Merge branch 'for-3.11' of git://linux-nfs.org/~bfields/linux
[linux-2.6.git] / net / ipv4 / tcp_input.c
blob28af45abe0622fabac4d53ab651099a580808766
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 #define pr_fmt(fmt) "TCP: " fmt
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <net/dst.h>
72 #include <net/tcp.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <net/netdma.h>
78 int sysctl_tcp_timestamps __read_mostly = 1;
79 int sysctl_tcp_window_scaling __read_mostly = 1;
80 int sysctl_tcp_sack __read_mostly = 1;
81 int sysctl_tcp_fack __read_mostly = 1;
82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
83 EXPORT_SYMBOL(sysctl_tcp_reordering);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
89 /* rfc5961 challenge ack rate limiting */
90 int sysctl_tcp_challenge_ack_limit = 100;
92 int sysctl_tcp_stdurg __read_mostly;
93 int sysctl_tcp_rfc1337 __read_mostly;
94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
95 int sysctl_tcp_frto __read_mostly = 2;
97 int sysctl_tcp_thin_dupack __read_mostly;
99 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
100 int sysctl_tcp_early_retrans __read_mostly = 3;
102 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
103 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
104 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
105 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
106 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
107 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
108 #define FLAG_ECE 0x40 /* ECE in this ACK */
109 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
111 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
114 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
116 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
124 /* Adapt the MSS value used to make delayed ack decision to the
125 * real world.
127 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
129 struct inet_connection_sock *icsk = inet_csk(sk);
130 const unsigned int lss = icsk->icsk_ack.last_seg_size;
131 unsigned int len;
133 icsk->icsk_ack.last_seg_size = 0;
135 /* skb->len may jitter because of SACKs, even if peer
136 * sends good full-sized frames.
138 len = skb_shinfo(skb)->gso_size ? : skb->len;
139 if (len >= icsk->icsk_ack.rcv_mss) {
140 icsk->icsk_ack.rcv_mss = len;
141 } else {
142 /* Otherwise, we make more careful check taking into account,
143 * that SACKs block is variable.
145 * "len" is invariant segment length, including TCP header.
147 len += skb->data - skb_transport_header(skb);
148 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
149 /* If PSH is not set, packet should be
150 * full sized, provided peer TCP is not badly broken.
151 * This observation (if it is correct 8)) allows
152 * to handle super-low mtu links fairly.
154 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
155 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
156 /* Subtract also invariant (if peer is RFC compliant),
157 * tcp header plus fixed timestamp option length.
158 * Resulting "len" is MSS free of SACK jitter.
160 len -= tcp_sk(sk)->tcp_header_len;
161 icsk->icsk_ack.last_seg_size = len;
162 if (len == lss) {
163 icsk->icsk_ack.rcv_mss = len;
164 return;
167 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
168 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
173 static void tcp_incr_quickack(struct sock *sk)
175 struct inet_connection_sock *icsk = inet_csk(sk);
176 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
178 if (quickacks == 0)
179 quickacks = 2;
180 if (quickacks > icsk->icsk_ack.quick)
181 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
184 static void tcp_enter_quickack_mode(struct sock *sk)
186 struct inet_connection_sock *icsk = inet_csk(sk);
187 tcp_incr_quickack(sk);
188 icsk->icsk_ack.pingpong = 0;
189 icsk->icsk_ack.ato = TCP_ATO_MIN;
192 /* Send ACKs quickly, if "quick" count is not exhausted
193 * and the session is not interactive.
196 static inline bool tcp_in_quickack_mode(const struct sock *sk)
198 const struct inet_connection_sock *icsk = inet_csk(sk);
200 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
205 if (tp->ecn_flags & TCP_ECN_OK)
206 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
211 if (tcp_hdr(skb)->cwr)
212 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
217 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
222 if (!(tp->ecn_flags & TCP_ECN_OK))
223 return;
225 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
226 case INET_ECN_NOT_ECT:
227 /* Funny extension: if ECT is not set on a segment,
228 * and we already seen ECT on a previous segment,
229 * it is probably a retransmit.
231 if (tp->ecn_flags & TCP_ECN_SEEN)
232 tcp_enter_quickack_mode((struct sock *)tp);
233 break;
234 case INET_ECN_CE:
235 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
236 /* Better not delay acks, sender can have a very low cwnd */
237 tcp_enter_quickack_mode((struct sock *)tp);
238 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
240 /* fallinto */
241 default:
242 tp->ecn_flags |= TCP_ECN_SEEN;
246 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
248 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
249 tp->ecn_flags &= ~TCP_ECN_OK;
252 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
254 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
255 tp->ecn_flags &= ~TCP_ECN_OK;
258 static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
260 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
261 return true;
262 return false;
265 /* Buffer size and advertised window tuning.
267 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
270 static void tcp_fixup_sndbuf(struct sock *sk)
272 int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
274 sndmem *= TCP_INIT_CWND;
275 if (sk->sk_sndbuf < sndmem)
276 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
279 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
281 * All tcp_full_space() is split to two parts: "network" buffer, allocated
282 * forward and advertised in receiver window (tp->rcv_wnd) and
283 * "application buffer", required to isolate scheduling/application
284 * latencies from network.
285 * window_clamp is maximal advertised window. It can be less than
286 * tcp_full_space(), in this case tcp_full_space() - window_clamp
287 * is reserved for "application" buffer. The less window_clamp is
288 * the smoother our behaviour from viewpoint of network, but the lower
289 * throughput and the higher sensitivity of the connection to losses. 8)
291 * rcv_ssthresh is more strict window_clamp used at "slow start"
292 * phase to predict further behaviour of this connection.
293 * It is used for two goals:
294 * - to enforce header prediction at sender, even when application
295 * requires some significant "application buffer". It is check #1.
296 * - to prevent pruning of receive queue because of misprediction
297 * of receiver window. Check #2.
299 * The scheme does not work when sender sends good segments opening
300 * window and then starts to feed us spaghetti. But it should work
301 * in common situations. Otherwise, we have to rely on queue collapsing.
304 /* Slow part of check#2. */
305 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
307 struct tcp_sock *tp = tcp_sk(sk);
308 /* Optimize this! */
309 int truesize = tcp_win_from_space(skb->truesize) >> 1;
310 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
312 while (tp->rcv_ssthresh <= window) {
313 if (truesize <= skb->len)
314 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
316 truesize >>= 1;
317 window >>= 1;
319 return 0;
322 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
324 struct tcp_sock *tp = tcp_sk(sk);
326 /* Check #1 */
327 if (tp->rcv_ssthresh < tp->window_clamp &&
328 (int)tp->rcv_ssthresh < tcp_space(sk) &&
329 !sk_under_memory_pressure(sk)) {
330 int incr;
332 /* Check #2. Increase window, if skb with such overhead
333 * will fit to rcvbuf in future.
335 if (tcp_win_from_space(skb->truesize) <= skb->len)
336 incr = 2 * tp->advmss;
337 else
338 incr = __tcp_grow_window(sk, skb);
340 if (incr) {
341 incr = max_t(int, incr, 2 * skb->len);
342 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
343 tp->window_clamp);
344 inet_csk(sk)->icsk_ack.quick |= 1;
349 /* 3. Tuning rcvbuf, when connection enters established state. */
350 static void tcp_fixup_rcvbuf(struct sock *sk)
352 u32 mss = tcp_sk(sk)->advmss;
353 int rcvmem;
355 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
356 tcp_default_init_rwnd(mss);
358 if (sk->sk_rcvbuf < rcvmem)
359 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
362 /* 4. Try to fixup all. It is made immediately after connection enters
363 * established state.
365 void tcp_init_buffer_space(struct sock *sk)
367 struct tcp_sock *tp = tcp_sk(sk);
368 int maxwin;
370 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
371 tcp_fixup_rcvbuf(sk);
372 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
373 tcp_fixup_sndbuf(sk);
375 tp->rcvq_space.space = tp->rcv_wnd;
377 maxwin = tcp_full_space(sk);
379 if (tp->window_clamp >= maxwin) {
380 tp->window_clamp = maxwin;
382 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
383 tp->window_clamp = max(maxwin -
384 (maxwin >> sysctl_tcp_app_win),
385 4 * tp->advmss);
388 /* Force reservation of one segment. */
389 if (sysctl_tcp_app_win &&
390 tp->window_clamp > 2 * tp->advmss &&
391 tp->window_clamp + tp->advmss > maxwin)
392 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
394 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
395 tp->snd_cwnd_stamp = tcp_time_stamp;
398 /* 5. Recalculate window clamp after socket hit its memory bounds. */
399 static void tcp_clamp_window(struct sock *sk)
401 struct tcp_sock *tp = tcp_sk(sk);
402 struct inet_connection_sock *icsk = inet_csk(sk);
404 icsk->icsk_ack.quick = 0;
406 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
407 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
408 !sk_under_memory_pressure(sk) &&
409 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
410 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
411 sysctl_tcp_rmem[2]);
413 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
414 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
417 /* Initialize RCV_MSS value.
418 * RCV_MSS is an our guess about MSS used by the peer.
419 * We haven't any direct information about the MSS.
420 * It's better to underestimate the RCV_MSS rather than overestimate.
421 * Overestimations make us ACKing less frequently than needed.
422 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
424 void tcp_initialize_rcv_mss(struct sock *sk)
426 const struct tcp_sock *tp = tcp_sk(sk);
427 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
429 hint = min(hint, tp->rcv_wnd / 2);
430 hint = min(hint, TCP_MSS_DEFAULT);
431 hint = max(hint, TCP_MIN_MSS);
433 inet_csk(sk)->icsk_ack.rcv_mss = hint;
435 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
437 /* Receiver "autotuning" code.
439 * The algorithm for RTT estimation w/o timestamps is based on
440 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
441 * <http://public.lanl.gov/radiant/pubs.html#DRS>
443 * More detail on this code can be found at
444 * <http://staff.psc.edu/jheffner/>,
445 * though this reference is out of date. A new paper
446 * is pending.
448 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
450 u32 new_sample = tp->rcv_rtt_est.rtt;
451 long m = sample;
453 if (m == 0)
454 m = 1;
456 if (new_sample != 0) {
457 /* If we sample in larger samples in the non-timestamp
458 * case, we could grossly overestimate the RTT especially
459 * with chatty applications or bulk transfer apps which
460 * are stalled on filesystem I/O.
462 * Also, since we are only going for a minimum in the
463 * non-timestamp case, we do not smooth things out
464 * else with timestamps disabled convergence takes too
465 * long.
467 if (!win_dep) {
468 m -= (new_sample >> 3);
469 new_sample += m;
470 } else {
471 m <<= 3;
472 if (m < new_sample)
473 new_sample = m;
475 } else {
476 /* No previous measure. */
477 new_sample = m << 3;
480 if (tp->rcv_rtt_est.rtt != new_sample)
481 tp->rcv_rtt_est.rtt = new_sample;
484 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
486 if (tp->rcv_rtt_est.time == 0)
487 goto new_measure;
488 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
489 return;
490 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
492 new_measure:
493 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
494 tp->rcv_rtt_est.time = tcp_time_stamp;
497 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
498 const struct sk_buff *skb)
500 struct tcp_sock *tp = tcp_sk(sk);
501 if (tp->rx_opt.rcv_tsecr &&
502 (TCP_SKB_CB(skb)->end_seq -
503 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
504 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
508 * This function should be called every time data is copied to user space.
509 * It calculates the appropriate TCP receive buffer space.
511 void tcp_rcv_space_adjust(struct sock *sk)
513 struct tcp_sock *tp = tcp_sk(sk);
514 int time;
515 int space;
517 if (tp->rcvq_space.time == 0)
518 goto new_measure;
520 time = tcp_time_stamp - tp->rcvq_space.time;
521 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
522 return;
524 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
526 space = max(tp->rcvq_space.space, space);
528 if (tp->rcvq_space.space != space) {
529 int rcvmem;
531 tp->rcvq_space.space = space;
533 if (sysctl_tcp_moderate_rcvbuf &&
534 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
535 int new_clamp = space;
537 /* Receive space grows, normalize in order to
538 * take into account packet headers and sk_buff
539 * structure overhead.
541 space /= tp->advmss;
542 if (!space)
543 space = 1;
544 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
545 while (tcp_win_from_space(rcvmem) < tp->advmss)
546 rcvmem += 128;
547 space *= rcvmem;
548 space = min(space, sysctl_tcp_rmem[2]);
549 if (space > sk->sk_rcvbuf) {
550 sk->sk_rcvbuf = space;
552 /* Make the window clamp follow along. */
553 tp->window_clamp = new_clamp;
558 new_measure:
559 tp->rcvq_space.seq = tp->copied_seq;
560 tp->rcvq_space.time = tcp_time_stamp;
563 /* There is something which you must keep in mind when you analyze the
564 * behavior of the tp->ato delayed ack timeout interval. When a
565 * connection starts up, we want to ack as quickly as possible. The
566 * problem is that "good" TCP's do slow start at the beginning of data
567 * transmission. The means that until we send the first few ACK's the
568 * sender will sit on his end and only queue most of his data, because
569 * he can only send snd_cwnd unacked packets at any given time. For
570 * each ACK we send, he increments snd_cwnd and transmits more of his
571 * queue. -DaveM
573 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
575 struct tcp_sock *tp = tcp_sk(sk);
576 struct inet_connection_sock *icsk = inet_csk(sk);
577 u32 now;
579 inet_csk_schedule_ack(sk);
581 tcp_measure_rcv_mss(sk, skb);
583 tcp_rcv_rtt_measure(tp);
585 now = tcp_time_stamp;
587 if (!icsk->icsk_ack.ato) {
588 /* The _first_ data packet received, initialize
589 * delayed ACK engine.
591 tcp_incr_quickack(sk);
592 icsk->icsk_ack.ato = TCP_ATO_MIN;
593 } else {
594 int m = now - icsk->icsk_ack.lrcvtime;
596 if (m <= TCP_ATO_MIN / 2) {
597 /* The fastest case is the first. */
598 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
599 } else if (m < icsk->icsk_ack.ato) {
600 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
601 if (icsk->icsk_ack.ato > icsk->icsk_rto)
602 icsk->icsk_ack.ato = icsk->icsk_rto;
603 } else if (m > icsk->icsk_rto) {
604 /* Too long gap. Apparently sender failed to
605 * restart window, so that we send ACKs quickly.
607 tcp_incr_quickack(sk);
608 sk_mem_reclaim(sk);
611 icsk->icsk_ack.lrcvtime = now;
613 TCP_ECN_check_ce(tp, skb);
615 if (skb->len >= 128)
616 tcp_grow_window(sk, skb);
619 /* Called to compute a smoothed rtt estimate. The data fed to this
620 * routine either comes from timestamps, or from segments that were
621 * known _not_ to have been retransmitted [see Karn/Partridge
622 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
623 * piece by Van Jacobson.
624 * NOTE: the next three routines used to be one big routine.
625 * To save cycles in the RFC 1323 implementation it was better to break
626 * it up into three procedures. -- erics
628 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
630 struct tcp_sock *tp = tcp_sk(sk);
631 long m = mrtt; /* RTT */
633 /* The following amusing code comes from Jacobson's
634 * article in SIGCOMM '88. Note that rtt and mdev
635 * are scaled versions of rtt and mean deviation.
636 * This is designed to be as fast as possible
637 * m stands for "measurement".
639 * On a 1990 paper the rto value is changed to:
640 * RTO = rtt + 4 * mdev
642 * Funny. This algorithm seems to be very broken.
643 * These formulae increase RTO, when it should be decreased, increase
644 * too slowly, when it should be increased quickly, decrease too quickly
645 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
646 * does not matter how to _calculate_ it. Seems, it was trap
647 * that VJ failed to avoid. 8)
649 if (m == 0)
650 m = 1;
651 if (tp->srtt != 0) {
652 m -= (tp->srtt >> 3); /* m is now error in rtt est */
653 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
654 if (m < 0) {
655 m = -m; /* m is now abs(error) */
656 m -= (tp->mdev >> 2); /* similar update on mdev */
657 /* This is similar to one of Eifel findings.
658 * Eifel blocks mdev updates when rtt decreases.
659 * This solution is a bit different: we use finer gain
660 * for mdev in this case (alpha*beta).
661 * Like Eifel it also prevents growth of rto,
662 * but also it limits too fast rto decreases,
663 * happening in pure Eifel.
665 if (m > 0)
666 m >>= 3;
667 } else {
668 m -= (tp->mdev >> 2); /* similar update on mdev */
670 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
671 if (tp->mdev > tp->mdev_max) {
672 tp->mdev_max = tp->mdev;
673 if (tp->mdev_max > tp->rttvar)
674 tp->rttvar = tp->mdev_max;
676 if (after(tp->snd_una, tp->rtt_seq)) {
677 if (tp->mdev_max < tp->rttvar)
678 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
679 tp->rtt_seq = tp->snd_nxt;
680 tp->mdev_max = tcp_rto_min(sk);
682 } else {
683 /* no previous measure. */
684 tp->srtt = m << 3; /* take the measured time to be rtt */
685 tp->mdev = m << 1; /* make sure rto = 3*rtt */
686 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
687 tp->rtt_seq = tp->snd_nxt;
691 /* Calculate rto without backoff. This is the second half of Van Jacobson's
692 * routine referred to above.
694 void tcp_set_rto(struct sock *sk)
696 const struct tcp_sock *tp = tcp_sk(sk);
697 /* Old crap is replaced with new one. 8)
699 * More seriously:
700 * 1. If rtt variance happened to be less 50msec, it is hallucination.
701 * It cannot be less due to utterly erratic ACK generation made
702 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
703 * to do with delayed acks, because at cwnd>2 true delack timeout
704 * is invisible. Actually, Linux-2.4 also generates erratic
705 * ACKs in some circumstances.
707 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
709 /* 2. Fixups made earlier cannot be right.
710 * If we do not estimate RTO correctly without them,
711 * all the algo is pure shit and should be replaced
712 * with correct one. It is exactly, which we pretend to do.
715 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
716 * guarantees that rto is higher.
718 tcp_bound_rto(sk);
721 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
723 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
725 if (!cwnd)
726 cwnd = TCP_INIT_CWND;
727 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
731 * Packet counting of FACK is based on in-order assumptions, therefore TCP
732 * disables it when reordering is detected
734 void tcp_disable_fack(struct tcp_sock *tp)
736 /* RFC3517 uses different metric in lost marker => reset on change */
737 if (tcp_is_fack(tp))
738 tp->lost_skb_hint = NULL;
739 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
742 /* Take a notice that peer is sending D-SACKs */
743 static void tcp_dsack_seen(struct tcp_sock *tp)
745 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
748 static void tcp_update_reordering(struct sock *sk, const int metric,
749 const int ts)
751 struct tcp_sock *tp = tcp_sk(sk);
752 if (metric > tp->reordering) {
753 int mib_idx;
755 tp->reordering = min(TCP_MAX_REORDERING, metric);
757 /* This exciting event is worth to be remembered. 8) */
758 if (ts)
759 mib_idx = LINUX_MIB_TCPTSREORDER;
760 else if (tcp_is_reno(tp))
761 mib_idx = LINUX_MIB_TCPRENOREORDER;
762 else if (tcp_is_fack(tp))
763 mib_idx = LINUX_MIB_TCPFACKREORDER;
764 else
765 mib_idx = LINUX_MIB_TCPSACKREORDER;
767 NET_INC_STATS_BH(sock_net(sk), mib_idx);
768 #if FASTRETRANS_DEBUG > 1
769 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
770 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
771 tp->reordering,
772 tp->fackets_out,
773 tp->sacked_out,
774 tp->undo_marker ? tp->undo_retrans : 0);
775 #endif
776 tcp_disable_fack(tp);
779 if (metric > 0)
780 tcp_disable_early_retrans(tp);
783 /* This must be called before lost_out is incremented */
784 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
786 if ((tp->retransmit_skb_hint == NULL) ||
787 before(TCP_SKB_CB(skb)->seq,
788 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
789 tp->retransmit_skb_hint = skb;
791 if (!tp->lost_out ||
792 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
793 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
796 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
798 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
799 tcp_verify_retransmit_hint(tp, skb);
801 tp->lost_out += tcp_skb_pcount(skb);
802 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
806 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
807 struct sk_buff *skb)
809 tcp_verify_retransmit_hint(tp, skb);
811 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
812 tp->lost_out += tcp_skb_pcount(skb);
813 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
817 /* This procedure tags the retransmission queue when SACKs arrive.
819 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
820 * Packets in queue with these bits set are counted in variables
821 * sacked_out, retrans_out and lost_out, correspondingly.
823 * Valid combinations are:
824 * Tag InFlight Description
825 * 0 1 - orig segment is in flight.
826 * S 0 - nothing flies, orig reached receiver.
827 * L 0 - nothing flies, orig lost by net.
828 * R 2 - both orig and retransmit are in flight.
829 * L|R 1 - orig is lost, retransmit is in flight.
830 * S|R 1 - orig reached receiver, retrans is still in flight.
831 * (L|S|R is logically valid, it could occur when L|R is sacked,
832 * but it is equivalent to plain S and code short-curcuits it to S.
833 * L|S is logically invalid, it would mean -1 packet in flight 8))
835 * These 6 states form finite state machine, controlled by the following events:
836 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
837 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
838 * 3. Loss detection event of two flavors:
839 * A. Scoreboard estimator decided the packet is lost.
840 * A'. Reno "three dupacks" marks head of queue lost.
841 * A''. Its FACK modification, head until snd.fack is lost.
842 * B. SACK arrives sacking SND.NXT at the moment, when the
843 * segment was retransmitted.
844 * 4. D-SACK added new rule: D-SACK changes any tag to S.
846 * It is pleasant to note, that state diagram turns out to be commutative,
847 * so that we are allowed not to be bothered by order of our actions,
848 * when multiple events arrive simultaneously. (see the function below).
850 * Reordering detection.
851 * --------------------
852 * Reordering metric is maximal distance, which a packet can be displaced
853 * in packet stream. With SACKs we can estimate it:
855 * 1. SACK fills old hole and the corresponding segment was not
856 * ever retransmitted -> reordering. Alas, we cannot use it
857 * when segment was retransmitted.
858 * 2. The last flaw is solved with D-SACK. D-SACK arrives
859 * for retransmitted and already SACKed segment -> reordering..
860 * Both of these heuristics are not used in Loss state, when we cannot
861 * account for retransmits accurately.
863 * SACK block validation.
864 * ----------------------
866 * SACK block range validation checks that the received SACK block fits to
867 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
868 * Note that SND.UNA is not included to the range though being valid because
869 * it means that the receiver is rather inconsistent with itself reporting
870 * SACK reneging when it should advance SND.UNA. Such SACK block this is
871 * perfectly valid, however, in light of RFC2018 which explicitly states
872 * that "SACK block MUST reflect the newest segment. Even if the newest
873 * segment is going to be discarded ...", not that it looks very clever
874 * in case of head skb. Due to potentional receiver driven attacks, we
875 * choose to avoid immediate execution of a walk in write queue due to
876 * reneging and defer head skb's loss recovery to standard loss recovery
877 * procedure that will eventually trigger (nothing forbids us doing this).
879 * Implements also blockage to start_seq wrap-around. Problem lies in the
880 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
881 * there's no guarantee that it will be before snd_nxt (n). The problem
882 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
883 * wrap (s_w):
885 * <- outs wnd -> <- wrapzone ->
886 * u e n u_w e_w s n_w
887 * | | | | | | |
888 * |<------------+------+----- TCP seqno space --------------+---------->|
889 * ...-- <2^31 ->| |<--------...
890 * ...---- >2^31 ------>| |<--------...
892 * Current code wouldn't be vulnerable but it's better still to discard such
893 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
894 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
895 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
896 * equal to the ideal case (infinite seqno space without wrap caused issues).
898 * With D-SACK the lower bound is extended to cover sequence space below
899 * SND.UNA down to undo_marker, which is the last point of interest. Yet
900 * again, D-SACK block must not to go across snd_una (for the same reason as
901 * for the normal SACK blocks, explained above). But there all simplicity
902 * ends, TCP might receive valid D-SACKs below that. As long as they reside
903 * fully below undo_marker they do not affect behavior in anyway and can
904 * therefore be safely ignored. In rare cases (which are more or less
905 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
906 * fragmentation and packet reordering past skb's retransmission. To consider
907 * them correctly, the acceptable range must be extended even more though
908 * the exact amount is rather hard to quantify. However, tp->max_window can
909 * be used as an exaggerated estimate.
911 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
912 u32 start_seq, u32 end_seq)
914 /* Too far in future, or reversed (interpretation is ambiguous) */
915 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
916 return false;
918 /* Nasty start_seq wrap-around check (see comments above) */
919 if (!before(start_seq, tp->snd_nxt))
920 return false;
922 /* In outstanding window? ...This is valid exit for D-SACKs too.
923 * start_seq == snd_una is non-sensical (see comments above)
925 if (after(start_seq, tp->snd_una))
926 return true;
928 if (!is_dsack || !tp->undo_marker)
929 return false;
931 /* ...Then it's D-SACK, and must reside below snd_una completely */
932 if (after(end_seq, tp->snd_una))
933 return false;
935 if (!before(start_seq, tp->undo_marker))
936 return true;
938 /* Too old */
939 if (!after(end_seq, tp->undo_marker))
940 return false;
942 /* Undo_marker boundary crossing (overestimates a lot). Known already:
943 * start_seq < undo_marker and end_seq >= undo_marker.
945 return !before(start_seq, end_seq - tp->max_window);
948 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
949 * Event "B". Later note: FACK people cheated me again 8), we have to account
950 * for reordering! Ugly, but should help.
952 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
953 * less than what is now known to be received by the other end (derived from
954 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
955 * retransmitted skbs to avoid some costly processing per ACKs.
957 static void tcp_mark_lost_retrans(struct sock *sk)
959 const struct inet_connection_sock *icsk = inet_csk(sk);
960 struct tcp_sock *tp = tcp_sk(sk);
961 struct sk_buff *skb;
962 int cnt = 0;
963 u32 new_low_seq = tp->snd_nxt;
964 u32 received_upto = tcp_highest_sack_seq(tp);
966 if (!tcp_is_fack(tp) || !tp->retrans_out ||
967 !after(received_upto, tp->lost_retrans_low) ||
968 icsk->icsk_ca_state != TCP_CA_Recovery)
969 return;
971 tcp_for_write_queue(skb, sk) {
972 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
974 if (skb == tcp_send_head(sk))
975 break;
976 if (cnt == tp->retrans_out)
977 break;
978 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
979 continue;
981 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
982 continue;
984 /* TODO: We would like to get rid of tcp_is_fack(tp) only
985 * constraint here (see above) but figuring out that at
986 * least tp->reordering SACK blocks reside between ack_seq
987 * and received_upto is not easy task to do cheaply with
988 * the available datastructures.
990 * Whether FACK should check here for tp->reordering segs
991 * in-between one could argue for either way (it would be
992 * rather simple to implement as we could count fack_count
993 * during the walk and do tp->fackets_out - fack_count).
995 if (after(received_upto, ack_seq)) {
996 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
997 tp->retrans_out -= tcp_skb_pcount(skb);
999 tcp_skb_mark_lost_uncond_verify(tp, skb);
1000 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1001 } else {
1002 if (before(ack_seq, new_low_seq))
1003 new_low_seq = ack_seq;
1004 cnt += tcp_skb_pcount(skb);
1008 if (tp->retrans_out)
1009 tp->lost_retrans_low = new_low_seq;
1012 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1013 struct tcp_sack_block_wire *sp, int num_sacks,
1014 u32 prior_snd_una)
1016 struct tcp_sock *tp = tcp_sk(sk);
1017 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1018 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1019 bool dup_sack = false;
1021 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1022 dup_sack = true;
1023 tcp_dsack_seen(tp);
1024 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1025 } else if (num_sacks > 1) {
1026 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1027 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1029 if (!after(end_seq_0, end_seq_1) &&
1030 !before(start_seq_0, start_seq_1)) {
1031 dup_sack = true;
1032 tcp_dsack_seen(tp);
1033 NET_INC_STATS_BH(sock_net(sk),
1034 LINUX_MIB_TCPDSACKOFORECV);
1038 /* D-SACK for already forgotten data... Do dumb counting. */
1039 if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1040 !after(end_seq_0, prior_snd_una) &&
1041 after(end_seq_0, tp->undo_marker))
1042 tp->undo_retrans--;
1044 return dup_sack;
1047 struct tcp_sacktag_state {
1048 int reord;
1049 int fack_count;
1050 int flag;
1053 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1054 * the incoming SACK may not exactly match but we can find smaller MSS
1055 * aligned portion of it that matches. Therefore we might need to fragment
1056 * which may fail and creates some hassle (caller must handle error case
1057 * returns).
1059 * FIXME: this could be merged to shift decision code
1061 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1062 u32 start_seq, u32 end_seq)
1064 int err;
1065 bool in_sack;
1066 unsigned int pkt_len;
1067 unsigned int mss;
1069 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1070 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1072 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1073 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1074 mss = tcp_skb_mss(skb);
1075 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1077 if (!in_sack) {
1078 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1079 if (pkt_len < mss)
1080 pkt_len = mss;
1081 } else {
1082 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1083 if (pkt_len < mss)
1084 return -EINVAL;
1087 /* Round if necessary so that SACKs cover only full MSSes
1088 * and/or the remaining small portion (if present)
1090 if (pkt_len > mss) {
1091 unsigned int new_len = (pkt_len / mss) * mss;
1092 if (!in_sack && new_len < pkt_len) {
1093 new_len += mss;
1094 if (new_len > skb->len)
1095 return 0;
1097 pkt_len = new_len;
1099 err = tcp_fragment(sk, skb, pkt_len, mss);
1100 if (err < 0)
1101 return err;
1104 return in_sack;
1107 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1108 static u8 tcp_sacktag_one(struct sock *sk,
1109 struct tcp_sacktag_state *state, u8 sacked,
1110 u32 start_seq, u32 end_seq,
1111 bool dup_sack, int pcount)
1113 struct tcp_sock *tp = tcp_sk(sk);
1114 int fack_count = state->fack_count;
1116 /* Account D-SACK for retransmitted packet. */
1117 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1118 if (tp->undo_marker && tp->undo_retrans &&
1119 after(end_seq, tp->undo_marker))
1120 tp->undo_retrans--;
1121 if (sacked & TCPCB_SACKED_ACKED)
1122 state->reord = min(fack_count, state->reord);
1125 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1126 if (!after(end_seq, tp->snd_una))
1127 return sacked;
1129 if (!(sacked & TCPCB_SACKED_ACKED)) {
1130 if (sacked & TCPCB_SACKED_RETRANS) {
1131 /* If the segment is not tagged as lost,
1132 * we do not clear RETRANS, believing
1133 * that retransmission is still in flight.
1135 if (sacked & TCPCB_LOST) {
1136 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1137 tp->lost_out -= pcount;
1138 tp->retrans_out -= pcount;
1140 } else {
1141 if (!(sacked & TCPCB_RETRANS)) {
1142 /* New sack for not retransmitted frame,
1143 * which was in hole. It is reordering.
1145 if (before(start_seq,
1146 tcp_highest_sack_seq(tp)))
1147 state->reord = min(fack_count,
1148 state->reord);
1149 if (!after(end_seq, tp->high_seq))
1150 state->flag |= FLAG_ORIG_SACK_ACKED;
1153 if (sacked & TCPCB_LOST) {
1154 sacked &= ~TCPCB_LOST;
1155 tp->lost_out -= pcount;
1159 sacked |= TCPCB_SACKED_ACKED;
1160 state->flag |= FLAG_DATA_SACKED;
1161 tp->sacked_out += pcount;
1163 fack_count += pcount;
1165 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1166 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1167 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1168 tp->lost_cnt_hint += pcount;
1170 if (fack_count > tp->fackets_out)
1171 tp->fackets_out = fack_count;
1174 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1175 * frames and clear it. undo_retrans is decreased above, L|R frames
1176 * are accounted above as well.
1178 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1179 sacked &= ~TCPCB_SACKED_RETRANS;
1180 tp->retrans_out -= pcount;
1183 return sacked;
1186 /* Shift newly-SACKed bytes from this skb to the immediately previous
1187 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1189 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1190 struct tcp_sacktag_state *state,
1191 unsigned int pcount, int shifted, int mss,
1192 bool dup_sack)
1194 struct tcp_sock *tp = tcp_sk(sk);
1195 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1196 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1197 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1199 BUG_ON(!pcount);
1201 /* Adjust counters and hints for the newly sacked sequence
1202 * range but discard the return value since prev is already
1203 * marked. We must tag the range first because the seq
1204 * advancement below implicitly advances
1205 * tcp_highest_sack_seq() when skb is highest_sack.
1207 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1208 start_seq, end_seq, dup_sack, pcount);
1210 if (skb == tp->lost_skb_hint)
1211 tp->lost_cnt_hint += pcount;
1213 TCP_SKB_CB(prev)->end_seq += shifted;
1214 TCP_SKB_CB(skb)->seq += shifted;
1216 skb_shinfo(prev)->gso_segs += pcount;
1217 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1218 skb_shinfo(skb)->gso_segs -= pcount;
1220 /* When we're adding to gso_segs == 1, gso_size will be zero,
1221 * in theory this shouldn't be necessary but as long as DSACK
1222 * code can come after this skb later on it's better to keep
1223 * setting gso_size to something.
1225 if (!skb_shinfo(prev)->gso_size) {
1226 skb_shinfo(prev)->gso_size = mss;
1227 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1230 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1231 if (skb_shinfo(skb)->gso_segs <= 1) {
1232 skb_shinfo(skb)->gso_size = 0;
1233 skb_shinfo(skb)->gso_type = 0;
1236 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1237 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1239 if (skb->len > 0) {
1240 BUG_ON(!tcp_skb_pcount(skb));
1241 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1242 return false;
1245 /* Whole SKB was eaten :-) */
1247 if (skb == tp->retransmit_skb_hint)
1248 tp->retransmit_skb_hint = prev;
1249 if (skb == tp->lost_skb_hint) {
1250 tp->lost_skb_hint = prev;
1251 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1254 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1255 if (skb == tcp_highest_sack(sk))
1256 tcp_advance_highest_sack(sk, skb);
1258 tcp_unlink_write_queue(skb, sk);
1259 sk_wmem_free_skb(sk, skb);
1261 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1263 return true;
1266 /* I wish gso_size would have a bit more sane initialization than
1267 * something-or-zero which complicates things
1269 static int tcp_skb_seglen(const struct sk_buff *skb)
1271 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1274 /* Shifting pages past head area doesn't work */
1275 static int skb_can_shift(const struct sk_buff *skb)
1277 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1280 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1281 * skb.
1283 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1284 struct tcp_sacktag_state *state,
1285 u32 start_seq, u32 end_seq,
1286 bool dup_sack)
1288 struct tcp_sock *tp = tcp_sk(sk);
1289 struct sk_buff *prev;
1290 int mss;
1291 int pcount = 0;
1292 int len;
1293 int in_sack;
1295 if (!sk_can_gso(sk))
1296 goto fallback;
1298 /* Normally R but no L won't result in plain S */
1299 if (!dup_sack &&
1300 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1301 goto fallback;
1302 if (!skb_can_shift(skb))
1303 goto fallback;
1304 /* This frame is about to be dropped (was ACKed). */
1305 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1306 goto fallback;
1308 /* Can only happen with delayed DSACK + discard craziness */
1309 if (unlikely(skb == tcp_write_queue_head(sk)))
1310 goto fallback;
1311 prev = tcp_write_queue_prev(sk, skb);
1313 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1314 goto fallback;
1316 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1317 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1319 if (in_sack) {
1320 len = skb->len;
1321 pcount = tcp_skb_pcount(skb);
1322 mss = tcp_skb_seglen(skb);
1324 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1325 * drop this restriction as unnecessary
1327 if (mss != tcp_skb_seglen(prev))
1328 goto fallback;
1329 } else {
1330 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1331 goto noop;
1332 /* CHECKME: This is non-MSS split case only?, this will
1333 * cause skipped skbs due to advancing loop btw, original
1334 * has that feature too
1336 if (tcp_skb_pcount(skb) <= 1)
1337 goto noop;
1339 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1340 if (!in_sack) {
1341 /* TODO: head merge to next could be attempted here
1342 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1343 * though it might not be worth of the additional hassle
1345 * ...we can probably just fallback to what was done
1346 * previously. We could try merging non-SACKed ones
1347 * as well but it probably isn't going to buy off
1348 * because later SACKs might again split them, and
1349 * it would make skb timestamp tracking considerably
1350 * harder problem.
1352 goto fallback;
1355 len = end_seq - TCP_SKB_CB(skb)->seq;
1356 BUG_ON(len < 0);
1357 BUG_ON(len > skb->len);
1359 /* MSS boundaries should be honoured or else pcount will
1360 * severely break even though it makes things bit trickier.
1361 * Optimize common case to avoid most of the divides
1363 mss = tcp_skb_mss(skb);
1365 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1366 * drop this restriction as unnecessary
1368 if (mss != tcp_skb_seglen(prev))
1369 goto fallback;
1371 if (len == mss) {
1372 pcount = 1;
1373 } else if (len < mss) {
1374 goto noop;
1375 } else {
1376 pcount = len / mss;
1377 len = pcount * mss;
1381 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1382 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1383 goto fallback;
1385 if (!skb_shift(prev, skb, len))
1386 goto fallback;
1387 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1388 goto out;
1390 /* Hole filled allows collapsing with the next as well, this is very
1391 * useful when hole on every nth skb pattern happens
1393 if (prev == tcp_write_queue_tail(sk))
1394 goto out;
1395 skb = tcp_write_queue_next(sk, prev);
1397 if (!skb_can_shift(skb) ||
1398 (skb == tcp_send_head(sk)) ||
1399 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1400 (mss != tcp_skb_seglen(skb)))
1401 goto out;
1403 len = skb->len;
1404 if (skb_shift(prev, skb, len)) {
1405 pcount += tcp_skb_pcount(skb);
1406 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1409 out:
1410 state->fack_count += pcount;
1411 return prev;
1413 noop:
1414 return skb;
1416 fallback:
1417 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1418 return NULL;
1421 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1422 struct tcp_sack_block *next_dup,
1423 struct tcp_sacktag_state *state,
1424 u32 start_seq, u32 end_seq,
1425 bool dup_sack_in)
1427 struct tcp_sock *tp = tcp_sk(sk);
1428 struct sk_buff *tmp;
1430 tcp_for_write_queue_from(skb, sk) {
1431 int in_sack = 0;
1432 bool dup_sack = dup_sack_in;
1434 if (skb == tcp_send_head(sk))
1435 break;
1437 /* queue is in-order => we can short-circuit the walk early */
1438 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1439 break;
1441 if ((next_dup != NULL) &&
1442 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1443 in_sack = tcp_match_skb_to_sack(sk, skb,
1444 next_dup->start_seq,
1445 next_dup->end_seq);
1446 if (in_sack > 0)
1447 dup_sack = true;
1450 /* skb reference here is a bit tricky to get right, since
1451 * shifting can eat and free both this skb and the next,
1452 * so not even _safe variant of the loop is enough.
1454 if (in_sack <= 0) {
1455 tmp = tcp_shift_skb_data(sk, skb, state,
1456 start_seq, end_seq, dup_sack);
1457 if (tmp != NULL) {
1458 if (tmp != skb) {
1459 skb = tmp;
1460 continue;
1463 in_sack = 0;
1464 } else {
1465 in_sack = tcp_match_skb_to_sack(sk, skb,
1466 start_seq,
1467 end_seq);
1471 if (unlikely(in_sack < 0))
1472 break;
1474 if (in_sack) {
1475 TCP_SKB_CB(skb)->sacked =
1476 tcp_sacktag_one(sk,
1477 state,
1478 TCP_SKB_CB(skb)->sacked,
1479 TCP_SKB_CB(skb)->seq,
1480 TCP_SKB_CB(skb)->end_seq,
1481 dup_sack,
1482 tcp_skb_pcount(skb));
1484 if (!before(TCP_SKB_CB(skb)->seq,
1485 tcp_highest_sack_seq(tp)))
1486 tcp_advance_highest_sack(sk, skb);
1489 state->fack_count += tcp_skb_pcount(skb);
1491 return skb;
1494 /* Avoid all extra work that is being done by sacktag while walking in
1495 * a normal way
1497 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1498 struct tcp_sacktag_state *state,
1499 u32 skip_to_seq)
1501 tcp_for_write_queue_from(skb, sk) {
1502 if (skb == tcp_send_head(sk))
1503 break;
1505 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1506 break;
1508 state->fack_count += tcp_skb_pcount(skb);
1510 return skb;
1513 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1514 struct sock *sk,
1515 struct tcp_sack_block *next_dup,
1516 struct tcp_sacktag_state *state,
1517 u32 skip_to_seq)
1519 if (next_dup == NULL)
1520 return skb;
1522 if (before(next_dup->start_seq, skip_to_seq)) {
1523 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1524 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1525 next_dup->start_seq, next_dup->end_seq,
1529 return skb;
1532 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1534 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1537 static int
1538 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1539 u32 prior_snd_una)
1541 struct tcp_sock *tp = tcp_sk(sk);
1542 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1543 TCP_SKB_CB(ack_skb)->sacked);
1544 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1545 struct tcp_sack_block sp[TCP_NUM_SACKS];
1546 struct tcp_sack_block *cache;
1547 struct tcp_sacktag_state state;
1548 struct sk_buff *skb;
1549 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1550 int used_sacks;
1551 bool found_dup_sack = false;
1552 int i, j;
1553 int first_sack_index;
1555 state.flag = 0;
1556 state.reord = tp->packets_out;
1558 if (!tp->sacked_out) {
1559 if (WARN_ON(tp->fackets_out))
1560 tp->fackets_out = 0;
1561 tcp_highest_sack_reset(sk);
1564 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1565 num_sacks, prior_snd_una);
1566 if (found_dup_sack)
1567 state.flag |= FLAG_DSACKING_ACK;
1569 /* Eliminate too old ACKs, but take into
1570 * account more or less fresh ones, they can
1571 * contain valid SACK info.
1573 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1574 return 0;
1576 if (!tp->packets_out)
1577 goto out;
1579 used_sacks = 0;
1580 first_sack_index = 0;
1581 for (i = 0; i < num_sacks; i++) {
1582 bool dup_sack = !i && found_dup_sack;
1584 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1585 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1587 if (!tcp_is_sackblock_valid(tp, dup_sack,
1588 sp[used_sacks].start_seq,
1589 sp[used_sacks].end_seq)) {
1590 int mib_idx;
1592 if (dup_sack) {
1593 if (!tp->undo_marker)
1594 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1595 else
1596 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1597 } else {
1598 /* Don't count olds caused by ACK reordering */
1599 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1600 !after(sp[used_sacks].end_seq, tp->snd_una))
1601 continue;
1602 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1605 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1606 if (i == 0)
1607 first_sack_index = -1;
1608 continue;
1611 /* Ignore very old stuff early */
1612 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1613 continue;
1615 used_sacks++;
1618 /* order SACK blocks to allow in order walk of the retrans queue */
1619 for (i = used_sacks - 1; i > 0; i--) {
1620 for (j = 0; j < i; j++) {
1621 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1622 swap(sp[j], sp[j + 1]);
1624 /* Track where the first SACK block goes to */
1625 if (j == first_sack_index)
1626 first_sack_index = j + 1;
1631 skb = tcp_write_queue_head(sk);
1632 state.fack_count = 0;
1633 i = 0;
1635 if (!tp->sacked_out) {
1636 /* It's already past, so skip checking against it */
1637 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1638 } else {
1639 cache = tp->recv_sack_cache;
1640 /* Skip empty blocks in at head of the cache */
1641 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1642 !cache->end_seq)
1643 cache++;
1646 while (i < used_sacks) {
1647 u32 start_seq = sp[i].start_seq;
1648 u32 end_seq = sp[i].end_seq;
1649 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1650 struct tcp_sack_block *next_dup = NULL;
1652 if (found_dup_sack && ((i + 1) == first_sack_index))
1653 next_dup = &sp[i + 1];
1655 /* Skip too early cached blocks */
1656 while (tcp_sack_cache_ok(tp, cache) &&
1657 !before(start_seq, cache->end_seq))
1658 cache++;
1660 /* Can skip some work by looking recv_sack_cache? */
1661 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1662 after(end_seq, cache->start_seq)) {
1664 /* Head todo? */
1665 if (before(start_seq, cache->start_seq)) {
1666 skb = tcp_sacktag_skip(skb, sk, &state,
1667 start_seq);
1668 skb = tcp_sacktag_walk(skb, sk, next_dup,
1669 &state,
1670 start_seq,
1671 cache->start_seq,
1672 dup_sack);
1675 /* Rest of the block already fully processed? */
1676 if (!after(end_seq, cache->end_seq))
1677 goto advance_sp;
1679 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1680 &state,
1681 cache->end_seq);
1683 /* ...tail remains todo... */
1684 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1685 /* ...but better entrypoint exists! */
1686 skb = tcp_highest_sack(sk);
1687 if (skb == NULL)
1688 break;
1689 state.fack_count = tp->fackets_out;
1690 cache++;
1691 goto walk;
1694 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1695 /* Check overlap against next cached too (past this one already) */
1696 cache++;
1697 continue;
1700 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1701 skb = tcp_highest_sack(sk);
1702 if (skb == NULL)
1703 break;
1704 state.fack_count = tp->fackets_out;
1706 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1708 walk:
1709 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1710 start_seq, end_seq, dup_sack);
1712 advance_sp:
1713 i++;
1716 /* Clear the head of the cache sack blocks so we can skip it next time */
1717 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1718 tp->recv_sack_cache[i].start_seq = 0;
1719 tp->recv_sack_cache[i].end_seq = 0;
1721 for (j = 0; j < used_sacks; j++)
1722 tp->recv_sack_cache[i++] = sp[j];
1724 tcp_mark_lost_retrans(sk);
1726 tcp_verify_left_out(tp);
1728 if ((state.reord < tp->fackets_out) &&
1729 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1730 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1732 out:
1734 #if FASTRETRANS_DEBUG > 0
1735 WARN_ON((int)tp->sacked_out < 0);
1736 WARN_ON((int)tp->lost_out < 0);
1737 WARN_ON((int)tp->retrans_out < 0);
1738 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1739 #endif
1740 return state.flag;
1743 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1744 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1746 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1748 u32 holes;
1750 holes = max(tp->lost_out, 1U);
1751 holes = min(holes, tp->packets_out);
1753 if ((tp->sacked_out + holes) > tp->packets_out) {
1754 tp->sacked_out = tp->packets_out - holes;
1755 return true;
1757 return false;
1760 /* If we receive more dupacks than we expected counting segments
1761 * in assumption of absent reordering, interpret this as reordering.
1762 * The only another reason could be bug in receiver TCP.
1764 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1766 struct tcp_sock *tp = tcp_sk(sk);
1767 if (tcp_limit_reno_sacked(tp))
1768 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1771 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1773 static void tcp_add_reno_sack(struct sock *sk)
1775 struct tcp_sock *tp = tcp_sk(sk);
1776 tp->sacked_out++;
1777 tcp_check_reno_reordering(sk, 0);
1778 tcp_verify_left_out(tp);
1781 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1783 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1785 struct tcp_sock *tp = tcp_sk(sk);
1787 if (acked > 0) {
1788 /* One ACK acked hole. The rest eat duplicate ACKs. */
1789 if (acked - 1 >= tp->sacked_out)
1790 tp->sacked_out = 0;
1791 else
1792 tp->sacked_out -= acked - 1;
1794 tcp_check_reno_reordering(sk, acked);
1795 tcp_verify_left_out(tp);
1798 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1800 tp->sacked_out = 0;
1803 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1805 tp->retrans_out = 0;
1806 tp->lost_out = 0;
1808 tp->undo_marker = 0;
1809 tp->undo_retrans = 0;
1812 void tcp_clear_retrans(struct tcp_sock *tp)
1814 tcp_clear_retrans_partial(tp);
1816 tp->fackets_out = 0;
1817 tp->sacked_out = 0;
1820 /* Enter Loss state. If "how" is not zero, forget all SACK information
1821 * and reset tags completely, otherwise preserve SACKs. If receiver
1822 * dropped its ofo queue, we will know this due to reneging detection.
1824 void tcp_enter_loss(struct sock *sk, int how)
1826 const struct inet_connection_sock *icsk = inet_csk(sk);
1827 struct tcp_sock *tp = tcp_sk(sk);
1828 struct sk_buff *skb;
1829 bool new_recovery = false;
1831 /* Reduce ssthresh if it has not yet been made inside this window. */
1832 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1833 !after(tp->high_seq, tp->snd_una) ||
1834 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1835 new_recovery = true;
1836 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1837 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1838 tcp_ca_event(sk, CA_EVENT_LOSS);
1840 tp->snd_cwnd = 1;
1841 tp->snd_cwnd_cnt = 0;
1842 tp->snd_cwnd_stamp = tcp_time_stamp;
1844 tcp_clear_retrans_partial(tp);
1846 if (tcp_is_reno(tp))
1847 tcp_reset_reno_sack(tp);
1849 tp->undo_marker = tp->snd_una;
1850 if (how) {
1851 tp->sacked_out = 0;
1852 tp->fackets_out = 0;
1854 tcp_clear_all_retrans_hints(tp);
1856 tcp_for_write_queue(skb, sk) {
1857 if (skb == tcp_send_head(sk))
1858 break;
1860 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1861 tp->undo_marker = 0;
1862 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1863 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1864 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1865 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1866 tp->lost_out += tcp_skb_pcount(skb);
1867 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1870 tcp_verify_left_out(tp);
1872 tp->reordering = min_t(unsigned int, tp->reordering,
1873 sysctl_tcp_reordering);
1874 tcp_set_ca_state(sk, TCP_CA_Loss);
1875 tp->high_seq = tp->snd_nxt;
1876 TCP_ECN_queue_cwr(tp);
1878 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1879 * loss recovery is underway except recurring timeout(s) on
1880 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1882 tp->frto = sysctl_tcp_frto &&
1883 (new_recovery || icsk->icsk_retransmits) &&
1884 !inet_csk(sk)->icsk_mtup.probe_size;
1887 /* If ACK arrived pointing to a remembered SACK, it means that our
1888 * remembered SACKs do not reflect real state of receiver i.e.
1889 * receiver _host_ is heavily congested (or buggy).
1891 * Do processing similar to RTO timeout.
1893 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1895 if (flag & FLAG_SACK_RENEGING) {
1896 struct inet_connection_sock *icsk = inet_csk(sk);
1897 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1899 tcp_enter_loss(sk, 1);
1900 icsk->icsk_retransmits++;
1901 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1902 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1903 icsk->icsk_rto, TCP_RTO_MAX);
1904 return true;
1906 return false;
1909 static inline int tcp_fackets_out(const struct tcp_sock *tp)
1911 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1914 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1915 * counter when SACK is enabled (without SACK, sacked_out is used for
1916 * that purpose).
1918 * Instead, with FACK TCP uses fackets_out that includes both SACKed
1919 * segments up to the highest received SACK block so far and holes in
1920 * between them.
1922 * With reordering, holes may still be in flight, so RFC3517 recovery
1923 * uses pure sacked_out (total number of SACKed segments) even though
1924 * it violates the RFC that uses duplicate ACKs, often these are equal
1925 * but when e.g. out-of-window ACKs or packet duplication occurs,
1926 * they differ. Since neither occurs due to loss, TCP should really
1927 * ignore them.
1929 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
1931 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
1934 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
1936 struct tcp_sock *tp = tcp_sk(sk);
1937 unsigned long delay;
1939 /* Delay early retransmit and entering fast recovery for
1940 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
1941 * available, or RTO is scheduled to fire first.
1943 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
1944 (flag & FLAG_ECE) || !tp->srtt)
1945 return false;
1947 delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
1948 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
1949 return false;
1951 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
1952 TCP_RTO_MAX);
1953 return true;
1956 /* Linux NewReno/SACK/FACK/ECN state machine.
1957 * --------------------------------------
1959 * "Open" Normal state, no dubious events, fast path.
1960 * "Disorder" In all the respects it is "Open",
1961 * but requires a bit more attention. It is entered when
1962 * we see some SACKs or dupacks. It is split of "Open"
1963 * mainly to move some processing from fast path to slow one.
1964 * "CWR" CWND was reduced due to some Congestion Notification event.
1965 * It can be ECN, ICMP source quench, local device congestion.
1966 * "Recovery" CWND was reduced, we are fast-retransmitting.
1967 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1969 * tcp_fastretrans_alert() is entered:
1970 * - each incoming ACK, if state is not "Open"
1971 * - when arrived ACK is unusual, namely:
1972 * * SACK
1973 * * Duplicate ACK.
1974 * * ECN ECE.
1976 * Counting packets in flight is pretty simple.
1978 * in_flight = packets_out - left_out + retrans_out
1980 * packets_out is SND.NXT-SND.UNA counted in packets.
1982 * retrans_out is number of retransmitted segments.
1984 * left_out is number of segments left network, but not ACKed yet.
1986 * left_out = sacked_out + lost_out
1988 * sacked_out: Packets, which arrived to receiver out of order
1989 * and hence not ACKed. With SACKs this number is simply
1990 * amount of SACKed data. Even without SACKs
1991 * it is easy to give pretty reliable estimate of this number,
1992 * counting duplicate ACKs.
1994 * lost_out: Packets lost by network. TCP has no explicit
1995 * "loss notification" feedback from network (for now).
1996 * It means that this number can be only _guessed_.
1997 * Actually, it is the heuristics to predict lossage that
1998 * distinguishes different algorithms.
2000 * F.e. after RTO, when all the queue is considered as lost,
2001 * lost_out = packets_out and in_flight = retrans_out.
2003 * Essentially, we have now two algorithms counting
2004 * lost packets.
2006 * FACK: It is the simplest heuristics. As soon as we decided
2007 * that something is lost, we decide that _all_ not SACKed
2008 * packets until the most forward SACK are lost. I.e.
2009 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2010 * It is absolutely correct estimate, if network does not reorder
2011 * packets. And it loses any connection to reality when reordering
2012 * takes place. We use FACK by default until reordering
2013 * is suspected on the path to this destination.
2015 * NewReno: when Recovery is entered, we assume that one segment
2016 * is lost (classic Reno). While we are in Recovery and
2017 * a partial ACK arrives, we assume that one more packet
2018 * is lost (NewReno). This heuristics are the same in NewReno
2019 * and SACK.
2021 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2022 * deflation etc. CWND is real congestion window, never inflated, changes
2023 * only according to classic VJ rules.
2025 * Really tricky (and requiring careful tuning) part of algorithm
2026 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2027 * The first determines the moment _when_ we should reduce CWND and,
2028 * hence, slow down forward transmission. In fact, it determines the moment
2029 * when we decide that hole is caused by loss, rather than by a reorder.
2031 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2032 * holes, caused by lost packets.
2034 * And the most logically complicated part of algorithm is undo
2035 * heuristics. We detect false retransmits due to both too early
2036 * fast retransmit (reordering) and underestimated RTO, analyzing
2037 * timestamps and D-SACKs. When we detect that some segments were
2038 * retransmitted by mistake and CWND reduction was wrong, we undo
2039 * window reduction and abort recovery phase. This logic is hidden
2040 * inside several functions named tcp_try_undo_<something>.
2043 /* This function decides, when we should leave Disordered state
2044 * and enter Recovery phase, reducing congestion window.
2046 * Main question: may we further continue forward transmission
2047 * with the same cwnd?
2049 static bool tcp_time_to_recover(struct sock *sk, int flag)
2051 struct tcp_sock *tp = tcp_sk(sk);
2052 __u32 packets_out;
2054 /* Trick#1: The loss is proven. */
2055 if (tp->lost_out)
2056 return true;
2058 /* Not-A-Trick#2 : Classic rule... */
2059 if (tcp_dupack_heuristics(tp) > tp->reordering)
2060 return true;
2062 /* Trick#4: It is still not OK... But will it be useful to delay
2063 * recovery more?
2065 packets_out = tp->packets_out;
2066 if (packets_out <= tp->reordering &&
2067 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2068 !tcp_may_send_now(sk)) {
2069 /* We have nothing to send. This connection is limited
2070 * either by receiver window or by application.
2072 return true;
2075 /* If a thin stream is detected, retransmit after first
2076 * received dupack. Employ only if SACK is supported in order
2077 * to avoid possible corner-case series of spurious retransmissions
2078 * Use only if there are no unsent data.
2080 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2081 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2082 tcp_is_sack(tp) && !tcp_send_head(sk))
2083 return true;
2085 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2086 * retransmissions due to small network reorderings, we implement
2087 * Mitigation A.3 in the RFC and delay the retransmission for a short
2088 * interval if appropriate.
2090 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2091 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2092 !tcp_may_send_now(sk))
2093 return !tcp_pause_early_retransmit(sk, flag);
2095 return false;
2098 /* Detect loss in event "A" above by marking head of queue up as lost.
2099 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2100 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2101 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2102 * the maximum SACKed segments to pass before reaching this limit.
2104 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2106 struct tcp_sock *tp = tcp_sk(sk);
2107 struct sk_buff *skb;
2108 int cnt, oldcnt;
2109 int err;
2110 unsigned int mss;
2111 /* Use SACK to deduce losses of new sequences sent during recovery */
2112 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2114 WARN_ON(packets > tp->packets_out);
2115 if (tp->lost_skb_hint) {
2116 skb = tp->lost_skb_hint;
2117 cnt = tp->lost_cnt_hint;
2118 /* Head already handled? */
2119 if (mark_head && skb != tcp_write_queue_head(sk))
2120 return;
2121 } else {
2122 skb = tcp_write_queue_head(sk);
2123 cnt = 0;
2126 tcp_for_write_queue_from(skb, sk) {
2127 if (skb == tcp_send_head(sk))
2128 break;
2129 /* TODO: do this better */
2130 /* this is not the most efficient way to do this... */
2131 tp->lost_skb_hint = skb;
2132 tp->lost_cnt_hint = cnt;
2134 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2135 break;
2137 oldcnt = cnt;
2138 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2139 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2140 cnt += tcp_skb_pcount(skb);
2142 if (cnt > packets) {
2143 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2144 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2145 (oldcnt >= packets))
2146 break;
2148 mss = skb_shinfo(skb)->gso_size;
2149 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2150 if (err < 0)
2151 break;
2152 cnt = packets;
2155 tcp_skb_mark_lost(tp, skb);
2157 if (mark_head)
2158 break;
2160 tcp_verify_left_out(tp);
2163 /* Account newly detected lost packet(s) */
2165 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2167 struct tcp_sock *tp = tcp_sk(sk);
2169 if (tcp_is_reno(tp)) {
2170 tcp_mark_head_lost(sk, 1, 1);
2171 } else if (tcp_is_fack(tp)) {
2172 int lost = tp->fackets_out - tp->reordering;
2173 if (lost <= 0)
2174 lost = 1;
2175 tcp_mark_head_lost(sk, lost, 0);
2176 } else {
2177 int sacked_upto = tp->sacked_out - tp->reordering;
2178 if (sacked_upto >= 0)
2179 tcp_mark_head_lost(sk, sacked_upto, 0);
2180 else if (fast_rexmit)
2181 tcp_mark_head_lost(sk, 1, 1);
2185 /* CWND moderation, preventing bursts due to too big ACKs
2186 * in dubious situations.
2188 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2190 tp->snd_cwnd = min(tp->snd_cwnd,
2191 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2192 tp->snd_cwnd_stamp = tcp_time_stamp;
2195 /* Nothing was retransmitted or returned timestamp is less
2196 * than timestamp of the first retransmission.
2198 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2200 return !tp->retrans_stamp ||
2201 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2202 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2205 /* Undo procedures. */
2207 #if FASTRETRANS_DEBUG > 1
2208 static void DBGUNDO(struct sock *sk, const char *msg)
2210 struct tcp_sock *tp = tcp_sk(sk);
2211 struct inet_sock *inet = inet_sk(sk);
2213 if (sk->sk_family == AF_INET) {
2214 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2215 msg,
2216 &inet->inet_daddr, ntohs(inet->inet_dport),
2217 tp->snd_cwnd, tcp_left_out(tp),
2218 tp->snd_ssthresh, tp->prior_ssthresh,
2219 tp->packets_out);
2221 #if IS_ENABLED(CONFIG_IPV6)
2222 else if (sk->sk_family == AF_INET6) {
2223 struct ipv6_pinfo *np = inet6_sk(sk);
2224 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2225 msg,
2226 &np->daddr, ntohs(inet->inet_dport),
2227 tp->snd_cwnd, tcp_left_out(tp),
2228 tp->snd_ssthresh, tp->prior_ssthresh,
2229 tp->packets_out);
2231 #endif
2233 #else
2234 #define DBGUNDO(x...) do { } while (0)
2235 #endif
2237 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2239 struct tcp_sock *tp = tcp_sk(sk);
2241 if (unmark_loss) {
2242 struct sk_buff *skb;
2244 tcp_for_write_queue(skb, sk) {
2245 if (skb == tcp_send_head(sk))
2246 break;
2247 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2249 tp->lost_out = 0;
2250 tcp_clear_all_retrans_hints(tp);
2253 if (tp->prior_ssthresh) {
2254 const struct inet_connection_sock *icsk = inet_csk(sk);
2256 if (icsk->icsk_ca_ops->undo_cwnd)
2257 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2258 else
2259 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2261 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2262 tp->snd_ssthresh = tp->prior_ssthresh;
2263 TCP_ECN_withdraw_cwr(tp);
2265 } else {
2266 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2268 tp->snd_cwnd_stamp = tcp_time_stamp;
2269 tp->undo_marker = 0;
2272 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2274 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2277 /* People celebrate: "We love our President!" */
2278 static bool tcp_try_undo_recovery(struct sock *sk)
2280 struct tcp_sock *tp = tcp_sk(sk);
2282 if (tcp_may_undo(tp)) {
2283 int mib_idx;
2285 /* Happy end! We did not retransmit anything
2286 * or our original transmission succeeded.
2288 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2289 tcp_undo_cwnd_reduction(sk, false);
2290 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2291 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2292 else
2293 mib_idx = LINUX_MIB_TCPFULLUNDO;
2295 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2297 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2298 /* Hold old state until something *above* high_seq
2299 * is ACKed. For Reno it is MUST to prevent false
2300 * fast retransmits (RFC2582). SACK TCP is safe. */
2301 tcp_moderate_cwnd(tp);
2302 return true;
2304 tcp_set_ca_state(sk, TCP_CA_Open);
2305 return false;
2308 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2309 static bool tcp_try_undo_dsack(struct sock *sk)
2311 struct tcp_sock *tp = tcp_sk(sk);
2313 if (tp->undo_marker && !tp->undo_retrans) {
2314 DBGUNDO(sk, "D-SACK");
2315 tcp_undo_cwnd_reduction(sk, false);
2316 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2317 return true;
2319 return false;
2322 /* We can clear retrans_stamp when there are no retransmissions in the
2323 * window. It would seem that it is trivially available for us in
2324 * tp->retrans_out, however, that kind of assumptions doesn't consider
2325 * what will happen if errors occur when sending retransmission for the
2326 * second time. ...It could the that such segment has only
2327 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2328 * the head skb is enough except for some reneging corner cases that
2329 * are not worth the effort.
2331 * Main reason for all this complexity is the fact that connection dying
2332 * time now depends on the validity of the retrans_stamp, in particular,
2333 * that successive retransmissions of a segment must not advance
2334 * retrans_stamp under any conditions.
2336 static bool tcp_any_retrans_done(const struct sock *sk)
2338 const struct tcp_sock *tp = tcp_sk(sk);
2339 struct sk_buff *skb;
2341 if (tp->retrans_out)
2342 return true;
2344 skb = tcp_write_queue_head(sk);
2345 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2346 return true;
2348 return false;
2351 /* Undo during loss recovery after partial ACK or using F-RTO. */
2352 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2354 struct tcp_sock *tp = tcp_sk(sk);
2356 if (frto_undo || tcp_may_undo(tp)) {
2357 tcp_undo_cwnd_reduction(sk, true);
2359 DBGUNDO(sk, "partial loss");
2360 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2361 if (frto_undo)
2362 NET_INC_STATS_BH(sock_net(sk),
2363 LINUX_MIB_TCPSPURIOUSRTOS);
2364 inet_csk(sk)->icsk_retransmits = 0;
2365 if (frto_undo || tcp_is_sack(tp))
2366 tcp_set_ca_state(sk, TCP_CA_Open);
2367 return true;
2369 return false;
2372 /* The cwnd reduction in CWR and Recovery use the PRR algorithm
2373 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2374 * It computes the number of packets to send (sndcnt) based on packets newly
2375 * delivered:
2376 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2377 * cwnd reductions across a full RTT.
2378 * 2) If packets in flight is lower than ssthresh (such as due to excess
2379 * losses and/or application stalls), do not perform any further cwnd
2380 * reductions, but instead slow start up to ssthresh.
2382 static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh)
2384 struct tcp_sock *tp = tcp_sk(sk);
2386 tp->high_seq = tp->snd_nxt;
2387 tp->tlp_high_seq = 0;
2388 tp->snd_cwnd_cnt = 0;
2389 tp->prior_cwnd = tp->snd_cwnd;
2390 tp->prr_delivered = 0;
2391 tp->prr_out = 0;
2392 if (set_ssthresh)
2393 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2394 TCP_ECN_queue_cwr(tp);
2397 static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
2398 int fast_rexmit)
2400 struct tcp_sock *tp = tcp_sk(sk);
2401 int sndcnt = 0;
2402 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2403 int newly_acked_sacked = prior_unsacked -
2404 (tp->packets_out - tp->sacked_out);
2406 tp->prr_delivered += newly_acked_sacked;
2407 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2408 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2409 tp->prior_cwnd - 1;
2410 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2411 } else {
2412 sndcnt = min_t(int, delta,
2413 max_t(int, tp->prr_delivered - tp->prr_out,
2414 newly_acked_sacked) + 1);
2417 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2418 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2421 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2423 struct tcp_sock *tp = tcp_sk(sk);
2425 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2426 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2427 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2428 tp->snd_cwnd = tp->snd_ssthresh;
2429 tp->snd_cwnd_stamp = tcp_time_stamp;
2431 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2434 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2435 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
2437 struct tcp_sock *tp = tcp_sk(sk);
2439 tp->prior_ssthresh = 0;
2440 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2441 tp->undo_marker = 0;
2442 tcp_init_cwnd_reduction(sk, set_ssthresh);
2443 tcp_set_ca_state(sk, TCP_CA_CWR);
2447 static void tcp_try_keep_open(struct sock *sk)
2449 struct tcp_sock *tp = tcp_sk(sk);
2450 int state = TCP_CA_Open;
2452 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2453 state = TCP_CA_Disorder;
2455 if (inet_csk(sk)->icsk_ca_state != state) {
2456 tcp_set_ca_state(sk, state);
2457 tp->high_seq = tp->snd_nxt;
2461 static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
2463 struct tcp_sock *tp = tcp_sk(sk);
2465 tcp_verify_left_out(tp);
2467 if (!tcp_any_retrans_done(sk))
2468 tp->retrans_stamp = 0;
2470 if (flag & FLAG_ECE)
2471 tcp_enter_cwr(sk, 1);
2473 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2474 tcp_try_keep_open(sk);
2475 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2476 tcp_moderate_cwnd(tp);
2477 } else {
2478 tcp_cwnd_reduction(sk, prior_unsacked, 0);
2482 static void tcp_mtup_probe_failed(struct sock *sk)
2484 struct inet_connection_sock *icsk = inet_csk(sk);
2486 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2487 icsk->icsk_mtup.probe_size = 0;
2490 static void tcp_mtup_probe_success(struct sock *sk)
2492 struct tcp_sock *tp = tcp_sk(sk);
2493 struct inet_connection_sock *icsk = inet_csk(sk);
2495 /* FIXME: breaks with very large cwnd */
2496 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2497 tp->snd_cwnd = tp->snd_cwnd *
2498 tcp_mss_to_mtu(sk, tp->mss_cache) /
2499 icsk->icsk_mtup.probe_size;
2500 tp->snd_cwnd_cnt = 0;
2501 tp->snd_cwnd_stamp = tcp_time_stamp;
2502 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2504 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2505 icsk->icsk_mtup.probe_size = 0;
2506 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2509 /* Do a simple retransmit without using the backoff mechanisms in
2510 * tcp_timer. This is used for path mtu discovery.
2511 * The socket is already locked here.
2513 void tcp_simple_retransmit(struct sock *sk)
2515 const struct inet_connection_sock *icsk = inet_csk(sk);
2516 struct tcp_sock *tp = tcp_sk(sk);
2517 struct sk_buff *skb;
2518 unsigned int mss = tcp_current_mss(sk);
2519 u32 prior_lost = tp->lost_out;
2521 tcp_for_write_queue(skb, sk) {
2522 if (skb == tcp_send_head(sk))
2523 break;
2524 if (tcp_skb_seglen(skb) > mss &&
2525 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2526 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2527 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2528 tp->retrans_out -= tcp_skb_pcount(skb);
2530 tcp_skb_mark_lost_uncond_verify(tp, skb);
2534 tcp_clear_retrans_hints_partial(tp);
2536 if (prior_lost == tp->lost_out)
2537 return;
2539 if (tcp_is_reno(tp))
2540 tcp_limit_reno_sacked(tp);
2542 tcp_verify_left_out(tp);
2544 /* Don't muck with the congestion window here.
2545 * Reason is that we do not increase amount of _data_
2546 * in network, but units changed and effective
2547 * cwnd/ssthresh really reduced now.
2549 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2550 tp->high_seq = tp->snd_nxt;
2551 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2552 tp->prior_ssthresh = 0;
2553 tp->undo_marker = 0;
2554 tcp_set_ca_state(sk, TCP_CA_Loss);
2556 tcp_xmit_retransmit_queue(sk);
2558 EXPORT_SYMBOL(tcp_simple_retransmit);
2560 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2562 struct tcp_sock *tp = tcp_sk(sk);
2563 int mib_idx;
2565 if (tcp_is_reno(tp))
2566 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2567 else
2568 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2570 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2572 tp->prior_ssthresh = 0;
2573 tp->undo_marker = tp->snd_una;
2574 tp->undo_retrans = tp->retrans_out;
2576 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2577 if (!ece_ack)
2578 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2579 tcp_init_cwnd_reduction(sk, true);
2581 tcp_set_ca_state(sk, TCP_CA_Recovery);
2584 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2585 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2587 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2589 struct inet_connection_sock *icsk = inet_csk(sk);
2590 struct tcp_sock *tp = tcp_sk(sk);
2591 bool recovered = !before(tp->snd_una, tp->high_seq);
2593 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2594 if (flag & FLAG_ORIG_SACK_ACKED) {
2595 /* Step 3.b. A timeout is spurious if not all data are
2596 * lost, i.e., never-retransmitted data are (s)acked.
2598 tcp_try_undo_loss(sk, true);
2599 return;
2601 if (after(tp->snd_nxt, tp->high_seq) &&
2602 (flag & FLAG_DATA_SACKED || is_dupack)) {
2603 tp->frto = 0; /* Loss was real: 2nd part of step 3.a */
2604 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2605 tp->high_seq = tp->snd_nxt;
2606 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
2607 TCP_NAGLE_OFF);
2608 if (after(tp->snd_nxt, tp->high_seq))
2609 return; /* Step 2.b */
2610 tp->frto = 0;
2614 if (recovered) {
2615 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2616 icsk->icsk_retransmits = 0;
2617 tcp_try_undo_recovery(sk);
2618 return;
2620 if (flag & FLAG_DATA_ACKED)
2621 icsk->icsk_retransmits = 0;
2622 if (tcp_is_reno(tp)) {
2623 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2624 * delivered. Lower inflight to clock out (re)tranmissions.
2626 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2627 tcp_add_reno_sack(sk);
2628 else if (flag & FLAG_SND_UNA_ADVANCED)
2629 tcp_reset_reno_sack(tp);
2631 if (tcp_try_undo_loss(sk, false))
2632 return;
2633 tcp_xmit_retransmit_queue(sk);
2636 /* Undo during fast recovery after partial ACK. */
2637 static bool tcp_try_undo_partial(struct sock *sk, const int acked,
2638 const int prior_unsacked)
2640 struct tcp_sock *tp = tcp_sk(sk);
2642 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2643 /* Plain luck! Hole if filled with delayed
2644 * packet, rather than with a retransmit.
2646 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2648 /* We are getting evidence that the reordering degree is higher
2649 * than we realized. If there are no retransmits out then we
2650 * can undo. Otherwise we clock out new packets but do not
2651 * mark more packets lost or retransmit more.
2653 if (tp->retrans_out) {
2654 tcp_cwnd_reduction(sk, prior_unsacked, 0);
2655 return true;
2658 if (!tcp_any_retrans_done(sk))
2659 tp->retrans_stamp = 0;
2661 DBGUNDO(sk, "partial recovery");
2662 tcp_undo_cwnd_reduction(sk, true);
2663 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2664 tcp_try_keep_open(sk);
2665 return true;
2667 return false;
2670 /* Process an event, which can update packets-in-flight not trivially.
2671 * Main goal of this function is to calculate new estimate for left_out,
2672 * taking into account both packets sitting in receiver's buffer and
2673 * packets lost by network.
2675 * Besides that it does CWND reduction, when packet loss is detected
2676 * and changes state of machine.
2678 * It does _not_ decide what to send, it is made in function
2679 * tcp_xmit_retransmit_queue().
2681 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2682 const int prior_unsacked,
2683 bool is_dupack, int flag)
2685 struct inet_connection_sock *icsk = inet_csk(sk);
2686 struct tcp_sock *tp = tcp_sk(sk);
2687 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2688 (tcp_fackets_out(tp) > tp->reordering));
2689 int fast_rexmit = 0;
2691 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2692 tp->sacked_out = 0;
2693 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2694 tp->fackets_out = 0;
2696 /* Now state machine starts.
2697 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2698 if (flag & FLAG_ECE)
2699 tp->prior_ssthresh = 0;
2701 /* B. In all the states check for reneging SACKs. */
2702 if (tcp_check_sack_reneging(sk, flag))
2703 return;
2705 /* C. Check consistency of the current state. */
2706 tcp_verify_left_out(tp);
2708 /* D. Check state exit conditions. State can be terminated
2709 * when high_seq is ACKed. */
2710 if (icsk->icsk_ca_state == TCP_CA_Open) {
2711 WARN_ON(tp->retrans_out != 0);
2712 tp->retrans_stamp = 0;
2713 } else if (!before(tp->snd_una, tp->high_seq)) {
2714 switch (icsk->icsk_ca_state) {
2715 case TCP_CA_CWR:
2716 /* CWR is to be held something *above* high_seq
2717 * is ACKed for CWR bit to reach receiver. */
2718 if (tp->snd_una != tp->high_seq) {
2719 tcp_end_cwnd_reduction(sk);
2720 tcp_set_ca_state(sk, TCP_CA_Open);
2722 break;
2724 case TCP_CA_Recovery:
2725 if (tcp_is_reno(tp))
2726 tcp_reset_reno_sack(tp);
2727 if (tcp_try_undo_recovery(sk))
2728 return;
2729 tcp_end_cwnd_reduction(sk);
2730 break;
2734 /* E. Process state. */
2735 switch (icsk->icsk_ca_state) {
2736 case TCP_CA_Recovery:
2737 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2738 if (tcp_is_reno(tp) && is_dupack)
2739 tcp_add_reno_sack(sk);
2740 } else {
2741 if (tcp_try_undo_partial(sk, acked, prior_unsacked))
2742 return;
2743 /* Partial ACK arrived. Force fast retransmit. */
2744 do_lost = tcp_is_reno(tp) ||
2745 tcp_fackets_out(tp) > tp->reordering;
2747 if (tcp_try_undo_dsack(sk)) {
2748 tcp_try_keep_open(sk);
2749 return;
2751 break;
2752 case TCP_CA_Loss:
2753 tcp_process_loss(sk, flag, is_dupack);
2754 if (icsk->icsk_ca_state != TCP_CA_Open)
2755 return;
2756 /* Fall through to processing in Open state. */
2757 default:
2758 if (tcp_is_reno(tp)) {
2759 if (flag & FLAG_SND_UNA_ADVANCED)
2760 tcp_reset_reno_sack(tp);
2761 if (is_dupack)
2762 tcp_add_reno_sack(sk);
2765 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2766 tcp_try_undo_dsack(sk);
2768 if (!tcp_time_to_recover(sk, flag)) {
2769 tcp_try_to_open(sk, flag, prior_unsacked);
2770 return;
2773 /* MTU probe failure: don't reduce cwnd */
2774 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2775 icsk->icsk_mtup.probe_size &&
2776 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2777 tcp_mtup_probe_failed(sk);
2778 /* Restores the reduction we did in tcp_mtup_probe() */
2779 tp->snd_cwnd++;
2780 tcp_simple_retransmit(sk);
2781 return;
2784 /* Otherwise enter Recovery state */
2785 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2786 fast_rexmit = 1;
2789 if (do_lost)
2790 tcp_update_scoreboard(sk, fast_rexmit);
2791 tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit);
2792 tcp_xmit_retransmit_queue(sk);
2795 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
2797 tcp_rtt_estimator(sk, seq_rtt);
2798 tcp_set_rto(sk);
2799 inet_csk(sk)->icsk_backoff = 0;
2801 EXPORT_SYMBOL(tcp_valid_rtt_meas);
2803 /* Read draft-ietf-tcplw-high-performance before mucking
2804 * with this code. (Supersedes RFC1323)
2806 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2808 /* RTTM Rule: A TSecr value received in a segment is used to
2809 * update the averaged RTT measurement only if the segment
2810 * acknowledges some new data, i.e., only if it advances the
2811 * left edge of the send window.
2813 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2814 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2816 * Changed: reset backoff as soon as we see the first valid sample.
2817 * If we do not, we get strongly overestimated rto. With timestamps
2818 * samples are accepted even from very old segments: f.e., when rtt=1
2819 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2820 * answer arrives rto becomes 120 seconds! If at least one of segments
2821 * in window is lost... Voila. --ANK (010210)
2823 struct tcp_sock *tp = tcp_sk(sk);
2825 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
2828 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2830 /* We don't have a timestamp. Can only use
2831 * packets that are not retransmitted to determine
2832 * rtt estimates. Also, we must not reset the
2833 * backoff for rto until we get a non-retransmitted
2834 * packet. This allows us to deal with a situation
2835 * where the network delay has increased suddenly.
2836 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2839 if (flag & FLAG_RETRANS_DATA_ACKED)
2840 return;
2842 tcp_valid_rtt_meas(sk, seq_rtt);
2845 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2846 const s32 seq_rtt)
2848 const struct tcp_sock *tp = tcp_sk(sk);
2849 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2850 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2851 tcp_ack_saw_tstamp(sk, flag);
2852 else if (seq_rtt >= 0)
2853 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2856 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2858 const struct inet_connection_sock *icsk = inet_csk(sk);
2859 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2860 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2863 /* Restart timer after forward progress on connection.
2864 * RFC2988 recommends to restart timer to now+rto.
2866 void tcp_rearm_rto(struct sock *sk)
2868 const struct inet_connection_sock *icsk = inet_csk(sk);
2869 struct tcp_sock *tp = tcp_sk(sk);
2871 /* If the retrans timer is currently being used by Fast Open
2872 * for SYN-ACK retrans purpose, stay put.
2874 if (tp->fastopen_rsk)
2875 return;
2877 if (!tp->packets_out) {
2878 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2879 } else {
2880 u32 rto = inet_csk(sk)->icsk_rto;
2881 /* Offset the time elapsed after installing regular RTO */
2882 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2883 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2884 struct sk_buff *skb = tcp_write_queue_head(sk);
2885 const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
2886 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
2887 /* delta may not be positive if the socket is locked
2888 * when the retrans timer fires and is rescheduled.
2890 if (delta > 0)
2891 rto = delta;
2893 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2894 TCP_RTO_MAX);
2898 /* This function is called when the delayed ER timer fires. TCP enters
2899 * fast recovery and performs fast-retransmit.
2901 void tcp_resume_early_retransmit(struct sock *sk)
2903 struct tcp_sock *tp = tcp_sk(sk);
2905 tcp_rearm_rto(sk);
2907 /* Stop if ER is disabled after the delayed ER timer is scheduled */
2908 if (!tp->do_early_retrans)
2909 return;
2911 tcp_enter_recovery(sk, false);
2912 tcp_update_scoreboard(sk, 1);
2913 tcp_xmit_retransmit_queue(sk);
2916 /* If we get here, the whole TSO packet has not been acked. */
2917 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2919 struct tcp_sock *tp = tcp_sk(sk);
2920 u32 packets_acked;
2922 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2924 packets_acked = tcp_skb_pcount(skb);
2925 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2926 return 0;
2927 packets_acked -= tcp_skb_pcount(skb);
2929 if (packets_acked) {
2930 BUG_ON(tcp_skb_pcount(skb) == 0);
2931 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2934 return packets_acked;
2937 /* Remove acknowledged frames from the retransmission queue. If our packet
2938 * is before the ack sequence we can discard it as it's confirmed to have
2939 * arrived at the other end.
2941 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
2942 u32 prior_snd_una)
2944 struct tcp_sock *tp = tcp_sk(sk);
2945 const struct inet_connection_sock *icsk = inet_csk(sk);
2946 struct sk_buff *skb;
2947 u32 now = tcp_time_stamp;
2948 int fully_acked = true;
2949 int flag = 0;
2950 u32 pkts_acked = 0;
2951 u32 reord = tp->packets_out;
2952 u32 prior_sacked = tp->sacked_out;
2953 s32 seq_rtt = -1;
2954 s32 ca_seq_rtt = -1;
2955 ktime_t last_ackt = net_invalid_timestamp();
2957 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2958 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2959 u32 acked_pcount;
2960 u8 sacked = scb->sacked;
2962 /* Determine how many packets and what bytes were acked, tso and else */
2963 if (after(scb->end_seq, tp->snd_una)) {
2964 if (tcp_skb_pcount(skb) == 1 ||
2965 !after(tp->snd_una, scb->seq))
2966 break;
2968 acked_pcount = tcp_tso_acked(sk, skb);
2969 if (!acked_pcount)
2970 break;
2972 fully_acked = false;
2973 } else {
2974 acked_pcount = tcp_skb_pcount(skb);
2977 if (sacked & TCPCB_RETRANS) {
2978 if (sacked & TCPCB_SACKED_RETRANS)
2979 tp->retrans_out -= acked_pcount;
2980 flag |= FLAG_RETRANS_DATA_ACKED;
2981 ca_seq_rtt = -1;
2982 seq_rtt = -1;
2983 } else {
2984 ca_seq_rtt = now - scb->when;
2985 last_ackt = skb->tstamp;
2986 if (seq_rtt < 0) {
2987 seq_rtt = ca_seq_rtt;
2989 if (!(sacked & TCPCB_SACKED_ACKED))
2990 reord = min(pkts_acked, reord);
2991 if (!after(scb->end_seq, tp->high_seq))
2992 flag |= FLAG_ORIG_SACK_ACKED;
2995 if (sacked & TCPCB_SACKED_ACKED)
2996 tp->sacked_out -= acked_pcount;
2997 if (sacked & TCPCB_LOST)
2998 tp->lost_out -= acked_pcount;
3000 tp->packets_out -= acked_pcount;
3001 pkts_acked += acked_pcount;
3003 /* Initial outgoing SYN's get put onto the write_queue
3004 * just like anything else we transmit. It is not
3005 * true data, and if we misinform our callers that
3006 * this ACK acks real data, we will erroneously exit
3007 * connection startup slow start one packet too
3008 * quickly. This is severely frowned upon behavior.
3010 if (!(scb->tcp_flags & TCPHDR_SYN)) {
3011 flag |= FLAG_DATA_ACKED;
3012 } else {
3013 flag |= FLAG_SYN_ACKED;
3014 tp->retrans_stamp = 0;
3017 if (!fully_acked)
3018 break;
3020 tcp_unlink_write_queue(skb, sk);
3021 sk_wmem_free_skb(sk, skb);
3022 if (skb == tp->retransmit_skb_hint)
3023 tp->retransmit_skb_hint = NULL;
3024 if (skb == tp->lost_skb_hint)
3025 tp->lost_skb_hint = NULL;
3028 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3029 tp->snd_up = tp->snd_una;
3031 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3032 flag |= FLAG_SACK_RENEGING;
3034 if (flag & FLAG_ACKED) {
3035 const struct tcp_congestion_ops *ca_ops
3036 = inet_csk(sk)->icsk_ca_ops;
3038 if (unlikely(icsk->icsk_mtup.probe_size &&
3039 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3040 tcp_mtup_probe_success(sk);
3043 tcp_ack_update_rtt(sk, flag, seq_rtt);
3044 tcp_rearm_rto(sk);
3046 if (tcp_is_reno(tp)) {
3047 tcp_remove_reno_sacks(sk, pkts_acked);
3048 } else {
3049 int delta;
3051 /* Non-retransmitted hole got filled? That's reordering */
3052 if (reord < prior_fackets)
3053 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3055 delta = tcp_is_fack(tp) ? pkts_acked :
3056 prior_sacked - tp->sacked_out;
3057 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3060 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3062 if (ca_ops->pkts_acked) {
3063 s32 rtt_us = -1;
3065 /* Is the ACK triggering packet unambiguous? */
3066 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3067 /* High resolution needed and available? */
3068 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3069 !ktime_equal(last_ackt,
3070 net_invalid_timestamp()))
3071 rtt_us = ktime_us_delta(ktime_get_real(),
3072 last_ackt);
3073 else if (ca_seq_rtt >= 0)
3074 rtt_us = jiffies_to_usecs(ca_seq_rtt);
3077 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3081 #if FASTRETRANS_DEBUG > 0
3082 WARN_ON((int)tp->sacked_out < 0);
3083 WARN_ON((int)tp->lost_out < 0);
3084 WARN_ON((int)tp->retrans_out < 0);
3085 if (!tp->packets_out && tcp_is_sack(tp)) {
3086 icsk = inet_csk(sk);
3087 if (tp->lost_out) {
3088 pr_debug("Leak l=%u %d\n",
3089 tp->lost_out, icsk->icsk_ca_state);
3090 tp->lost_out = 0;
3092 if (tp->sacked_out) {
3093 pr_debug("Leak s=%u %d\n",
3094 tp->sacked_out, icsk->icsk_ca_state);
3095 tp->sacked_out = 0;
3097 if (tp->retrans_out) {
3098 pr_debug("Leak r=%u %d\n",
3099 tp->retrans_out, icsk->icsk_ca_state);
3100 tp->retrans_out = 0;
3103 #endif
3104 return flag;
3107 static void tcp_ack_probe(struct sock *sk)
3109 const struct tcp_sock *tp = tcp_sk(sk);
3110 struct inet_connection_sock *icsk = inet_csk(sk);
3112 /* Was it a usable window open? */
3114 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3115 icsk->icsk_backoff = 0;
3116 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3117 /* Socket must be waked up by subsequent tcp_data_snd_check().
3118 * This function is not for random using!
3120 } else {
3121 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3122 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3123 TCP_RTO_MAX);
3127 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3129 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3130 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3133 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3135 const struct tcp_sock *tp = tcp_sk(sk);
3136 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3137 !tcp_in_cwnd_reduction(sk);
3140 /* Check that window update is acceptable.
3141 * The function assumes that snd_una<=ack<=snd_next.
3143 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3144 const u32 ack, const u32 ack_seq,
3145 const u32 nwin)
3147 return after(ack, tp->snd_una) ||
3148 after(ack_seq, tp->snd_wl1) ||
3149 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3152 /* Update our send window.
3154 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3155 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3157 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3158 u32 ack_seq)
3160 struct tcp_sock *tp = tcp_sk(sk);
3161 int flag = 0;
3162 u32 nwin = ntohs(tcp_hdr(skb)->window);
3164 if (likely(!tcp_hdr(skb)->syn))
3165 nwin <<= tp->rx_opt.snd_wscale;
3167 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3168 flag |= FLAG_WIN_UPDATE;
3169 tcp_update_wl(tp, ack_seq);
3171 if (tp->snd_wnd != nwin) {
3172 tp->snd_wnd = nwin;
3174 /* Note, it is the only place, where
3175 * fast path is recovered for sending TCP.
3177 tp->pred_flags = 0;
3178 tcp_fast_path_check(sk);
3180 if (nwin > tp->max_window) {
3181 tp->max_window = nwin;
3182 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3187 tp->snd_una = ack;
3189 return flag;
3192 /* RFC 5961 7 [ACK Throttling] */
3193 static void tcp_send_challenge_ack(struct sock *sk)
3195 /* unprotected vars, we dont care of overwrites */
3196 static u32 challenge_timestamp;
3197 static unsigned int challenge_count;
3198 u32 now = jiffies / HZ;
3200 if (now != challenge_timestamp) {
3201 challenge_timestamp = now;
3202 challenge_count = 0;
3204 if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3205 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3206 tcp_send_ack(sk);
3210 static void tcp_store_ts_recent(struct tcp_sock *tp)
3212 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3213 tp->rx_opt.ts_recent_stamp = get_seconds();
3216 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3218 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3219 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3220 * extra check below makes sure this can only happen
3221 * for pure ACK frames. -DaveM
3223 * Not only, also it occurs for expired timestamps.
3226 if (tcp_paws_check(&tp->rx_opt, 0))
3227 tcp_store_ts_recent(tp);
3231 /* This routine deals with acks during a TLP episode.
3232 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3234 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3236 struct tcp_sock *tp = tcp_sk(sk);
3237 bool is_tlp_dupack = (ack == tp->tlp_high_seq) &&
3238 !(flag & (FLAG_SND_UNA_ADVANCED |
3239 FLAG_NOT_DUP | FLAG_DATA_SACKED));
3241 /* Mark the end of TLP episode on receiving TLP dupack or when
3242 * ack is after tlp_high_seq.
3244 if (is_tlp_dupack) {
3245 tp->tlp_high_seq = 0;
3246 return;
3249 if (after(ack, tp->tlp_high_seq)) {
3250 tp->tlp_high_seq = 0;
3251 /* Don't reduce cwnd if DSACK arrives for TLP retrans. */
3252 if (!(flag & FLAG_DSACKING_ACK)) {
3253 tcp_init_cwnd_reduction(sk, true);
3254 tcp_set_ca_state(sk, TCP_CA_CWR);
3255 tcp_end_cwnd_reduction(sk);
3256 tcp_set_ca_state(sk, TCP_CA_Open);
3257 NET_INC_STATS_BH(sock_net(sk),
3258 LINUX_MIB_TCPLOSSPROBERECOVERY);
3263 /* This routine deals with incoming acks, but not outgoing ones. */
3264 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3266 struct inet_connection_sock *icsk = inet_csk(sk);
3267 struct tcp_sock *tp = tcp_sk(sk);
3268 u32 prior_snd_una = tp->snd_una;
3269 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3270 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3271 bool is_dupack = false;
3272 u32 prior_in_flight;
3273 u32 prior_fackets;
3274 int prior_packets = tp->packets_out;
3275 const int prior_unsacked = tp->packets_out - tp->sacked_out;
3276 int acked = 0; /* Number of packets newly acked */
3278 /* If the ack is older than previous acks
3279 * then we can probably ignore it.
3281 if (before(ack, prior_snd_una)) {
3282 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3283 if (before(ack, prior_snd_una - tp->max_window)) {
3284 tcp_send_challenge_ack(sk);
3285 return -1;
3287 goto old_ack;
3290 /* If the ack includes data we haven't sent yet, discard
3291 * this segment (RFC793 Section 3.9).
3293 if (after(ack, tp->snd_nxt))
3294 goto invalid_ack;
3296 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3297 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3298 tcp_rearm_rto(sk);
3300 if (after(ack, prior_snd_una))
3301 flag |= FLAG_SND_UNA_ADVANCED;
3303 prior_fackets = tp->fackets_out;
3304 prior_in_flight = tcp_packets_in_flight(tp);
3306 /* ts_recent update must be made after we are sure that the packet
3307 * is in window.
3309 if (flag & FLAG_UPDATE_TS_RECENT)
3310 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3312 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3313 /* Window is constant, pure forward advance.
3314 * No more checks are required.
3315 * Note, we use the fact that SND.UNA>=SND.WL2.
3317 tcp_update_wl(tp, ack_seq);
3318 tp->snd_una = ack;
3319 flag |= FLAG_WIN_UPDATE;
3321 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3323 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3324 } else {
3325 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3326 flag |= FLAG_DATA;
3327 else
3328 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3330 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3332 if (TCP_SKB_CB(skb)->sacked)
3333 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3335 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3336 flag |= FLAG_ECE;
3338 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3341 /* We passed data and got it acked, remove any soft error
3342 * log. Something worked...
3344 sk->sk_err_soft = 0;
3345 icsk->icsk_probes_out = 0;
3346 tp->rcv_tstamp = tcp_time_stamp;
3347 if (!prior_packets)
3348 goto no_queue;
3350 /* See if we can take anything off of the retransmit queue. */
3351 acked = tp->packets_out;
3352 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3353 acked -= tp->packets_out;
3355 if (tcp_ack_is_dubious(sk, flag)) {
3356 /* Advance CWND, if state allows this. */
3357 if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag))
3358 tcp_cong_avoid(sk, ack, prior_in_flight);
3359 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3360 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3361 is_dupack, flag);
3362 } else {
3363 if (flag & FLAG_DATA_ACKED)
3364 tcp_cong_avoid(sk, ack, prior_in_flight);
3367 if (tp->tlp_high_seq)
3368 tcp_process_tlp_ack(sk, ack, flag);
3370 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3371 struct dst_entry *dst = __sk_dst_get(sk);
3372 if (dst)
3373 dst_confirm(dst);
3376 if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3377 tcp_schedule_loss_probe(sk);
3378 return 1;
3380 no_queue:
3381 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3382 if (flag & FLAG_DSACKING_ACK)
3383 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3384 is_dupack, flag);
3385 /* If this ack opens up a zero window, clear backoff. It was
3386 * being used to time the probes, and is probably far higher than
3387 * it needs to be for normal retransmission.
3389 if (tcp_send_head(sk))
3390 tcp_ack_probe(sk);
3392 if (tp->tlp_high_seq)
3393 tcp_process_tlp_ack(sk, ack, flag);
3394 return 1;
3396 invalid_ack:
3397 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3398 return -1;
3400 old_ack:
3401 /* If data was SACKed, tag it and see if we should send more data.
3402 * If data was DSACKed, see if we can undo a cwnd reduction.
3404 if (TCP_SKB_CB(skb)->sacked) {
3405 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3406 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3407 is_dupack, flag);
3410 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3411 return 0;
3414 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3415 * But, this can also be called on packets in the established flow when
3416 * the fast version below fails.
3418 void tcp_parse_options(const struct sk_buff *skb,
3419 struct tcp_options_received *opt_rx, int estab,
3420 struct tcp_fastopen_cookie *foc)
3422 const unsigned char *ptr;
3423 const struct tcphdr *th = tcp_hdr(skb);
3424 int length = (th->doff * 4) - sizeof(struct tcphdr);
3426 ptr = (const unsigned char *)(th + 1);
3427 opt_rx->saw_tstamp = 0;
3429 while (length > 0) {
3430 int opcode = *ptr++;
3431 int opsize;
3433 switch (opcode) {
3434 case TCPOPT_EOL:
3435 return;
3436 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3437 length--;
3438 continue;
3439 default:
3440 opsize = *ptr++;
3441 if (opsize < 2) /* "silly options" */
3442 return;
3443 if (opsize > length)
3444 return; /* don't parse partial options */
3445 switch (opcode) {
3446 case TCPOPT_MSS:
3447 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3448 u16 in_mss = get_unaligned_be16(ptr);
3449 if (in_mss) {
3450 if (opt_rx->user_mss &&
3451 opt_rx->user_mss < in_mss)
3452 in_mss = opt_rx->user_mss;
3453 opt_rx->mss_clamp = in_mss;
3456 break;
3457 case TCPOPT_WINDOW:
3458 if (opsize == TCPOLEN_WINDOW && th->syn &&
3459 !estab && sysctl_tcp_window_scaling) {
3460 __u8 snd_wscale = *(__u8 *)ptr;
3461 opt_rx->wscale_ok = 1;
3462 if (snd_wscale > 14) {
3463 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3464 __func__,
3465 snd_wscale);
3466 snd_wscale = 14;
3468 opt_rx->snd_wscale = snd_wscale;
3470 break;
3471 case TCPOPT_TIMESTAMP:
3472 if ((opsize == TCPOLEN_TIMESTAMP) &&
3473 ((estab && opt_rx->tstamp_ok) ||
3474 (!estab && sysctl_tcp_timestamps))) {
3475 opt_rx->saw_tstamp = 1;
3476 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3477 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3479 break;
3480 case TCPOPT_SACK_PERM:
3481 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3482 !estab && sysctl_tcp_sack) {
3483 opt_rx->sack_ok = TCP_SACK_SEEN;
3484 tcp_sack_reset(opt_rx);
3486 break;
3488 case TCPOPT_SACK:
3489 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3490 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3491 opt_rx->sack_ok) {
3492 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3494 break;
3495 #ifdef CONFIG_TCP_MD5SIG
3496 case TCPOPT_MD5SIG:
3498 * The MD5 Hash has already been
3499 * checked (see tcp_v{4,6}_do_rcv()).
3501 break;
3502 #endif
3503 case TCPOPT_EXP:
3504 /* Fast Open option shares code 254 using a
3505 * 16 bits magic number. It's valid only in
3506 * SYN or SYN-ACK with an even size.
3508 if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
3509 get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
3510 foc == NULL || !th->syn || (opsize & 1))
3511 break;
3512 foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
3513 if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
3514 foc->len <= TCP_FASTOPEN_COOKIE_MAX)
3515 memcpy(foc->val, ptr + 2, foc->len);
3516 else if (foc->len != 0)
3517 foc->len = -1;
3518 break;
3521 ptr += opsize-2;
3522 length -= opsize;
3526 EXPORT_SYMBOL(tcp_parse_options);
3528 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3530 const __be32 *ptr = (const __be32 *)(th + 1);
3532 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3533 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3534 tp->rx_opt.saw_tstamp = 1;
3535 ++ptr;
3536 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3537 ++ptr;
3538 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3539 return true;
3541 return false;
3544 /* Fast parse options. This hopes to only see timestamps.
3545 * If it is wrong it falls back on tcp_parse_options().
3547 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3548 const struct tcphdr *th, struct tcp_sock *tp)
3550 /* In the spirit of fast parsing, compare doff directly to constant
3551 * values. Because equality is used, short doff can be ignored here.
3553 if (th->doff == (sizeof(*th) / 4)) {
3554 tp->rx_opt.saw_tstamp = 0;
3555 return false;
3556 } else if (tp->rx_opt.tstamp_ok &&
3557 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3558 if (tcp_parse_aligned_timestamp(tp, th))
3559 return true;
3562 tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3563 if (tp->rx_opt.saw_tstamp)
3564 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3566 return true;
3569 #ifdef CONFIG_TCP_MD5SIG
3571 * Parse MD5 Signature option
3573 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3575 int length = (th->doff << 2) - sizeof(*th);
3576 const u8 *ptr = (const u8 *)(th + 1);
3578 /* If the TCP option is too short, we can short cut */
3579 if (length < TCPOLEN_MD5SIG)
3580 return NULL;
3582 while (length > 0) {
3583 int opcode = *ptr++;
3584 int opsize;
3586 switch(opcode) {
3587 case TCPOPT_EOL:
3588 return NULL;
3589 case TCPOPT_NOP:
3590 length--;
3591 continue;
3592 default:
3593 opsize = *ptr++;
3594 if (opsize < 2 || opsize > length)
3595 return NULL;
3596 if (opcode == TCPOPT_MD5SIG)
3597 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3599 ptr += opsize - 2;
3600 length -= opsize;
3602 return NULL;
3604 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3605 #endif
3607 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3609 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3610 * it can pass through stack. So, the following predicate verifies that
3611 * this segment is not used for anything but congestion avoidance or
3612 * fast retransmit. Moreover, we even are able to eliminate most of such
3613 * second order effects, if we apply some small "replay" window (~RTO)
3614 * to timestamp space.
3616 * All these measures still do not guarantee that we reject wrapped ACKs
3617 * on networks with high bandwidth, when sequence space is recycled fastly,
3618 * but it guarantees that such events will be very rare and do not affect
3619 * connection seriously. This doesn't look nice, but alas, PAWS is really
3620 * buggy extension.
3622 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3623 * states that events when retransmit arrives after original data are rare.
3624 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3625 * the biggest problem on large power networks even with minor reordering.
3626 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3627 * up to bandwidth of 18Gigabit/sec. 8) ]
3630 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3632 const struct tcp_sock *tp = tcp_sk(sk);
3633 const struct tcphdr *th = tcp_hdr(skb);
3634 u32 seq = TCP_SKB_CB(skb)->seq;
3635 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3637 return (/* 1. Pure ACK with correct sequence number. */
3638 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3640 /* 2. ... and duplicate ACK. */
3641 ack == tp->snd_una &&
3643 /* 3. ... and does not update window. */
3644 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3646 /* 4. ... and sits in replay window. */
3647 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3650 static inline bool tcp_paws_discard(const struct sock *sk,
3651 const struct sk_buff *skb)
3653 const struct tcp_sock *tp = tcp_sk(sk);
3655 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3656 !tcp_disordered_ack(sk, skb);
3659 /* Check segment sequence number for validity.
3661 * Segment controls are considered valid, if the segment
3662 * fits to the window after truncation to the window. Acceptability
3663 * of data (and SYN, FIN, of course) is checked separately.
3664 * See tcp_data_queue(), for example.
3666 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3667 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3668 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3669 * (borrowed from freebsd)
3672 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3674 return !before(end_seq, tp->rcv_wup) &&
3675 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3678 /* When we get a reset we do this. */
3679 void tcp_reset(struct sock *sk)
3681 /* We want the right error as BSD sees it (and indeed as we do). */
3682 switch (sk->sk_state) {
3683 case TCP_SYN_SENT:
3684 sk->sk_err = ECONNREFUSED;
3685 break;
3686 case TCP_CLOSE_WAIT:
3687 sk->sk_err = EPIPE;
3688 break;
3689 case TCP_CLOSE:
3690 return;
3691 default:
3692 sk->sk_err = ECONNRESET;
3694 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3695 smp_wmb();
3697 if (!sock_flag(sk, SOCK_DEAD))
3698 sk->sk_error_report(sk);
3700 tcp_done(sk);
3704 * Process the FIN bit. This now behaves as it is supposed to work
3705 * and the FIN takes effect when it is validly part of sequence
3706 * space. Not before when we get holes.
3708 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3709 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3710 * TIME-WAIT)
3712 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3713 * close and we go into CLOSING (and later onto TIME-WAIT)
3715 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3717 static void tcp_fin(struct sock *sk)
3719 struct tcp_sock *tp = tcp_sk(sk);
3720 const struct dst_entry *dst;
3722 inet_csk_schedule_ack(sk);
3724 sk->sk_shutdown |= RCV_SHUTDOWN;
3725 sock_set_flag(sk, SOCK_DONE);
3727 switch (sk->sk_state) {
3728 case TCP_SYN_RECV:
3729 case TCP_ESTABLISHED:
3730 /* Move to CLOSE_WAIT */
3731 tcp_set_state(sk, TCP_CLOSE_WAIT);
3732 dst = __sk_dst_get(sk);
3733 if (!dst || !dst_metric(dst, RTAX_QUICKACK))
3734 inet_csk(sk)->icsk_ack.pingpong = 1;
3735 break;
3737 case TCP_CLOSE_WAIT:
3738 case TCP_CLOSING:
3739 /* Received a retransmission of the FIN, do
3740 * nothing.
3742 break;
3743 case TCP_LAST_ACK:
3744 /* RFC793: Remain in the LAST-ACK state. */
3745 break;
3747 case TCP_FIN_WAIT1:
3748 /* This case occurs when a simultaneous close
3749 * happens, we must ack the received FIN and
3750 * enter the CLOSING state.
3752 tcp_send_ack(sk);
3753 tcp_set_state(sk, TCP_CLOSING);
3754 break;
3755 case TCP_FIN_WAIT2:
3756 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3757 tcp_send_ack(sk);
3758 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3759 break;
3760 default:
3761 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3762 * cases we should never reach this piece of code.
3764 pr_err("%s: Impossible, sk->sk_state=%d\n",
3765 __func__, sk->sk_state);
3766 break;
3769 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3770 * Probably, we should reset in this case. For now drop them.
3772 __skb_queue_purge(&tp->out_of_order_queue);
3773 if (tcp_is_sack(tp))
3774 tcp_sack_reset(&tp->rx_opt);
3775 sk_mem_reclaim(sk);
3777 if (!sock_flag(sk, SOCK_DEAD)) {
3778 sk->sk_state_change(sk);
3780 /* Do not send POLL_HUP for half duplex close. */
3781 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3782 sk->sk_state == TCP_CLOSE)
3783 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3784 else
3785 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3789 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3790 u32 end_seq)
3792 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3793 if (before(seq, sp->start_seq))
3794 sp->start_seq = seq;
3795 if (after(end_seq, sp->end_seq))
3796 sp->end_seq = end_seq;
3797 return true;
3799 return false;
3802 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
3804 struct tcp_sock *tp = tcp_sk(sk);
3806 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3807 int mib_idx;
3809 if (before(seq, tp->rcv_nxt))
3810 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3811 else
3812 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3814 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3816 tp->rx_opt.dsack = 1;
3817 tp->duplicate_sack[0].start_seq = seq;
3818 tp->duplicate_sack[0].end_seq = end_seq;
3822 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
3824 struct tcp_sock *tp = tcp_sk(sk);
3826 if (!tp->rx_opt.dsack)
3827 tcp_dsack_set(sk, seq, end_seq);
3828 else
3829 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3832 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
3834 struct tcp_sock *tp = tcp_sk(sk);
3836 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3837 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3838 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
3839 tcp_enter_quickack_mode(sk);
3841 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3842 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3844 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3845 end_seq = tp->rcv_nxt;
3846 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
3850 tcp_send_ack(sk);
3853 /* These routines update the SACK block as out-of-order packets arrive or
3854 * in-order packets close up the sequence space.
3856 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3858 int this_sack;
3859 struct tcp_sack_block *sp = &tp->selective_acks[0];
3860 struct tcp_sack_block *swalk = sp + 1;
3862 /* See if the recent change to the first SACK eats into
3863 * or hits the sequence space of other SACK blocks, if so coalesce.
3865 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3866 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3867 int i;
3869 /* Zap SWALK, by moving every further SACK up by one slot.
3870 * Decrease num_sacks.
3872 tp->rx_opt.num_sacks--;
3873 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3874 sp[i] = sp[i + 1];
3875 continue;
3877 this_sack++, swalk++;
3881 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3883 struct tcp_sock *tp = tcp_sk(sk);
3884 struct tcp_sack_block *sp = &tp->selective_acks[0];
3885 int cur_sacks = tp->rx_opt.num_sacks;
3886 int this_sack;
3888 if (!cur_sacks)
3889 goto new_sack;
3891 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3892 if (tcp_sack_extend(sp, seq, end_seq)) {
3893 /* Rotate this_sack to the first one. */
3894 for (; this_sack > 0; this_sack--, sp--)
3895 swap(*sp, *(sp - 1));
3896 if (cur_sacks > 1)
3897 tcp_sack_maybe_coalesce(tp);
3898 return;
3902 /* Could not find an adjacent existing SACK, build a new one,
3903 * put it at the front, and shift everyone else down. We
3904 * always know there is at least one SACK present already here.
3906 * If the sack array is full, forget about the last one.
3908 if (this_sack >= TCP_NUM_SACKS) {
3909 this_sack--;
3910 tp->rx_opt.num_sacks--;
3911 sp--;
3913 for (; this_sack > 0; this_sack--, sp--)
3914 *sp = *(sp - 1);
3916 new_sack:
3917 /* Build the new head SACK, and we're done. */
3918 sp->start_seq = seq;
3919 sp->end_seq = end_seq;
3920 tp->rx_opt.num_sacks++;
3923 /* RCV.NXT advances, some SACKs should be eaten. */
3925 static void tcp_sack_remove(struct tcp_sock *tp)
3927 struct tcp_sack_block *sp = &tp->selective_acks[0];
3928 int num_sacks = tp->rx_opt.num_sacks;
3929 int this_sack;
3931 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3932 if (skb_queue_empty(&tp->out_of_order_queue)) {
3933 tp->rx_opt.num_sacks = 0;
3934 return;
3937 for (this_sack = 0; this_sack < num_sacks;) {
3938 /* Check if the start of the sack is covered by RCV.NXT. */
3939 if (!before(tp->rcv_nxt, sp->start_seq)) {
3940 int i;
3942 /* RCV.NXT must cover all the block! */
3943 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
3945 /* Zap this SACK, by moving forward any other SACKS. */
3946 for (i=this_sack+1; i < num_sacks; i++)
3947 tp->selective_acks[i-1] = tp->selective_acks[i];
3948 num_sacks--;
3949 continue;
3951 this_sack++;
3952 sp++;
3954 tp->rx_opt.num_sacks = num_sacks;
3957 /* This one checks to see if we can put data from the
3958 * out_of_order queue into the receive_queue.
3960 static void tcp_ofo_queue(struct sock *sk)
3962 struct tcp_sock *tp = tcp_sk(sk);
3963 __u32 dsack_high = tp->rcv_nxt;
3964 struct sk_buff *skb;
3966 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3967 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3968 break;
3970 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3971 __u32 dsack = dsack_high;
3972 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3973 dsack_high = TCP_SKB_CB(skb)->end_seq;
3974 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
3977 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3978 SOCK_DEBUG(sk, "ofo packet was already received\n");
3979 __skb_unlink(skb, &tp->out_of_order_queue);
3980 __kfree_skb(skb);
3981 continue;
3983 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3984 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3985 TCP_SKB_CB(skb)->end_seq);
3987 __skb_unlink(skb, &tp->out_of_order_queue);
3988 __skb_queue_tail(&sk->sk_receive_queue, skb);
3989 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3990 if (tcp_hdr(skb)->fin)
3991 tcp_fin(sk);
3995 static bool tcp_prune_ofo_queue(struct sock *sk);
3996 static int tcp_prune_queue(struct sock *sk);
3998 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
3999 unsigned int size)
4001 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4002 !sk_rmem_schedule(sk, skb, size)) {
4004 if (tcp_prune_queue(sk) < 0)
4005 return -1;
4007 if (!sk_rmem_schedule(sk, skb, size)) {
4008 if (!tcp_prune_ofo_queue(sk))
4009 return -1;
4011 if (!sk_rmem_schedule(sk, skb, size))
4012 return -1;
4015 return 0;
4019 * tcp_try_coalesce - try to merge skb to prior one
4020 * @sk: socket
4021 * @to: prior buffer
4022 * @from: buffer to add in queue
4023 * @fragstolen: pointer to boolean
4025 * Before queueing skb @from after @to, try to merge them
4026 * to reduce overall memory use and queue lengths, if cost is small.
4027 * Packets in ofo or receive queues can stay a long time.
4028 * Better try to coalesce them right now to avoid future collapses.
4029 * Returns true if caller should free @from instead of queueing it
4031 static bool tcp_try_coalesce(struct sock *sk,
4032 struct sk_buff *to,
4033 struct sk_buff *from,
4034 bool *fragstolen)
4036 int delta;
4038 *fragstolen = false;
4040 if (tcp_hdr(from)->fin)
4041 return false;
4043 /* Its possible this segment overlaps with prior segment in queue */
4044 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4045 return false;
4047 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4048 return false;
4050 atomic_add(delta, &sk->sk_rmem_alloc);
4051 sk_mem_charge(sk, delta);
4052 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4053 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4054 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4055 return true;
4058 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4060 struct tcp_sock *tp = tcp_sk(sk);
4061 struct sk_buff *skb1;
4062 u32 seq, end_seq;
4064 TCP_ECN_check_ce(tp, skb);
4066 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4067 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4068 __kfree_skb(skb);
4069 return;
4072 /* Disable header prediction. */
4073 tp->pred_flags = 0;
4074 inet_csk_schedule_ack(sk);
4076 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4077 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4078 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4080 skb1 = skb_peek_tail(&tp->out_of_order_queue);
4081 if (!skb1) {
4082 /* Initial out of order segment, build 1 SACK. */
4083 if (tcp_is_sack(tp)) {
4084 tp->rx_opt.num_sacks = 1;
4085 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4086 tp->selective_acks[0].end_seq =
4087 TCP_SKB_CB(skb)->end_seq;
4089 __skb_queue_head(&tp->out_of_order_queue, skb);
4090 goto end;
4093 seq = TCP_SKB_CB(skb)->seq;
4094 end_seq = TCP_SKB_CB(skb)->end_seq;
4096 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4097 bool fragstolen;
4099 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4100 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4101 } else {
4102 kfree_skb_partial(skb, fragstolen);
4103 skb = NULL;
4106 if (!tp->rx_opt.num_sacks ||
4107 tp->selective_acks[0].end_seq != seq)
4108 goto add_sack;
4110 /* Common case: data arrive in order after hole. */
4111 tp->selective_acks[0].end_seq = end_seq;
4112 goto end;
4115 /* Find place to insert this segment. */
4116 while (1) {
4117 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4118 break;
4119 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4120 skb1 = NULL;
4121 break;
4123 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4126 /* Do skb overlap to previous one? */
4127 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4128 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4129 /* All the bits are present. Drop. */
4130 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4131 __kfree_skb(skb);
4132 skb = NULL;
4133 tcp_dsack_set(sk, seq, end_seq);
4134 goto add_sack;
4136 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4137 /* Partial overlap. */
4138 tcp_dsack_set(sk, seq,
4139 TCP_SKB_CB(skb1)->end_seq);
4140 } else {
4141 if (skb_queue_is_first(&tp->out_of_order_queue,
4142 skb1))
4143 skb1 = NULL;
4144 else
4145 skb1 = skb_queue_prev(
4146 &tp->out_of_order_queue,
4147 skb1);
4150 if (!skb1)
4151 __skb_queue_head(&tp->out_of_order_queue, skb);
4152 else
4153 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4155 /* And clean segments covered by new one as whole. */
4156 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4157 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4159 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4160 break;
4161 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4162 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4163 end_seq);
4164 break;
4166 __skb_unlink(skb1, &tp->out_of_order_queue);
4167 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4168 TCP_SKB_CB(skb1)->end_seq);
4169 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4170 __kfree_skb(skb1);
4173 add_sack:
4174 if (tcp_is_sack(tp))
4175 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4176 end:
4177 if (skb)
4178 skb_set_owner_r(skb, sk);
4181 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4182 bool *fragstolen)
4184 int eaten;
4185 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4187 __skb_pull(skb, hdrlen);
4188 eaten = (tail &&
4189 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4190 tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4191 if (!eaten) {
4192 __skb_queue_tail(&sk->sk_receive_queue, skb);
4193 skb_set_owner_r(skb, sk);
4195 return eaten;
4198 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4200 struct sk_buff *skb = NULL;
4201 struct tcphdr *th;
4202 bool fragstolen;
4204 if (size == 0)
4205 return 0;
4207 skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
4208 if (!skb)
4209 goto err;
4211 if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th)))
4212 goto err_free;
4214 th = (struct tcphdr *)skb_put(skb, sizeof(*th));
4215 skb_reset_transport_header(skb);
4216 memset(th, 0, sizeof(*th));
4218 if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
4219 goto err_free;
4221 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4222 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4223 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4225 if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
4226 WARN_ON_ONCE(fragstolen); /* should not happen */
4227 __kfree_skb(skb);
4229 return size;
4231 err_free:
4232 kfree_skb(skb);
4233 err:
4234 return -ENOMEM;
4237 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4239 const struct tcphdr *th = tcp_hdr(skb);
4240 struct tcp_sock *tp = tcp_sk(sk);
4241 int eaten = -1;
4242 bool fragstolen = false;
4244 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4245 goto drop;
4247 skb_dst_drop(skb);
4248 __skb_pull(skb, th->doff * 4);
4250 TCP_ECN_accept_cwr(tp, skb);
4252 tp->rx_opt.dsack = 0;
4254 /* Queue data for delivery to the user.
4255 * Packets in sequence go to the receive queue.
4256 * Out of sequence packets to the out_of_order_queue.
4258 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4259 if (tcp_receive_window(tp) == 0)
4260 goto out_of_window;
4262 /* Ok. In sequence. In window. */
4263 if (tp->ucopy.task == current &&
4264 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4265 sock_owned_by_user(sk) && !tp->urg_data) {
4266 int chunk = min_t(unsigned int, skb->len,
4267 tp->ucopy.len);
4269 __set_current_state(TASK_RUNNING);
4271 local_bh_enable();
4272 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4273 tp->ucopy.len -= chunk;
4274 tp->copied_seq += chunk;
4275 eaten = (chunk == skb->len);
4276 tcp_rcv_space_adjust(sk);
4278 local_bh_disable();
4281 if (eaten <= 0) {
4282 queue_and_out:
4283 if (eaten < 0 &&
4284 tcp_try_rmem_schedule(sk, skb, skb->truesize))
4285 goto drop;
4287 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4289 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4290 if (skb->len)
4291 tcp_event_data_recv(sk, skb);
4292 if (th->fin)
4293 tcp_fin(sk);
4295 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4296 tcp_ofo_queue(sk);
4298 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4299 * gap in queue is filled.
4301 if (skb_queue_empty(&tp->out_of_order_queue))
4302 inet_csk(sk)->icsk_ack.pingpong = 0;
4305 if (tp->rx_opt.num_sacks)
4306 tcp_sack_remove(tp);
4308 tcp_fast_path_check(sk);
4310 if (eaten > 0)
4311 kfree_skb_partial(skb, fragstolen);
4312 if (!sock_flag(sk, SOCK_DEAD))
4313 sk->sk_data_ready(sk, 0);
4314 return;
4317 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4318 /* A retransmit, 2nd most common case. Force an immediate ack. */
4319 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4320 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4322 out_of_window:
4323 tcp_enter_quickack_mode(sk);
4324 inet_csk_schedule_ack(sk);
4325 drop:
4326 __kfree_skb(skb);
4327 return;
4330 /* Out of window. F.e. zero window probe. */
4331 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4332 goto out_of_window;
4334 tcp_enter_quickack_mode(sk);
4336 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4337 /* Partial packet, seq < rcv_next < end_seq */
4338 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4339 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4340 TCP_SKB_CB(skb)->end_seq);
4342 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4344 /* If window is closed, drop tail of packet. But after
4345 * remembering D-SACK for its head made in previous line.
4347 if (!tcp_receive_window(tp))
4348 goto out_of_window;
4349 goto queue_and_out;
4352 tcp_data_queue_ofo(sk, skb);
4355 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4356 struct sk_buff_head *list)
4358 struct sk_buff *next = NULL;
4360 if (!skb_queue_is_last(list, skb))
4361 next = skb_queue_next(list, skb);
4363 __skb_unlink(skb, list);
4364 __kfree_skb(skb);
4365 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4367 return next;
4370 /* Collapse contiguous sequence of skbs head..tail with
4371 * sequence numbers start..end.
4373 * If tail is NULL, this means until the end of the list.
4375 * Segments with FIN/SYN are not collapsed (only because this
4376 * simplifies code)
4378 static void
4379 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4380 struct sk_buff *head, struct sk_buff *tail,
4381 u32 start, u32 end)
4383 struct sk_buff *skb, *n;
4384 bool end_of_skbs;
4386 /* First, check that queue is collapsible and find
4387 * the point where collapsing can be useful. */
4388 skb = head;
4389 restart:
4390 end_of_skbs = true;
4391 skb_queue_walk_from_safe(list, skb, n) {
4392 if (skb == tail)
4393 break;
4394 /* No new bits? It is possible on ofo queue. */
4395 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4396 skb = tcp_collapse_one(sk, skb, list);
4397 if (!skb)
4398 break;
4399 goto restart;
4402 /* The first skb to collapse is:
4403 * - not SYN/FIN and
4404 * - bloated or contains data before "start" or
4405 * overlaps to the next one.
4407 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4408 (tcp_win_from_space(skb->truesize) > skb->len ||
4409 before(TCP_SKB_CB(skb)->seq, start))) {
4410 end_of_skbs = false;
4411 break;
4414 if (!skb_queue_is_last(list, skb)) {
4415 struct sk_buff *next = skb_queue_next(list, skb);
4416 if (next != tail &&
4417 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4418 end_of_skbs = false;
4419 break;
4423 /* Decided to skip this, advance start seq. */
4424 start = TCP_SKB_CB(skb)->end_seq;
4426 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4427 return;
4429 while (before(start, end)) {
4430 struct sk_buff *nskb;
4431 unsigned int header = skb_headroom(skb);
4432 int copy = SKB_MAX_ORDER(header, 0);
4434 /* Too big header? This can happen with IPv6. */
4435 if (copy < 0)
4436 return;
4437 if (end - start < copy)
4438 copy = end - start;
4439 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4440 if (!nskb)
4441 return;
4443 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4444 skb_set_network_header(nskb, (skb_network_header(skb) -
4445 skb->head));
4446 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4447 skb->head));
4448 skb_reserve(nskb, header);
4449 memcpy(nskb->head, skb->head, header);
4450 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4451 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4452 __skb_queue_before(list, skb, nskb);
4453 skb_set_owner_r(nskb, sk);
4455 /* Copy data, releasing collapsed skbs. */
4456 while (copy > 0) {
4457 int offset = start - TCP_SKB_CB(skb)->seq;
4458 int size = TCP_SKB_CB(skb)->end_seq - start;
4460 BUG_ON(offset < 0);
4461 if (size > 0) {
4462 size = min(copy, size);
4463 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4464 BUG();
4465 TCP_SKB_CB(nskb)->end_seq += size;
4466 copy -= size;
4467 start += size;
4469 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4470 skb = tcp_collapse_one(sk, skb, list);
4471 if (!skb ||
4472 skb == tail ||
4473 tcp_hdr(skb)->syn ||
4474 tcp_hdr(skb)->fin)
4475 return;
4481 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4482 * and tcp_collapse() them until all the queue is collapsed.
4484 static void tcp_collapse_ofo_queue(struct sock *sk)
4486 struct tcp_sock *tp = tcp_sk(sk);
4487 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4488 struct sk_buff *head;
4489 u32 start, end;
4491 if (skb == NULL)
4492 return;
4494 start = TCP_SKB_CB(skb)->seq;
4495 end = TCP_SKB_CB(skb)->end_seq;
4496 head = skb;
4498 for (;;) {
4499 struct sk_buff *next = NULL;
4501 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4502 next = skb_queue_next(&tp->out_of_order_queue, skb);
4503 skb = next;
4505 /* Segment is terminated when we see gap or when
4506 * we are at the end of all the queue. */
4507 if (!skb ||
4508 after(TCP_SKB_CB(skb)->seq, end) ||
4509 before(TCP_SKB_CB(skb)->end_seq, start)) {
4510 tcp_collapse(sk, &tp->out_of_order_queue,
4511 head, skb, start, end);
4512 head = skb;
4513 if (!skb)
4514 break;
4515 /* Start new segment */
4516 start = TCP_SKB_CB(skb)->seq;
4517 end = TCP_SKB_CB(skb)->end_seq;
4518 } else {
4519 if (before(TCP_SKB_CB(skb)->seq, start))
4520 start = TCP_SKB_CB(skb)->seq;
4521 if (after(TCP_SKB_CB(skb)->end_seq, end))
4522 end = TCP_SKB_CB(skb)->end_seq;
4528 * Purge the out-of-order queue.
4529 * Return true if queue was pruned.
4531 static bool tcp_prune_ofo_queue(struct sock *sk)
4533 struct tcp_sock *tp = tcp_sk(sk);
4534 bool res = false;
4536 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4537 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4538 __skb_queue_purge(&tp->out_of_order_queue);
4540 /* Reset SACK state. A conforming SACK implementation will
4541 * do the same at a timeout based retransmit. When a connection
4542 * is in a sad state like this, we care only about integrity
4543 * of the connection not performance.
4545 if (tp->rx_opt.sack_ok)
4546 tcp_sack_reset(&tp->rx_opt);
4547 sk_mem_reclaim(sk);
4548 res = true;
4550 return res;
4553 /* Reduce allocated memory if we can, trying to get
4554 * the socket within its memory limits again.
4556 * Return less than zero if we should start dropping frames
4557 * until the socket owning process reads some of the data
4558 * to stabilize the situation.
4560 static int tcp_prune_queue(struct sock *sk)
4562 struct tcp_sock *tp = tcp_sk(sk);
4564 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4566 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4568 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4569 tcp_clamp_window(sk);
4570 else if (sk_under_memory_pressure(sk))
4571 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4573 tcp_collapse_ofo_queue(sk);
4574 if (!skb_queue_empty(&sk->sk_receive_queue))
4575 tcp_collapse(sk, &sk->sk_receive_queue,
4576 skb_peek(&sk->sk_receive_queue),
4577 NULL,
4578 tp->copied_seq, tp->rcv_nxt);
4579 sk_mem_reclaim(sk);
4581 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4582 return 0;
4584 /* Collapsing did not help, destructive actions follow.
4585 * This must not ever occur. */
4587 tcp_prune_ofo_queue(sk);
4589 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4590 return 0;
4592 /* If we are really being abused, tell the caller to silently
4593 * drop receive data on the floor. It will get retransmitted
4594 * and hopefully then we'll have sufficient space.
4596 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4598 /* Massive buffer overcommit. */
4599 tp->pred_flags = 0;
4600 return -1;
4603 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4604 * As additional protections, we do not touch cwnd in retransmission phases,
4605 * and if application hit its sndbuf limit recently.
4607 void tcp_cwnd_application_limited(struct sock *sk)
4609 struct tcp_sock *tp = tcp_sk(sk);
4611 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4612 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4613 /* Limited by application or receiver window. */
4614 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4615 u32 win_used = max(tp->snd_cwnd_used, init_win);
4616 if (win_used < tp->snd_cwnd) {
4617 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4618 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4620 tp->snd_cwnd_used = 0;
4622 tp->snd_cwnd_stamp = tcp_time_stamp;
4625 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4627 const struct tcp_sock *tp = tcp_sk(sk);
4629 /* If the user specified a specific send buffer setting, do
4630 * not modify it.
4632 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4633 return false;
4635 /* If we are under global TCP memory pressure, do not expand. */
4636 if (sk_under_memory_pressure(sk))
4637 return false;
4639 /* If we are under soft global TCP memory pressure, do not expand. */
4640 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4641 return false;
4643 /* If we filled the congestion window, do not expand. */
4644 if (tp->packets_out >= tp->snd_cwnd)
4645 return false;
4647 return true;
4650 /* When incoming ACK allowed to free some skb from write_queue,
4651 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4652 * on the exit from tcp input handler.
4654 * PROBLEM: sndbuf expansion does not work well with largesend.
4656 static void tcp_new_space(struct sock *sk)
4658 struct tcp_sock *tp = tcp_sk(sk);
4660 if (tcp_should_expand_sndbuf(sk)) {
4661 int sndmem = SKB_TRUESIZE(max_t(u32,
4662 tp->rx_opt.mss_clamp,
4663 tp->mss_cache) +
4664 MAX_TCP_HEADER);
4665 int demanded = max_t(unsigned int, tp->snd_cwnd,
4666 tp->reordering + 1);
4667 sndmem *= 2 * demanded;
4668 if (sndmem > sk->sk_sndbuf)
4669 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4670 tp->snd_cwnd_stamp = tcp_time_stamp;
4673 sk->sk_write_space(sk);
4676 static void tcp_check_space(struct sock *sk)
4678 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4679 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4680 if (sk->sk_socket &&
4681 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4682 tcp_new_space(sk);
4686 static inline void tcp_data_snd_check(struct sock *sk)
4688 tcp_push_pending_frames(sk);
4689 tcp_check_space(sk);
4693 * Check if sending an ack is needed.
4695 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4697 struct tcp_sock *tp = tcp_sk(sk);
4699 /* More than one full frame received... */
4700 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4701 /* ... and right edge of window advances far enough.
4702 * (tcp_recvmsg() will send ACK otherwise). Or...
4704 __tcp_select_window(sk) >= tp->rcv_wnd) ||
4705 /* We ACK each frame or... */
4706 tcp_in_quickack_mode(sk) ||
4707 /* We have out of order data. */
4708 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4709 /* Then ack it now */
4710 tcp_send_ack(sk);
4711 } else {
4712 /* Else, send delayed ack. */
4713 tcp_send_delayed_ack(sk);
4717 static inline void tcp_ack_snd_check(struct sock *sk)
4719 if (!inet_csk_ack_scheduled(sk)) {
4720 /* We sent a data segment already. */
4721 return;
4723 __tcp_ack_snd_check(sk, 1);
4727 * This routine is only called when we have urgent data
4728 * signaled. Its the 'slow' part of tcp_urg. It could be
4729 * moved inline now as tcp_urg is only called from one
4730 * place. We handle URGent data wrong. We have to - as
4731 * BSD still doesn't use the correction from RFC961.
4732 * For 1003.1g we should support a new option TCP_STDURG to permit
4733 * either form (or just set the sysctl tcp_stdurg).
4736 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
4738 struct tcp_sock *tp = tcp_sk(sk);
4739 u32 ptr = ntohs(th->urg_ptr);
4741 if (ptr && !sysctl_tcp_stdurg)
4742 ptr--;
4743 ptr += ntohl(th->seq);
4745 /* Ignore urgent data that we've already seen and read. */
4746 if (after(tp->copied_seq, ptr))
4747 return;
4749 /* Do not replay urg ptr.
4751 * NOTE: interesting situation not covered by specs.
4752 * Misbehaving sender may send urg ptr, pointing to segment,
4753 * which we already have in ofo queue. We are not able to fetch
4754 * such data and will stay in TCP_URG_NOTYET until will be eaten
4755 * by recvmsg(). Seems, we are not obliged to handle such wicked
4756 * situations. But it is worth to think about possibility of some
4757 * DoSes using some hypothetical application level deadlock.
4759 if (before(ptr, tp->rcv_nxt))
4760 return;
4762 /* Do we already have a newer (or duplicate) urgent pointer? */
4763 if (tp->urg_data && !after(ptr, tp->urg_seq))
4764 return;
4766 /* Tell the world about our new urgent pointer. */
4767 sk_send_sigurg(sk);
4769 /* We may be adding urgent data when the last byte read was
4770 * urgent. To do this requires some care. We cannot just ignore
4771 * tp->copied_seq since we would read the last urgent byte again
4772 * as data, nor can we alter copied_seq until this data arrives
4773 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4775 * NOTE. Double Dutch. Rendering to plain English: author of comment
4776 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4777 * and expect that both A and B disappear from stream. This is _wrong_.
4778 * Though this happens in BSD with high probability, this is occasional.
4779 * Any application relying on this is buggy. Note also, that fix "works"
4780 * only in this artificial test. Insert some normal data between A and B and we will
4781 * decline of BSD again. Verdict: it is better to remove to trap
4782 * buggy users.
4784 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4785 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4786 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4787 tp->copied_seq++;
4788 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4789 __skb_unlink(skb, &sk->sk_receive_queue);
4790 __kfree_skb(skb);
4794 tp->urg_data = TCP_URG_NOTYET;
4795 tp->urg_seq = ptr;
4797 /* Disable header prediction. */
4798 tp->pred_flags = 0;
4801 /* This is the 'fast' part of urgent handling. */
4802 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
4804 struct tcp_sock *tp = tcp_sk(sk);
4806 /* Check if we get a new urgent pointer - normally not. */
4807 if (th->urg)
4808 tcp_check_urg(sk, th);
4810 /* Do we wait for any urgent data? - normally not... */
4811 if (tp->urg_data == TCP_URG_NOTYET) {
4812 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4813 th->syn;
4815 /* Is the urgent pointer pointing into this packet? */
4816 if (ptr < skb->len) {
4817 u8 tmp;
4818 if (skb_copy_bits(skb, ptr, &tmp, 1))
4819 BUG();
4820 tp->urg_data = TCP_URG_VALID | tmp;
4821 if (!sock_flag(sk, SOCK_DEAD))
4822 sk->sk_data_ready(sk, 0);
4827 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4829 struct tcp_sock *tp = tcp_sk(sk);
4830 int chunk = skb->len - hlen;
4831 int err;
4833 local_bh_enable();
4834 if (skb_csum_unnecessary(skb))
4835 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4836 else
4837 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4838 tp->ucopy.iov);
4840 if (!err) {
4841 tp->ucopy.len -= chunk;
4842 tp->copied_seq += chunk;
4843 tcp_rcv_space_adjust(sk);
4846 local_bh_disable();
4847 return err;
4850 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4851 struct sk_buff *skb)
4853 __sum16 result;
4855 if (sock_owned_by_user(sk)) {
4856 local_bh_enable();
4857 result = __tcp_checksum_complete(skb);
4858 local_bh_disable();
4859 } else {
4860 result = __tcp_checksum_complete(skb);
4862 return result;
4865 static inline bool tcp_checksum_complete_user(struct sock *sk,
4866 struct sk_buff *skb)
4868 return !skb_csum_unnecessary(skb) &&
4869 __tcp_checksum_complete_user(sk, skb);
4872 #ifdef CONFIG_NET_DMA
4873 static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4874 int hlen)
4876 struct tcp_sock *tp = tcp_sk(sk);
4877 int chunk = skb->len - hlen;
4878 int dma_cookie;
4879 bool copied_early = false;
4881 if (tp->ucopy.wakeup)
4882 return false;
4884 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4885 tp->ucopy.dma_chan = net_dma_find_channel();
4887 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4889 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4890 skb, hlen,
4891 tp->ucopy.iov, chunk,
4892 tp->ucopy.pinned_list);
4894 if (dma_cookie < 0)
4895 goto out;
4897 tp->ucopy.dma_cookie = dma_cookie;
4898 copied_early = true;
4900 tp->ucopy.len -= chunk;
4901 tp->copied_seq += chunk;
4902 tcp_rcv_space_adjust(sk);
4904 if ((tp->ucopy.len == 0) ||
4905 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4906 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4907 tp->ucopy.wakeup = 1;
4908 sk->sk_data_ready(sk, 0);
4910 } else if (chunk > 0) {
4911 tp->ucopy.wakeup = 1;
4912 sk->sk_data_ready(sk, 0);
4914 out:
4915 return copied_early;
4917 #endif /* CONFIG_NET_DMA */
4919 /* Does PAWS and seqno based validation of an incoming segment, flags will
4920 * play significant role here.
4922 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
4923 const struct tcphdr *th, int syn_inerr)
4925 struct tcp_sock *tp = tcp_sk(sk);
4927 /* RFC1323: H1. Apply PAWS check first. */
4928 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4929 tcp_paws_discard(sk, skb)) {
4930 if (!th->rst) {
4931 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
4932 tcp_send_dupack(sk, skb);
4933 goto discard;
4935 /* Reset is accepted even if it did not pass PAWS. */
4938 /* Step 1: check sequence number */
4939 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4940 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4941 * (RST) segments are validated by checking their SEQ-fields."
4942 * And page 69: "If an incoming segment is not acceptable,
4943 * an acknowledgment should be sent in reply (unless the RST
4944 * bit is set, if so drop the segment and return)".
4946 if (!th->rst) {
4947 if (th->syn)
4948 goto syn_challenge;
4949 tcp_send_dupack(sk, skb);
4951 goto discard;
4954 /* Step 2: check RST bit */
4955 if (th->rst) {
4956 /* RFC 5961 3.2 :
4957 * If sequence number exactly matches RCV.NXT, then
4958 * RESET the connection
4959 * else
4960 * Send a challenge ACK
4962 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
4963 tcp_reset(sk);
4964 else
4965 tcp_send_challenge_ack(sk);
4966 goto discard;
4969 /* step 3: check security and precedence [ignored] */
4971 /* step 4: Check for a SYN
4972 * RFC 5691 4.2 : Send a challenge ack
4974 if (th->syn) {
4975 syn_challenge:
4976 if (syn_inerr)
4977 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
4978 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
4979 tcp_send_challenge_ack(sk);
4980 goto discard;
4983 return true;
4985 discard:
4986 __kfree_skb(skb);
4987 return false;
4991 * TCP receive function for the ESTABLISHED state.
4993 * It is split into a fast path and a slow path. The fast path is
4994 * disabled when:
4995 * - A zero window was announced from us - zero window probing
4996 * is only handled properly in the slow path.
4997 * - Out of order segments arrived.
4998 * - Urgent data is expected.
4999 * - There is no buffer space left
5000 * - Unexpected TCP flags/window values/header lengths are received
5001 * (detected by checking the TCP header against pred_flags)
5002 * - Data is sent in both directions. Fast path only supports pure senders
5003 * or pure receivers (this means either the sequence number or the ack
5004 * value must stay constant)
5005 * - Unexpected TCP option.
5007 * When these conditions are not satisfied it drops into a standard
5008 * receive procedure patterned after RFC793 to handle all cases.
5009 * The first three cases are guaranteed by proper pred_flags setting,
5010 * the rest is checked inline. Fast processing is turned on in
5011 * tcp_data_queue when everything is OK.
5013 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5014 const struct tcphdr *th, unsigned int len)
5016 struct tcp_sock *tp = tcp_sk(sk);
5018 if (unlikely(sk->sk_rx_dst == NULL))
5019 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5021 * Header prediction.
5022 * The code loosely follows the one in the famous
5023 * "30 instruction TCP receive" Van Jacobson mail.
5025 * Van's trick is to deposit buffers into socket queue
5026 * on a device interrupt, to call tcp_recv function
5027 * on the receive process context and checksum and copy
5028 * the buffer to user space. smart...
5030 * Our current scheme is not silly either but we take the
5031 * extra cost of the net_bh soft interrupt processing...
5032 * We do checksum and copy also but from device to kernel.
5035 tp->rx_opt.saw_tstamp = 0;
5037 /* pred_flags is 0xS?10 << 16 + snd_wnd
5038 * if header_prediction is to be made
5039 * 'S' will always be tp->tcp_header_len >> 2
5040 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5041 * turn it off (when there are holes in the receive
5042 * space for instance)
5043 * PSH flag is ignored.
5046 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5047 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5048 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5049 int tcp_header_len = tp->tcp_header_len;
5051 /* Timestamp header prediction: tcp_header_len
5052 * is automatically equal to th->doff*4 due to pred_flags
5053 * match.
5056 /* Check timestamp */
5057 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5058 /* No? Slow path! */
5059 if (!tcp_parse_aligned_timestamp(tp, th))
5060 goto slow_path;
5062 /* If PAWS failed, check it more carefully in slow path */
5063 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5064 goto slow_path;
5066 /* DO NOT update ts_recent here, if checksum fails
5067 * and timestamp was corrupted part, it will result
5068 * in a hung connection since we will drop all
5069 * future packets due to the PAWS test.
5073 if (len <= tcp_header_len) {
5074 /* Bulk data transfer: sender */
5075 if (len == tcp_header_len) {
5076 /* Predicted packet is in window by definition.
5077 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5078 * Hence, check seq<=rcv_wup reduces to:
5080 if (tcp_header_len ==
5081 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5082 tp->rcv_nxt == tp->rcv_wup)
5083 tcp_store_ts_recent(tp);
5085 /* We know that such packets are checksummed
5086 * on entry.
5088 tcp_ack(sk, skb, 0);
5089 __kfree_skb(skb);
5090 tcp_data_snd_check(sk);
5091 return 0;
5092 } else { /* Header too small */
5093 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5094 goto discard;
5096 } else {
5097 int eaten = 0;
5098 int copied_early = 0;
5099 bool fragstolen = false;
5101 if (tp->copied_seq == tp->rcv_nxt &&
5102 len - tcp_header_len <= tp->ucopy.len) {
5103 #ifdef CONFIG_NET_DMA
5104 if (tp->ucopy.task == current &&
5105 sock_owned_by_user(sk) &&
5106 tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5107 copied_early = 1;
5108 eaten = 1;
5110 #endif
5111 if (tp->ucopy.task == current &&
5112 sock_owned_by_user(sk) && !copied_early) {
5113 __set_current_state(TASK_RUNNING);
5115 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5116 eaten = 1;
5118 if (eaten) {
5119 /* Predicted packet is in window by definition.
5120 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5121 * Hence, check seq<=rcv_wup reduces to:
5123 if (tcp_header_len ==
5124 (sizeof(struct tcphdr) +
5125 TCPOLEN_TSTAMP_ALIGNED) &&
5126 tp->rcv_nxt == tp->rcv_wup)
5127 tcp_store_ts_recent(tp);
5129 tcp_rcv_rtt_measure_ts(sk, skb);
5131 __skb_pull(skb, tcp_header_len);
5132 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5133 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5135 if (copied_early)
5136 tcp_cleanup_rbuf(sk, skb->len);
5138 if (!eaten) {
5139 if (tcp_checksum_complete_user(sk, skb))
5140 goto csum_error;
5142 if ((int)skb->truesize > sk->sk_forward_alloc)
5143 goto step5;
5145 /* Predicted packet is in window by definition.
5146 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5147 * Hence, check seq<=rcv_wup reduces to:
5149 if (tcp_header_len ==
5150 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5151 tp->rcv_nxt == tp->rcv_wup)
5152 tcp_store_ts_recent(tp);
5154 tcp_rcv_rtt_measure_ts(sk, skb);
5156 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5158 /* Bulk data transfer: receiver */
5159 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5160 &fragstolen);
5163 tcp_event_data_recv(sk, skb);
5165 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5166 /* Well, only one small jumplet in fast path... */
5167 tcp_ack(sk, skb, FLAG_DATA);
5168 tcp_data_snd_check(sk);
5169 if (!inet_csk_ack_scheduled(sk))
5170 goto no_ack;
5173 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5174 __tcp_ack_snd_check(sk, 0);
5175 no_ack:
5176 #ifdef CONFIG_NET_DMA
5177 if (copied_early)
5178 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5179 else
5180 #endif
5181 if (eaten)
5182 kfree_skb_partial(skb, fragstolen);
5183 sk->sk_data_ready(sk, 0);
5184 return 0;
5188 slow_path:
5189 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5190 goto csum_error;
5192 if (!th->ack && !th->rst)
5193 goto discard;
5196 * Standard slow path.
5199 if (!tcp_validate_incoming(sk, skb, th, 1))
5200 return 0;
5202 step5:
5203 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5204 goto discard;
5206 tcp_rcv_rtt_measure_ts(sk, skb);
5208 /* Process urgent data. */
5209 tcp_urg(sk, skb, th);
5211 /* step 7: process the segment text */
5212 tcp_data_queue(sk, skb);
5214 tcp_data_snd_check(sk);
5215 tcp_ack_snd_check(sk);
5216 return 0;
5218 csum_error:
5219 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5220 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5222 discard:
5223 __kfree_skb(skb);
5224 return 0;
5226 EXPORT_SYMBOL(tcp_rcv_established);
5228 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5230 struct tcp_sock *tp = tcp_sk(sk);
5231 struct inet_connection_sock *icsk = inet_csk(sk);
5233 tcp_set_state(sk, TCP_ESTABLISHED);
5235 if (skb != NULL) {
5236 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5237 security_inet_conn_established(sk, skb);
5240 /* Make sure socket is routed, for correct metrics. */
5241 icsk->icsk_af_ops->rebuild_header(sk);
5243 tcp_init_metrics(sk);
5245 tcp_init_congestion_control(sk);
5247 /* Prevent spurious tcp_cwnd_restart() on first data
5248 * packet.
5250 tp->lsndtime = tcp_time_stamp;
5252 tcp_init_buffer_space(sk);
5254 if (sock_flag(sk, SOCK_KEEPOPEN))
5255 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5257 if (!tp->rx_opt.snd_wscale)
5258 __tcp_fast_path_on(tp, tp->snd_wnd);
5259 else
5260 tp->pred_flags = 0;
5262 if (!sock_flag(sk, SOCK_DEAD)) {
5263 sk->sk_state_change(sk);
5264 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5268 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5269 struct tcp_fastopen_cookie *cookie)
5271 struct tcp_sock *tp = tcp_sk(sk);
5272 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5273 u16 mss = tp->rx_opt.mss_clamp;
5274 bool syn_drop;
5276 if (mss == tp->rx_opt.user_mss) {
5277 struct tcp_options_received opt;
5279 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5280 tcp_clear_options(&opt);
5281 opt.user_mss = opt.mss_clamp = 0;
5282 tcp_parse_options(synack, &opt, 0, NULL);
5283 mss = opt.mss_clamp;
5286 if (!tp->syn_fastopen) /* Ignore an unsolicited cookie */
5287 cookie->len = -1;
5289 /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
5290 * the remote receives only the retransmitted (regular) SYNs: either
5291 * the original SYN-data or the corresponding SYN-ACK is lost.
5293 syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
5295 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
5297 if (data) { /* Retransmit unacked data in SYN */
5298 tcp_for_write_queue_from(data, sk) {
5299 if (data == tcp_send_head(sk) ||
5300 __tcp_retransmit_skb(sk, data))
5301 break;
5303 tcp_rearm_rto(sk);
5304 return true;
5306 tp->syn_data_acked = tp->syn_data;
5307 return false;
5310 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5311 const struct tcphdr *th, unsigned int len)
5313 struct inet_connection_sock *icsk = inet_csk(sk);
5314 struct tcp_sock *tp = tcp_sk(sk);
5315 struct tcp_fastopen_cookie foc = { .len = -1 };
5316 int saved_clamp = tp->rx_opt.mss_clamp;
5318 tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5319 if (tp->rx_opt.saw_tstamp)
5320 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5322 if (th->ack) {
5323 /* rfc793:
5324 * "If the state is SYN-SENT then
5325 * first check the ACK bit
5326 * If the ACK bit is set
5327 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5328 * a reset (unless the RST bit is set, if so drop
5329 * the segment and return)"
5331 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5332 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5333 goto reset_and_undo;
5335 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5336 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5337 tcp_time_stamp)) {
5338 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5339 goto reset_and_undo;
5342 /* Now ACK is acceptable.
5344 * "If the RST bit is set
5345 * If the ACK was acceptable then signal the user "error:
5346 * connection reset", drop the segment, enter CLOSED state,
5347 * delete TCB, and return."
5350 if (th->rst) {
5351 tcp_reset(sk);
5352 goto discard;
5355 /* rfc793:
5356 * "fifth, if neither of the SYN or RST bits is set then
5357 * drop the segment and return."
5359 * See note below!
5360 * --ANK(990513)
5362 if (!th->syn)
5363 goto discard_and_undo;
5365 /* rfc793:
5366 * "If the SYN bit is on ...
5367 * are acceptable then ...
5368 * (our SYN has been ACKed), change the connection
5369 * state to ESTABLISHED..."
5372 TCP_ECN_rcv_synack(tp, th);
5374 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5375 tcp_ack(sk, skb, FLAG_SLOWPATH);
5377 /* Ok.. it's good. Set up sequence numbers and
5378 * move to established.
5380 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5381 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5383 /* RFC1323: The window in SYN & SYN/ACK segments is
5384 * never scaled.
5386 tp->snd_wnd = ntohs(th->window);
5388 if (!tp->rx_opt.wscale_ok) {
5389 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5390 tp->window_clamp = min(tp->window_clamp, 65535U);
5393 if (tp->rx_opt.saw_tstamp) {
5394 tp->rx_opt.tstamp_ok = 1;
5395 tp->tcp_header_len =
5396 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5397 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5398 tcp_store_ts_recent(tp);
5399 } else {
5400 tp->tcp_header_len = sizeof(struct tcphdr);
5403 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5404 tcp_enable_fack(tp);
5406 tcp_mtup_init(sk);
5407 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5408 tcp_initialize_rcv_mss(sk);
5410 /* Remember, tcp_poll() does not lock socket!
5411 * Change state from SYN-SENT only after copied_seq
5412 * is initialized. */
5413 tp->copied_seq = tp->rcv_nxt;
5415 smp_mb();
5417 tcp_finish_connect(sk, skb);
5419 if ((tp->syn_fastopen || tp->syn_data) &&
5420 tcp_rcv_fastopen_synack(sk, skb, &foc))
5421 return -1;
5423 if (sk->sk_write_pending ||
5424 icsk->icsk_accept_queue.rskq_defer_accept ||
5425 icsk->icsk_ack.pingpong) {
5426 /* Save one ACK. Data will be ready after
5427 * several ticks, if write_pending is set.
5429 * It may be deleted, but with this feature tcpdumps
5430 * look so _wonderfully_ clever, that I was not able
5431 * to stand against the temptation 8) --ANK
5433 inet_csk_schedule_ack(sk);
5434 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5435 tcp_enter_quickack_mode(sk);
5436 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5437 TCP_DELACK_MAX, TCP_RTO_MAX);
5439 discard:
5440 __kfree_skb(skb);
5441 return 0;
5442 } else {
5443 tcp_send_ack(sk);
5445 return -1;
5448 /* No ACK in the segment */
5450 if (th->rst) {
5451 /* rfc793:
5452 * "If the RST bit is set
5454 * Otherwise (no ACK) drop the segment and return."
5457 goto discard_and_undo;
5460 /* PAWS check. */
5461 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5462 tcp_paws_reject(&tp->rx_opt, 0))
5463 goto discard_and_undo;
5465 if (th->syn) {
5466 /* We see SYN without ACK. It is attempt of
5467 * simultaneous connect with crossed SYNs.
5468 * Particularly, it can be connect to self.
5470 tcp_set_state(sk, TCP_SYN_RECV);
5472 if (tp->rx_opt.saw_tstamp) {
5473 tp->rx_opt.tstamp_ok = 1;
5474 tcp_store_ts_recent(tp);
5475 tp->tcp_header_len =
5476 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5477 } else {
5478 tp->tcp_header_len = sizeof(struct tcphdr);
5481 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5482 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5484 /* RFC1323: The window in SYN & SYN/ACK segments is
5485 * never scaled.
5487 tp->snd_wnd = ntohs(th->window);
5488 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5489 tp->max_window = tp->snd_wnd;
5491 TCP_ECN_rcv_syn(tp, th);
5493 tcp_mtup_init(sk);
5494 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5495 tcp_initialize_rcv_mss(sk);
5497 tcp_send_synack(sk);
5498 #if 0
5499 /* Note, we could accept data and URG from this segment.
5500 * There are no obstacles to make this (except that we must
5501 * either change tcp_recvmsg() to prevent it from returning data
5502 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5504 * However, if we ignore data in ACKless segments sometimes,
5505 * we have no reasons to accept it sometimes.
5506 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5507 * is not flawless. So, discard packet for sanity.
5508 * Uncomment this return to process the data.
5510 return -1;
5511 #else
5512 goto discard;
5513 #endif
5515 /* "fifth, if neither of the SYN or RST bits is set then
5516 * drop the segment and return."
5519 discard_and_undo:
5520 tcp_clear_options(&tp->rx_opt);
5521 tp->rx_opt.mss_clamp = saved_clamp;
5522 goto discard;
5524 reset_and_undo:
5525 tcp_clear_options(&tp->rx_opt);
5526 tp->rx_opt.mss_clamp = saved_clamp;
5527 return 1;
5531 * This function implements the receiving procedure of RFC 793 for
5532 * all states except ESTABLISHED and TIME_WAIT.
5533 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5534 * address independent.
5537 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5538 const struct tcphdr *th, unsigned int len)
5540 struct tcp_sock *tp = tcp_sk(sk);
5541 struct inet_connection_sock *icsk = inet_csk(sk);
5542 struct request_sock *req;
5543 int queued = 0;
5544 bool acceptable;
5546 tp->rx_opt.saw_tstamp = 0;
5548 switch (sk->sk_state) {
5549 case TCP_CLOSE:
5550 goto discard;
5552 case TCP_LISTEN:
5553 if (th->ack)
5554 return 1;
5556 if (th->rst)
5557 goto discard;
5559 if (th->syn) {
5560 if (th->fin)
5561 goto discard;
5562 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5563 return 1;
5565 /* Now we have several options: In theory there is
5566 * nothing else in the frame. KA9Q has an option to
5567 * send data with the syn, BSD accepts data with the
5568 * syn up to the [to be] advertised window and
5569 * Solaris 2.1 gives you a protocol error. For now
5570 * we just ignore it, that fits the spec precisely
5571 * and avoids incompatibilities. It would be nice in
5572 * future to drop through and process the data.
5574 * Now that TTCP is starting to be used we ought to
5575 * queue this data.
5576 * But, this leaves one open to an easy denial of
5577 * service attack, and SYN cookies can't defend
5578 * against this problem. So, we drop the data
5579 * in the interest of security over speed unless
5580 * it's still in use.
5582 kfree_skb(skb);
5583 return 0;
5585 goto discard;
5587 case TCP_SYN_SENT:
5588 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5589 if (queued >= 0)
5590 return queued;
5592 /* Do step6 onward by hand. */
5593 tcp_urg(sk, skb, th);
5594 __kfree_skb(skb);
5595 tcp_data_snd_check(sk);
5596 return 0;
5599 req = tp->fastopen_rsk;
5600 if (req != NULL) {
5601 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5602 sk->sk_state != TCP_FIN_WAIT1);
5604 if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
5605 goto discard;
5608 if (!th->ack && !th->rst)
5609 goto discard;
5611 if (!tcp_validate_incoming(sk, skb, th, 0))
5612 return 0;
5614 /* step 5: check the ACK field */
5615 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5616 FLAG_UPDATE_TS_RECENT) > 0;
5618 switch (sk->sk_state) {
5619 case TCP_SYN_RECV:
5620 if (!acceptable)
5621 return 1;
5623 /* Once we leave TCP_SYN_RECV, we no longer need req
5624 * so release it.
5626 if (req) {
5627 tcp_synack_rtt_meas(sk, req);
5628 tp->total_retrans = req->num_retrans;
5630 reqsk_fastopen_remove(sk, req, false);
5631 } else {
5632 /* Make sure socket is routed, for correct metrics. */
5633 icsk->icsk_af_ops->rebuild_header(sk);
5634 tcp_init_congestion_control(sk);
5636 tcp_mtup_init(sk);
5637 tcp_init_buffer_space(sk);
5638 tp->copied_seq = tp->rcv_nxt;
5640 smp_mb();
5641 tcp_set_state(sk, TCP_ESTABLISHED);
5642 sk->sk_state_change(sk);
5644 /* Note, that this wakeup is only for marginal crossed SYN case.
5645 * Passively open sockets are not waked up, because
5646 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5648 if (sk->sk_socket)
5649 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5651 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5652 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5653 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5655 if (tp->rx_opt.tstamp_ok)
5656 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5658 if (req) {
5659 /* Re-arm the timer because data may have been sent out.
5660 * This is similar to the regular data transmission case
5661 * when new data has just been ack'ed.
5663 * (TFO) - we could try to be more aggressive and
5664 * retransmitting any data sooner based on when they
5665 * are sent out.
5667 tcp_rearm_rto(sk);
5668 } else
5669 tcp_init_metrics(sk);
5671 /* Prevent spurious tcp_cwnd_restart() on first data packet */
5672 tp->lsndtime = tcp_time_stamp;
5674 tcp_initialize_rcv_mss(sk);
5675 tcp_fast_path_on(tp);
5676 break;
5678 case TCP_FIN_WAIT1: {
5679 struct dst_entry *dst;
5680 int tmo;
5682 /* If we enter the TCP_FIN_WAIT1 state and we are a
5683 * Fast Open socket and this is the first acceptable
5684 * ACK we have received, this would have acknowledged
5685 * our SYNACK so stop the SYNACK timer.
5687 if (req != NULL) {
5688 /* Return RST if ack_seq is invalid.
5689 * Note that RFC793 only says to generate a
5690 * DUPACK for it but for TCP Fast Open it seems
5691 * better to treat this case like TCP_SYN_RECV
5692 * above.
5694 if (!acceptable)
5695 return 1;
5696 /* We no longer need the request sock. */
5697 reqsk_fastopen_remove(sk, req, false);
5698 tcp_rearm_rto(sk);
5700 if (tp->snd_una != tp->write_seq)
5701 break;
5703 tcp_set_state(sk, TCP_FIN_WAIT2);
5704 sk->sk_shutdown |= SEND_SHUTDOWN;
5706 dst = __sk_dst_get(sk);
5707 if (dst)
5708 dst_confirm(dst);
5710 if (!sock_flag(sk, SOCK_DEAD)) {
5711 /* Wake up lingering close() */
5712 sk->sk_state_change(sk);
5713 break;
5716 if (tp->linger2 < 0 ||
5717 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5718 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5719 tcp_done(sk);
5720 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5721 return 1;
5724 tmo = tcp_fin_time(sk);
5725 if (tmo > TCP_TIMEWAIT_LEN) {
5726 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5727 } else if (th->fin || sock_owned_by_user(sk)) {
5728 /* Bad case. We could lose such FIN otherwise.
5729 * It is not a big problem, but it looks confusing
5730 * and not so rare event. We still can lose it now,
5731 * if it spins in bh_lock_sock(), but it is really
5732 * marginal case.
5734 inet_csk_reset_keepalive_timer(sk, tmo);
5735 } else {
5736 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5737 goto discard;
5739 break;
5742 case TCP_CLOSING:
5743 if (tp->snd_una == tp->write_seq) {
5744 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5745 goto discard;
5747 break;
5749 case TCP_LAST_ACK:
5750 if (tp->snd_una == tp->write_seq) {
5751 tcp_update_metrics(sk);
5752 tcp_done(sk);
5753 goto discard;
5755 break;
5758 /* step 6: check the URG bit */
5759 tcp_urg(sk, skb, th);
5761 /* step 7: process the segment text */
5762 switch (sk->sk_state) {
5763 case TCP_CLOSE_WAIT:
5764 case TCP_CLOSING:
5765 case TCP_LAST_ACK:
5766 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5767 break;
5768 case TCP_FIN_WAIT1:
5769 case TCP_FIN_WAIT2:
5770 /* RFC 793 says to queue data in these states,
5771 * RFC 1122 says we MUST send a reset.
5772 * BSD 4.4 also does reset.
5774 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5775 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5776 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5777 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5778 tcp_reset(sk);
5779 return 1;
5782 /* Fall through */
5783 case TCP_ESTABLISHED:
5784 tcp_data_queue(sk, skb);
5785 queued = 1;
5786 break;
5789 /* tcp_data could move socket to TIME-WAIT */
5790 if (sk->sk_state != TCP_CLOSE) {
5791 tcp_data_snd_check(sk);
5792 tcp_ack_snd_check(sk);
5795 if (!queued) {
5796 discard:
5797 __kfree_skb(skb);
5799 return 0;
5801 EXPORT_SYMBOL(tcp_rcv_state_process);