1 OMAP 3 Image Signal Processor (ISP) driver
3 Copyright (C) 2010 Nokia Corporation
4 Copyright (C) 2009 Texas Instruments, Inc.
6 Contacts: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
7 Sakari Ailus <sakari.ailus@iki.fi>
8 David Cohen <dacohen@gmail.com>
14 This file documents the Texas Instruments OMAP 3 Image Signal Processor (ISP)
15 driver located under drivers/media/video/omap3isp. The original driver was
16 written by Texas Instruments but since that it has been rewritten (twice) at
19 The driver has been successfully used on the following versions of OMAP 3:
25 The driver implements V4L2, Media controller and v4l2_subdev interfaces.
26 Sensor, lens and flash drivers using the v4l2_subdev interface in the kernel
33 The OMAP 3 ISP is split into V4L2 subdevs, each of the blocks inside the ISP
34 having one subdev to represent it. Each of the subdevs provide a V4L2 subdev
35 interface to userspace.
46 Each possible link in the ISP is modelled by a link in the Media controller
47 interface. For an example program see [2].
50 Controlling the OMAP 3 ISP
51 ==========================
53 In general, the settings given to the OMAP 3 ISP take effect at the beginning
54 of the following frame. This is done when the module becomes idle during the
55 vertical blanking period on the sensor. In memory-to-memory operation the pipe
56 is run one frame at a time. Applying the settings is done between the frames.
58 All the blocks in the ISP, excluding the CSI-2 and possibly the CCP2 receiver,
59 insist on receiving complete frames. Sensors must thus never send the ISP
62 Autoidle does have issues with some ISP blocks on the 3430, at least.
63 Autoidle is only enabled on 3630 when the omap3isp module parameter autoidle
70 The OMAP 3 ISP driver does support the V4L2 event interface on CCDC and
71 statistics (AEWB, AF and histogram) subdevs.
73 The CCDC subdev produces V4L2_EVENT_FRAME_SYNC type event on HS_VS
74 interrupt which is used to signal frame start. Earlier version of this
75 driver used V4L2_EVENT_OMAP3ISP_HS_VS for this purpose. The event is
76 triggered exactly when the reception of the first line of the frame starts
77 in the CCDC module. The event can be subscribed on the CCDC subdev.
79 (When using parallel interface one must pay account to correct configuration
80 of the VS signal polarity. This is automatically correct when using the serial
83 Each of the statistics subdevs is able to produce events. An event is
84 generated whenever a statistics buffer can be dequeued by a user space
85 application using the VIDIOC_OMAP3ISP_STAT_REQ IOCTL. The events available
88 V4L2_EVENT_OMAP3ISP_AEWB
89 V4L2_EVENT_OMAP3ISP_AF
90 V4L2_EVENT_OMAP3ISP_HIST
92 The type of the event data is struct omap3isp_stat_event_status for these
93 ioctls. If there is an error calculating the statistics, there will be an
94 event as usual, but no related statistics buffer. In this case
95 omap3isp_stat_event_status.buf_err is set to non-zero.
101 The OMAP 3 ISP driver supports standard V4L2 IOCTLs and controls where
102 possible and practical. Much of the functions provided by the ISP, however,
103 does not fall under the standard IOCTLs --- gamma tables and configuration of
104 statistics collection are examples of such.
106 In general, there is a private ioctl for configuring each of the blocks
107 containing hardware-dependent functions.
109 The following private IOCTLs are supported:
111 VIDIOC_OMAP3ISP_CCDC_CFG
112 VIDIOC_OMAP3ISP_PRV_CFG
113 VIDIOC_OMAP3ISP_AEWB_CFG
114 VIDIOC_OMAP3ISP_HIST_CFG
115 VIDIOC_OMAP3ISP_AF_CFG
116 VIDIOC_OMAP3ISP_STAT_REQ
117 VIDIOC_OMAP3ISP_STAT_EN
119 The parameter structures used by these ioctls are described in
120 include/linux/omap3isp.h. The detailed functions of the ISP itself related to
121 a given ISP block is described in the Technical Reference Manuals (TRMs) ---
122 see the end of the document for those.
124 While it is possible to use the ISP driver without any use of these private
125 IOCTLs it is not possible to obtain optimal image quality this way. The AEWB,
126 AF and histogram modules cannot be used without configuring them using the
127 appropriate private IOCTLs.
130 CCDC and preview block IOCTLs
131 =============================
133 The VIDIOC_OMAP3ISP_CCDC_CFG and VIDIOC_OMAP3ISP_PRV_CFG IOCTLs are used to
134 configure, enable and disable functions in the CCDC and preview blocks,
135 respectively. Both IOCTLs control several functions in the blocks they
136 control. VIDIOC_OMAP3ISP_CCDC_CFG IOCTL accepts a pointer to struct
137 omap3isp_ccdc_update_config as its argument. Similarly VIDIOC_OMAP3ISP_PRV_CFG
138 accepts a pointer to struct omap3isp_prev_update_config. The definition of
139 both structures is available in [1].
141 The update field in the structures tells whether to update the configuration
142 for the specific function and the flag tells whether to enable or disable the
145 The update and flag bit masks accept the following values. Each separate
146 functions in the CCDC and preview blocks is associated with a flag (either
147 disable or enable; part of the flag field in the structure) and a pointer to
148 configuration data for the function.
150 Valid values for the update and flag fields are listed here for
151 VIDIOC_OMAP3ISP_CCDC_CFG. Values may be or'ed to configure more than one
152 function in the same IOCTL call.
156 OMAP3ISP_CCDC_BLCLAMP
160 OMAP3ISP_CCDC_CONFIG_LSC
161 OMAP3ISP_CCDC_TBL_LSC
163 The corresponding values for the VIDIOC_OMAP3ISP_PRV_CFG are here:
165 OMAP3ISP_PREV_LUMAENH
166 OMAP3ISP_PREV_INVALAW
167 OMAP3ISP_PREV_HRZ_MED
169 OMAP3ISP_PREV_CHROMA_SUPP
172 OMAP3ISP_PREV_RGB2RGB
173 OMAP3ISP_PREV_COLOR_CONV
174 OMAP3ISP_PREV_YC_LIMIT
175 OMAP3ISP_PREV_DEFECT_COR
176 OMAP3ISP_PREV_GAMMABYPASS
177 OMAP3ISP_PREV_DRK_FRM_CAPTURE
178 OMAP3ISP_PREV_DRK_FRM_SUBTRACT
179 OMAP3ISP_PREV_LENS_SHADING
183 The associated configuration pointer for the function may not be NULL when
184 enabling the function. When disabling a function the configuration pointer is
188 Statistic blocks IOCTLs
189 =======================
191 The statistics subdevs do offer more dynamic configuration options than the
192 other subdevs. They can be enabled, disable and reconfigured when the pipeline
193 is in streaming state.
195 The statistics blocks always get the input image data from the CCDC (as the
196 histogram memory read isn't implemented). The statistics are dequeueable by
197 the user from the statistics subdev nodes using private IOCTLs.
199 The private IOCTLs offered by the AEWB, AF and histogram subdevs are heavily
200 reflected by the register level interface offered by the ISP hardware. There
201 are aspects that are purely related to the driver implementation and these are
204 VIDIOC_OMAP3ISP_STAT_EN
205 -----------------------
207 This private IOCTL enables/disables a statistic module. If this request is
208 done before streaming, it will take effect as soon as the pipeline starts to
209 stream. If the pipeline is already streaming, it will take effect as soon as
210 the CCDC becomes idle.
212 VIDIOC_OMAP3ISP_AEWB_CFG, VIDIOC_OMAP3ISP_HIST_CFG and VIDIOC_OMAP3ISP_AF_CFG
213 -----------------------------------------------------------------------------
215 Those IOCTLs are used to configure the modules. They require user applications
216 to have an in-depth knowledge of the hardware. Most of the fields explanation
217 can be found on OMAP's TRMs. The two following fields common to all the above
218 configure private IOCTLs require explanation for better understanding as they
219 are not part of the TRM.
221 omap3isp_[h3a_af/h3a_aewb/hist]_config.buf_size:
223 The modules handle their buffers internally. The necessary buffer size for the
224 module's data output depends on the requested configuration. Although the
225 driver supports reconfiguration while streaming, it does not support a
226 reconfiguration which requires bigger buffer size than what is already
227 internally allocated if the module is enabled. It will return -EBUSY on this
228 case. In order to avoid such condition, either disable/reconfigure/enable the
229 module or request the necessary buffer size during the first configuration
230 while the module is disabled.
232 The internal buffer size allocation considers the requested configuration's
233 minimum buffer size and the value set on buf_size field. If buf_size field is
234 out of [minimum, maximum] buffer size range, it's clamped to fit in there.
235 The driver then selects the biggest value. The corrected buf_size value is
236 written back to user application.
238 omap3isp_[h3a_af/h3a_aewb/hist]_config.config_counter:
240 As the configuration doesn't take effect synchronously to the request, the
241 driver must provide a way to track this information to provide more accurate
242 data. After a configuration is requested, the config_counter returned to user
243 space application will be an unique value associated to that request. When
244 user application receives an event for buffer availability or when a new
245 buffer is requested, this config_counter is used to match a buffer data and a
248 VIDIOC_OMAP3ISP_STAT_REQ
249 ------------------------
251 Send to user space the oldest data available in the internal buffer queue and
252 discards such buffer afterwards. The field omap3isp_stat_data.frame_number
253 matches with the video buffer's field_count.
256 Technical reference manuals (TRMs) and other documentation
257 ==========================================================
260 <URL:http://focus.ti.com/pdfs/wtbu/OMAP34xx_ES3.1.x_PUBLIC_TRM_vZM.zip>
261 Referenced 2011-03-05.
264 <URL:http://www.ti.com/litv/pdf/spruf98o> Referenced 2011-03-05.
267 <URL:http://focus.ti.com/pdfs/wtbu/OMAP36xx_ES1.x_PUBLIC_TRM_vQ.zip>
268 Referenced 2011-03-05.
271 <URL:http://www.ti.com/litv/pdf/sprugn4h> Referenced 2011-03-06.
277 [1] include/linux/omap3isp.h
279 [2] http://git.ideasonboard.org/?p=media-ctl.git;a=summary