reiserfs: delay reiserfs lock until journal initialization
[linux-2.6.git] / mm / migrate.c
blob89ea0854332ec3fdf53123bbf7fe5f1de94f6599
1 /*
2 * Memory Migration functionality - linux/mm/migration.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/gfp.h>
38 #include <asm/tlbflush.h>
40 #include "internal.h"
43 * migrate_prep() needs to be called before we start compiling a list of pages
44 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
45 * undesirable, use migrate_prep_local()
47 int migrate_prep(void)
50 * Clear the LRU lists so pages can be isolated.
51 * Note that pages may be moved off the LRU after we have
52 * drained them. Those pages will fail to migrate like other
53 * pages that may be busy.
55 lru_add_drain_all();
57 return 0;
60 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
61 int migrate_prep_local(void)
63 lru_add_drain();
65 return 0;
69 * Add isolated pages on the list back to the LRU under page lock
70 * to avoid leaking evictable pages back onto unevictable list.
72 void putback_lru_pages(struct list_head *l)
74 struct page *page;
75 struct page *page2;
77 list_for_each_entry_safe(page, page2, l, lru) {
78 list_del(&page->lru);
79 dec_zone_page_state(page, NR_ISOLATED_ANON +
80 page_is_file_cache(page));
81 putback_lru_page(page);
86 * Restore a potential migration pte to a working pte entry
88 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
89 unsigned long addr, void *old)
91 struct mm_struct *mm = vma->vm_mm;
92 swp_entry_t entry;
93 pgd_t *pgd;
94 pud_t *pud;
95 pmd_t *pmd;
96 pte_t *ptep, pte;
97 spinlock_t *ptl;
99 if (unlikely(PageHuge(new))) {
100 ptep = huge_pte_offset(mm, addr);
101 if (!ptep)
102 goto out;
103 ptl = &mm->page_table_lock;
104 } else {
105 pgd = pgd_offset(mm, addr);
106 if (!pgd_present(*pgd))
107 goto out;
109 pud = pud_offset(pgd, addr);
110 if (!pud_present(*pud))
111 goto out;
113 pmd = pmd_offset(pud, addr);
114 if (pmd_trans_huge(*pmd))
115 goto out;
116 if (!pmd_present(*pmd))
117 goto out;
119 ptep = pte_offset_map(pmd, addr);
122 * Peek to check is_swap_pte() before taking ptlock? No, we
123 * can race mremap's move_ptes(), which skips anon_vma lock.
126 ptl = pte_lockptr(mm, pmd);
129 spin_lock(ptl);
130 pte = *ptep;
131 if (!is_swap_pte(pte))
132 goto unlock;
134 entry = pte_to_swp_entry(pte);
136 if (!is_migration_entry(entry) ||
137 migration_entry_to_page(entry) != old)
138 goto unlock;
140 get_page(new);
141 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
142 if (is_write_migration_entry(entry))
143 pte = pte_mkwrite(pte);
144 #ifdef CONFIG_HUGETLB_PAGE
145 if (PageHuge(new))
146 pte = pte_mkhuge(pte);
147 #endif
148 flush_cache_page(vma, addr, pte_pfn(pte));
149 set_pte_at(mm, addr, ptep, pte);
151 if (PageHuge(new)) {
152 if (PageAnon(new))
153 hugepage_add_anon_rmap(new, vma, addr);
154 else
155 page_dup_rmap(new);
156 } else if (PageAnon(new))
157 page_add_anon_rmap(new, vma, addr);
158 else
159 page_add_file_rmap(new);
161 /* No need to invalidate - it was non-present before */
162 update_mmu_cache(vma, addr, ptep);
163 unlock:
164 pte_unmap_unlock(ptep, ptl);
165 out:
166 return SWAP_AGAIN;
170 * Get rid of all migration entries and replace them by
171 * references to the indicated page.
173 static void remove_migration_ptes(struct page *old, struct page *new)
175 rmap_walk(new, remove_migration_pte, old);
179 * Something used the pte of a page under migration. We need to
180 * get to the page and wait until migration is finished.
181 * When we return from this function the fault will be retried.
183 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
184 unsigned long address)
186 pte_t *ptep, pte;
187 spinlock_t *ptl;
188 swp_entry_t entry;
189 struct page *page;
191 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
192 pte = *ptep;
193 if (!is_swap_pte(pte))
194 goto out;
196 entry = pte_to_swp_entry(pte);
197 if (!is_migration_entry(entry))
198 goto out;
200 page = migration_entry_to_page(entry);
203 * Once radix-tree replacement of page migration started, page_count
204 * *must* be zero. And, we don't want to call wait_on_page_locked()
205 * against a page without get_page().
206 * So, we use get_page_unless_zero(), here. Even failed, page fault
207 * will occur again.
209 if (!get_page_unless_zero(page))
210 goto out;
211 pte_unmap_unlock(ptep, ptl);
212 wait_on_page_locked(page);
213 put_page(page);
214 return;
215 out:
216 pte_unmap_unlock(ptep, ptl);
220 * Replace the page in the mapping.
222 * The number of remaining references must be:
223 * 1 for anonymous pages without a mapping
224 * 2 for pages with a mapping
225 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
227 static int migrate_page_move_mapping(struct address_space *mapping,
228 struct page *newpage, struct page *page)
230 int expected_count;
231 void **pslot;
233 if (!mapping) {
234 /* Anonymous page without mapping */
235 if (page_count(page) != 1)
236 return -EAGAIN;
237 return 0;
240 spin_lock_irq(&mapping->tree_lock);
242 pslot = radix_tree_lookup_slot(&mapping->page_tree,
243 page_index(page));
245 expected_count = 2 + page_has_private(page);
246 if (page_count(page) != expected_count ||
247 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
248 spin_unlock_irq(&mapping->tree_lock);
249 return -EAGAIN;
252 if (!page_freeze_refs(page, expected_count)) {
253 spin_unlock_irq(&mapping->tree_lock);
254 return -EAGAIN;
258 * Now we know that no one else is looking at the page.
260 get_page(newpage); /* add cache reference */
261 if (PageSwapCache(page)) {
262 SetPageSwapCache(newpage);
263 set_page_private(newpage, page_private(page));
266 radix_tree_replace_slot(pslot, newpage);
269 * Drop cache reference from old page by unfreezing
270 * to one less reference.
271 * We know this isn't the last reference.
273 page_unfreeze_refs(page, expected_count - 1);
276 * If moved to a different zone then also account
277 * the page for that zone. Other VM counters will be
278 * taken care of when we establish references to the
279 * new page and drop references to the old page.
281 * Note that anonymous pages are accounted for
282 * via NR_FILE_PAGES and NR_ANON_PAGES if they
283 * are mapped to swap space.
285 __dec_zone_page_state(page, NR_FILE_PAGES);
286 __inc_zone_page_state(newpage, NR_FILE_PAGES);
287 if (!PageSwapCache(page) && PageSwapBacked(page)) {
288 __dec_zone_page_state(page, NR_SHMEM);
289 __inc_zone_page_state(newpage, NR_SHMEM);
291 spin_unlock_irq(&mapping->tree_lock);
293 return 0;
297 * The expected number of remaining references is the same as that
298 * of migrate_page_move_mapping().
300 int migrate_huge_page_move_mapping(struct address_space *mapping,
301 struct page *newpage, struct page *page)
303 int expected_count;
304 void **pslot;
306 if (!mapping) {
307 if (page_count(page) != 1)
308 return -EAGAIN;
309 return 0;
312 spin_lock_irq(&mapping->tree_lock);
314 pslot = radix_tree_lookup_slot(&mapping->page_tree,
315 page_index(page));
317 expected_count = 2 + page_has_private(page);
318 if (page_count(page) != expected_count ||
319 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
320 spin_unlock_irq(&mapping->tree_lock);
321 return -EAGAIN;
324 if (!page_freeze_refs(page, expected_count)) {
325 spin_unlock_irq(&mapping->tree_lock);
326 return -EAGAIN;
329 get_page(newpage);
331 radix_tree_replace_slot(pslot, newpage);
333 page_unfreeze_refs(page, expected_count - 1);
335 spin_unlock_irq(&mapping->tree_lock);
336 return 0;
340 * Copy the page to its new location
342 void migrate_page_copy(struct page *newpage, struct page *page)
344 if (PageHuge(page))
345 copy_huge_page(newpage, page);
346 else
347 copy_highpage(newpage, page);
349 if (PageError(page))
350 SetPageError(newpage);
351 if (PageReferenced(page))
352 SetPageReferenced(newpage);
353 if (PageUptodate(page))
354 SetPageUptodate(newpage);
355 if (TestClearPageActive(page)) {
356 VM_BUG_ON(PageUnevictable(page));
357 SetPageActive(newpage);
358 } else if (TestClearPageUnevictable(page))
359 SetPageUnevictable(newpage);
360 if (PageChecked(page))
361 SetPageChecked(newpage);
362 if (PageMappedToDisk(page))
363 SetPageMappedToDisk(newpage);
365 if (PageDirty(page)) {
366 clear_page_dirty_for_io(page);
368 * Want to mark the page and the radix tree as dirty, and
369 * redo the accounting that clear_page_dirty_for_io undid,
370 * but we can't use set_page_dirty because that function
371 * is actually a signal that all of the page has become dirty.
372 * Whereas only part of our page may be dirty.
374 __set_page_dirty_nobuffers(newpage);
377 mlock_migrate_page(newpage, page);
378 ksm_migrate_page(newpage, page);
380 ClearPageSwapCache(page);
381 ClearPagePrivate(page);
382 set_page_private(page, 0);
383 page->mapping = NULL;
386 * If any waiters have accumulated on the new page then
387 * wake them up.
389 if (PageWriteback(newpage))
390 end_page_writeback(newpage);
393 /************************************************************
394 * Migration functions
395 ***********************************************************/
397 /* Always fail migration. Used for mappings that are not movable */
398 int fail_migrate_page(struct address_space *mapping,
399 struct page *newpage, struct page *page)
401 return -EIO;
403 EXPORT_SYMBOL(fail_migrate_page);
406 * Common logic to directly migrate a single page suitable for
407 * pages that do not use PagePrivate/PagePrivate2.
409 * Pages are locked upon entry and exit.
411 int migrate_page(struct address_space *mapping,
412 struct page *newpage, struct page *page)
414 int rc;
416 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
418 rc = migrate_page_move_mapping(mapping, newpage, page);
420 if (rc)
421 return rc;
423 migrate_page_copy(newpage, page);
424 return 0;
426 EXPORT_SYMBOL(migrate_page);
428 #ifdef CONFIG_BLOCK
430 * Migration function for pages with buffers. This function can only be used
431 * if the underlying filesystem guarantees that no other references to "page"
432 * exist.
434 int buffer_migrate_page(struct address_space *mapping,
435 struct page *newpage, struct page *page)
437 struct buffer_head *bh, *head;
438 int rc;
440 if (!page_has_buffers(page))
441 return migrate_page(mapping, newpage, page);
443 head = page_buffers(page);
445 rc = migrate_page_move_mapping(mapping, newpage, page);
447 if (rc)
448 return rc;
450 bh = head;
451 do {
452 get_bh(bh);
453 lock_buffer(bh);
454 bh = bh->b_this_page;
456 } while (bh != head);
458 ClearPagePrivate(page);
459 set_page_private(newpage, page_private(page));
460 set_page_private(page, 0);
461 put_page(page);
462 get_page(newpage);
464 bh = head;
465 do {
466 set_bh_page(bh, newpage, bh_offset(bh));
467 bh = bh->b_this_page;
469 } while (bh != head);
471 SetPagePrivate(newpage);
473 migrate_page_copy(newpage, page);
475 bh = head;
476 do {
477 unlock_buffer(bh);
478 put_bh(bh);
479 bh = bh->b_this_page;
481 } while (bh != head);
483 return 0;
485 EXPORT_SYMBOL(buffer_migrate_page);
486 #endif
489 * Writeback a page to clean the dirty state
491 static int writeout(struct address_space *mapping, struct page *page)
493 struct writeback_control wbc = {
494 .sync_mode = WB_SYNC_NONE,
495 .nr_to_write = 1,
496 .range_start = 0,
497 .range_end = LLONG_MAX,
498 .for_reclaim = 1
500 int rc;
502 if (!mapping->a_ops->writepage)
503 /* No write method for the address space */
504 return -EINVAL;
506 if (!clear_page_dirty_for_io(page))
507 /* Someone else already triggered a write */
508 return -EAGAIN;
511 * A dirty page may imply that the underlying filesystem has
512 * the page on some queue. So the page must be clean for
513 * migration. Writeout may mean we loose the lock and the
514 * page state is no longer what we checked for earlier.
515 * At this point we know that the migration attempt cannot
516 * be successful.
518 remove_migration_ptes(page, page);
520 rc = mapping->a_ops->writepage(page, &wbc);
522 if (rc != AOP_WRITEPAGE_ACTIVATE)
523 /* unlocked. Relock */
524 lock_page(page);
526 return (rc < 0) ? -EIO : -EAGAIN;
530 * Default handling if a filesystem does not provide a migration function.
532 static int fallback_migrate_page(struct address_space *mapping,
533 struct page *newpage, struct page *page)
535 if (PageDirty(page))
536 return writeout(mapping, page);
539 * Buffers may be managed in a filesystem specific way.
540 * We must have no buffers or drop them.
542 if (page_has_private(page) &&
543 !try_to_release_page(page, GFP_KERNEL))
544 return -EAGAIN;
546 return migrate_page(mapping, newpage, page);
550 * Move a page to a newly allocated page
551 * The page is locked and all ptes have been successfully removed.
553 * The new page will have replaced the old page if this function
554 * is successful.
556 * Return value:
557 * < 0 - error code
558 * == 0 - success
560 static int move_to_new_page(struct page *newpage, struct page *page,
561 int remap_swapcache, bool sync)
563 struct address_space *mapping;
564 int rc;
567 * Block others from accessing the page when we get around to
568 * establishing additional references. We are the only one
569 * holding a reference to the new page at this point.
571 if (!trylock_page(newpage))
572 BUG();
574 /* Prepare mapping for the new page.*/
575 newpage->index = page->index;
576 newpage->mapping = page->mapping;
577 if (PageSwapBacked(page))
578 SetPageSwapBacked(newpage);
580 mapping = page_mapping(page);
581 if (!mapping)
582 rc = migrate_page(mapping, newpage, page);
583 else {
585 * Do not writeback pages if !sync and migratepage is
586 * not pointing to migrate_page() which is nonblocking
587 * (swapcache/tmpfs uses migratepage = migrate_page).
589 if (PageDirty(page) && !sync &&
590 mapping->a_ops->migratepage != migrate_page)
591 rc = -EBUSY;
592 else if (mapping->a_ops->migratepage)
594 * Most pages have a mapping and most filesystems
595 * should provide a migration function. Anonymous
596 * pages are part of swap space which also has its
597 * own migration function. This is the most common
598 * path for page migration.
600 rc = mapping->a_ops->migratepage(mapping,
601 newpage, page);
602 else
603 rc = fallback_migrate_page(mapping, newpage, page);
606 if (rc) {
607 newpage->mapping = NULL;
608 } else {
609 if (remap_swapcache)
610 remove_migration_ptes(page, newpage);
613 unlock_page(newpage);
615 return rc;
618 static int __unmap_and_move(struct page *page, struct page *newpage,
619 int force, bool offlining, bool sync)
621 int rc = -EAGAIN;
622 int remap_swapcache = 1;
623 int charge = 0;
624 struct mem_cgroup *mem;
625 struct anon_vma *anon_vma = NULL;
627 if (!trylock_page(page)) {
628 if (!force || !sync)
629 goto out;
632 * It's not safe for direct compaction to call lock_page.
633 * For example, during page readahead pages are added locked
634 * to the LRU. Later, when the IO completes the pages are
635 * marked uptodate and unlocked. However, the queueing
636 * could be merging multiple pages for one bio (e.g.
637 * mpage_readpages). If an allocation happens for the
638 * second or third page, the process can end up locking
639 * the same page twice and deadlocking. Rather than
640 * trying to be clever about what pages can be locked,
641 * avoid the use of lock_page for direct compaction
642 * altogether.
644 if (current->flags & PF_MEMALLOC)
645 goto out;
647 lock_page(page);
651 * Only memory hotplug's offline_pages() caller has locked out KSM,
652 * and can safely migrate a KSM page. The other cases have skipped
653 * PageKsm along with PageReserved - but it is only now when we have
654 * the page lock that we can be certain it will not go KSM beneath us
655 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees
656 * its pagecount raised, but only here do we take the page lock which
657 * serializes that).
659 if (PageKsm(page) && !offlining) {
660 rc = -EBUSY;
661 goto unlock;
664 /* charge against new page */
665 charge = mem_cgroup_prepare_migration(page, newpage, &mem, GFP_KERNEL);
666 if (charge == -ENOMEM) {
667 rc = -ENOMEM;
668 goto unlock;
670 BUG_ON(charge);
672 if (PageWriteback(page)) {
674 * For !sync, there is no point retrying as the retry loop
675 * is expected to be too short for PageWriteback to be cleared
677 if (!sync) {
678 rc = -EBUSY;
679 goto uncharge;
681 if (!force)
682 goto uncharge;
683 wait_on_page_writeback(page);
686 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
687 * we cannot notice that anon_vma is freed while we migrates a page.
688 * This get_anon_vma() delays freeing anon_vma pointer until the end
689 * of migration. File cache pages are no problem because of page_lock()
690 * File Caches may use write_page() or lock_page() in migration, then,
691 * just care Anon page here.
693 if (PageAnon(page)) {
695 * Only page_lock_anon_vma() understands the subtleties of
696 * getting a hold on an anon_vma from outside one of its mms.
698 anon_vma = page_get_anon_vma(page);
699 if (anon_vma) {
701 * Anon page
703 } else if (PageSwapCache(page)) {
705 * We cannot be sure that the anon_vma of an unmapped
706 * swapcache page is safe to use because we don't
707 * know in advance if the VMA that this page belonged
708 * to still exists. If the VMA and others sharing the
709 * data have been freed, then the anon_vma could
710 * already be invalid.
712 * To avoid this possibility, swapcache pages get
713 * migrated but are not remapped when migration
714 * completes
716 remap_swapcache = 0;
717 } else {
718 goto uncharge;
723 * Corner case handling:
724 * 1. When a new swap-cache page is read into, it is added to the LRU
725 * and treated as swapcache but it has no rmap yet.
726 * Calling try_to_unmap() against a page->mapping==NULL page will
727 * trigger a BUG. So handle it here.
728 * 2. An orphaned page (see truncate_complete_page) might have
729 * fs-private metadata. The page can be picked up due to memory
730 * offlining. Everywhere else except page reclaim, the page is
731 * invisible to the vm, so the page can not be migrated. So try to
732 * free the metadata, so the page can be freed.
734 if (!page->mapping) {
735 VM_BUG_ON(PageAnon(page));
736 if (page_has_private(page)) {
737 try_to_free_buffers(page);
738 goto uncharge;
740 goto skip_unmap;
743 /* Establish migration ptes or remove ptes */
744 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
746 skip_unmap:
747 if (!page_mapped(page))
748 rc = move_to_new_page(newpage, page, remap_swapcache, sync);
750 if (rc && remap_swapcache)
751 remove_migration_ptes(page, page);
753 /* Drop an anon_vma reference if we took one */
754 if (anon_vma)
755 put_anon_vma(anon_vma);
757 uncharge:
758 if (!charge)
759 mem_cgroup_end_migration(mem, page, newpage, rc == 0);
760 unlock:
761 unlock_page(page);
762 out:
763 return rc;
767 * Obtain the lock on page, remove all ptes and migrate the page
768 * to the newly allocated page in newpage.
770 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
771 struct page *page, int force, bool offlining, bool sync)
773 int rc = 0;
774 int *result = NULL;
775 struct page *newpage = get_new_page(page, private, &result);
777 if (!newpage)
778 return -ENOMEM;
780 if (page_count(page) == 1) {
781 /* page was freed from under us. So we are done. */
782 goto out;
785 if (unlikely(PageTransHuge(page)))
786 if (unlikely(split_huge_page(page)))
787 goto out;
789 rc = __unmap_and_move(page, newpage, force, offlining, sync);
790 out:
791 if (rc != -EAGAIN) {
793 * A page that has been migrated has all references
794 * removed and will be freed. A page that has not been
795 * migrated will have kepts its references and be
796 * restored.
798 list_del(&page->lru);
799 dec_zone_page_state(page, NR_ISOLATED_ANON +
800 page_is_file_cache(page));
801 putback_lru_page(page);
804 * Move the new page to the LRU. If migration was not successful
805 * then this will free the page.
807 putback_lru_page(newpage);
808 if (result) {
809 if (rc)
810 *result = rc;
811 else
812 *result = page_to_nid(newpage);
814 return rc;
818 * Counterpart of unmap_and_move_page() for hugepage migration.
820 * This function doesn't wait the completion of hugepage I/O
821 * because there is no race between I/O and migration for hugepage.
822 * Note that currently hugepage I/O occurs only in direct I/O
823 * where no lock is held and PG_writeback is irrelevant,
824 * and writeback status of all subpages are counted in the reference
825 * count of the head page (i.e. if all subpages of a 2MB hugepage are
826 * under direct I/O, the reference of the head page is 512 and a bit more.)
827 * This means that when we try to migrate hugepage whose subpages are
828 * doing direct I/O, some references remain after try_to_unmap() and
829 * hugepage migration fails without data corruption.
831 * There is also no race when direct I/O is issued on the page under migration,
832 * because then pte is replaced with migration swap entry and direct I/O code
833 * will wait in the page fault for migration to complete.
835 static int unmap_and_move_huge_page(new_page_t get_new_page,
836 unsigned long private, struct page *hpage,
837 int force, bool offlining, bool sync)
839 int rc = 0;
840 int *result = NULL;
841 struct page *new_hpage = get_new_page(hpage, private, &result);
842 struct anon_vma *anon_vma = NULL;
844 if (!new_hpage)
845 return -ENOMEM;
847 rc = -EAGAIN;
849 if (!trylock_page(hpage)) {
850 if (!force || !sync)
851 goto out;
852 lock_page(hpage);
855 if (PageAnon(hpage))
856 anon_vma = page_get_anon_vma(hpage);
858 try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
860 if (!page_mapped(hpage))
861 rc = move_to_new_page(new_hpage, hpage, 1, sync);
863 if (rc)
864 remove_migration_ptes(hpage, hpage);
866 if (anon_vma)
867 put_anon_vma(anon_vma);
868 unlock_page(hpage);
870 out:
871 if (rc != -EAGAIN) {
872 list_del(&hpage->lru);
873 put_page(hpage);
876 put_page(new_hpage);
878 if (result) {
879 if (rc)
880 *result = rc;
881 else
882 *result = page_to_nid(new_hpage);
884 return rc;
888 * migrate_pages
890 * The function takes one list of pages to migrate and a function
891 * that determines from the page to be migrated and the private data
892 * the target of the move and allocates the page.
894 * The function returns after 10 attempts or if no pages
895 * are movable anymore because to has become empty
896 * or no retryable pages exist anymore.
897 * Caller should call putback_lru_pages to return pages to the LRU
898 * or free list only if ret != 0.
900 * Return: Number of pages not migrated or error code.
902 int migrate_pages(struct list_head *from,
903 new_page_t get_new_page, unsigned long private, bool offlining,
904 bool sync)
906 int retry = 1;
907 int nr_failed = 0;
908 int pass = 0;
909 struct page *page;
910 struct page *page2;
911 int swapwrite = current->flags & PF_SWAPWRITE;
912 int rc;
914 if (!swapwrite)
915 current->flags |= PF_SWAPWRITE;
917 for(pass = 0; pass < 10 && retry; pass++) {
918 retry = 0;
920 list_for_each_entry_safe(page, page2, from, lru) {
921 cond_resched();
923 rc = unmap_and_move(get_new_page, private,
924 page, pass > 2, offlining,
925 sync);
927 switch(rc) {
928 case -ENOMEM:
929 goto out;
930 case -EAGAIN:
931 retry++;
932 break;
933 case 0:
934 break;
935 default:
936 /* Permanent failure */
937 nr_failed++;
938 break;
942 rc = 0;
943 out:
944 if (!swapwrite)
945 current->flags &= ~PF_SWAPWRITE;
947 if (rc)
948 return rc;
950 return nr_failed + retry;
953 int migrate_huge_pages(struct list_head *from,
954 new_page_t get_new_page, unsigned long private, bool offlining,
955 bool sync)
957 int retry = 1;
958 int nr_failed = 0;
959 int pass = 0;
960 struct page *page;
961 struct page *page2;
962 int rc;
964 for (pass = 0; pass < 10 && retry; pass++) {
965 retry = 0;
967 list_for_each_entry_safe(page, page2, from, lru) {
968 cond_resched();
970 rc = unmap_and_move_huge_page(get_new_page,
971 private, page, pass > 2, offlining,
972 sync);
974 switch(rc) {
975 case -ENOMEM:
976 goto out;
977 case -EAGAIN:
978 retry++;
979 break;
980 case 0:
981 break;
982 default:
983 /* Permanent failure */
984 nr_failed++;
985 break;
989 rc = 0;
990 out:
991 if (rc)
992 return rc;
994 return nr_failed + retry;
997 #ifdef CONFIG_NUMA
999 * Move a list of individual pages
1001 struct page_to_node {
1002 unsigned long addr;
1003 struct page *page;
1004 int node;
1005 int status;
1008 static struct page *new_page_node(struct page *p, unsigned long private,
1009 int **result)
1011 struct page_to_node *pm = (struct page_to_node *)private;
1013 while (pm->node != MAX_NUMNODES && pm->page != p)
1014 pm++;
1016 if (pm->node == MAX_NUMNODES)
1017 return NULL;
1019 *result = &pm->status;
1021 return alloc_pages_exact_node(pm->node,
1022 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
1026 * Move a set of pages as indicated in the pm array. The addr
1027 * field must be set to the virtual address of the page to be moved
1028 * and the node number must contain a valid target node.
1029 * The pm array ends with node = MAX_NUMNODES.
1031 static int do_move_page_to_node_array(struct mm_struct *mm,
1032 struct page_to_node *pm,
1033 int migrate_all)
1035 int err;
1036 struct page_to_node *pp;
1037 LIST_HEAD(pagelist);
1039 down_read(&mm->mmap_sem);
1042 * Build a list of pages to migrate
1044 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1045 struct vm_area_struct *vma;
1046 struct page *page;
1048 err = -EFAULT;
1049 vma = find_vma(mm, pp->addr);
1050 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1051 goto set_status;
1053 page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1055 err = PTR_ERR(page);
1056 if (IS_ERR(page))
1057 goto set_status;
1059 err = -ENOENT;
1060 if (!page)
1061 goto set_status;
1063 /* Use PageReserved to check for zero page */
1064 if (PageReserved(page) || PageKsm(page))
1065 goto put_and_set;
1067 pp->page = page;
1068 err = page_to_nid(page);
1070 if (err == pp->node)
1072 * Node already in the right place
1074 goto put_and_set;
1076 err = -EACCES;
1077 if (page_mapcount(page) > 1 &&
1078 !migrate_all)
1079 goto put_and_set;
1081 err = isolate_lru_page(page);
1082 if (!err) {
1083 list_add_tail(&page->lru, &pagelist);
1084 inc_zone_page_state(page, NR_ISOLATED_ANON +
1085 page_is_file_cache(page));
1087 put_and_set:
1089 * Either remove the duplicate refcount from
1090 * isolate_lru_page() or drop the page ref if it was
1091 * not isolated.
1093 put_page(page);
1094 set_status:
1095 pp->status = err;
1098 err = 0;
1099 if (!list_empty(&pagelist)) {
1100 err = migrate_pages(&pagelist, new_page_node,
1101 (unsigned long)pm, 0, true);
1102 if (err)
1103 putback_lru_pages(&pagelist);
1106 up_read(&mm->mmap_sem);
1107 return err;
1111 * Migrate an array of page address onto an array of nodes and fill
1112 * the corresponding array of status.
1114 static int do_pages_move(struct mm_struct *mm, struct task_struct *task,
1115 unsigned long nr_pages,
1116 const void __user * __user *pages,
1117 const int __user *nodes,
1118 int __user *status, int flags)
1120 struct page_to_node *pm;
1121 nodemask_t task_nodes;
1122 unsigned long chunk_nr_pages;
1123 unsigned long chunk_start;
1124 int err;
1126 task_nodes = cpuset_mems_allowed(task);
1128 err = -ENOMEM;
1129 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1130 if (!pm)
1131 goto out;
1133 migrate_prep();
1136 * Store a chunk of page_to_node array in a page,
1137 * but keep the last one as a marker
1139 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1141 for (chunk_start = 0;
1142 chunk_start < nr_pages;
1143 chunk_start += chunk_nr_pages) {
1144 int j;
1146 if (chunk_start + chunk_nr_pages > nr_pages)
1147 chunk_nr_pages = nr_pages - chunk_start;
1149 /* fill the chunk pm with addrs and nodes from user-space */
1150 for (j = 0; j < chunk_nr_pages; j++) {
1151 const void __user *p;
1152 int node;
1154 err = -EFAULT;
1155 if (get_user(p, pages + j + chunk_start))
1156 goto out_pm;
1157 pm[j].addr = (unsigned long) p;
1159 if (get_user(node, nodes + j + chunk_start))
1160 goto out_pm;
1162 err = -ENODEV;
1163 if (node < 0 || node >= MAX_NUMNODES)
1164 goto out_pm;
1166 if (!node_state(node, N_HIGH_MEMORY))
1167 goto out_pm;
1169 err = -EACCES;
1170 if (!node_isset(node, task_nodes))
1171 goto out_pm;
1173 pm[j].node = node;
1176 /* End marker for this chunk */
1177 pm[chunk_nr_pages].node = MAX_NUMNODES;
1179 /* Migrate this chunk */
1180 err = do_move_page_to_node_array(mm, pm,
1181 flags & MPOL_MF_MOVE_ALL);
1182 if (err < 0)
1183 goto out_pm;
1185 /* Return status information */
1186 for (j = 0; j < chunk_nr_pages; j++)
1187 if (put_user(pm[j].status, status + j + chunk_start)) {
1188 err = -EFAULT;
1189 goto out_pm;
1192 err = 0;
1194 out_pm:
1195 free_page((unsigned long)pm);
1196 out:
1197 return err;
1201 * Determine the nodes of an array of pages and store it in an array of status.
1203 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1204 const void __user **pages, int *status)
1206 unsigned long i;
1208 down_read(&mm->mmap_sem);
1210 for (i = 0; i < nr_pages; i++) {
1211 unsigned long addr = (unsigned long)(*pages);
1212 struct vm_area_struct *vma;
1213 struct page *page;
1214 int err = -EFAULT;
1216 vma = find_vma(mm, addr);
1217 if (!vma || addr < vma->vm_start)
1218 goto set_status;
1220 page = follow_page(vma, addr, 0);
1222 err = PTR_ERR(page);
1223 if (IS_ERR(page))
1224 goto set_status;
1226 err = -ENOENT;
1227 /* Use PageReserved to check for zero page */
1228 if (!page || PageReserved(page) || PageKsm(page))
1229 goto set_status;
1231 err = page_to_nid(page);
1232 set_status:
1233 *status = err;
1235 pages++;
1236 status++;
1239 up_read(&mm->mmap_sem);
1243 * Determine the nodes of a user array of pages and store it in
1244 * a user array of status.
1246 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1247 const void __user * __user *pages,
1248 int __user *status)
1250 #define DO_PAGES_STAT_CHUNK_NR 16
1251 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1252 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1254 while (nr_pages) {
1255 unsigned long chunk_nr;
1257 chunk_nr = nr_pages;
1258 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1259 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1261 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1262 break;
1264 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1266 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1267 break;
1269 pages += chunk_nr;
1270 status += chunk_nr;
1271 nr_pages -= chunk_nr;
1273 return nr_pages ? -EFAULT : 0;
1277 * Move a list of pages in the address space of the currently executing
1278 * process.
1280 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1281 const void __user * __user *, pages,
1282 const int __user *, nodes,
1283 int __user *, status, int, flags)
1285 const struct cred *cred = current_cred(), *tcred;
1286 struct task_struct *task;
1287 struct mm_struct *mm;
1288 int err;
1290 /* Check flags */
1291 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1292 return -EINVAL;
1294 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1295 return -EPERM;
1297 /* Find the mm_struct */
1298 rcu_read_lock();
1299 task = pid ? find_task_by_vpid(pid) : current;
1300 if (!task) {
1301 rcu_read_unlock();
1302 return -ESRCH;
1304 mm = get_task_mm(task);
1305 rcu_read_unlock();
1307 if (!mm)
1308 return -EINVAL;
1311 * Check if this process has the right to modify the specified
1312 * process. The right exists if the process has administrative
1313 * capabilities, superuser privileges or the same
1314 * userid as the target process.
1316 rcu_read_lock();
1317 tcred = __task_cred(task);
1318 if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1319 cred->uid != tcred->suid && cred->uid != tcred->uid &&
1320 !capable(CAP_SYS_NICE)) {
1321 rcu_read_unlock();
1322 err = -EPERM;
1323 goto out;
1325 rcu_read_unlock();
1327 err = security_task_movememory(task);
1328 if (err)
1329 goto out;
1331 if (nodes) {
1332 err = do_pages_move(mm, task, nr_pages, pages, nodes, status,
1333 flags);
1334 } else {
1335 err = do_pages_stat(mm, nr_pages, pages, status);
1338 out:
1339 mmput(mm);
1340 return err;
1344 * Call migration functions in the vma_ops that may prepare
1345 * memory in a vm for migration. migration functions may perform
1346 * the migration for vmas that do not have an underlying page struct.
1348 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1349 const nodemask_t *from, unsigned long flags)
1351 struct vm_area_struct *vma;
1352 int err = 0;
1354 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1355 if (vma->vm_ops && vma->vm_ops->migrate) {
1356 err = vma->vm_ops->migrate(vma, to, from, flags);
1357 if (err)
1358 break;
1361 return err;
1363 #endif