icache_page(vma, page);
3000 set_pte_at(mm, address, page_table, pte);
3001 do_page_add_anon_rmap(page, vma, address, exclusive);
3002 /* It's better to call commit-charge after rmap is established */
3003 mem_cgroup_commit_charge_swapin(page, ptr);
3005 swap_free(entry);
3006 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3007 try_to_free_swap(page);
3008 unlock_page(page);
3009 if (swapcache) {
3011 * Hold the lock to avoid the swap entry to be reused
3012 * until we take the PT lock for the pte_same() check
3013 * (to avoid false positives from pte_same). For
3014 * further safety release the lock after the swap_free
3015 * so that the swap count won't change under a
3016 * parallel locked swapcache.
3018 unlock_page(swapcache);
3019 page_cache_release(swapcache);
3022 if (flags & FAULT_FLAG_WRITE) {
3023 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3024 if (ret & VM_FAULT_ERROR)
3025 ret &= VM_FAULT_ERROR;
3026 goto out;
3029 /* No need to invalidate - it was non-present before */
3030 update_mmu_cache(vma, address, page_table);
3031 unlock:
3032 pte_unmap_unlock(page_table, ptl);
3033 out:
3034 return ret;
3035 out_nomap:
3036 mem_cgroup_cancel_charge_swapin(ptr);
3037 pte_unmap_unlock(page_table, ptl);
3038 out_page:
3039 unlock_page(page);
3040 out_release:
3041 page_cache_release(page);
3042 if (swapcache) {
3043 unlock_page(swapcache);
3044 page_cache_release(swapcache);
3046 return ret;
3050 * This is like a special single-page "expand_{down|up}wards()",
3051 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3052 * doesn't hit another vma.
3054 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3056 address &= PAGE_MASK;
3057 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3058 struct vm_area_struct *prev = vma->vm_prev;
3061 * Is there a mapping abutting this one below?
3063 * That's only ok if it's the same stack mapping
3064 * that has gotten split..
3066 if (prev && prev->vm_end == address)
3067 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3069 expand_downwards(vma, address - PAGE_SIZE);
3071 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3072 struct vm_area_struct *next = vma->vm_next;
3074 /* As VM_GROWSDOWN but s/below/above/ */
3075 if (next && next->vm_start == address + PAGE_SIZE)
3076 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3078 expand_upwards(vma, address + PAGE_SIZE);
3080 return 0;
3084 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3085 * but allow concurrent faults), and pte mapped but not yet locked.
3086 * We return with mmap_sem still held, but pte unmapped and unlocked.
3088 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3089 unsigned long address, pte_t *page_table, pmd_t *pmd,
3090 unsigned int flags)
3092 struct page *page;
3093 spinlock_t *ptl;
3094 pte_t entry;
3096 pte_unmap(page_table);
3098 /* Check if we need to add a guard page to the stack */
3099 if (check_stack_guard_page(vma, address) < 0)
3100 return VM_FAULT_SIGBUS;
3102 /* Use the zero-page for reads */
3103 if (!(flags & FAULT_FLAG_WRITE)) {
3104 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3105 vma->vm_page_prot));
3106 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3107 if (!pte_none(*page_table))
3108 goto unlock;
3109 goto setpte;
3112 /* Allocate our own private page. */
3113 if (unlikely(anon_vma_prepare(vma)))
3114 goto oom;
3115 page = alloc_zeroed_user_highpage_movable(vma, address);
3116 if (!page)
3117 goto oom;
3118 __SetPageUptodate(page);
3120 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3121 goto oom_free_page;
3123 entry = mk_pte(page, vma->vm_page_prot);
3124 if (vma->vm_flags & VM_WRITE)
3125 entry = pte_mkwrite(pte_mkdirty(entry));
3127 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3128 if (!pte_none(*page_table))
3129 goto release;
3131 inc_mm_counter_fast(mm, MM_ANONPAGES);
3132 page_add_new_anon_rmap(page, vma, address);
3133 setpte:
3134 set_pte_at(mm, address, page_table, entry);
3136 /* No need to invalidate - it was non-present before */
3137 update_mmu_cache(vma, address, page_table);
3138 unlock:
3139 pte_unmap_unlock(page_table, ptl);
3140 return 0;
3141 release:
3142 mem_cgroup_uncharge_page(page);
3143 page_cache_release(page);
3144 goto unlock;
3145 oom_free_page:
3146 page_cache_release(page);
3147 oom:
3148 return VM_FAULT_OOM;
3152 * __do_fault() tries to create a new page mapping. It aggressively
3153 * tries to share with existing pages, but makes a separate copy if
3154 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3155 * the next page fault.
3157 * As this is called only for pages that do not currently exist, we
3158 * do not need to flush old virtual caches or the TLB.
3160 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3161 * but allow concurrent faults), and pte neither mapped nor locked.
3162 * We return with mmap_sem still held, but pte unmapped and unlocked.
3164 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3165 unsigned long address, pmd_t *pmd,
3166 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3168 pte_t *page_table;
3169 spinlock_t *ptl;
3170 struct page *page;
3171 struct page *cow_page;
3172 pte_t entry;
3173 int anon = 0;
3174 struct page *dirty_page = NULL;
3175 struct vm_fault vmf;
3176 int ret;
3177 int page_mkwrite = 0;
3180 * If we do COW later, allocate page befor taking lock_page()
3181 * on the file cache page. This will reduce lock holding time.
3183 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3185 if (unlikely(anon_vma_prepare(vma)))
3186 return VM_FAULT_OOM;
3188 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3189 if (!cow_page)
3190 return VM_FAULT_OOM;
3192 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3193 page_cache_release(cow_page);
3194 return VM_FAULT_OOM;
3196 } else
3197 cow_page = NULL;
3199 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3200 vmf.pgoff = pgoff;
3201 vmf.flags = flags;
3202 vmf.page = NULL;
3204 ret = vma->vm_ops->fault(vma, &vmf);
3205 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3206 VM_FAULT_RETRY)))
3207 goto uncharge_out;
3209 if (unlikely(PageHWPoison(vmf.page))) {
3210 if (ret & VM_FAULT_LOCKED)
3211 unlock_page(vmf.page);
3212 ret = VM_FAULT_HWPOISON;
3213 goto uncharge_out;
3217 * For consistency in subsequent calls, make the faulted page always
3218 * locked.
3220 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3221 lock_page(vmf.page);
3222 else
3223 VM_BUG_ON(!PageLocked(vmf.page));
3226 * Should we do an early C-O-W break?
3228 page = vmf.page;
3229 if (flags & FAULT_FLAG_WRITE) {
3230 if (!(vma->vm_flags & VM_SHARED)) {
3231 page = cow_page;
3232 anon = 1;
3233 copy_user_highpage(page, vmf.page, address, vma);
3234 __SetPageUptodate(page);
3235 } else {
3237 * If the page will be shareable, see if the backing
3238 * address space wants to know that the page is about
3239 * to become writable
3241 if (vma->vm_ops->page_mkwrite) {
3242 int tmp;
3244 unlock_page(page);
3245 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3246 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3247 if (unlikely(tmp &
3248 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3249 ret = tmp;
3250 goto unwritable_page;
3252 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3253 lock_page(page);
3254 if (!page->mapping) {
3255 ret = 0; /* retry the fault */
3256 unlock_page(page);
3257 goto unwritable_page;
3259 } else
3260 VM_BUG_ON(!PageLocked(page));
3261 page_mkwrite = 1;
3267 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3270 * This silly early PAGE_DIRTY setting removes a race
3271 * due to the bad i386 page protection. But it's valid
3272 * for other architectures too.
3274 * Note that if FAULT_FLAG_WRITE is set, we either now have
3275 * an exclusive copy of the page, or this is a shared mapping,
3276 * so we can make it writable and dirty to avoid having to
3277 * handle that later.
3279 /* Only go through if we didn't race with anybody else... */
3280 if (likely(pte_same(*page_table, orig_pte))) {
3281 flush_icache_page(vma, page);
3282 entry = mk_pte(page, vma->vm_page_prot);
3283 if (flags & FAULT_FLAG_WRITE)
3284 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3285 if (anon) {
3286 inc_mm_counter_fast(mm, MM_ANONPAGES);
3287 page_add_new_anon_rmap(page, vma, address);
3288 } else {
3289 inc_mm_counter_fast(mm, MM_FILEPAGES);
3290 page_add_file_rmap(page);
3291 if (flags & FAULT_FLAG_WRITE) {
3292 dirty_page = page;
3293 get_page(dirty_page);
3296 set_pte_at(mm, address, page_table, entry);
3298 /* no need to invalidate: a not-present page won't be cached */
3299 update_mmu_cache(vma, address, page_table);
3300 } else {
3301 if (cow_page)
3302 mem_cgroup_uncharge_page(cow_page);
3303 if (anon)
3304 page_cache_release(page);
3305 else
3306 anon = 1; /* no anon but release faulted_page */
3309 pte_unmap_unlock(page_table, ptl);
3311 if (dirty_page) {
3312 struct address_space *mapping = page->mapping;
3314 if (set_page_dirty(dirty_page))
3315 page_mkwrite = 1;
3316 unlock_page(dirty_page);
3317 put_page(dirty_page);
3318 if (page_mkwrite && mapping) {
3320 * Some device drivers do not set page.mapping but still
3321 * dirty their pages
3323 balance_dirty_pages_ratelimited(mapping);
3326 /* file_update_time outside page_lock */
3327 if (vma->vm_file)
3328 file_update_time(vma->vm_file);
3329 } else {
3330 unlock_page(vmf.page);
3331 if (anon)
3332 page_cache_release(vmf.page);
3335 return ret;
3337 unwritable_page:
3338 page_cache_release(page);
3339 return ret;
3340 uncharge_out:
3341 /* fs's fault handler get error */
3342 if (cow_page) {
3343 mem_cgroup_uncharge_page(cow_page);
3344 page_cache_release(cow_page);
3346 return ret;
3349 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3350 unsigned long address, pte_t *page_table, pmd_t *pmd,
3351 unsigned int flags, pte_t orig_pte)
3353 pgoff_t pgoff = (((address & PAGE_MASK)
3354 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3356 pte_unmap(page_table);
3357 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3361 * Fault of a previously existing named mapping. Repopulate the pte
3362 * from the encoded file_pte if possible. This enables swappable
3363 * nonlinear vmas.
3365 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3366 * but allow concurrent faults), and pte mapped but not yet locked.
3367 * We return with mmap_sem still held, but pte unmapped and unlocked.
3369 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3370 unsigned long address, pte_t *page_table, pmd_t *pmd,
3371 unsigned int flags, pte_t orig_pte)
3373 pgoff_t pgoff;
3375 flags |= FAULT_FLAG_NONLINEAR;
3377 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3378 return 0;
3380 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3382 * Page table corrupted: show pte and kill process.
3384 print_bad_pte(vma, address, orig_pte, NULL);
3385 return VM_FAULT_SIGBUS;
3388 pgoff = pte_to_pgoff(orig_pte);
3389 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3393 * These routines also need to handle stuff like marking pages dirty
3394 * and/or accessed for architectures that don't do it in hardware (most
3395 * RISC architectures). The early dirtying is also good on the i386.
3397 * There is also a hook called "update_mmu_cache()" that architectures
3398 * with external mmu caches can use to update those (ie the Sparc or
3399 * PowerPC hashed page tables that act as extended TLBs).
3401 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3402 * but allow concurrent faults), and pte mapped but not yet locked.
3403 * We return with mmap_sem still held, but pte unmapped and unlocked.
3405 int handle_pte_fault(struct mm_struct *mm,
3406 struct vm_area_struct *vma, unsigned long address,
3407 pte_t *pte, pmd_t *pmd, unsigned int flags)
3409 pte_t entry;
3410 spinlock_t *ptl;
3412 entry = *pte;
3413 if (!pte_present(entry)) {
3414 if (pte_none(entry)) {
3415 if (vma->vm_ops) {
3416 if (likely(vma->vm_ops->fault))
3417 return do_linear_fault(mm, vma, address,
3418 pte, pmd, flags, entry);
3420 return do_anonymous_page(mm, vma, address,
3421 pte, pmd, flags);
3423 if (pte_file(entry))
3424 return do_nonlinear_fault(mm, vma, address,
3425 pte, pmd, flags, entry);
3426 return do_swap_page(mm, vma, address,
3427 pte, pmd, flags, entry);
3430 ptl = pte_lockptr(mm, pmd);
3431 spin_lock(ptl);
3432 if (unlikely(!pte_same(*pte, entry)))
3433 goto unlock;
3434 if (flags & FAULT_FLAG_WRITE) {
3435 if (!pte_write(entry))
3436 return do_wp_page(mm, vma, address,
3437 pte, pmd, ptl, entry);
3438 entry = pte_mkdirty(entry);
3440 entry = pte_mkyoung(entry);
3441 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3442 update_mmu_cache(vma, address, pte);
3443 } else {
3445 * This is needed only for protection faults but the arch code
3446 * is not yet telling us if this is a protection fault or not.
3447 * This still avoids useless tlb flushes for .text page faults
3448 * with threads.
3450 if (flags & FAULT_FLAG_WRITE)
3451 flush_tlb_fix_spurious_fault(vma, address);
3453 unlock:
3454 pte_unmap_unlock(pte, ptl);
3455 return 0;
3459 * By the time we get here, we already hold the mm semaphore
3461 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3462 unsigned long address, unsigned int flags)
3464 pgd_t *pgd;
3465 pud_t *pud;
3466 pmd_t *pmd;
3467 pte_t *pte;
3469 __set_current_state(TASK_RUNNING);
3471 count_vm_event(PGFAULT);
3472 mem_cgroup_count_vm_event(mm, PGFAULT);
3474 /* do counter updates before entering really critical section. */
3475 check_sync_rss_stat(current);
3477 if (unlikely(is_vm_hugetlb_page(vma)))
3478 return hugetlb_fault(mm, vma, address, flags);
3480 pgd = pgd_offset(mm, address);
3481 pud = pud_alloc(mm, pgd, address);
3482 if (!pud)
3483 return VM_FAULT_OOM;
3484 pmd = pmd_alloc(mm, pud, address);
3485 if (!pmd)
3486 return VM_FAULT_OOM;
3487 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3488 if (!vma->vm_ops)
3489 return do_huge_pmd_anonymous_page(mm, vma, address,
3490 pmd, flags);
3491 } else {
3492 pmd_t orig_pmd = *pmd;
3493 barrier();
3494 if (pmd_trans_huge(orig_pmd)) {
3495 if (flags & FAULT_FLAG_WRITE &&
3496 !pmd_write(orig_pmd) &&
3497 !pmd_trans_splitting(orig_pmd))
3498 return do_huge_pmd_wp_page(mm, vma, address,
3499 pmd, orig_pmd);
3500 return 0;
3505 * Use __pte_alloc instead of pte_alloc_map, because we can't
3506 * run pte_offset_map on the pmd, if an huge pmd could
3507 * materialize from under us from a different thread.
3509 if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
3510 return VM_FAULT_OOM;
3511 /* if an huge pmd materialized from under us just retry later */
3512 if (unlikely(pmd_trans_huge(*pmd)))
3513 return 0;
3515 * A regular pmd is established and it can't morph into a huge pmd
3516 * from under us anymore at this point because we hold the mmap_sem
3517 * read mode and khugepaged takes it in write mode. So now it's
3518 * safe to run pte_offset_map().
3520 pte = pte_offset_map(pmd, address);
3522 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3525 #ifndef __PAGETABLE_PUD_FOLDED
3527 * Allocate page upper directory.
3528 * We've already handled the fast-path in-line.
3530 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3532 pud_t *new = pud_alloc_one(mm, address);
3533 if (!new)
3534 return -ENOMEM;
3536 smp_wmb(); /* See comment in __pte_alloc */
3538 spin_lock(&mm->page_table_lock);
3539 if (pgd_present(*pgd)) /* Another has populated it */
3540 pud_free(mm, new);
3541 else
3542 pgd_populate(mm, pgd, new);
3543 spin_unlock(&mm->page_table_lock);
3544 return 0;
3546 #endif /* __PAGETABLE_PUD_FOLDED */
3548 #ifndef __PAGETABLE_PMD_FOLDED
3550 * Allocate page middle directory.
3551 * We've already handled the fast-path in-line.
3553 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3555 pmd_t *new = pmd_alloc_one(mm, address);
3556 if (!new)
3557 return -ENOMEM;
3559 smp_wmb(); /* See comment in __pte_alloc */
3561 spin_lock(&mm->page_table_lock);
3562 #ifndef __ARCH_HAS_4LEVEL_HACK
3563 if (pud_present(*pud)) /* Another has populated it */
3564 pmd_free(mm, new);
3565 else
3566 pud_populate(mm, pud, new);
3567 #else
3568 if (pgd_present(*pud)) /* Another has populated it */
3569 pmd_free(mm, new);
3570 else
3571 pgd_populate(mm, pud, new);
3572 #endif /* __ARCH_HAS_4LEVEL_HACK */
3573 spin_unlock(&mm->page_table_lock);
3574 return 0;
3576 #endif /* __PAGETABLE_PMD_FOLDED */
3578 int make_pages_present(unsigned long addr, unsigned long end)
3580 int ret, len, write;
3581 struct vm_area_struct * vma;
3583 vma = find_vma(current->mm, addr);
3584 if (!vma)
3585 return -ENOMEM;
3587 * We want to touch writable mappings with a write fault in order
3588 * to break COW, except for shared mappings because these don't COW
3589 * and we would not want to dirty them for nothing.
3591 write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3592 BUG_ON(addr >= end);
3593 BUG_ON(end > vma->vm_end);
3594 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3595 ret = get_user_pages(current, current->mm, addr,
3596 len, write, 0, NULL, NULL);
3597 if (ret < 0)
3598 return ret;
3599 return ret == len ? 0 : -EFAULT;
3602 #if !defined(__HAVE_ARCH_GATE_AREA)
3604 #if defined(AT_SYSINFO_EHDR)
3605 static struct vm_area_struct gate_vma;
3607 static int __init gate_vma_init(void)
3609 gate_vma.vm_mm = NULL;
3610 gate_vma.vm_start = FIXADDR_USER_START;
3611 gate_vma.vm_end = FIXADDR_USER_END;
3612 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3613 gate_vma.vm_page_prot = __P101;
3615 * Make sure the vDSO gets into every core dump.
3616 * Dumping its contents makes post-mortem fully interpretable later
3617 * without matching up the same kernel and hardware config to see
3618 * what PC values meant.
3620 gate_vma.vm_flags |= VM_ALWAYSDUMP;
3621 return 0;
3623 __initcall(gate_vma_init);
3624 #endif
3626 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3628 #ifdef AT_SYSINFO_EHDR
3629 return &gate_vma;
3630 #else
3631 return NULL;
3632 #endif
3635 int in_gate_area_no_mm(unsigned long addr)
3637 #ifdef AT_SYSINFO_EHDR
3638 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3639 return 1;
3640 #endif
3641 return 0;
3644 #endif /* __HAVE_ARCH_GATE_AREA */
3646 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3647 pte_t **ptepp, spinlock_t **ptlp)
3649 pgd_t *pgd;
3650 pud_t *pud;
3651 pmd_t *pmd;
3652 pte_t *ptep;
3654 pgd = pgd_offset(mm, address);
3655 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3656 goto out;
3658 pud = pud_offset(pgd, address);
3659 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3660 goto out;
3662 pmd = pmd_offset(pud, address);
3663 VM_BUG_ON(pmd_trans_huge(*pmd));
3664 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3665 goto out;
3667 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3668 if (pmd_huge(*pmd))
3669 goto out;
3671 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3672 if (!ptep)
3673 goto out;
3674 if (!pte_present(*ptep))
3675 goto unlock;
3676 *ptepp = ptep;
3677 return 0;
3678 unlock:
3679 pte_unmap_unlock(ptep, *ptlp);
3680 out:
3681 return -EINVAL;
3684 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3685 pte_t **ptepp, spinlock_t **ptlp)
3687 int res;
3689 /* (void) is needed to make gcc happy */
3690 (void) __cond_lock(*ptlp,
3691 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3692 return res;
3696 * follow_pfn - look up PFN at a user virtual address
3697 * @vma: memory mapping
3698 * @address: user virtual address
3699 * @pfn: location to store found PFN
3701 * Only IO mappings and raw PFN mappings are allowed.
3703 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3705 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3706 unsigned long *pfn)
3708 int ret = -EINVAL;
3709 spinlock_t *ptl;
3710 pte_t *ptep;
3712 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3713 return ret;
3715 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3716 if (ret)
3717 return ret;
3718 *pfn = pte_pfn(*ptep);
3719 pte_unmap_unlock(ptep, ptl);
3720 return 0;
3722 EXPORT_SYMBOL(follow_pfn);
3724 #ifdef CONFIG_HAVE_IOREMAP_PROT
3725 int follow_phys(struct vm_area_struct *vma,
3726 unsigned long address, unsigned int flags,
3727 unsigned long *prot, resource_size_t *phys)
3729 int ret = -EINVAL;
3730 pte_t *ptep, pte;
3731 spinlock_t *ptl;
3733 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3734 goto out;
3736 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3737 goto out;
3738 pte = *ptep;
3740 if ((flags & FOLL_WRITE) && !pte_write(pte))
3741 goto unlock;
3743 *prot = pgprot_val(pte_pgprot(pte));
3744 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3746 ret = 0;
3747 unlock:
3748 pte_unmap_unlock(ptep, ptl);
3749 out:
3750 return ret;
3753 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3754 void *buf, int len, int write)
3756 resource_size_t phys_addr;
3757 unsigned long prot = 0;
3758 void __iomem *maddr;
3759 int offset = addr & (PAGE_SIZE-1);
3761 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3762 return -EINVAL;
3764 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3765 if (write)
3766 memcpy_toio(maddr + offset, buf, len);
3767 else
3768 memcpy_fromio(buf, maddr + offset, len);
3769 iounmap(maddr);
3771 return len;
3773 #endif
3776 * Access another process' address space as given in mm. If non-NULL, use the
3777 * given task for page fault accounting.
3779 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3780 unsigned long addr, void *buf, int len, int write)
3782 struct vm_area_struct *vma;
3783 void *old_buf = buf;
3785 down_read(&mm->mmap_sem);
3786 /* ignore errors, just check how much was successfully transferred */
3787 while (len) {
3788 int bytes, ret, offset;
3789 void *maddr;
3790 struct page *page = NULL;
3792 ret = get_user_pages(tsk, mm, addr, 1,
3793 write, 1, &page, &vma);
3794 if (ret <= 0) {
3796 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3797 * we can access using slightly different code.
3799 #ifdef CONFIG_HAVE_IOREMAP_PROT
3800 vma = find_vma(mm, addr);
3801 if (!vma || vma->vm_start > addr)
3802 break;
3803 if (vma->vm_ops && vma->vm_ops->access)
3804 ret = vma->vm_ops->access(vma, addr, buf,
3805 len, write);
3806 if (ret <= 0)
3807 #endif
3808 break;
3809 bytes = ret;
3810 } else {
3811 bytes = len;
3812 offset = addr & (PAGE_SIZE-1);
3813 if (bytes > PAGE_SIZE-offset)
3814 bytes = PAGE_SIZE-offset;
3816 maddr = kmap(page);
3817 if (write) {
3818 copy_to_user_page(vma, page, addr,
3819 maddr + offset, buf, bytes);
3820 set_page_dirty_lock(page);
3821 } else {
3822 copy_from_user_page(vma, page, addr,
3823 buf, maddr + offset, bytes);
3825 kunmap(page);
3826 page_cache_release(page);
3828 len -= bytes;
3829 buf += bytes;
3830 addr += bytes;
3832 up_read(&mm->mmap_sem);
3834 return buf - old_buf;
3838 * access_remote_vm - access another process' address space
3839 * @mm: the mm_struct of the target address space
3840 * @addr: start address to access
3841 * @buf: source or destination buffer
3842 * @len: number of bytes to transfer
3843 * @write: whether the access is a write
3845 * The caller must hold a reference on @mm.
3847 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3848 void *buf, int len, int write)
3850 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3854 * Access another process' address space.
3855 * Source/target buffer must be kernel space,
3856 * Do not walk the page table directly, use get_user_pages
3858 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3859 void *buf, int len, int write)
3861 struct mm_struct *mm;
3862 int ret;
3864 mm = get_task_mm(tsk);
3865 if (!mm)
3866 return 0;
3868 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3869 mmput(mm);
3871 return ret;
3875 * Print the name of a VMA.
3877 void print_vma_addr(char *prefix, unsigned long ip)
3879 struct mm_struct *mm = current->mm;
3880 struct vm_area_struct *vma;
3883 * Do not print if we are in atomic
3884 * contexts (in exception stacks, etc.):
3886 if (preempt_count())
3887 return;
3889 down_read(&mm->mmap_sem);
3890 vma = find_vma(mm, ip);
3891 if (vma && vma->vm_file) {
3892 struct file *f = vma->vm_file;
3893 char *buf = (char *)__get_free_page(GFP_KERNEL);
3894 if (buf) {
3895 char *p, *s;
3897 p = d_path(&f->f_path, buf, PAGE_SIZE);
3898 if (IS_ERR(p))
3899 p = "?";
3900 s = strrchr(p, '/');
3901 if (s)
3902 p = s+1;
3903 printk("%s%s[%lx+%lx]", prefix, p,
3904 vma->vm_start,
3905 vma->vm_end - vma->vm_start);
3906 free_page((unsigned long)buf);
3909 up_read(&current->mm->mmap_sem);
3912 #ifdef CONFIG_PROVE_LOCKING
3913 void might_fault(void)
3916 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3917 * holding the mmap_sem, this is safe because kernel memory doesn't
3918 * get paged out, therefore we'll never actually fault, and the
3919 * below annotations will generate false positives.
3921 if (segment_eq(get_fs(), KERNEL_DS))
3922 return;
3924 might_sleep();
3926 * it would be nicer only to annotate paths which are not under
3927 * pagefault_disable, however that requires a larger audit and
3928 * providing helpers like get_user_atomic.
3930 if (!in_atomic() && current->mm)
3931 might_lock_read(&current->mm->mmap_sem);
3933 EXPORT_SYMBOL(might_fault);
3934 #endif
3936 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3937 static void clear_gigantic_page(struct page *page,
3938 unsigned long addr,
3939 unsigned int pages_per_huge_page)
3941 int i;
3942 struct page *p = page;
3944 might_sleep();
3945 for (i = 0; i < pages_per_huge_page;
3946 i++, p = mem_map_next(p, page, i)) {
3947 cond_resched();
3948 clear_user_highpage(p, addr + i * PAGE_SIZE);
3951 void clear_huge_page(struct page *page,
3952 unsigned long addr, unsigned int pages_per_huge_page)
3954 int i;
3956 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3957 clear_gigantic_page(page, addr, pages_per_huge_page);
3958 return;
3961 might_sleep();
3962 for (i = 0; i < pages_per_huge_page; i++) {
3963 cond_resched();
3964 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3968 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3969 unsigned long addr,
3970 struct vm_area_struct *vma,
3971 unsigned int pages_per_huge_page)
3973 int i;
3974 struct page *dst_base = dst;
3975 struct page *src_base = src;
3977 for (i = 0; i < pages_per_huge_page; ) {
3978 cond_resched();
3979 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3981 i++;
3982 dst = mem_map_next(dst, dst_base, i);
3983 src = mem_map_next(src, src_base, i);
3987 void copy_user_huge_page(struct page *dst, struct page *src,
3988 unsigned long addr, struct vm_area_struct *vma,
3989 unsigned int pages_per_huge_page)
3991 int i;
3993 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3994 copy_user_gigantic_page(dst, src, addr, vma,
3995 pages_per_huge_page);
3996 return;
3999 might_sleep();
4000 for (i = 0; i < pages_per_huge_page; i++) {
4001 cond_resched();
4002 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4005 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */