4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/namei.h>
16 #include <linux/security.h>
17 #include <linux/idr.h>
18 #include <linux/acct.h> /* acct_auto_close_mnt */
19 #include <linux/ramfs.h> /* init_rootfs */
20 #include <linux/fs_struct.h> /* get_fs_root et.al. */
21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
26 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
27 #define HASH_SIZE (1UL << HASH_SHIFT)
30 static DEFINE_IDA(mnt_id_ida
);
31 static DEFINE_IDA(mnt_group_ida
);
32 static DEFINE_SPINLOCK(mnt_id_lock
);
33 static int mnt_id_start
= 0;
34 static int mnt_group_start
= 1;
36 static struct list_head
*mount_hashtable __read_mostly
;
37 static struct kmem_cache
*mnt_cache __read_mostly
;
38 static struct rw_semaphore namespace_sem
;
41 struct kobject
*fs_kobj
;
42 EXPORT_SYMBOL_GPL(fs_kobj
);
45 * vfsmount lock may be taken for read to prevent changes to the
46 * vfsmount hash, ie. during mountpoint lookups or walking back
49 * It should be taken for write in all cases where the vfsmount
50 * tree or hash is modified or when a vfsmount structure is modified.
52 DEFINE_BRLOCK(vfsmount_lock
);
54 static inline unsigned long hash(struct vfsmount
*mnt
, struct dentry
*dentry
)
56 unsigned long tmp
= ((unsigned long)mnt
/ L1_CACHE_BYTES
);
57 tmp
+= ((unsigned long)dentry
/ L1_CACHE_BYTES
);
58 tmp
= tmp
+ (tmp
>> HASH_SHIFT
);
59 return tmp
& (HASH_SIZE
- 1);
62 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
65 * allocation is serialized by namespace_sem, but we need the spinlock to
66 * serialize with freeing.
68 static int mnt_alloc_id(struct mount
*mnt
)
73 ida_pre_get(&mnt_id_ida
, GFP_KERNEL
);
74 spin_lock(&mnt_id_lock
);
75 res
= ida_get_new_above(&mnt_id_ida
, mnt_id_start
, &mnt
->mnt_id
);
77 mnt_id_start
= mnt
->mnt_id
+ 1;
78 spin_unlock(&mnt_id_lock
);
85 static void mnt_free_id(struct mount
*mnt
)
88 spin_lock(&mnt_id_lock
);
89 ida_remove(&mnt_id_ida
, id
);
90 if (mnt_id_start
> id
)
92 spin_unlock(&mnt_id_lock
);
96 * Allocate a new peer group ID
98 * mnt_group_ida is protected by namespace_sem
100 static int mnt_alloc_group_id(struct mount
*mnt
)
104 if (!ida_pre_get(&mnt_group_ida
, GFP_KERNEL
))
107 res
= ida_get_new_above(&mnt_group_ida
,
111 mnt_group_start
= mnt
->mnt_group_id
+ 1;
117 * Release a peer group ID
119 void mnt_release_group_id(struct mount
*mnt
)
121 int id
= mnt
->mnt_group_id
;
122 ida_remove(&mnt_group_ida
, id
);
123 if (mnt_group_start
> id
)
124 mnt_group_start
= id
;
125 mnt
->mnt_group_id
= 0;
129 * vfsmount lock must be held for read
131 static inline void mnt_add_count(struct mount
*mnt
, int n
)
134 this_cpu_add(mnt
->mnt_pcp
->mnt_count
, n
);
143 * vfsmount lock must be held for write
145 unsigned int mnt_get_count(struct mount
*mnt
)
148 unsigned int count
= 0;
151 for_each_possible_cpu(cpu
) {
152 count
+= per_cpu_ptr(mnt
->mnt_pcp
, cpu
)->mnt_count
;
157 return mnt
->mnt_count
;
161 static struct mount
*alloc_vfsmnt(const char *name
)
163 struct mount
*mnt
= kmem_cache_zalloc(mnt_cache
, GFP_KERNEL
);
167 err
= mnt_alloc_id(mnt
);
172 mnt
->mnt_devname
= kstrdup(name
, GFP_KERNEL
);
173 if (!mnt
->mnt_devname
)
178 mnt
->mnt_pcp
= alloc_percpu(struct mnt_pcp
);
180 goto out_free_devname
;
182 this_cpu_add(mnt
->mnt_pcp
->mnt_count
, 1);
185 mnt
->mnt_writers
= 0;
188 INIT_LIST_HEAD(&mnt
->mnt_hash
);
189 INIT_LIST_HEAD(&mnt
->mnt_child
);
190 INIT_LIST_HEAD(&mnt
->mnt_mounts
);
191 INIT_LIST_HEAD(&mnt
->mnt_list
);
192 INIT_LIST_HEAD(&mnt
->mnt_expire
);
193 INIT_LIST_HEAD(&mnt
->mnt_share
);
194 INIT_LIST_HEAD(&mnt
->mnt_slave_list
);
195 INIT_LIST_HEAD(&mnt
->mnt_slave
);
196 #ifdef CONFIG_FSNOTIFY
197 INIT_HLIST_HEAD(&mnt
->mnt_fsnotify_marks
);
204 kfree(mnt
->mnt_devname
);
209 kmem_cache_free(mnt_cache
, mnt
);
214 * Most r/o checks on a fs are for operations that take
215 * discrete amounts of time, like a write() or unlink().
216 * We must keep track of when those operations start
217 * (for permission checks) and when they end, so that
218 * we can determine when writes are able to occur to
222 * __mnt_is_readonly: check whether a mount is read-only
223 * @mnt: the mount to check for its write status
225 * This shouldn't be used directly ouside of the VFS.
226 * It does not guarantee that the filesystem will stay
227 * r/w, just that it is right *now*. This can not and
228 * should not be used in place of IS_RDONLY(inode).
229 * mnt_want/drop_write() will _keep_ the filesystem
232 int __mnt_is_readonly(struct vfsmount
*mnt
)
234 if (mnt
->mnt_flags
& MNT_READONLY
)
236 if (mnt
->mnt_sb
->s_flags
& MS_RDONLY
)
240 EXPORT_SYMBOL_GPL(__mnt_is_readonly
);
242 static inline void mnt_inc_writers(struct mount
*mnt
)
245 this_cpu_inc(mnt
->mnt_pcp
->mnt_writers
);
251 static inline void mnt_dec_writers(struct mount
*mnt
)
254 this_cpu_dec(mnt
->mnt_pcp
->mnt_writers
);
260 static unsigned int mnt_get_writers(struct mount
*mnt
)
263 unsigned int count
= 0;
266 for_each_possible_cpu(cpu
) {
267 count
+= per_cpu_ptr(mnt
->mnt_pcp
, cpu
)->mnt_writers
;
272 return mnt
->mnt_writers
;
276 static int mnt_is_readonly(struct vfsmount
*mnt
)
278 if (mnt
->mnt_sb
->s_readonly_remount
)
280 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
282 return __mnt_is_readonly(mnt
);
286 * Most r/o checks on a fs are for operations that take
287 * discrete amounts of time, like a write() or unlink().
288 * We must keep track of when those operations start
289 * (for permission checks) and when they end, so that
290 * we can determine when writes are able to occur to
294 * mnt_want_write - get write access to a mount
295 * @m: the mount on which to take a write
297 * This tells the low-level filesystem that a write is
298 * about to be performed to it, and makes sure that
299 * writes are allowed before returning success. When
300 * the write operation is finished, mnt_drop_write()
301 * must be called. This is effectively a refcount.
303 int mnt_want_write(struct vfsmount
*m
)
305 struct mount
*mnt
= real_mount(m
);
309 mnt_inc_writers(mnt
);
311 * The store to mnt_inc_writers must be visible before we pass
312 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
313 * incremented count after it has set MNT_WRITE_HOLD.
316 while (mnt
->mnt
.mnt_flags
& MNT_WRITE_HOLD
)
319 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
320 * be set to match its requirements. So we must not load that until
321 * MNT_WRITE_HOLD is cleared.
324 if (mnt_is_readonly(m
)) {
325 mnt_dec_writers(mnt
);
331 EXPORT_SYMBOL_GPL(mnt_want_write
);
334 * mnt_clone_write - get write access to a mount
335 * @mnt: the mount on which to take a write
337 * This is effectively like mnt_want_write, except
338 * it must only be used to take an extra write reference
339 * on a mountpoint that we already know has a write reference
340 * on it. This allows some optimisation.
342 * After finished, mnt_drop_write must be called as usual to
343 * drop the reference.
345 int mnt_clone_write(struct vfsmount
*mnt
)
347 /* superblock may be r/o */
348 if (__mnt_is_readonly(mnt
))
351 mnt_inc_writers(real_mount(mnt
));
355 EXPORT_SYMBOL_GPL(mnt_clone_write
);
358 * mnt_want_write_file - get write access to a file's mount
359 * @file: the file who's mount on which to take a write
361 * This is like mnt_want_write, but it takes a file and can
362 * do some optimisations if the file is open for write already
364 int mnt_want_write_file(struct file
*file
)
366 struct inode
*inode
= file
->f_dentry
->d_inode
;
367 if (!(file
->f_mode
& FMODE_WRITE
) || special_file(inode
->i_mode
))
368 return mnt_want_write(file
->f_path
.mnt
);
370 return mnt_clone_write(file
->f_path
.mnt
);
372 EXPORT_SYMBOL_GPL(mnt_want_write_file
);
375 * mnt_drop_write - give up write access to a mount
376 * @mnt: the mount on which to give up write access
378 * Tells the low-level filesystem that we are done
379 * performing writes to it. Must be matched with
380 * mnt_want_write() call above.
382 void mnt_drop_write(struct vfsmount
*mnt
)
385 mnt_dec_writers(real_mount(mnt
));
388 EXPORT_SYMBOL_GPL(mnt_drop_write
);
390 void mnt_drop_write_file(struct file
*file
)
392 mnt_drop_write(file
->f_path
.mnt
);
394 EXPORT_SYMBOL(mnt_drop_write_file
);
396 static int mnt_make_readonly(struct mount
*mnt
)
400 br_write_lock(&vfsmount_lock
);
401 mnt
->mnt
.mnt_flags
|= MNT_WRITE_HOLD
;
403 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
404 * should be visible before we do.
409 * With writers on hold, if this value is zero, then there are
410 * definitely no active writers (although held writers may subsequently
411 * increment the count, they'll have to wait, and decrement it after
412 * seeing MNT_READONLY).
414 * It is OK to have counter incremented on one CPU and decremented on
415 * another: the sum will add up correctly. The danger would be when we
416 * sum up each counter, if we read a counter before it is incremented,
417 * but then read another CPU's count which it has been subsequently
418 * decremented from -- we would see more decrements than we should.
419 * MNT_WRITE_HOLD protects against this scenario, because
420 * mnt_want_write first increments count, then smp_mb, then spins on
421 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
422 * we're counting up here.
424 if (mnt_get_writers(mnt
) > 0)
427 mnt
->mnt
.mnt_flags
|= MNT_READONLY
;
429 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
430 * that become unheld will see MNT_READONLY.
433 mnt
->mnt
.mnt_flags
&= ~MNT_WRITE_HOLD
;
434 br_write_unlock(&vfsmount_lock
);
438 static void __mnt_unmake_readonly(struct mount
*mnt
)
440 br_write_lock(&vfsmount_lock
);
441 mnt
->mnt
.mnt_flags
&= ~MNT_READONLY
;
442 br_write_unlock(&vfsmount_lock
);
445 int sb_prepare_remount_readonly(struct super_block
*sb
)
450 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
451 if (atomic_long_read(&sb
->s_remove_count
))
454 br_write_lock(&vfsmount_lock
);
455 list_for_each_entry(mnt
, &sb
->s_mounts
, mnt_instance
) {
456 if (!(mnt
->mnt
.mnt_flags
& MNT_READONLY
)) {
457 mnt
->mnt
.mnt_flags
|= MNT_WRITE_HOLD
;
459 if (mnt_get_writers(mnt
) > 0) {
465 if (!err
&& atomic_long_read(&sb
->s_remove_count
))
469 sb
->s_readonly_remount
= 1;
472 list_for_each_entry(mnt
, &sb
->s_mounts
, mnt_instance
) {
473 if (mnt
->mnt
.mnt_flags
& MNT_WRITE_HOLD
)
474 mnt
->mnt
.mnt_flags
&= ~MNT_WRITE_HOLD
;
476 br_write_unlock(&vfsmount_lock
);
481 static void free_vfsmnt(struct mount
*mnt
)
483 kfree(mnt
->mnt_devname
);
486 free_percpu(mnt
->mnt_pcp
);
488 kmem_cache_free(mnt_cache
, mnt
);
492 * find the first or last mount at @dentry on vfsmount @mnt depending on
493 * @dir. If @dir is set return the first mount else return the last mount.
494 * vfsmount_lock must be held for read or write.
496 struct mount
*__lookup_mnt(struct vfsmount
*mnt
, struct dentry
*dentry
,
499 struct list_head
*head
= mount_hashtable
+ hash(mnt
, dentry
);
500 struct list_head
*tmp
= head
;
501 struct mount
*p
, *found
= NULL
;
504 tmp
= dir
? tmp
->next
: tmp
->prev
;
508 p
= list_entry(tmp
, struct mount
, mnt_hash
);
509 if (&p
->mnt_parent
->mnt
== mnt
&& p
->mnt_mountpoint
== dentry
) {
518 * lookup_mnt increments the ref count before returning
519 * the vfsmount struct.
521 struct vfsmount
*lookup_mnt(struct path
*path
)
523 struct mount
*child_mnt
;
525 br_read_lock(&vfsmount_lock
);
526 child_mnt
= __lookup_mnt(path
->mnt
, path
->dentry
, 1);
528 mnt_add_count(child_mnt
, 1);
529 br_read_unlock(&vfsmount_lock
);
530 return &child_mnt
->mnt
;
532 br_read_unlock(&vfsmount_lock
);
537 static inline int check_mnt(struct mount
*mnt
)
539 return mnt
->mnt_ns
== current
->nsproxy
->mnt_ns
;
543 * vfsmount lock must be held for write
545 static void touch_mnt_namespace(struct mnt_namespace
*ns
)
549 wake_up_interruptible(&ns
->poll
);
554 * vfsmount lock must be held for write
556 static void __touch_mnt_namespace(struct mnt_namespace
*ns
)
558 if (ns
&& ns
->event
!= event
) {
560 wake_up_interruptible(&ns
->poll
);
565 * Clear dentry's mounted state if it has no remaining mounts.
566 * vfsmount_lock must be held for write.
568 static void dentry_reset_mounted(struct dentry
*dentry
)
572 for (u
= 0; u
< HASH_SIZE
; u
++) {
575 list_for_each_entry(p
, &mount_hashtable
[u
], mnt_hash
) {
576 if (p
->mnt_mountpoint
== dentry
)
580 spin_lock(&dentry
->d_lock
);
581 dentry
->d_flags
&= ~DCACHE_MOUNTED
;
582 spin_unlock(&dentry
->d_lock
);
586 * vfsmount lock must be held for write
588 static void detach_mnt(struct mount
*mnt
, struct path
*old_path
)
590 old_path
->dentry
= mnt
->mnt_mountpoint
;
591 old_path
->mnt
= &mnt
->mnt_parent
->mnt
;
592 mnt
->mnt_parent
= mnt
;
593 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
594 list_del_init(&mnt
->mnt_child
);
595 list_del_init(&mnt
->mnt_hash
);
596 dentry_reset_mounted(old_path
->dentry
);
600 * vfsmount lock must be held for write
602 void mnt_set_mountpoint(struct mount
*mnt
, struct dentry
*dentry
,
603 struct mount
*child_mnt
)
605 mnt_add_count(mnt
, 1); /* essentially, that's mntget */
606 child_mnt
->mnt_mountpoint
= dget(dentry
);
607 child_mnt
->mnt_parent
= mnt
;
608 spin_lock(&dentry
->d_lock
);
609 dentry
->d_flags
|= DCACHE_MOUNTED
;
610 spin_unlock(&dentry
->d_lock
);
614 * vfsmount lock must be held for write
616 static void attach_mnt(struct mount
*mnt
, struct path
*path
)
618 mnt_set_mountpoint(real_mount(path
->mnt
), path
->dentry
, mnt
);
619 list_add_tail(&mnt
->mnt_hash
, mount_hashtable
+
620 hash(path
->mnt
, path
->dentry
));
621 list_add_tail(&mnt
->mnt_child
, &real_mount(path
->mnt
)->mnt_mounts
);
624 static inline void __mnt_make_longterm(struct mount
*mnt
)
627 atomic_inc(&mnt
->mnt_longterm
);
631 /* needs vfsmount lock for write */
632 static inline void __mnt_make_shortterm(struct mount
*mnt
)
635 atomic_dec(&mnt
->mnt_longterm
);
640 * vfsmount lock must be held for write
642 static void commit_tree(struct mount
*mnt
)
644 struct mount
*parent
= mnt
->mnt_parent
;
647 struct mnt_namespace
*n
= parent
->mnt_ns
;
649 BUG_ON(parent
== mnt
);
651 list_add_tail(&head
, &mnt
->mnt_list
);
652 list_for_each_entry(m
, &head
, mnt_list
) {
654 __mnt_make_longterm(m
);
657 list_splice(&head
, n
->list
.prev
);
659 list_add_tail(&mnt
->mnt_hash
, mount_hashtable
+
660 hash(&parent
->mnt
, mnt
->mnt_mountpoint
));
661 list_add_tail(&mnt
->mnt_child
, &parent
->mnt_mounts
);
662 touch_mnt_namespace(n
);
665 static struct mount
*next_mnt(struct mount
*p
, struct mount
*root
)
667 struct list_head
*next
= p
->mnt_mounts
.next
;
668 if (next
== &p
->mnt_mounts
) {
672 next
= p
->mnt_child
.next
;
673 if (next
!= &p
->mnt_parent
->mnt_mounts
)
678 return list_entry(next
, struct mount
, mnt_child
);
681 static struct mount
*skip_mnt_tree(struct mount
*p
)
683 struct list_head
*prev
= p
->mnt_mounts
.prev
;
684 while (prev
!= &p
->mnt_mounts
) {
685 p
= list_entry(prev
, struct mount
, mnt_child
);
686 prev
= p
->mnt_mounts
.prev
;
692 vfs_kern_mount(struct file_system_type
*type
, int flags
, const char *name
, void *data
)
698 return ERR_PTR(-ENODEV
);
700 mnt
= alloc_vfsmnt(name
);
702 return ERR_PTR(-ENOMEM
);
704 if (flags
& MS_KERNMOUNT
)
705 mnt
->mnt
.mnt_flags
= MNT_INTERNAL
;
707 root
= mount_fs(type
, flags
, name
, data
);
710 return ERR_CAST(root
);
713 mnt
->mnt
.mnt_root
= root
;
714 mnt
->mnt
.mnt_sb
= root
->d_sb
;
715 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
716 mnt
->mnt_parent
= mnt
;
717 br_write_lock(&vfsmount_lock
);
718 list_add_tail(&mnt
->mnt_instance
, &root
->d_sb
->s_mounts
);
719 br_write_unlock(&vfsmount_lock
);
722 EXPORT_SYMBOL_GPL(vfs_kern_mount
);
724 static struct mount
*clone_mnt(struct mount
*old
, struct dentry
*root
,
727 struct super_block
*sb
= old
->mnt
.mnt_sb
;
728 struct mount
*mnt
= alloc_vfsmnt(old
->mnt_devname
);
731 if (flag
& (CL_SLAVE
| CL_PRIVATE
))
732 mnt
->mnt_group_id
= 0; /* not a peer of original */
734 mnt
->mnt_group_id
= old
->mnt_group_id
;
736 if ((flag
& CL_MAKE_SHARED
) && !mnt
->mnt_group_id
) {
737 int err
= mnt_alloc_group_id(mnt
);
742 mnt
->mnt
.mnt_flags
= old
->mnt
.mnt_flags
& ~MNT_WRITE_HOLD
;
743 atomic_inc(&sb
->s_active
);
744 mnt
->mnt
.mnt_sb
= sb
;
745 mnt
->mnt
.mnt_root
= dget(root
);
746 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
747 mnt
->mnt_parent
= mnt
;
748 br_write_lock(&vfsmount_lock
);
749 list_add_tail(&mnt
->mnt_instance
, &sb
->s_mounts
);
750 br_write_unlock(&vfsmount_lock
);
752 if (flag
& CL_SLAVE
) {
753 list_add(&mnt
->mnt_slave
, &old
->mnt_slave_list
);
754 mnt
->mnt_master
= old
;
755 CLEAR_MNT_SHARED(mnt
);
756 } else if (!(flag
& CL_PRIVATE
)) {
757 if ((flag
& CL_MAKE_SHARED
) || IS_MNT_SHARED(old
))
758 list_add(&mnt
->mnt_share
, &old
->mnt_share
);
759 if (IS_MNT_SLAVE(old
))
760 list_add(&mnt
->mnt_slave
, &old
->mnt_slave
);
761 mnt
->mnt_master
= old
->mnt_master
;
763 if (flag
& CL_MAKE_SHARED
)
766 /* stick the duplicate mount on the same expiry list
767 * as the original if that was on one */
768 if (flag
& CL_EXPIRE
) {
769 if (!list_empty(&old
->mnt_expire
))
770 list_add(&mnt
->mnt_expire
, &old
->mnt_expire
);
780 static inline void mntfree(struct mount
*mnt
)
782 struct vfsmount
*m
= &mnt
->mnt
;
783 struct super_block
*sb
= m
->mnt_sb
;
786 * This probably indicates that somebody messed
787 * up a mnt_want/drop_write() pair. If this
788 * happens, the filesystem was probably unable
789 * to make r/w->r/o transitions.
792 * The locking used to deal with mnt_count decrement provides barriers,
793 * so mnt_get_writers() below is safe.
795 WARN_ON(mnt_get_writers(mnt
));
796 fsnotify_vfsmount_delete(m
);
799 deactivate_super(sb
);
802 static void mntput_no_expire(struct mount
*mnt
)
806 br_read_lock(&vfsmount_lock
);
807 if (likely(atomic_read(&mnt
->mnt_longterm
))) {
808 mnt_add_count(mnt
, -1);
809 br_read_unlock(&vfsmount_lock
);
812 br_read_unlock(&vfsmount_lock
);
814 br_write_lock(&vfsmount_lock
);
815 mnt_add_count(mnt
, -1);
816 if (mnt_get_count(mnt
)) {
817 br_write_unlock(&vfsmount_lock
);
821 mnt_add_count(mnt
, -1);
822 if (likely(mnt_get_count(mnt
)))
824 br_write_lock(&vfsmount_lock
);
826 if (unlikely(mnt
->mnt_pinned
)) {
827 mnt_add_count(mnt
, mnt
->mnt_pinned
+ 1);
829 br_write_unlock(&vfsmount_lock
);
830 acct_auto_close_mnt(&mnt
->mnt
);
834 list_del(&mnt
->mnt_instance
);
835 br_write_unlock(&vfsmount_lock
);
839 void mntput(struct vfsmount
*mnt
)
842 struct mount
*m
= real_mount(mnt
);
843 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
844 if (unlikely(m
->mnt_expiry_mark
))
845 m
->mnt_expiry_mark
= 0;
849 EXPORT_SYMBOL(mntput
);
851 struct vfsmount
*mntget(struct vfsmount
*mnt
)
854 mnt_add_count(real_mount(mnt
), 1);
857 EXPORT_SYMBOL(mntget
);
859 void mnt_pin(struct vfsmount
*mnt
)
861 br_write_lock(&vfsmount_lock
);
862 real_mount(mnt
)->mnt_pinned
++;
863 br_write_unlock(&vfsmount_lock
);
865 EXPORT_SYMBOL(mnt_pin
);
867 void mnt_unpin(struct vfsmount
*m
)
869 struct mount
*mnt
= real_mount(m
);
870 br_write_lock(&vfsmount_lock
);
871 if (mnt
->mnt_pinned
) {
872 mnt_add_count(mnt
, 1);
875 br_write_unlock(&vfsmount_lock
);
877 EXPORT_SYMBOL(mnt_unpin
);
879 static inline void mangle(struct seq_file
*m
, const char *s
)
881 seq_escape(m
, s
, " \t\n\\");
885 * Simple .show_options callback for filesystems which don't want to
886 * implement more complex mount option showing.
888 * See also save_mount_options().
890 int generic_show_options(struct seq_file
*m
, struct dentry
*root
)
895 options
= rcu_dereference(root
->d_sb
->s_options
);
897 if (options
!= NULL
&& options
[0]) {
905 EXPORT_SYMBOL(generic_show_options
);
908 * If filesystem uses generic_show_options(), this function should be
909 * called from the fill_super() callback.
911 * The .remount_fs callback usually needs to be handled in a special
912 * way, to make sure, that previous options are not overwritten if the
915 * Also note, that if the filesystem's .remount_fs function doesn't
916 * reset all options to their default value, but changes only newly
917 * given options, then the displayed options will not reflect reality
920 void save_mount_options(struct super_block
*sb
, char *options
)
922 BUG_ON(sb
->s_options
);
923 rcu_assign_pointer(sb
->s_options
, kstrdup(options
, GFP_KERNEL
));
925 EXPORT_SYMBOL(save_mount_options
);
927 void replace_mount_options(struct super_block
*sb
, char *options
)
929 char *old
= sb
->s_options
;
930 rcu_assign_pointer(sb
->s_options
, options
);
936 EXPORT_SYMBOL(replace_mount_options
);
938 #ifdef CONFIG_PROC_FS
939 /* iterator; we want it to have access to namespace_sem, thus here... */
940 static void *m_start(struct seq_file
*m
, loff_t
*pos
)
942 struct proc_mounts
*p
= container_of(m
, struct proc_mounts
, m
);
944 down_read(&namespace_sem
);
945 return seq_list_start(&p
->ns
->list
, *pos
);
948 static void *m_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
950 struct proc_mounts
*p
= container_of(m
, struct proc_mounts
, m
);
952 return seq_list_next(v
, &p
->ns
->list
, pos
);
955 static void m_stop(struct seq_file
*m
, void *v
)
957 up_read(&namespace_sem
);
960 static int m_show(struct seq_file
*m
, void *v
)
962 struct proc_mounts
*p
= container_of(m
, struct proc_mounts
, m
);
963 struct mount
*r
= list_entry(v
, struct mount
, mnt_list
);
964 return p
->show(m
, &r
->mnt
);
967 const struct seq_operations mounts_op
= {
973 #endif /* CONFIG_PROC_FS */
976 * may_umount_tree - check if a mount tree is busy
977 * @mnt: root of mount tree
979 * This is called to check if a tree of mounts has any
980 * open files, pwds, chroots or sub mounts that are
983 int may_umount_tree(struct vfsmount
*m
)
985 struct mount
*mnt
= real_mount(m
);
987 int minimum_refs
= 0;
991 /* write lock needed for mnt_get_count */
992 br_write_lock(&vfsmount_lock
);
993 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
994 actual_refs
+= mnt_get_count(p
);
997 br_write_unlock(&vfsmount_lock
);
999 if (actual_refs
> minimum_refs
)
1005 EXPORT_SYMBOL(may_umount_tree
);
1008 * may_umount - check if a mount point is busy
1009 * @mnt: root of mount
1011 * This is called to check if a mount point has any
1012 * open files, pwds, chroots or sub mounts. If the
1013 * mount has sub mounts this will return busy
1014 * regardless of whether the sub mounts are busy.
1016 * Doesn't take quota and stuff into account. IOW, in some cases it will
1017 * give false negatives. The main reason why it's here is that we need
1018 * a non-destructive way to look for easily umountable filesystems.
1020 int may_umount(struct vfsmount
*mnt
)
1023 down_read(&namespace_sem
);
1024 br_write_lock(&vfsmount_lock
);
1025 if (propagate_mount_busy(real_mount(mnt
), 2))
1027 br_write_unlock(&vfsmount_lock
);
1028 up_read(&namespace_sem
);
1032 EXPORT_SYMBOL(may_umount
);
1034 void release_mounts(struct list_head
*head
)
1037 while (!list_empty(head
)) {
1038 mnt
= list_first_entry(head
, struct mount
, mnt_hash
);
1039 list_del_init(&mnt
->mnt_hash
);
1040 if (mnt_has_parent(mnt
)) {
1041 struct dentry
*dentry
;
1044 br_write_lock(&vfsmount_lock
);
1045 dentry
= mnt
->mnt_mountpoint
;
1046 m
= mnt
->mnt_parent
;
1047 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
1048 mnt
->mnt_parent
= mnt
;
1050 br_write_unlock(&vfsmount_lock
);
1059 * vfsmount lock must be held for write
1060 * namespace_sem must be held for write
1062 void umount_tree(struct mount
*mnt
, int propagate
, struct list_head
*kill
)
1064 LIST_HEAD(tmp_list
);
1067 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
))
1068 list_move(&p
->mnt_hash
, &tmp_list
);
1071 propagate_umount(&tmp_list
);
1073 list_for_each_entry(p
, &tmp_list
, mnt_hash
) {
1074 list_del_init(&p
->mnt_expire
);
1075 list_del_init(&p
->mnt_list
);
1076 __touch_mnt_namespace(p
->mnt_ns
);
1078 __mnt_make_shortterm(p
);
1080 list_del_init(&p
->mnt_child
);
1081 if (mnt_has_parent(p
)) {
1082 p
->mnt_parent
->mnt_ghosts
++;
1083 dentry_reset_mounted(p
->mnt_mountpoint
);
1085 change_mnt_propagation(p
, MS_PRIVATE
);
1087 list_splice(&tmp_list
, kill
);
1090 static void shrink_submounts(struct mount
*mnt
, struct list_head
*umounts
);
1092 static int do_umount(struct mount
*mnt
, int flags
)
1094 struct super_block
*sb
= mnt
->mnt
.mnt_sb
;
1096 LIST_HEAD(umount_list
);
1098 retval
= security_sb_umount(&mnt
->mnt
, flags
);
1103 * Allow userspace to request a mountpoint be expired rather than
1104 * unmounting unconditionally. Unmount only happens if:
1105 * (1) the mark is already set (the mark is cleared by mntput())
1106 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1108 if (flags
& MNT_EXPIRE
) {
1109 if (&mnt
->mnt
== current
->fs
->root
.mnt
||
1110 flags
& (MNT_FORCE
| MNT_DETACH
))
1114 * probably don't strictly need the lock here if we examined
1115 * all race cases, but it's a slowpath.
1117 br_write_lock(&vfsmount_lock
);
1118 if (mnt_get_count(mnt
) != 2) {
1119 br_write_unlock(&vfsmount_lock
);
1122 br_write_unlock(&vfsmount_lock
);
1124 if (!xchg(&mnt
->mnt_expiry_mark
, 1))
1129 * If we may have to abort operations to get out of this
1130 * mount, and they will themselves hold resources we must
1131 * allow the fs to do things. In the Unix tradition of
1132 * 'Gee thats tricky lets do it in userspace' the umount_begin
1133 * might fail to complete on the first run through as other tasks
1134 * must return, and the like. Thats for the mount program to worry
1135 * about for the moment.
1138 if (flags
& MNT_FORCE
&& sb
->s_op
->umount_begin
) {
1139 sb
->s_op
->umount_begin(sb
);
1143 * No sense to grab the lock for this test, but test itself looks
1144 * somewhat bogus. Suggestions for better replacement?
1145 * Ho-hum... In principle, we might treat that as umount + switch
1146 * to rootfs. GC would eventually take care of the old vfsmount.
1147 * Actually it makes sense, especially if rootfs would contain a
1148 * /reboot - static binary that would close all descriptors and
1149 * call reboot(9). Then init(8) could umount root and exec /reboot.
1151 if (&mnt
->mnt
== current
->fs
->root
.mnt
&& !(flags
& MNT_DETACH
)) {
1153 * Special case for "unmounting" root ...
1154 * we just try to remount it readonly.
1156 down_write(&sb
->s_umount
);
1157 if (!(sb
->s_flags
& MS_RDONLY
))
1158 retval
= do_remount_sb(sb
, MS_RDONLY
, NULL
, 0);
1159 up_write(&sb
->s_umount
);
1163 down_write(&namespace_sem
);
1164 br_write_lock(&vfsmount_lock
);
1167 if (!(flags
& MNT_DETACH
))
1168 shrink_submounts(mnt
, &umount_list
);
1171 if (flags
& MNT_DETACH
|| !propagate_mount_busy(mnt
, 2)) {
1172 if (!list_empty(&mnt
->mnt_list
))
1173 umount_tree(mnt
, 1, &umount_list
);
1176 br_write_unlock(&vfsmount_lock
);
1177 up_write(&namespace_sem
);
1178 release_mounts(&umount_list
);
1183 * Now umount can handle mount points as well as block devices.
1184 * This is important for filesystems which use unnamed block devices.
1186 * We now support a flag for forced unmount like the other 'big iron'
1187 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1190 SYSCALL_DEFINE2(umount
, char __user
*, name
, int, flags
)
1195 int lookup_flags
= 0;
1197 if (flags
& ~(MNT_FORCE
| MNT_DETACH
| MNT_EXPIRE
| UMOUNT_NOFOLLOW
))
1200 if (!(flags
& UMOUNT_NOFOLLOW
))
1201 lookup_flags
|= LOOKUP_FOLLOW
;
1203 retval
= user_path_at(AT_FDCWD
, name
, lookup_flags
, &path
);
1206 mnt
= real_mount(path
.mnt
);
1208 if (path
.dentry
!= path
.mnt
->mnt_root
)
1210 if (!check_mnt(mnt
))
1214 if (!capable(CAP_SYS_ADMIN
))
1217 retval
= do_umount(mnt
, flags
);
1219 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1221 mntput_no_expire(mnt
);
1226 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1229 * The 2.0 compatible umount. No flags.
1231 SYSCALL_DEFINE1(oldumount
, char __user
*, name
)
1233 return sys_umount(name
, 0);
1238 static int mount_is_safe(struct path
*path
)
1240 if (capable(CAP_SYS_ADMIN
))
1244 if (S_ISLNK(path
->dentry
->d_inode
->i_mode
))
1246 if (path
->dentry
->d_inode
->i_mode
& S_ISVTX
) {
1247 if (current_uid() != path
->dentry
->d_inode
->i_uid
)
1250 if (inode_permission(path
->dentry
->d_inode
, MAY_WRITE
))
1256 struct mount
*copy_tree(struct mount
*mnt
, struct dentry
*dentry
,
1259 struct mount
*res
, *p
, *q
, *r
;
1262 if (!(flag
& CL_COPY_ALL
) && IS_MNT_UNBINDABLE(mnt
))
1265 res
= q
= clone_mnt(mnt
, dentry
, flag
);
1268 q
->mnt_mountpoint
= mnt
->mnt_mountpoint
;
1271 list_for_each_entry(r
, &mnt
->mnt_mounts
, mnt_child
) {
1273 if (!is_subdir(r
->mnt_mountpoint
, dentry
))
1276 for (s
= r
; s
; s
= next_mnt(s
, r
)) {
1277 if (!(flag
& CL_COPY_ALL
) && IS_MNT_UNBINDABLE(s
)) {
1278 s
= skip_mnt_tree(s
);
1281 while (p
!= s
->mnt_parent
) {
1287 path
.dentry
= p
->mnt_mountpoint
;
1288 q
= clone_mnt(p
, p
->mnt
.mnt_root
, flag
);
1291 br_write_lock(&vfsmount_lock
);
1292 list_add_tail(&q
->mnt_list
, &res
->mnt_list
);
1293 attach_mnt(q
, &path
);
1294 br_write_unlock(&vfsmount_lock
);
1300 LIST_HEAD(umount_list
);
1301 br_write_lock(&vfsmount_lock
);
1302 umount_tree(res
, 0, &umount_list
);
1303 br_write_unlock(&vfsmount_lock
);
1304 release_mounts(&umount_list
);
1309 struct vfsmount
*collect_mounts(struct path
*path
)
1312 down_write(&namespace_sem
);
1313 tree
= copy_tree(real_mount(path
->mnt
), path
->dentry
,
1314 CL_COPY_ALL
| CL_PRIVATE
);
1315 up_write(&namespace_sem
);
1316 return tree
? &tree
->mnt
: NULL
;
1319 void drop_collected_mounts(struct vfsmount
*mnt
)
1321 LIST_HEAD(umount_list
);
1322 down_write(&namespace_sem
);
1323 br_write_lock(&vfsmount_lock
);
1324 umount_tree(real_mount(mnt
), 0, &umount_list
);
1325 br_write_unlock(&vfsmount_lock
);
1326 up_write(&namespace_sem
);
1327 release_mounts(&umount_list
);
1330 int iterate_mounts(int (*f
)(struct vfsmount
*, void *), void *arg
,
1331 struct vfsmount
*root
)
1334 int res
= f(root
, arg
);
1337 list_for_each_entry(mnt
, &real_mount(root
)->mnt_list
, mnt_list
) {
1338 res
= f(&mnt
->mnt
, arg
);
1345 static void cleanup_group_ids(struct mount
*mnt
, struct mount
*end
)
1349 for (p
= mnt
; p
!= end
; p
= next_mnt(p
, mnt
)) {
1350 if (p
->mnt_group_id
&& !IS_MNT_SHARED(p
))
1351 mnt_release_group_id(p
);
1355 static int invent_group_ids(struct mount
*mnt
, bool recurse
)
1359 for (p
= mnt
; p
; p
= recurse
? next_mnt(p
, mnt
) : NULL
) {
1360 if (!p
->mnt_group_id
&& !IS_MNT_SHARED(p
)) {
1361 int err
= mnt_alloc_group_id(p
);
1363 cleanup_group_ids(mnt
, p
);
1373 * @source_mnt : mount tree to be attached
1374 * @nd : place the mount tree @source_mnt is attached
1375 * @parent_nd : if non-null, detach the source_mnt from its parent and
1376 * store the parent mount and mountpoint dentry.
1377 * (done when source_mnt is moved)
1379 * NOTE: in the table below explains the semantics when a source mount
1380 * of a given type is attached to a destination mount of a given type.
1381 * ---------------------------------------------------------------------------
1382 * | BIND MOUNT OPERATION |
1383 * |**************************************************************************
1384 * | source-->| shared | private | slave | unbindable |
1388 * |**************************************************************************
1389 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1391 * |non-shared| shared (+) | private | slave (*) | invalid |
1392 * ***************************************************************************
1393 * A bind operation clones the source mount and mounts the clone on the
1394 * destination mount.
1396 * (++) the cloned mount is propagated to all the mounts in the propagation
1397 * tree of the destination mount and the cloned mount is added to
1398 * the peer group of the source mount.
1399 * (+) the cloned mount is created under the destination mount and is marked
1400 * as shared. The cloned mount is added to the peer group of the source
1402 * (+++) the mount is propagated to all the mounts in the propagation tree
1403 * of the destination mount and the cloned mount is made slave
1404 * of the same master as that of the source mount. The cloned mount
1405 * is marked as 'shared and slave'.
1406 * (*) the cloned mount is made a slave of the same master as that of the
1409 * ---------------------------------------------------------------------------
1410 * | MOVE MOUNT OPERATION |
1411 * |**************************************************************************
1412 * | source-->| shared | private | slave | unbindable |
1416 * |**************************************************************************
1417 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1419 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1420 * ***************************************************************************
1422 * (+) the mount is moved to the destination. And is then propagated to
1423 * all the mounts in the propagation tree of the destination mount.
1424 * (+*) the mount is moved to the destination.
1425 * (+++) the mount is moved to the destination and is then propagated to
1426 * all the mounts belonging to the destination mount's propagation tree.
1427 * the mount is marked as 'shared and slave'.
1428 * (*) the mount continues to be a slave at the new location.
1430 * if the source mount is a tree, the operations explained above is
1431 * applied to each mount in the tree.
1432 * Must be called without spinlocks held, since this function can sleep
1435 static int attach_recursive_mnt(struct mount
*source_mnt
,
1436 struct path
*path
, struct path
*parent_path
)
1438 LIST_HEAD(tree_list
);
1439 struct mount
*dest_mnt
= real_mount(path
->mnt
);
1440 struct dentry
*dest_dentry
= path
->dentry
;
1441 struct mount
*child
, *p
;
1444 if (IS_MNT_SHARED(dest_mnt
)) {
1445 err
= invent_group_ids(source_mnt
, true);
1449 err
= propagate_mnt(dest_mnt
, dest_dentry
, source_mnt
, &tree_list
);
1451 goto out_cleanup_ids
;
1453 br_write_lock(&vfsmount_lock
);
1455 if (IS_MNT_SHARED(dest_mnt
)) {
1456 for (p
= source_mnt
; p
; p
= next_mnt(p
, source_mnt
))
1460 detach_mnt(source_mnt
, parent_path
);
1461 attach_mnt(source_mnt
, path
);
1462 touch_mnt_namespace(source_mnt
->mnt_ns
);
1464 mnt_set_mountpoint(dest_mnt
, dest_dentry
, source_mnt
);
1465 commit_tree(source_mnt
);
1468 list_for_each_entry_safe(child
, p
, &tree_list
, mnt_hash
) {
1469 list_del_init(&child
->mnt_hash
);
1472 br_write_unlock(&vfsmount_lock
);
1477 if (IS_MNT_SHARED(dest_mnt
))
1478 cleanup_group_ids(source_mnt
, NULL
);
1483 static int lock_mount(struct path
*path
)
1485 struct vfsmount
*mnt
;
1487 mutex_lock(&path
->dentry
->d_inode
->i_mutex
);
1488 if (unlikely(cant_mount(path
->dentry
))) {
1489 mutex_unlock(&path
->dentry
->d_inode
->i_mutex
);
1492 down_write(&namespace_sem
);
1493 mnt
= lookup_mnt(path
);
1496 up_write(&namespace_sem
);
1497 mutex_unlock(&path
->dentry
->d_inode
->i_mutex
);
1500 path
->dentry
= dget(mnt
->mnt_root
);
1504 static void unlock_mount(struct path
*path
)
1506 up_write(&namespace_sem
);
1507 mutex_unlock(&path
->dentry
->d_inode
->i_mutex
);
1510 static int graft_tree(struct mount
*mnt
, struct path
*path
)
1512 if (mnt
->mnt
.mnt_sb
->s_flags
& MS_NOUSER
)
1515 if (S_ISDIR(path
->dentry
->d_inode
->i_mode
) !=
1516 S_ISDIR(mnt
->mnt
.mnt_root
->d_inode
->i_mode
))
1519 if (d_unlinked(path
->dentry
))
1522 return attach_recursive_mnt(mnt
, path
, NULL
);
1526 * Sanity check the flags to change_mnt_propagation.
1529 static int flags_to_propagation_type(int flags
)
1531 int type
= flags
& ~(MS_REC
| MS_SILENT
);
1533 /* Fail if any non-propagation flags are set */
1534 if (type
& ~(MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
1536 /* Only one propagation flag should be set */
1537 if (!is_power_of_2(type
))
1543 * recursively change the type of the mountpoint.
1545 static int do_change_type(struct path
*path
, int flag
)
1548 struct mount
*mnt
= real_mount(path
->mnt
);
1549 int recurse
= flag
& MS_REC
;
1553 if (!capable(CAP_SYS_ADMIN
))
1556 if (path
->dentry
!= path
->mnt
->mnt_root
)
1559 type
= flags_to_propagation_type(flag
);
1563 down_write(&namespace_sem
);
1564 if (type
== MS_SHARED
) {
1565 err
= invent_group_ids(mnt
, recurse
);
1570 br_write_lock(&vfsmount_lock
);
1571 for (m
= mnt
; m
; m
= (recurse
? next_mnt(m
, mnt
) : NULL
))
1572 change_mnt_propagation(m
, type
);
1573 br_write_unlock(&vfsmount_lock
);
1576 up_write(&namespace_sem
);
1581 * do loopback mount.
1583 static int do_loopback(struct path
*path
, char *old_name
,
1586 LIST_HEAD(umount_list
);
1587 struct path old_path
;
1588 struct mount
*mnt
= NULL
, *old
;
1589 int err
= mount_is_safe(path
);
1592 if (!old_name
|| !*old_name
)
1594 err
= kern_path(old_name
, LOOKUP_FOLLOW
|LOOKUP_AUTOMOUNT
, &old_path
);
1598 err
= lock_mount(path
);
1602 old
= real_mount(old_path
.mnt
);
1605 if (IS_MNT_UNBINDABLE(old
))
1608 if (!check_mnt(real_mount(path
->mnt
)) || !check_mnt(old
))
1613 mnt
= copy_tree(old
, old_path
.dentry
, 0);
1615 mnt
= clone_mnt(old
, old_path
.dentry
, 0);
1620 err
= graft_tree(mnt
, path
);
1622 br_write_lock(&vfsmount_lock
);
1623 umount_tree(mnt
, 0, &umount_list
);
1624 br_write_unlock(&vfsmount_lock
);
1628 release_mounts(&umount_list
);
1630 path_put(&old_path
);
1634 static int change_mount_flags(struct vfsmount
*mnt
, int ms_flags
)
1637 int readonly_request
= 0;
1639 if (ms_flags
& MS_RDONLY
)
1640 readonly_request
= 1;
1641 if (readonly_request
== __mnt_is_readonly(mnt
))
1644 if (readonly_request
)
1645 error
= mnt_make_readonly(real_mount(mnt
));
1647 __mnt_unmake_readonly(real_mount(mnt
));
1652 * change filesystem flags. dir should be a physical root of filesystem.
1653 * If you've mounted a non-root directory somewhere and want to do remount
1654 * on it - tough luck.
1656 static int do_remount(struct path
*path
, int flags
, int mnt_flags
,
1660 struct super_block
*sb
= path
->mnt
->mnt_sb
;
1661 struct mount
*mnt
= real_mount(path
->mnt
);
1663 if (!capable(CAP_SYS_ADMIN
))
1666 if (!check_mnt(mnt
))
1669 if (path
->dentry
!= path
->mnt
->mnt_root
)
1672 err
= security_sb_remount(sb
, data
);
1676 down_write(&sb
->s_umount
);
1677 if (flags
& MS_BIND
)
1678 err
= change_mount_flags(path
->mnt
, flags
);
1680 err
= do_remount_sb(sb
, flags
, data
, 0);
1682 br_write_lock(&vfsmount_lock
);
1683 mnt_flags
|= mnt
->mnt
.mnt_flags
& MNT_PROPAGATION_MASK
;
1684 mnt
->mnt
.mnt_flags
= mnt_flags
;
1685 br_write_unlock(&vfsmount_lock
);
1687 up_write(&sb
->s_umount
);
1689 br_write_lock(&vfsmount_lock
);
1690 touch_mnt_namespace(mnt
->mnt_ns
);
1691 br_write_unlock(&vfsmount_lock
);
1696 static inline int tree_contains_unbindable(struct mount
*mnt
)
1699 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1700 if (IS_MNT_UNBINDABLE(p
))
1706 static int do_move_mount(struct path
*path
, char *old_name
)
1708 struct path old_path
, parent_path
;
1712 if (!capable(CAP_SYS_ADMIN
))
1714 if (!old_name
|| !*old_name
)
1716 err
= kern_path(old_name
, LOOKUP_FOLLOW
, &old_path
);
1720 err
= lock_mount(path
);
1724 old
= real_mount(old_path
.mnt
);
1725 p
= real_mount(path
->mnt
);
1728 if (!check_mnt(p
) || !check_mnt(old
))
1731 if (d_unlinked(path
->dentry
))
1735 if (old_path
.dentry
!= old_path
.mnt
->mnt_root
)
1738 if (!mnt_has_parent(old
))
1741 if (S_ISDIR(path
->dentry
->d_inode
->i_mode
) !=
1742 S_ISDIR(old_path
.dentry
->d_inode
->i_mode
))
1745 * Don't move a mount residing in a shared parent.
1747 if (IS_MNT_SHARED(old
->mnt_parent
))
1750 * Don't move a mount tree containing unbindable mounts to a destination
1751 * mount which is shared.
1753 if (IS_MNT_SHARED(p
) && tree_contains_unbindable(old
))
1756 for (; mnt_has_parent(p
); p
= p
->mnt_parent
)
1760 err
= attach_recursive_mnt(old
, path
, &parent_path
);
1764 /* if the mount is moved, it should no longer be expire
1766 list_del_init(&old
->mnt_expire
);
1771 path_put(&parent_path
);
1772 path_put(&old_path
);
1776 static struct vfsmount
*fs_set_subtype(struct vfsmount
*mnt
, const char *fstype
)
1779 const char *subtype
= strchr(fstype
, '.');
1788 mnt
->mnt_sb
->s_subtype
= kstrdup(subtype
, GFP_KERNEL
);
1790 if (!mnt
->mnt_sb
->s_subtype
)
1796 return ERR_PTR(err
);
1799 static struct vfsmount
*
1800 do_kern_mount(const char *fstype
, int flags
, const char *name
, void *data
)
1802 struct file_system_type
*type
= get_fs_type(fstype
);
1803 struct vfsmount
*mnt
;
1805 return ERR_PTR(-ENODEV
);
1806 mnt
= vfs_kern_mount(type
, flags
, name
, data
);
1807 if (!IS_ERR(mnt
) && (type
->fs_flags
& FS_HAS_SUBTYPE
) &&
1808 !mnt
->mnt_sb
->s_subtype
)
1809 mnt
= fs_set_subtype(mnt
, fstype
);
1810 put_filesystem(type
);
1815 * add a mount into a namespace's mount tree
1817 static int do_add_mount(struct mount
*newmnt
, struct path
*path
, int mnt_flags
)
1821 mnt_flags
&= ~(MNT_SHARED
| MNT_WRITE_HOLD
| MNT_INTERNAL
);
1823 err
= lock_mount(path
);
1828 if (!(mnt_flags
& MNT_SHRINKABLE
) && !check_mnt(real_mount(path
->mnt
)))
1831 /* Refuse the same filesystem on the same mount point */
1833 if (path
->mnt
->mnt_sb
== newmnt
->mnt
.mnt_sb
&&
1834 path
->mnt
->mnt_root
== path
->dentry
)
1838 if (S_ISLNK(newmnt
->mnt
.mnt_root
->d_inode
->i_mode
))
1841 newmnt
->mnt
.mnt_flags
= mnt_flags
;
1842 err
= graft_tree(newmnt
, path
);
1850 * create a new mount for userspace and request it to be added into the
1853 static int do_new_mount(struct path
*path
, char *type
, int flags
,
1854 int mnt_flags
, char *name
, void *data
)
1856 struct vfsmount
*mnt
;
1862 /* we need capabilities... */
1863 if (!capable(CAP_SYS_ADMIN
))
1866 mnt
= do_kern_mount(type
, flags
, name
, data
);
1868 return PTR_ERR(mnt
);
1870 err
= do_add_mount(real_mount(mnt
), path
, mnt_flags
);
1876 int finish_automount(struct vfsmount
*m
, struct path
*path
)
1878 struct mount
*mnt
= real_mount(m
);
1880 /* The new mount record should have at least 2 refs to prevent it being
1881 * expired before we get a chance to add it
1883 BUG_ON(mnt_get_count(mnt
) < 2);
1885 if (m
->mnt_sb
== path
->mnt
->mnt_sb
&&
1886 m
->mnt_root
== path
->dentry
) {
1891 err
= do_add_mount(mnt
, path
, path
->mnt
->mnt_flags
| MNT_SHRINKABLE
);
1895 /* remove m from any expiration list it may be on */
1896 if (!list_empty(&mnt
->mnt_expire
)) {
1897 down_write(&namespace_sem
);
1898 br_write_lock(&vfsmount_lock
);
1899 list_del_init(&mnt
->mnt_expire
);
1900 br_write_unlock(&vfsmount_lock
);
1901 up_write(&namespace_sem
);
1909 * mnt_set_expiry - Put a mount on an expiration list
1910 * @mnt: The mount to list.
1911 * @expiry_list: The list to add the mount to.
1913 void mnt_set_expiry(struct vfsmount
*mnt
, struct list_head
*expiry_list
)
1915 down_write(&namespace_sem
);
1916 br_write_lock(&vfsmount_lock
);
1918 list_add_tail(&real_mount(mnt
)->mnt_expire
, expiry_list
);
1920 br_write_unlock(&vfsmount_lock
);
1921 up_write(&namespace_sem
);
1923 EXPORT_SYMBOL(mnt_set_expiry
);
1926 * process a list of expirable mountpoints with the intent of discarding any
1927 * mountpoints that aren't in use and haven't been touched since last we came
1930 void mark_mounts_for_expiry(struct list_head
*mounts
)
1932 struct mount
*mnt
, *next
;
1933 LIST_HEAD(graveyard
);
1936 if (list_empty(mounts
))
1939 down_write(&namespace_sem
);
1940 br_write_lock(&vfsmount_lock
);
1942 /* extract from the expiration list every vfsmount that matches the
1943 * following criteria:
1944 * - only referenced by its parent vfsmount
1945 * - still marked for expiry (marked on the last call here; marks are
1946 * cleared by mntput())
1948 list_for_each_entry_safe(mnt
, next
, mounts
, mnt_expire
) {
1949 if (!xchg(&mnt
->mnt_expiry_mark
, 1) ||
1950 propagate_mount_busy(mnt
, 1))
1952 list_move(&mnt
->mnt_expire
, &graveyard
);
1954 while (!list_empty(&graveyard
)) {
1955 mnt
= list_first_entry(&graveyard
, struct mount
, mnt_expire
);
1956 touch_mnt_namespace(mnt
->mnt_ns
);
1957 umount_tree(mnt
, 1, &umounts
);
1959 br_write_unlock(&vfsmount_lock
);
1960 up_write(&namespace_sem
);
1962 release_mounts(&umounts
);
1965 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry
);
1968 * Ripoff of 'select_parent()'
1970 * search the list of submounts for a given mountpoint, and move any
1971 * shrinkable submounts to the 'graveyard' list.
1973 static int select_submounts(struct mount
*parent
, struct list_head
*graveyard
)
1975 struct mount
*this_parent
= parent
;
1976 struct list_head
*next
;
1980 next
= this_parent
->mnt_mounts
.next
;
1982 while (next
!= &this_parent
->mnt_mounts
) {
1983 struct list_head
*tmp
= next
;
1984 struct mount
*mnt
= list_entry(tmp
, struct mount
, mnt_child
);
1987 if (!(mnt
->mnt
.mnt_flags
& MNT_SHRINKABLE
))
1990 * Descend a level if the d_mounts list is non-empty.
1992 if (!list_empty(&mnt
->mnt_mounts
)) {
1997 if (!propagate_mount_busy(mnt
, 1)) {
1998 list_move_tail(&mnt
->mnt_expire
, graveyard
);
2003 * All done at this level ... ascend and resume the search
2005 if (this_parent
!= parent
) {
2006 next
= this_parent
->mnt_child
.next
;
2007 this_parent
= this_parent
->mnt_parent
;
2014 * process a list of expirable mountpoints with the intent of discarding any
2015 * submounts of a specific parent mountpoint
2017 * vfsmount_lock must be held for write
2019 static void shrink_submounts(struct mount
*mnt
, struct list_head
*umounts
)
2021 LIST_HEAD(graveyard
);
2024 /* extract submounts of 'mountpoint' from the expiration list */
2025 while (select_submounts(mnt
, &graveyard
)) {
2026 while (!list_empty(&graveyard
)) {
2027 m
= list_first_entry(&graveyard
, struct mount
,
2029 touch_mnt_namespace(m
->mnt_ns
);
2030 umount_tree(m
, 1, umounts
);
2036 * Some copy_from_user() implementations do not return the exact number of
2037 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2038 * Note that this function differs from copy_from_user() in that it will oops
2039 * on bad values of `to', rather than returning a short copy.
2041 static long exact_copy_from_user(void *to
, const void __user
* from
,
2045 const char __user
*f
= from
;
2048 if (!access_ok(VERIFY_READ
, from
, n
))
2052 if (__get_user(c
, f
)) {
2063 int copy_mount_options(const void __user
* data
, unsigned long *where
)
2073 if (!(page
= __get_free_page(GFP_KERNEL
)))
2076 /* We only care that *some* data at the address the user
2077 * gave us is valid. Just in case, we'll zero
2078 * the remainder of the page.
2080 /* copy_from_user cannot cross TASK_SIZE ! */
2081 size
= TASK_SIZE
- (unsigned long)data
;
2082 if (size
> PAGE_SIZE
)
2085 i
= size
- exact_copy_from_user((void *)page
, data
, size
);
2091 memset((char *)page
+ i
, 0, PAGE_SIZE
- i
);
2096 int copy_mount_string(const void __user
*data
, char **where
)
2105 tmp
= strndup_user(data
, PAGE_SIZE
);
2107 return PTR_ERR(tmp
);
2114 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2115 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2117 * data is a (void *) that can point to any structure up to
2118 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2119 * information (or be NULL).
2121 * Pre-0.97 versions of mount() didn't have a flags word.
2122 * When the flags word was introduced its top half was required
2123 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2124 * Therefore, if this magic number is present, it carries no information
2125 * and must be discarded.
2127 long do_mount(char *dev_name
, char *dir_name
, char *type_page
,
2128 unsigned long flags
, void *data_page
)
2135 if ((flags
& MS_MGC_MSK
) == MS_MGC_VAL
)
2136 flags
&= ~MS_MGC_MSK
;
2138 /* Basic sanity checks */
2140 if (!dir_name
|| !*dir_name
|| !memchr(dir_name
, 0, PAGE_SIZE
))
2144 ((char *)data_page
)[PAGE_SIZE
- 1] = 0;
2146 /* ... and get the mountpoint */
2147 retval
= kern_path(dir_name
, LOOKUP_FOLLOW
, &path
);
2151 retval
= security_sb_mount(dev_name
, &path
,
2152 type_page
, flags
, data_page
);
2156 /* Default to relatime unless overriden */
2157 if (!(flags
& MS_NOATIME
))
2158 mnt_flags
|= MNT_RELATIME
;
2160 /* Separate the per-mountpoint flags */
2161 if (flags
& MS_NOSUID
)
2162 mnt_flags
|= MNT_NOSUID
;
2163 if (flags
& MS_NODEV
)
2164 mnt_flags
|= MNT_NODEV
;
2165 if (flags
& MS_NOEXEC
)
2166 mnt_flags
|= MNT_NOEXEC
;
2167 if (flags
& MS_NOATIME
)
2168 mnt_flags
|= MNT_NOATIME
;
2169 if (flags
& MS_NODIRATIME
)
2170 mnt_flags
|= MNT_NODIRATIME
;
2171 if (flags
& MS_STRICTATIME
)
2172 mnt_flags
&= ~(MNT_RELATIME
| MNT_NOATIME
);
2173 if (flags
& MS_RDONLY
)
2174 mnt_flags
|= MNT_READONLY
;
2176 flags
&= ~(MS_NOSUID
| MS_NOEXEC
| MS_NODEV
| MS_ACTIVE
| MS_BORN
|
2177 MS_NOATIME
| MS_NODIRATIME
| MS_RELATIME
| MS_KERNMOUNT
|
2180 if (flags
& MS_REMOUNT
)
2181 retval
= do_remount(&path
, flags
& ~MS_REMOUNT
, mnt_flags
,
2183 else if (flags
& MS_BIND
)
2184 retval
= do_loopback(&path
, dev_name
, flags
& MS_REC
);
2185 else if (flags
& (MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
2186 retval
= do_change_type(&path
, flags
);
2187 else if (flags
& MS_MOVE
)
2188 retval
= do_move_mount(&path
, dev_name
);
2190 retval
= do_new_mount(&path
, type_page
, flags
, mnt_flags
,
2191 dev_name
, data_page
);
2197 static struct mnt_namespace
*alloc_mnt_ns(void)
2199 struct mnt_namespace
*new_ns
;
2201 new_ns
= kmalloc(sizeof(struct mnt_namespace
), GFP_KERNEL
);
2203 return ERR_PTR(-ENOMEM
);
2204 atomic_set(&new_ns
->count
, 1);
2205 new_ns
->root
= NULL
;
2206 INIT_LIST_HEAD(&new_ns
->list
);
2207 init_waitqueue_head(&new_ns
->poll
);
2212 void mnt_make_longterm(struct vfsmount
*mnt
)
2214 __mnt_make_longterm(real_mount(mnt
));
2217 void mnt_make_shortterm(struct vfsmount
*m
)
2220 struct mount
*mnt
= real_mount(m
);
2221 if (atomic_add_unless(&mnt
->mnt_longterm
, -1, 1))
2223 br_write_lock(&vfsmount_lock
);
2224 atomic_dec(&mnt
->mnt_longterm
);
2225 br_write_unlock(&vfsmount_lock
);
2230 * Allocate a new namespace structure and populate it with contents
2231 * copied from the namespace of the passed in task structure.
2233 static struct mnt_namespace
*dup_mnt_ns(struct mnt_namespace
*mnt_ns
,
2234 struct fs_struct
*fs
)
2236 struct mnt_namespace
*new_ns
;
2237 struct vfsmount
*rootmnt
= NULL
, *pwdmnt
= NULL
;
2238 struct mount
*p
, *q
;
2239 struct mount
*old
= mnt_ns
->root
;
2242 new_ns
= alloc_mnt_ns();
2246 down_write(&namespace_sem
);
2247 /* First pass: copy the tree topology */
2248 new = copy_tree(old
, old
->mnt
.mnt_root
, CL_COPY_ALL
| CL_EXPIRE
);
2250 up_write(&namespace_sem
);
2252 return ERR_PTR(-ENOMEM
);
2255 br_write_lock(&vfsmount_lock
);
2256 list_add_tail(&new_ns
->list
, &new->mnt_list
);
2257 br_write_unlock(&vfsmount_lock
);
2260 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2261 * as belonging to new namespace. We have already acquired a private
2262 * fs_struct, so tsk->fs->lock is not needed.
2268 __mnt_make_longterm(q
);
2270 if (&p
->mnt
== fs
->root
.mnt
) {
2271 fs
->root
.mnt
= mntget(&q
->mnt
);
2272 __mnt_make_longterm(q
);
2273 mnt_make_shortterm(&p
->mnt
);
2276 if (&p
->mnt
== fs
->pwd
.mnt
) {
2277 fs
->pwd
.mnt
= mntget(&q
->mnt
);
2278 __mnt_make_longterm(q
);
2279 mnt_make_shortterm(&p
->mnt
);
2283 p
= next_mnt(p
, old
);
2284 q
= next_mnt(q
, new);
2286 up_write(&namespace_sem
);
2296 struct mnt_namespace
*copy_mnt_ns(unsigned long flags
, struct mnt_namespace
*ns
,
2297 struct fs_struct
*new_fs
)
2299 struct mnt_namespace
*new_ns
;
2304 if (!(flags
& CLONE_NEWNS
))
2307 new_ns
= dup_mnt_ns(ns
, new_fs
);
2314 * create_mnt_ns - creates a private namespace and adds a root filesystem
2315 * @mnt: pointer to the new root filesystem mountpoint
2317 static struct mnt_namespace
*create_mnt_ns(struct vfsmount
*m
)
2319 struct mnt_namespace
*new_ns
= alloc_mnt_ns();
2320 if (!IS_ERR(new_ns
)) {
2321 struct mount
*mnt
= real_mount(m
);
2322 mnt
->mnt_ns
= new_ns
;
2323 __mnt_make_longterm(mnt
);
2325 list_add(&new_ns
->list
, &mnt
->mnt_list
);
2332 struct dentry
*mount_subtree(struct vfsmount
*mnt
, const char *name
)
2334 struct mnt_namespace
*ns
;
2335 struct super_block
*s
;
2339 ns
= create_mnt_ns(mnt
);
2341 return ERR_CAST(ns
);
2343 err
= vfs_path_lookup(mnt
->mnt_root
, mnt
,
2344 name
, LOOKUP_FOLLOW
|LOOKUP_AUTOMOUNT
, &path
);
2349 return ERR_PTR(err
);
2351 /* trade a vfsmount reference for active sb one */
2352 s
= path
.mnt
->mnt_sb
;
2353 atomic_inc(&s
->s_active
);
2355 /* lock the sucker */
2356 down_write(&s
->s_umount
);
2357 /* ... and return the root of (sub)tree on it */
2360 EXPORT_SYMBOL(mount_subtree
);
2362 SYSCALL_DEFINE5(mount
, char __user
*, dev_name
, char __user
*, dir_name
,
2363 char __user
*, type
, unsigned long, flags
, void __user
*, data
)
2369 unsigned long data_page
;
2371 ret
= copy_mount_string(type
, &kernel_type
);
2375 kernel_dir
= getname(dir_name
);
2376 if (IS_ERR(kernel_dir
)) {
2377 ret
= PTR_ERR(kernel_dir
);
2381 ret
= copy_mount_string(dev_name
, &kernel_dev
);
2385 ret
= copy_mount_options(data
, &data_page
);
2389 ret
= do_mount(kernel_dev
, kernel_dir
, kernel_type
, flags
,
2390 (void *) data_page
);
2392 free_page(data_page
);
2396 putname(kernel_dir
);
2404 * Return true if path is reachable from root
2406 * namespace_sem or vfsmount_lock is held
2408 bool is_path_reachable(struct mount
*mnt
, struct dentry
*dentry
,
2409 const struct path
*root
)
2411 while (&mnt
->mnt
!= root
->mnt
&& mnt_has_parent(mnt
)) {
2412 dentry
= mnt
->mnt_mountpoint
;
2413 mnt
= mnt
->mnt_parent
;
2415 return &mnt
->mnt
== root
->mnt
&& is_subdir(dentry
, root
->dentry
);
2418 int path_is_under(struct path
*path1
, struct path
*path2
)
2421 br_read_lock(&vfsmount_lock
);
2422 res
= is_path_reachable(real_mount(path1
->mnt
), path1
->dentry
, path2
);
2423 br_read_unlock(&vfsmount_lock
);
2426 EXPORT_SYMBOL(path_is_under
);
2429 * pivot_root Semantics:
2430 * Moves the root file system of the current process to the directory put_old,
2431 * makes new_root as the new root file system of the current process, and sets
2432 * root/cwd of all processes which had them on the current root to new_root.
2435 * The new_root and put_old must be directories, and must not be on the
2436 * same file system as the current process root. The put_old must be
2437 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2438 * pointed to by put_old must yield the same directory as new_root. No other
2439 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2441 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2442 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2443 * in this situation.
2446 * - we don't move root/cwd if they are not at the root (reason: if something
2447 * cared enough to change them, it's probably wrong to force them elsewhere)
2448 * - it's okay to pick a root that isn't the root of a file system, e.g.
2449 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2450 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2453 SYSCALL_DEFINE2(pivot_root
, const char __user
*, new_root
,
2454 const char __user
*, put_old
)
2456 struct path
new, old
, parent_path
, root_parent
, root
;
2457 struct mount
*new_mnt
, *root_mnt
;
2460 if (!capable(CAP_SYS_ADMIN
))
2463 error
= user_path_dir(new_root
, &new);
2467 error
= user_path_dir(put_old
, &old
);
2471 error
= security_sb_pivotroot(&old
, &new);
2475 get_fs_root(current
->fs
, &root
);
2476 error
= lock_mount(&old
);
2481 new_mnt
= real_mount(new.mnt
);
2482 root_mnt
= real_mount(root
.mnt
);
2483 if (IS_MNT_SHARED(real_mount(old
.mnt
)) ||
2484 IS_MNT_SHARED(new_mnt
->mnt_parent
) ||
2485 IS_MNT_SHARED(root_mnt
->mnt_parent
))
2487 if (!check_mnt(root_mnt
) || !check_mnt(new_mnt
))
2490 if (d_unlinked(new.dentry
))
2492 if (d_unlinked(old
.dentry
))
2495 if (new.mnt
== root
.mnt
||
2496 old
.mnt
== root
.mnt
)
2497 goto out4
; /* loop, on the same file system */
2499 if (root
.mnt
->mnt_root
!= root
.dentry
)
2500 goto out4
; /* not a mountpoint */
2501 if (!mnt_has_parent(root_mnt
))
2502 goto out4
; /* not attached */
2503 if (new.mnt
->mnt_root
!= new.dentry
)
2504 goto out4
; /* not a mountpoint */
2505 if (!mnt_has_parent(new_mnt
))
2506 goto out4
; /* not attached */
2507 /* make sure we can reach put_old from new_root */
2508 if (!is_path_reachable(real_mount(old
.mnt
), old
.dentry
, &new))
2510 br_write_lock(&vfsmount_lock
);
2511 detach_mnt(new_mnt
, &parent_path
);
2512 detach_mnt(root_mnt
, &root_parent
);
2513 /* mount old root on put_old */
2514 attach_mnt(root_mnt
, &old
);
2515 /* mount new_root on / */
2516 attach_mnt(new_mnt
, &root_parent
);
2517 touch_mnt_namespace(current
->nsproxy
->mnt_ns
);
2518 br_write_unlock(&vfsmount_lock
);
2519 chroot_fs_refs(&root
, &new);
2524 path_put(&root_parent
);
2525 path_put(&parent_path
);
2537 static void __init
init_mount_tree(void)
2539 struct vfsmount
*mnt
;
2540 struct mnt_namespace
*ns
;
2543 mnt
= do_kern_mount("rootfs", 0, "rootfs", NULL
);
2545 panic("Can't create rootfs");
2547 ns
= create_mnt_ns(mnt
);
2549 panic("Can't allocate initial namespace");
2551 init_task
.nsproxy
->mnt_ns
= ns
;
2555 root
.dentry
= mnt
->mnt_root
;
2557 set_fs_pwd(current
->fs
, &root
);
2558 set_fs_root(current
->fs
, &root
);
2561 void __init
mnt_init(void)
2566 init_rwsem(&namespace_sem
);
2568 mnt_cache
= kmem_cache_create("mnt_cache", sizeof(struct mount
),
2569 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
2571 mount_hashtable
= (struct list_head
*)__get_free_page(GFP_ATOMIC
);
2573 if (!mount_hashtable
)
2574 panic("Failed to allocate mount hash table\n");
2576 printk(KERN_INFO
"Mount-cache hash table entries: %lu\n", HASH_SIZE
);
2578 for (u
= 0; u
< HASH_SIZE
; u
++)
2579 INIT_LIST_HEAD(&mount_hashtable
[u
]);
2581 br_lock_init(&vfsmount_lock
);
2585 printk(KERN_WARNING
"%s: sysfs_init error: %d\n",
2587 fs_kobj
= kobject_create_and_add("fs", NULL
);
2589 printk(KERN_WARNING
"%s: kobj create error\n", __func__
);
2594 void put_mnt_ns(struct mnt_namespace
*ns
)
2596 LIST_HEAD(umount_list
);
2598 if (!atomic_dec_and_test(&ns
->count
))
2600 down_write(&namespace_sem
);
2601 br_write_lock(&vfsmount_lock
);
2602 umount_tree(ns
->root
, 0, &umount_list
);
2603 br_write_unlock(&vfsmount_lock
);
2604 up_write(&namespace_sem
);
2605 release_mounts(&umount_list
);
2609 struct vfsmount
*kern_mount_data(struct file_system_type
*type
, void *data
)
2611 struct vfsmount
*mnt
;
2612 mnt
= vfs_kern_mount(type
, MS_KERNMOUNT
, type
->name
, data
);
2615 * it is a longterm mount, don't release mnt until
2616 * we unmount before file sys is unregistered
2618 mnt_make_longterm(mnt
);
2622 EXPORT_SYMBOL_GPL(kern_mount_data
);
2624 void kern_unmount(struct vfsmount
*mnt
)
2626 /* release long term mount so mount point can be released */
2627 if (!IS_ERR_OR_NULL(mnt
)) {
2628 mnt_make_shortterm(mnt
);
2632 EXPORT_SYMBOL(kern_unmount
);
2634 bool our_mnt(struct vfsmount
*mnt
)
2636 return check_mnt(real_mount(mnt
));