rtc: rtc-sh: remove unnecessary platform_set_drvdata()
[linux-2.6.git] / fs / libfs.c
blobc3a0837fb861d8d403e6b3b7fadd4056aa42df79
1 /*
2 * fs/libfs.c
3 * Library for filesystems writers.
4 */
6 #include <linux/export.h>
7 #include <linux/pagemap.h>
8 #include <linux/slab.h>
9 #include <linux/mount.h>
10 #include <linux/vfs.h>
11 #include <linux/quotaops.h>
12 #include <linux/mutex.h>
13 #include <linux/exportfs.h>
14 #include <linux/writeback.h>
15 #include <linux/buffer_head.h> /* sync_mapping_buffers */
17 #include <asm/uaccess.h>
19 #include "internal.h"
21 static inline int simple_positive(struct dentry *dentry)
23 return dentry->d_inode && !d_unhashed(dentry);
26 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
27 struct kstat *stat)
29 struct inode *inode = dentry->d_inode;
30 generic_fillattr(inode, stat);
31 stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9);
32 return 0;
35 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
37 buf->f_type = dentry->d_sb->s_magic;
38 buf->f_bsize = PAGE_CACHE_SIZE;
39 buf->f_namelen = NAME_MAX;
40 return 0;
44 * Retaining negative dentries for an in-memory filesystem just wastes
45 * memory and lookup time: arrange for them to be deleted immediately.
47 static int simple_delete_dentry(const struct dentry *dentry)
49 return 1;
53 * Lookup the data. This is trivial - if the dentry didn't already
54 * exist, we know it is negative. Set d_op to delete negative dentries.
56 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
58 static const struct dentry_operations simple_dentry_operations = {
59 .d_delete = simple_delete_dentry,
62 if (dentry->d_name.len > NAME_MAX)
63 return ERR_PTR(-ENAMETOOLONG);
64 d_set_d_op(dentry, &simple_dentry_operations);
65 d_add(dentry, NULL);
66 return NULL;
69 int dcache_dir_open(struct inode *inode, struct file *file)
71 static struct qstr cursor_name = QSTR_INIT(".", 1);
73 file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
75 return file->private_data ? 0 : -ENOMEM;
78 int dcache_dir_close(struct inode *inode, struct file *file)
80 dput(file->private_data);
81 return 0;
84 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
86 struct dentry *dentry = file->f_path.dentry;
87 mutex_lock(&dentry->d_inode->i_mutex);
88 switch (whence) {
89 case 1:
90 offset += file->f_pos;
91 case 0:
92 if (offset >= 0)
93 break;
94 default:
95 mutex_unlock(&dentry->d_inode->i_mutex);
96 return -EINVAL;
98 if (offset != file->f_pos) {
99 file->f_pos = offset;
100 if (file->f_pos >= 2) {
101 struct list_head *p;
102 struct dentry *cursor = file->private_data;
103 loff_t n = file->f_pos - 2;
105 spin_lock(&dentry->d_lock);
106 /* d_lock not required for cursor */
107 list_del(&cursor->d_u.d_child);
108 p = dentry->d_subdirs.next;
109 while (n && p != &dentry->d_subdirs) {
110 struct dentry *next;
111 next = list_entry(p, struct dentry, d_u.d_child);
112 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
113 if (simple_positive(next))
114 n--;
115 spin_unlock(&next->d_lock);
116 p = p->next;
118 list_add_tail(&cursor->d_u.d_child, p);
119 spin_unlock(&dentry->d_lock);
122 mutex_unlock(&dentry->d_inode->i_mutex);
123 return offset;
126 /* Relationship between i_mode and the DT_xxx types */
127 static inline unsigned char dt_type(struct inode *inode)
129 return (inode->i_mode >> 12) & 15;
133 * Directory is locked and all positive dentries in it are safe, since
134 * for ramfs-type trees they can't go away without unlink() or rmdir(),
135 * both impossible due to the lock on directory.
138 int dcache_readdir(struct file *file, struct dir_context *ctx)
140 struct dentry *dentry = file->f_path.dentry;
141 struct dentry *cursor = file->private_data;
142 struct list_head *p, *q = &cursor->d_u.d_child;
144 if (!dir_emit_dots(file, ctx))
145 return 0;
146 spin_lock(&dentry->d_lock);
147 if (ctx->pos == 2)
148 list_move(q, &dentry->d_subdirs);
150 for (p = q->next; p != &dentry->d_subdirs; p = p->next) {
151 struct dentry *next = list_entry(p, struct dentry, d_u.d_child);
152 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
153 if (!simple_positive(next)) {
154 spin_unlock(&next->d_lock);
155 continue;
158 spin_unlock(&next->d_lock);
159 spin_unlock(&dentry->d_lock);
160 if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
161 next->d_inode->i_ino, dt_type(next->d_inode)))
162 return 0;
163 spin_lock(&dentry->d_lock);
164 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
165 /* next is still alive */
166 list_move(q, p);
167 spin_unlock(&next->d_lock);
168 p = q;
169 ctx->pos++;
171 spin_unlock(&dentry->d_lock);
172 return 0;
175 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
177 return -EISDIR;
180 const struct file_operations simple_dir_operations = {
181 .open = dcache_dir_open,
182 .release = dcache_dir_close,
183 .llseek = dcache_dir_lseek,
184 .read = generic_read_dir,
185 .iterate = dcache_readdir,
186 .fsync = noop_fsync,
189 const struct inode_operations simple_dir_inode_operations = {
190 .lookup = simple_lookup,
193 static const struct super_operations simple_super_operations = {
194 .statfs = simple_statfs,
198 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
199 * will never be mountable)
201 struct dentry *mount_pseudo(struct file_system_type *fs_type, char *name,
202 const struct super_operations *ops,
203 const struct dentry_operations *dops, unsigned long magic)
205 struct super_block *s;
206 struct dentry *dentry;
207 struct inode *root;
208 struct qstr d_name = QSTR_INIT(name, strlen(name));
210 s = sget(fs_type, NULL, set_anon_super, MS_NOUSER, NULL);
211 if (IS_ERR(s))
212 return ERR_CAST(s);
214 s->s_maxbytes = MAX_LFS_FILESIZE;
215 s->s_blocksize = PAGE_SIZE;
216 s->s_blocksize_bits = PAGE_SHIFT;
217 s->s_magic = magic;
218 s->s_op = ops ? ops : &simple_super_operations;
219 s->s_time_gran = 1;
220 root = new_inode(s);
221 if (!root)
222 goto Enomem;
224 * since this is the first inode, make it number 1. New inodes created
225 * after this must take care not to collide with it (by passing
226 * max_reserved of 1 to iunique).
228 root->i_ino = 1;
229 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
230 root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
231 dentry = __d_alloc(s, &d_name);
232 if (!dentry) {
233 iput(root);
234 goto Enomem;
236 d_instantiate(dentry, root);
237 s->s_root = dentry;
238 s->s_d_op = dops;
239 s->s_flags |= MS_ACTIVE;
240 return dget(s->s_root);
242 Enomem:
243 deactivate_locked_super(s);
244 return ERR_PTR(-ENOMEM);
247 int simple_open(struct inode *inode, struct file *file)
249 if (inode->i_private)
250 file->private_data = inode->i_private;
251 return 0;
254 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
256 struct inode *inode = old_dentry->d_inode;
258 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
259 inc_nlink(inode);
260 ihold(inode);
261 dget(dentry);
262 d_instantiate(dentry, inode);
263 return 0;
266 int simple_empty(struct dentry *dentry)
268 struct dentry *child;
269 int ret = 0;
271 spin_lock(&dentry->d_lock);
272 list_for_each_entry(child, &dentry->d_subdirs, d_u.d_child) {
273 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
274 if (simple_positive(child)) {
275 spin_unlock(&child->d_lock);
276 goto out;
278 spin_unlock(&child->d_lock);
280 ret = 1;
281 out:
282 spin_unlock(&dentry->d_lock);
283 return ret;
286 int simple_unlink(struct inode *dir, struct dentry *dentry)
288 struct inode *inode = dentry->d_inode;
290 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
291 drop_nlink(inode);
292 dput(dentry);
293 return 0;
296 int simple_rmdir(struct inode *dir, struct dentry *dentry)
298 if (!simple_empty(dentry))
299 return -ENOTEMPTY;
301 drop_nlink(dentry->d_inode);
302 simple_unlink(dir, dentry);
303 drop_nlink(dir);
304 return 0;
307 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
308 struct inode *new_dir, struct dentry *new_dentry)
310 struct inode *inode = old_dentry->d_inode;
311 int they_are_dirs = S_ISDIR(old_dentry->d_inode->i_mode);
313 if (!simple_empty(new_dentry))
314 return -ENOTEMPTY;
316 if (new_dentry->d_inode) {
317 simple_unlink(new_dir, new_dentry);
318 if (they_are_dirs) {
319 drop_nlink(new_dentry->d_inode);
320 drop_nlink(old_dir);
322 } else if (they_are_dirs) {
323 drop_nlink(old_dir);
324 inc_nlink(new_dir);
327 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
328 new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
330 return 0;
334 * simple_setattr - setattr for simple filesystem
335 * @dentry: dentry
336 * @iattr: iattr structure
338 * Returns 0 on success, -error on failure.
340 * simple_setattr is a simple ->setattr implementation without a proper
341 * implementation of size changes.
343 * It can either be used for in-memory filesystems or special files
344 * on simple regular filesystems. Anything that needs to change on-disk
345 * or wire state on size changes needs its own setattr method.
347 int simple_setattr(struct dentry *dentry, struct iattr *iattr)
349 struct inode *inode = dentry->d_inode;
350 int error;
352 error = inode_change_ok(inode, iattr);
353 if (error)
354 return error;
356 if (iattr->ia_valid & ATTR_SIZE)
357 truncate_setsize(inode, iattr->ia_size);
358 setattr_copy(inode, iattr);
359 mark_inode_dirty(inode);
360 return 0;
362 EXPORT_SYMBOL(simple_setattr);
364 int simple_readpage(struct file *file, struct page *page)
366 clear_highpage(page);
367 flush_dcache_page(page);
368 SetPageUptodate(page);
369 unlock_page(page);
370 return 0;
373 int simple_write_begin(struct file *file, struct address_space *mapping,
374 loff_t pos, unsigned len, unsigned flags,
375 struct page **pagep, void **fsdata)
377 struct page *page;
378 pgoff_t index;
380 index = pos >> PAGE_CACHE_SHIFT;
382 page = grab_cache_page_write_begin(mapping, index, flags);
383 if (!page)
384 return -ENOMEM;
386 *pagep = page;
388 if (!PageUptodate(page) && (len != PAGE_CACHE_SIZE)) {
389 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
391 zero_user_segments(page, 0, from, from + len, PAGE_CACHE_SIZE);
393 return 0;
397 * simple_write_end - .write_end helper for non-block-device FSes
398 * @available: See .write_end of address_space_operations
399 * @file: "
400 * @mapping: "
401 * @pos: "
402 * @len: "
403 * @copied: "
404 * @page: "
405 * @fsdata: "
407 * simple_write_end does the minimum needed for updating a page after writing is
408 * done. It has the same API signature as the .write_end of
409 * address_space_operations vector. So it can just be set onto .write_end for
410 * FSes that don't need any other processing. i_mutex is assumed to be held.
411 * Block based filesystems should use generic_write_end().
412 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
413 * is not called, so a filesystem that actually does store data in .write_inode
414 * should extend on what's done here with a call to mark_inode_dirty() in the
415 * case that i_size has changed.
417 int simple_write_end(struct file *file, struct address_space *mapping,
418 loff_t pos, unsigned len, unsigned copied,
419 struct page *page, void *fsdata)
421 struct inode *inode = page->mapping->host;
422 loff_t last_pos = pos + copied;
424 /* zero the stale part of the page if we did a short copy */
425 if (copied < len) {
426 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
428 zero_user(page, from + copied, len - copied);
431 if (!PageUptodate(page))
432 SetPageUptodate(page);
434 * No need to use i_size_read() here, the i_size
435 * cannot change under us because we hold the i_mutex.
437 if (last_pos > inode->i_size)
438 i_size_write(inode, last_pos);
440 set_page_dirty(page);
441 unlock_page(page);
442 page_cache_release(page);
444 return copied;
448 * the inodes created here are not hashed. If you use iunique to generate
449 * unique inode values later for this filesystem, then you must take care
450 * to pass it an appropriate max_reserved value to avoid collisions.
452 int simple_fill_super(struct super_block *s, unsigned long magic,
453 struct tree_descr *files)
455 struct inode *inode;
456 struct dentry *root;
457 struct dentry *dentry;
458 int i;
460 s->s_blocksize = PAGE_CACHE_SIZE;
461 s->s_blocksize_bits = PAGE_CACHE_SHIFT;
462 s->s_magic = magic;
463 s->s_op = &simple_super_operations;
464 s->s_time_gran = 1;
466 inode = new_inode(s);
467 if (!inode)
468 return -ENOMEM;
470 * because the root inode is 1, the files array must not contain an
471 * entry at index 1
473 inode->i_ino = 1;
474 inode->i_mode = S_IFDIR | 0755;
475 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
476 inode->i_op = &simple_dir_inode_operations;
477 inode->i_fop = &simple_dir_operations;
478 set_nlink(inode, 2);
479 root = d_make_root(inode);
480 if (!root)
481 return -ENOMEM;
482 for (i = 0; !files->name || files->name[0]; i++, files++) {
483 if (!files->name)
484 continue;
486 /* warn if it tries to conflict with the root inode */
487 if (unlikely(i == 1))
488 printk(KERN_WARNING "%s: %s passed in a files array"
489 "with an index of 1!\n", __func__,
490 s->s_type->name);
492 dentry = d_alloc_name(root, files->name);
493 if (!dentry)
494 goto out;
495 inode = new_inode(s);
496 if (!inode) {
497 dput(dentry);
498 goto out;
500 inode->i_mode = S_IFREG | files->mode;
501 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
502 inode->i_fop = files->ops;
503 inode->i_ino = i;
504 d_add(dentry, inode);
506 s->s_root = root;
507 return 0;
508 out:
509 d_genocide(root);
510 shrink_dcache_parent(root);
511 dput(root);
512 return -ENOMEM;
515 static DEFINE_SPINLOCK(pin_fs_lock);
517 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
519 struct vfsmount *mnt = NULL;
520 spin_lock(&pin_fs_lock);
521 if (unlikely(!*mount)) {
522 spin_unlock(&pin_fs_lock);
523 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, NULL);
524 if (IS_ERR(mnt))
525 return PTR_ERR(mnt);
526 spin_lock(&pin_fs_lock);
527 if (!*mount)
528 *mount = mnt;
530 mntget(*mount);
531 ++*count;
532 spin_unlock(&pin_fs_lock);
533 mntput(mnt);
534 return 0;
537 void simple_release_fs(struct vfsmount **mount, int *count)
539 struct vfsmount *mnt;
540 spin_lock(&pin_fs_lock);
541 mnt = *mount;
542 if (!--*count)
543 *mount = NULL;
544 spin_unlock(&pin_fs_lock);
545 mntput(mnt);
549 * simple_read_from_buffer - copy data from the buffer to user space
550 * @to: the user space buffer to read to
551 * @count: the maximum number of bytes to read
552 * @ppos: the current position in the buffer
553 * @from: the buffer to read from
554 * @available: the size of the buffer
556 * The simple_read_from_buffer() function reads up to @count bytes from the
557 * buffer @from at offset @ppos into the user space address starting at @to.
559 * On success, the number of bytes read is returned and the offset @ppos is
560 * advanced by this number, or negative value is returned on error.
562 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
563 const void *from, size_t available)
565 loff_t pos = *ppos;
566 size_t ret;
568 if (pos < 0)
569 return -EINVAL;
570 if (pos >= available || !count)
571 return 0;
572 if (count > available - pos)
573 count = available - pos;
574 ret = copy_to_user(to, from + pos, count);
575 if (ret == count)
576 return -EFAULT;
577 count -= ret;
578 *ppos = pos + count;
579 return count;
583 * simple_write_to_buffer - copy data from user space to the buffer
584 * @to: the buffer to write to
585 * @available: the size of the buffer
586 * @ppos: the current position in the buffer
587 * @from: the user space buffer to read from
588 * @count: the maximum number of bytes to read
590 * The simple_write_to_buffer() function reads up to @count bytes from the user
591 * space address starting at @from into the buffer @to at offset @ppos.
593 * On success, the number of bytes written is returned and the offset @ppos is
594 * advanced by this number, or negative value is returned on error.
596 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
597 const void __user *from, size_t count)
599 loff_t pos = *ppos;
600 size_t res;
602 if (pos < 0)
603 return -EINVAL;
604 if (pos >= available || !count)
605 return 0;
606 if (count > available - pos)
607 count = available - pos;
608 res = copy_from_user(to + pos, from, count);
609 if (res == count)
610 return -EFAULT;
611 count -= res;
612 *ppos = pos + count;
613 return count;
617 * memory_read_from_buffer - copy data from the buffer
618 * @to: the kernel space buffer to read to
619 * @count: the maximum number of bytes to read
620 * @ppos: the current position in the buffer
621 * @from: the buffer to read from
622 * @available: the size of the buffer
624 * The memory_read_from_buffer() function reads up to @count bytes from the
625 * buffer @from at offset @ppos into the kernel space address starting at @to.
627 * On success, the number of bytes read is returned and the offset @ppos is
628 * advanced by this number, or negative value is returned on error.
630 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
631 const void *from, size_t available)
633 loff_t pos = *ppos;
635 if (pos < 0)
636 return -EINVAL;
637 if (pos >= available)
638 return 0;
639 if (count > available - pos)
640 count = available - pos;
641 memcpy(to, from + pos, count);
642 *ppos = pos + count;
644 return count;
648 * Transaction based IO.
649 * The file expects a single write which triggers the transaction, and then
650 * possibly a read which collects the result - which is stored in a
651 * file-local buffer.
654 void simple_transaction_set(struct file *file, size_t n)
656 struct simple_transaction_argresp *ar = file->private_data;
658 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
661 * The barrier ensures that ar->size will really remain zero until
662 * ar->data is ready for reading.
664 smp_mb();
665 ar->size = n;
668 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
670 struct simple_transaction_argresp *ar;
671 static DEFINE_SPINLOCK(simple_transaction_lock);
673 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
674 return ERR_PTR(-EFBIG);
676 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
677 if (!ar)
678 return ERR_PTR(-ENOMEM);
680 spin_lock(&simple_transaction_lock);
682 /* only one write allowed per open */
683 if (file->private_data) {
684 spin_unlock(&simple_transaction_lock);
685 free_page((unsigned long)ar);
686 return ERR_PTR(-EBUSY);
689 file->private_data = ar;
691 spin_unlock(&simple_transaction_lock);
693 if (copy_from_user(ar->data, buf, size))
694 return ERR_PTR(-EFAULT);
696 return ar->data;
699 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
701 struct simple_transaction_argresp *ar = file->private_data;
703 if (!ar)
704 return 0;
705 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
708 int simple_transaction_release(struct inode *inode, struct file *file)
710 free_page((unsigned long)file->private_data);
711 return 0;
714 /* Simple attribute files */
716 struct simple_attr {
717 int (*get)(void *, u64 *);
718 int (*set)(void *, u64);
719 char get_buf[24]; /* enough to store a u64 and "\n\0" */
720 char set_buf[24];
721 void *data;
722 const char *fmt; /* format for read operation */
723 struct mutex mutex; /* protects access to these buffers */
726 /* simple_attr_open is called by an actual attribute open file operation
727 * to set the attribute specific access operations. */
728 int simple_attr_open(struct inode *inode, struct file *file,
729 int (*get)(void *, u64 *), int (*set)(void *, u64),
730 const char *fmt)
732 struct simple_attr *attr;
734 attr = kmalloc(sizeof(*attr), GFP_KERNEL);
735 if (!attr)
736 return -ENOMEM;
738 attr->get = get;
739 attr->set = set;
740 attr->data = inode->i_private;
741 attr->fmt = fmt;
742 mutex_init(&attr->mutex);
744 file->private_data = attr;
746 return nonseekable_open(inode, file);
749 int simple_attr_release(struct inode *inode, struct file *file)
751 kfree(file->private_data);
752 return 0;
755 /* read from the buffer that is filled with the get function */
756 ssize_t simple_attr_read(struct file *file, char __user *buf,
757 size_t len, loff_t *ppos)
759 struct simple_attr *attr;
760 size_t size;
761 ssize_t ret;
763 attr = file->private_data;
765 if (!attr->get)
766 return -EACCES;
768 ret = mutex_lock_interruptible(&attr->mutex);
769 if (ret)
770 return ret;
772 if (*ppos) { /* continued read */
773 size = strlen(attr->get_buf);
774 } else { /* first read */
775 u64 val;
776 ret = attr->get(attr->data, &val);
777 if (ret)
778 goto out;
780 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
781 attr->fmt, (unsigned long long)val);
784 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
785 out:
786 mutex_unlock(&attr->mutex);
787 return ret;
790 /* interpret the buffer as a number to call the set function with */
791 ssize_t simple_attr_write(struct file *file, const char __user *buf,
792 size_t len, loff_t *ppos)
794 struct simple_attr *attr;
795 u64 val;
796 size_t size;
797 ssize_t ret;
799 attr = file->private_data;
800 if (!attr->set)
801 return -EACCES;
803 ret = mutex_lock_interruptible(&attr->mutex);
804 if (ret)
805 return ret;
807 ret = -EFAULT;
808 size = min(sizeof(attr->set_buf) - 1, len);
809 if (copy_from_user(attr->set_buf, buf, size))
810 goto out;
812 attr->set_buf[size] = '\0';
813 val = simple_strtoll(attr->set_buf, NULL, 0);
814 ret = attr->set(attr->data, val);
815 if (ret == 0)
816 ret = len; /* on success, claim we got the whole input */
817 out:
818 mutex_unlock(&attr->mutex);
819 return ret;
823 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
824 * @sb: filesystem to do the file handle conversion on
825 * @fid: file handle to convert
826 * @fh_len: length of the file handle in bytes
827 * @fh_type: type of file handle
828 * @get_inode: filesystem callback to retrieve inode
830 * This function decodes @fid as long as it has one of the well-known
831 * Linux filehandle types and calls @get_inode on it to retrieve the
832 * inode for the object specified in the file handle.
834 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
835 int fh_len, int fh_type, struct inode *(*get_inode)
836 (struct super_block *sb, u64 ino, u32 gen))
838 struct inode *inode = NULL;
840 if (fh_len < 2)
841 return NULL;
843 switch (fh_type) {
844 case FILEID_INO32_GEN:
845 case FILEID_INO32_GEN_PARENT:
846 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
847 break;
850 return d_obtain_alias(inode);
852 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
855 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
856 * @sb: filesystem to do the file handle conversion on
857 * @fid: file handle to convert
858 * @fh_len: length of the file handle in bytes
859 * @fh_type: type of file handle
860 * @get_inode: filesystem callback to retrieve inode
862 * This function decodes @fid as long as it has one of the well-known
863 * Linux filehandle types and calls @get_inode on it to retrieve the
864 * inode for the _parent_ object specified in the file handle if it
865 * is specified in the file handle, or NULL otherwise.
867 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
868 int fh_len, int fh_type, struct inode *(*get_inode)
869 (struct super_block *sb, u64 ino, u32 gen))
871 struct inode *inode = NULL;
873 if (fh_len <= 2)
874 return NULL;
876 switch (fh_type) {
877 case FILEID_INO32_GEN_PARENT:
878 inode = get_inode(sb, fid->i32.parent_ino,
879 (fh_len > 3 ? fid->i32.parent_gen : 0));
880 break;
883 return d_obtain_alias(inode);
885 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
888 * generic_file_fsync - generic fsync implementation for simple filesystems
889 * @file: file to synchronize
890 * @datasync: only synchronize essential metadata if true
892 * This is a generic implementation of the fsync method for simple
893 * filesystems which track all non-inode metadata in the buffers list
894 * hanging off the address_space structure.
896 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
897 int datasync)
899 struct inode *inode = file->f_mapping->host;
900 int err;
901 int ret;
903 err = filemap_write_and_wait_range(inode->i_mapping, start, end);
904 if (err)
905 return err;
907 mutex_lock(&inode->i_mutex);
908 ret = sync_mapping_buffers(inode->i_mapping);
909 if (!(inode->i_state & I_DIRTY))
910 goto out;
911 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
912 goto out;
914 err = sync_inode_metadata(inode, 1);
915 if (ret == 0)
916 ret = err;
917 out:
918 mutex_unlock(&inode->i_mutex);
919 return ret;
921 EXPORT_SYMBOL(generic_file_fsync);
924 * generic_check_addressable - Check addressability of file system
925 * @blocksize_bits: log of file system block size
926 * @num_blocks: number of blocks in file system
928 * Determine whether a file system with @num_blocks blocks (and a
929 * block size of 2**@blocksize_bits) is addressable by the sector_t
930 * and page cache of the system. Return 0 if so and -EFBIG otherwise.
932 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
934 u64 last_fs_block = num_blocks - 1;
935 u64 last_fs_page =
936 last_fs_block >> (PAGE_CACHE_SHIFT - blocksize_bits);
938 if (unlikely(num_blocks == 0))
939 return 0;
941 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_CACHE_SHIFT))
942 return -EINVAL;
944 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
945 (last_fs_page > (pgoff_t)(~0ULL))) {
946 return -EFBIG;
948 return 0;
950 EXPORT_SYMBOL(generic_check_addressable);
953 * No-op implementation of ->fsync for in-memory filesystems.
955 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
957 return 0;
960 EXPORT_SYMBOL(dcache_dir_close);
961 EXPORT_SYMBOL(dcache_dir_lseek);
962 EXPORT_SYMBOL(dcache_dir_open);
963 EXPORT_SYMBOL(dcache_readdir);
964 EXPORT_SYMBOL(generic_read_dir);
965 EXPORT_SYMBOL(mount_pseudo);
966 EXPORT_SYMBOL(simple_write_begin);
967 EXPORT_SYMBOL(simple_write_end);
968 EXPORT_SYMBOL(simple_dir_inode_operations);
969 EXPORT_SYMBOL(simple_dir_operations);
970 EXPORT_SYMBOL(simple_empty);
971 EXPORT_SYMBOL(simple_fill_super);
972 EXPORT_SYMBOL(simple_getattr);
973 EXPORT_SYMBOL(simple_open);
974 EXPORT_SYMBOL(simple_link);
975 EXPORT_SYMBOL(simple_lookup);
976 EXPORT_SYMBOL(simple_pin_fs);
977 EXPORT_SYMBOL(simple_readpage);
978 EXPORT_SYMBOL(simple_release_fs);
979 EXPORT_SYMBOL(simple_rename);
980 EXPORT_SYMBOL(simple_rmdir);
981 EXPORT_SYMBOL(simple_statfs);
982 EXPORT_SYMBOL(noop_fsync);
983 EXPORT_SYMBOL(simple_unlink);
984 EXPORT_SYMBOL(simple_read_from_buffer);
985 EXPORT_SYMBOL(simple_write_to_buffer);
986 EXPORT_SYMBOL(memory_read_from_buffer);
987 EXPORT_SYMBOL(simple_transaction_set);
988 EXPORT_SYMBOL(simple_transaction_get);
989 EXPORT_SYMBOL(simple_transaction_read);
990 EXPORT_SYMBOL(simple_transaction_release);
991 EXPORT_SYMBOL_GPL(simple_attr_open);
992 EXPORT_SYMBOL_GPL(simple_attr_release);
993 EXPORT_SYMBOL_GPL(simple_attr_read);
994 EXPORT_SYMBOL_GPL(simple_attr_write);