Merge branch 'for-3.11' of git://linux-nfs.org/~bfields/linux
[linux-2.6.git] / drivers / staging / dwc2 / hcd_ddma.c
blob5c0fd273a7bfd62be252f5a6a33430a411a6e413
1 /*
2 * hcd_ddma.c - DesignWare HS OTG Controller descriptor DMA routines
4 * Copyright (C) 2004-2013 Synopsys, Inc.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions, and the following disclaimer,
11 * without modification.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The names of the above-listed copyright holders may not be used
16 * to endorse or promote products derived from this software without
17 * specific prior written permission.
19 * ALTERNATIVELY, this software may be distributed under the terms of the
20 * GNU General Public License ("GPL") as published by the Free Software
21 * Foundation; either version 2 of the License, or (at your option) any
22 * later version.
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
25 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
28 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
32 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38 * This file contains the Descriptor DMA implementation for Host mode
40 #include <linux/kernel.h>
41 #include <linux/module.h>
42 #include <linux/spinlock.h>
43 #include <linux/interrupt.h>
44 #include <linux/dma-mapping.h>
45 #include <linux/io.h>
46 #include <linux/slab.h>
47 #include <linux/usb.h>
49 #include <linux/usb/hcd.h>
50 #include <linux/usb/ch11.h>
52 #include "core.h"
53 #include "hcd.h"
55 static u16 dwc2_frame_list_idx(u16 frame)
57 return frame & (FRLISTEN_64_SIZE - 1);
60 static u16 dwc2_desclist_idx_inc(u16 idx, u16 inc, u8 speed)
62 return (idx + inc) &
63 ((speed == USB_SPEED_HIGH ? MAX_DMA_DESC_NUM_HS_ISOC :
64 MAX_DMA_DESC_NUM_GENERIC) - 1);
67 static u16 dwc2_desclist_idx_dec(u16 idx, u16 inc, u8 speed)
69 return (idx - inc) &
70 ((speed == USB_SPEED_HIGH ? MAX_DMA_DESC_NUM_HS_ISOC :
71 MAX_DMA_DESC_NUM_GENERIC) - 1);
74 static u16 dwc2_max_desc_num(struct dwc2_qh *qh)
76 return (qh->ep_type == USB_ENDPOINT_XFER_ISOC &&
77 qh->dev_speed == USB_SPEED_HIGH) ?
78 MAX_DMA_DESC_NUM_HS_ISOC : MAX_DMA_DESC_NUM_GENERIC;
81 static u16 dwc2_frame_incr_val(struct dwc2_qh *qh)
83 return qh->dev_speed == USB_SPEED_HIGH ?
84 (qh->interval + 8 - 1) / 8 : qh->interval;
87 static int dwc2_desc_list_alloc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
88 gfp_t flags)
90 qh->desc_list = dma_alloc_coherent(hsotg->dev,
91 sizeof(struct dwc2_hcd_dma_desc) *
92 dwc2_max_desc_num(qh), &qh->desc_list_dma,
93 flags);
95 if (!qh->desc_list)
96 return -ENOMEM;
98 memset(qh->desc_list, 0,
99 sizeof(struct dwc2_hcd_dma_desc) * dwc2_max_desc_num(qh));
101 qh->n_bytes = kzalloc(sizeof(u32) * dwc2_max_desc_num(qh), flags);
102 if (!qh->n_bytes) {
103 dma_free_coherent(hsotg->dev, sizeof(struct dwc2_hcd_dma_desc)
104 * dwc2_max_desc_num(qh), qh->desc_list,
105 qh->desc_list_dma);
106 qh->desc_list = NULL;
107 return -ENOMEM;
110 return 0;
113 static void dwc2_desc_list_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
115 if (qh->desc_list) {
116 dma_free_coherent(hsotg->dev, sizeof(struct dwc2_hcd_dma_desc)
117 * dwc2_max_desc_num(qh), qh->desc_list,
118 qh->desc_list_dma);
119 qh->desc_list = NULL;
122 kfree(qh->n_bytes);
123 qh->n_bytes = NULL;
126 static int dwc2_frame_list_alloc(struct dwc2_hsotg *hsotg, gfp_t mem_flags)
128 if (hsotg->frame_list)
129 return 0;
131 hsotg->frame_list = dma_alloc_coherent(hsotg->dev,
132 4 * FRLISTEN_64_SIZE,
133 &hsotg->frame_list_dma,
134 mem_flags);
135 if (!hsotg->frame_list)
136 return -ENOMEM;
138 memset(hsotg->frame_list, 0, 4 * FRLISTEN_64_SIZE);
139 return 0;
142 static void dwc2_frame_list_free(struct dwc2_hsotg *hsotg)
144 u32 *frame_list;
145 dma_addr_t frame_list_dma;
146 unsigned long flags;
148 spin_lock_irqsave(&hsotg->lock, flags);
150 if (!hsotg->frame_list) {
151 spin_unlock_irqrestore(&hsotg->lock, flags);
152 return;
155 frame_list = hsotg->frame_list;
156 frame_list_dma = hsotg->frame_list_dma;
157 hsotg->frame_list = NULL;
159 spin_unlock_irqrestore(&hsotg->lock, flags);
161 dma_free_coherent(hsotg->dev, 4 * FRLISTEN_64_SIZE, frame_list,
162 frame_list_dma);
165 static void dwc2_per_sched_enable(struct dwc2_hsotg *hsotg, u32 fr_list_en)
167 u32 hcfg;
168 unsigned long flags;
170 spin_lock_irqsave(&hsotg->lock, flags);
172 hcfg = readl(hsotg->regs + HCFG);
173 if (hcfg & HCFG_PERSCHEDENA) {
174 /* already enabled */
175 spin_unlock_irqrestore(&hsotg->lock, flags);
176 return;
179 writel(hsotg->frame_list_dma, hsotg->regs + HFLBADDR);
181 hcfg &= ~HCFG_FRLISTEN_MASK;
182 hcfg |= fr_list_en | HCFG_PERSCHEDENA;
183 dev_vdbg(hsotg->dev, "Enabling Periodic schedule\n");
184 writel(hcfg, hsotg->regs + HCFG);
186 spin_unlock_irqrestore(&hsotg->lock, flags);
189 static void dwc2_per_sched_disable(struct dwc2_hsotg *hsotg)
191 u32 hcfg;
192 unsigned long flags;
194 spin_lock_irqsave(&hsotg->lock, flags);
196 hcfg = readl(hsotg->regs + HCFG);
197 if (!(hcfg & HCFG_PERSCHEDENA)) {
198 /* already disabled */
199 spin_unlock_irqrestore(&hsotg->lock, flags);
200 return;
203 hcfg &= ~HCFG_PERSCHEDENA;
204 dev_vdbg(hsotg->dev, "Disabling Periodic schedule\n");
205 writel(hcfg, hsotg->regs + HCFG);
207 spin_unlock_irqrestore(&hsotg->lock, flags);
211 * Activates/Deactivates FrameList entries for the channel based on endpoint
212 * servicing period
214 static void dwc2_update_frame_list(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
215 int enable)
217 struct dwc2_host_chan *chan;
218 u16 i, j, inc;
220 if (!hsotg) {
221 pr_err("hsotg = %p\n", hsotg);
222 return;
225 if (!qh->channel) {
226 dev_err(hsotg->dev, "qh->channel = %p\n", qh->channel);
227 return;
230 if (!hsotg->frame_list) {
231 dev_err(hsotg->dev, "hsotg->frame_list = %p\n",
232 hsotg->frame_list);
233 return;
236 chan = qh->channel;
237 inc = dwc2_frame_incr_val(qh);
238 if (qh->ep_type == USB_ENDPOINT_XFER_ISOC)
239 i = dwc2_frame_list_idx(qh->sched_frame);
240 else
241 i = 0;
243 j = i;
244 do {
245 if (enable)
246 hsotg->frame_list[j] |= 1 << chan->hc_num;
247 else
248 hsotg->frame_list[j] &= ~(1 << chan->hc_num);
249 j = (j + inc) & (FRLISTEN_64_SIZE - 1);
250 } while (j != i);
252 if (!enable)
253 return;
255 chan->schinfo = 0;
256 if (chan->speed == USB_SPEED_HIGH && qh->interval) {
257 j = 1;
258 /* TODO - check this */
259 inc = (8 + qh->interval - 1) / qh->interval;
260 for (i = 0; i < inc; i++) {
261 chan->schinfo |= j;
262 j = j << qh->interval;
264 } else {
265 chan->schinfo = 0xff;
269 static void dwc2_release_channel_ddma(struct dwc2_hsotg *hsotg,
270 struct dwc2_qh *qh)
272 struct dwc2_host_chan *chan = qh->channel;
274 if (dwc2_qh_is_non_per(qh))
275 hsotg->non_periodic_channels--;
276 else
277 dwc2_update_frame_list(hsotg, qh, 0);
280 * The condition is added to prevent double cleanup try in case of
281 * device disconnect. See channel cleanup in dwc2_hcd_disconnect().
283 if (chan->qh) {
284 if (!list_empty(&chan->hc_list_entry))
285 list_del(&chan->hc_list_entry);
286 dwc2_hc_cleanup(hsotg, chan);
287 list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
288 chan->qh = NULL;
291 qh->channel = NULL;
292 qh->ntd = 0;
294 if (qh->desc_list)
295 memset(qh->desc_list, 0, sizeof(struct dwc2_hcd_dma_desc) *
296 dwc2_max_desc_num(qh));
300 * dwc2_hcd_qh_init_ddma() - Initializes a QH structure's Descriptor DMA
301 * related members
303 * @hsotg: The HCD state structure for the DWC OTG controller
304 * @qh: The QH to init
306 * Return: 0 if successful, negative error code otherwise
308 * Allocates memory for the descriptor list. For the first periodic QH,
309 * allocates memory for the FrameList and enables periodic scheduling.
311 int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
312 gfp_t mem_flags)
314 int retval;
316 if (qh->do_split) {
317 dev_err(hsotg->dev,
318 "SPLIT Transfers are not supported in Descriptor DMA mode.\n");
319 retval = -EINVAL;
320 goto err0;
323 retval = dwc2_desc_list_alloc(hsotg, qh, mem_flags);
324 if (retval)
325 goto err0;
327 if (qh->ep_type == USB_ENDPOINT_XFER_ISOC ||
328 qh->ep_type == USB_ENDPOINT_XFER_INT) {
329 if (!hsotg->frame_list) {
330 retval = dwc2_frame_list_alloc(hsotg, mem_flags);
331 if (retval)
332 goto err1;
333 /* Enable periodic schedule on first periodic QH */
334 dwc2_per_sched_enable(hsotg, HCFG_FRLISTEN_64);
338 qh->ntd = 0;
339 return 0;
341 err1:
342 dwc2_desc_list_free(hsotg, qh);
343 err0:
344 return retval;
348 * dwc2_hcd_qh_free_ddma() - Frees a QH structure's Descriptor DMA related
349 * members
351 * @hsotg: The HCD state structure for the DWC OTG controller
352 * @qh: The QH to free
354 * Frees descriptor list memory associated with the QH. If QH is periodic and
355 * the last, frees FrameList memory and disables periodic scheduling.
357 void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
359 dwc2_desc_list_free(hsotg, qh);
362 * Channel still assigned due to some reasons.
363 * Seen on Isoc URB dequeue. Channel halted but no subsequent
364 * ChHalted interrupt to release the channel. Afterwards
365 * when it comes here from endpoint disable routine
366 * channel remains assigned.
368 if (qh->channel)
369 dwc2_release_channel_ddma(hsotg, qh);
371 if ((qh->ep_type == USB_ENDPOINT_XFER_ISOC ||
372 qh->ep_type == USB_ENDPOINT_XFER_INT) &&
373 !hsotg->periodic_channels && hsotg->frame_list) {
374 dwc2_per_sched_disable(hsotg);
375 dwc2_frame_list_free(hsotg);
379 static u8 dwc2_frame_to_desc_idx(struct dwc2_qh *qh, u16 frame_idx)
381 if (qh->dev_speed == USB_SPEED_HIGH)
382 /* Descriptor set (8 descriptors) index which is 8-aligned */
383 return (frame_idx & ((MAX_DMA_DESC_NUM_HS_ISOC / 8) - 1)) * 8;
384 else
385 return frame_idx & (MAX_DMA_DESC_NUM_GENERIC - 1);
389 * Determine starting frame for Isochronous transfer.
390 * Few frames skipped to prevent race condition with HC.
392 static u16 dwc2_calc_starting_frame(struct dwc2_hsotg *hsotg,
393 struct dwc2_qh *qh, u16 *skip_frames)
395 u16 frame;
397 hsotg->frame_number = dwc2_hcd_get_frame_number(hsotg);
399 /* sched_frame is always frame number (not uFrame) both in FS and HS! */
402 * skip_frames is used to limit activated descriptors number
403 * to avoid the situation when HC services the last activated
404 * descriptor firstly.
405 * Example for FS:
406 * Current frame is 1, scheduled frame is 3. Since HC always fetches
407 * the descriptor corresponding to curr_frame+1, the descriptor
408 * corresponding to frame 2 will be fetched. If the number of
409 * descriptors is max=64 (or greather) the list will be fully programmed
410 * with Active descriptors and it is possible case (rare) that the
411 * latest descriptor(considering rollback) corresponding to frame 2 will
412 * be serviced first. HS case is more probable because, in fact, up to
413 * 11 uframes (16 in the code) may be skipped.
415 if (qh->dev_speed == USB_SPEED_HIGH) {
417 * Consider uframe counter also, to start xfer asap. If half of
418 * the frame elapsed skip 2 frames otherwise just 1 frame.
419 * Starting descriptor index must be 8-aligned, so if the
420 * current frame is near to complete the next one is skipped as
421 * well.
423 if (dwc2_micro_frame_num(hsotg->frame_number) >= 5) {
424 *skip_frames = 2 * 8;
425 frame = dwc2_frame_num_inc(hsotg->frame_number,
426 *skip_frames);
427 } else {
428 *skip_frames = 1 * 8;
429 frame = dwc2_frame_num_inc(hsotg->frame_number,
430 *skip_frames);
433 frame = dwc2_full_frame_num(frame);
434 } else {
436 * Two frames are skipped for FS - the current and the next.
437 * But for descriptor programming, 1 frame (descriptor) is
438 * enough, see example above.
440 *skip_frames = 1;
441 frame = dwc2_frame_num_inc(hsotg->frame_number, 2);
444 return frame;
448 * Calculate initial descriptor index for isochronous transfer based on
449 * scheduled frame
451 static u16 dwc2_recalc_initial_desc_idx(struct dwc2_hsotg *hsotg,
452 struct dwc2_qh *qh)
454 u16 frame, fr_idx, fr_idx_tmp, skip_frames;
457 * With current ISOC processing algorithm the channel is being released
458 * when no more QTDs in the list (qh->ntd == 0). Thus this function is
459 * called only when qh->ntd == 0 and qh->channel == 0.
461 * So qh->channel != NULL branch is not used and just not removed from
462 * the source file. It is required for another possible approach which
463 * is, do not disable and release the channel when ISOC session
464 * completed, just move QH to inactive schedule until new QTD arrives.
465 * On new QTD, the QH moved back to 'ready' schedule, starting frame and
466 * therefore starting desc_index are recalculated. In this case channel
467 * is released only on ep_disable.
471 * Calculate starting descriptor index. For INTERRUPT endpoint it is
472 * always 0.
474 if (qh->channel) {
475 frame = dwc2_calc_starting_frame(hsotg, qh, &skip_frames);
477 * Calculate initial descriptor index based on FrameList current
478 * bitmap and servicing period
480 fr_idx_tmp = dwc2_frame_list_idx(frame);
481 fr_idx = (FRLISTEN_64_SIZE +
482 dwc2_frame_list_idx(qh->sched_frame) - fr_idx_tmp)
483 % dwc2_frame_incr_val(qh);
484 fr_idx = (fr_idx + fr_idx_tmp) % FRLISTEN_64_SIZE;
485 } else {
486 qh->sched_frame = dwc2_calc_starting_frame(hsotg, qh,
487 &skip_frames);
488 fr_idx = dwc2_frame_list_idx(qh->sched_frame);
491 qh->td_first = qh->td_last = dwc2_frame_to_desc_idx(qh, fr_idx);
493 return skip_frames;
496 #define ISOC_URB_GIVEBACK_ASAP
498 #define MAX_ISOC_XFER_SIZE_FS 1023
499 #define MAX_ISOC_XFER_SIZE_HS 3072
500 #define DESCNUM_THRESHOLD 4
502 static void dwc2_fill_host_isoc_dma_desc(struct dwc2_hsotg *hsotg,
503 struct dwc2_qtd *qtd,
504 struct dwc2_qh *qh, u32 max_xfer_size,
505 u16 idx)
507 struct dwc2_hcd_dma_desc *dma_desc = &qh->desc_list[idx];
508 struct dwc2_hcd_iso_packet_desc *frame_desc;
510 memset(dma_desc, 0, sizeof(*dma_desc));
511 frame_desc = &qtd->urb->iso_descs[qtd->isoc_frame_index_last];
513 if (frame_desc->length > max_xfer_size)
514 qh->n_bytes[idx] = max_xfer_size;
515 else
516 qh->n_bytes[idx] = frame_desc->length;
518 dma_desc->buf = (u32)(qtd->urb->dma + frame_desc->offset);
519 dma_desc->status = qh->n_bytes[idx] << HOST_DMA_ISOC_NBYTES_SHIFT &
520 HOST_DMA_ISOC_NBYTES_MASK;
522 #ifdef ISOC_URB_GIVEBACK_ASAP
523 /* Set IOC for each descriptor corresponding to last frame of URB */
524 if (qtd->isoc_frame_index_last == qtd->urb->packet_count)
525 dma_desc->status |= HOST_DMA_IOC;
526 #endif
528 qh->ntd++;
529 qtd->isoc_frame_index_last++;
532 static void dwc2_init_isoc_dma_desc(struct dwc2_hsotg *hsotg,
533 struct dwc2_qh *qh, u16 skip_frames)
535 struct dwc2_qtd *qtd;
536 u32 max_xfer_size;
537 u16 idx, inc, n_desc, ntd_max = 0;
539 idx = qh->td_last;
540 inc = qh->interval;
541 n_desc = 0;
543 if (qh->interval) {
544 ntd_max = (dwc2_max_desc_num(qh) + qh->interval - 1) /
545 qh->interval;
546 if (skip_frames && !qh->channel)
547 ntd_max -= skip_frames / qh->interval;
550 max_xfer_size = qh->dev_speed == USB_SPEED_HIGH ?
551 MAX_ISOC_XFER_SIZE_HS : MAX_ISOC_XFER_SIZE_FS;
553 list_for_each_entry(qtd, &qh->qtd_list, qtd_list_entry) {
554 while (qh->ntd < ntd_max && qtd->isoc_frame_index_last <
555 qtd->urb->packet_count) {
556 if (n_desc > 1)
557 qh->desc_list[n_desc - 1].status |= HOST_DMA_A;
558 dwc2_fill_host_isoc_dma_desc(hsotg, qtd, qh,
559 max_xfer_size, idx);
560 idx = dwc2_desclist_idx_inc(idx, inc, qh->dev_speed);
561 n_desc++;
563 qtd->in_process = 1;
566 qh->td_last = idx;
568 #ifdef ISOC_URB_GIVEBACK_ASAP
569 /* Set IOC for last descriptor if descriptor list is full */
570 if (qh->ntd == ntd_max) {
571 idx = dwc2_desclist_idx_dec(qh->td_last, inc, qh->dev_speed);
572 qh->desc_list[idx].status |= HOST_DMA_IOC;
574 #else
576 * Set IOC bit only for one descriptor. Always try to be ahead of HW
577 * processing, i.e. on IOC generation driver activates next descriptor
578 * but core continues to process descriptors following the one with IOC
579 * set.
582 if (n_desc > DESCNUM_THRESHOLD)
584 * Move IOC "up". Required even if there is only one QTD
585 * in the list, because QTDs might continue to be queued,
586 * but during the activation it was only one queued.
587 * Actually more than one QTD might be in the list if this
588 * function called from XferCompletion - QTDs was queued during
589 * HW processing of the previous descriptor chunk.
591 idx = dwc2_desclist_idx_dec(idx, inc * ((qh->ntd + 1) / 2),
592 qh->dev_speed);
593 else
595 * Set the IOC for the latest descriptor if either number of
596 * descriptors is not greater than threshold or no more new
597 * descriptors activated
599 idx = dwc2_desclist_idx_dec(qh->td_last, inc, qh->dev_speed);
601 qh->desc_list[idx].status |= HOST_DMA_IOC;
602 #endif
604 if (n_desc) {
605 qh->desc_list[n_desc - 1].status |= HOST_DMA_A;
606 if (n_desc > 1)
607 qh->desc_list[0].status |= HOST_DMA_A;
611 static void dwc2_fill_host_dma_desc(struct dwc2_hsotg *hsotg,
612 struct dwc2_host_chan *chan,
613 struct dwc2_qtd *qtd, struct dwc2_qh *qh,
614 int n_desc)
616 struct dwc2_hcd_dma_desc *dma_desc = &qh->desc_list[n_desc];
617 int len = chan->xfer_len;
619 if (len > MAX_DMA_DESC_SIZE)
620 len = MAX_DMA_DESC_SIZE - chan->max_packet + 1;
622 if (chan->ep_is_in) {
623 int num_packets;
625 if (len > 0 && chan->max_packet)
626 num_packets = (len + chan->max_packet - 1)
627 / chan->max_packet;
628 else
629 /* Need 1 packet for transfer length of 0 */
630 num_packets = 1;
632 /* Always program an integral # of packets for IN transfers */
633 len = num_packets * chan->max_packet;
636 dma_desc->status = len << HOST_DMA_NBYTES_SHIFT & HOST_DMA_NBYTES_MASK;
637 qh->n_bytes[n_desc] = len;
639 if (qh->ep_type == USB_ENDPOINT_XFER_CONTROL &&
640 qtd->control_phase == DWC2_CONTROL_SETUP)
641 dma_desc->status |= HOST_DMA_SUP;
643 dma_desc->buf = (u32)chan->xfer_dma;
646 * Last (or only) descriptor of IN transfer with actual size less
647 * than MaxPacket
649 if (len > chan->xfer_len) {
650 chan->xfer_len = 0;
651 } else {
652 chan->xfer_dma += len;
653 chan->xfer_len -= len;
657 static void dwc2_init_non_isoc_dma_desc(struct dwc2_hsotg *hsotg,
658 struct dwc2_qh *qh)
660 struct dwc2_qtd *qtd;
661 struct dwc2_host_chan *chan = qh->channel;
662 int n_desc = 0;
664 dev_vdbg(hsotg->dev, "%s(): qh=%p dma=%08lx len=%d\n", __func__, qh,
665 (unsigned long)chan->xfer_dma, chan->xfer_len);
668 * Start with chan->xfer_dma initialized in assign_and_init_hc(), then
669 * if SG transfer consists of multiple URBs, this pointer is re-assigned
670 * to the buffer of the currently processed QTD. For non-SG request
671 * there is always one QTD active.
674 list_for_each_entry(qtd, &qh->qtd_list, qtd_list_entry) {
675 dev_vdbg(hsotg->dev, "qtd=%p\n", qtd);
677 if (n_desc) {
678 /* SG request - more than 1 QTD */
679 chan->xfer_dma = qtd->urb->dma +
680 qtd->urb->actual_length;
681 chan->xfer_len = qtd->urb->length -
682 qtd->urb->actual_length;
683 dev_vdbg(hsotg->dev, "buf=%08lx len=%d\n",
684 (unsigned long)chan->xfer_dma, chan->xfer_len);
687 qtd->n_desc = 0;
688 do {
689 if (n_desc > 1) {
690 qh->desc_list[n_desc - 1].status |= HOST_DMA_A;
691 dev_vdbg(hsotg->dev,
692 "set A bit in desc %d (%p)\n",
693 n_desc - 1,
694 &qh->desc_list[n_desc - 1]);
696 dwc2_fill_host_dma_desc(hsotg, chan, qtd, qh, n_desc);
697 dev_vdbg(hsotg->dev,
698 "desc %d (%p) buf=%08x status=%08x\n",
699 n_desc, &qh->desc_list[n_desc],
700 qh->desc_list[n_desc].buf,
701 qh->desc_list[n_desc].status);
702 qtd->n_desc++;
703 n_desc++;
704 } while (chan->xfer_len > 0 &&
705 n_desc != MAX_DMA_DESC_NUM_GENERIC);
707 dev_vdbg(hsotg->dev, "n_desc=%d\n", n_desc);
708 qtd->in_process = 1;
709 if (qh->ep_type == USB_ENDPOINT_XFER_CONTROL)
710 break;
711 if (n_desc == MAX_DMA_DESC_NUM_GENERIC)
712 break;
715 if (n_desc) {
716 qh->desc_list[n_desc - 1].status |=
717 HOST_DMA_IOC | HOST_DMA_EOL | HOST_DMA_A;
718 dev_vdbg(hsotg->dev, "set IOC/EOL/A bits in desc %d (%p)\n",
719 n_desc - 1, &qh->desc_list[n_desc - 1]);
720 if (n_desc > 1) {
721 qh->desc_list[0].status |= HOST_DMA_A;
722 dev_vdbg(hsotg->dev, "set A bit in desc 0 (%p)\n",
723 &qh->desc_list[0]);
725 chan->ntd = n_desc;
730 * dwc2_hcd_start_xfer_ddma() - Starts a transfer in Descriptor DMA mode
732 * @hsotg: The HCD state structure for the DWC OTG controller
733 * @qh: The QH to init
735 * Return: 0 if successful, negative error code otherwise
737 * For Control and Bulk endpoints, initializes descriptor list and starts the
738 * transfer. For Interrupt and Isochronous endpoints, initializes descriptor
739 * list then updates FrameList, marking appropriate entries as active.
741 * For Isochronous endpoints the starting descriptor index is calculated based
742 * on the scheduled frame, but only on the first transfer descriptor within a
743 * session. Then the transfer is started via enabling the channel.
745 * For Isochronous endpoints the channel is not halted on XferComplete
746 * interrupt so remains assigned to the endpoint(QH) until session is done.
748 void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
750 /* Channel is already assigned */
751 struct dwc2_host_chan *chan = qh->channel;
752 u16 skip_frames = 0;
754 switch (chan->ep_type) {
755 case USB_ENDPOINT_XFER_CONTROL:
756 case USB_ENDPOINT_XFER_BULK:
757 dwc2_init_non_isoc_dma_desc(hsotg, qh);
758 dwc2_hc_start_transfer_ddma(hsotg, chan);
759 break;
760 case USB_ENDPOINT_XFER_INT:
761 dwc2_init_non_isoc_dma_desc(hsotg, qh);
762 dwc2_update_frame_list(hsotg, qh, 1);
763 dwc2_hc_start_transfer_ddma(hsotg, chan);
764 break;
765 case USB_ENDPOINT_XFER_ISOC:
766 if (!qh->ntd)
767 skip_frames = dwc2_recalc_initial_desc_idx(hsotg, qh);
768 dwc2_init_isoc_dma_desc(hsotg, qh, skip_frames);
770 if (!chan->xfer_started) {
771 dwc2_update_frame_list(hsotg, qh, 1);
774 * Always set to max, instead of actual size. Otherwise
775 * ntd will be changed with channel being enabled. Not
776 * recommended.
778 chan->ntd = dwc2_max_desc_num(qh);
780 /* Enable channel only once for ISOC */
781 dwc2_hc_start_transfer_ddma(hsotg, chan);
784 break;
785 default:
786 break;
790 #define DWC2_CMPL_DONE 1
791 #define DWC2_CMPL_STOP 2
793 static int dwc2_cmpl_host_isoc_dma_desc(struct dwc2_hsotg *hsotg,
794 struct dwc2_host_chan *chan,
795 struct dwc2_qtd *qtd,
796 struct dwc2_qh *qh, u16 idx)
798 struct dwc2_hcd_dma_desc *dma_desc = &qh->desc_list[idx];
799 struct dwc2_hcd_iso_packet_desc *frame_desc;
800 u16 remain = 0;
801 int rc = 0;
803 frame_desc = &qtd->urb->iso_descs[qtd->isoc_frame_index_last];
804 dma_desc->buf = (u32)(qtd->urb->dma + frame_desc->offset);
805 if (chan->ep_is_in)
806 remain = dma_desc->status >> HOST_DMA_ISOC_NBYTES_SHIFT &
807 HOST_DMA_ISOC_NBYTES_MASK >> HOST_DMA_ISOC_NBYTES_SHIFT;
809 if ((dma_desc->status & HOST_DMA_STS_MASK) == HOST_DMA_STS_PKTERR) {
811 * XactError, or unable to complete all the transactions
812 * in the scheduled micro-frame/frame, both indicated by
813 * HOST_DMA_STS_PKTERR
815 qtd->urb->error_count++;
816 frame_desc->actual_length = qh->n_bytes[idx] - remain;
817 frame_desc->status = -EPROTO;
818 } else {
819 /* Success */
820 frame_desc->actual_length = qh->n_bytes[idx] - remain;
821 frame_desc->status = 0;
824 if (++qtd->isoc_frame_index == qtd->urb->packet_count) {
826 * urb->status is not used for isoc transfers here. The
827 * individual frame_desc status are used instead.
829 dwc2_host_complete(hsotg, qtd->urb->priv, qtd->urb, 0);
830 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
833 * This check is necessary because urb_dequeue can be called
834 * from urb complete callback (sound driver for example). All
835 * pending URBs are dequeued there, so no need for further
836 * processing.
838 if (chan->halt_status == DWC2_HC_XFER_URB_DEQUEUE)
839 return -1;
840 rc = DWC2_CMPL_DONE;
843 qh->ntd--;
845 /* Stop if IOC requested descriptor reached */
846 if (dma_desc->status & HOST_DMA_IOC)
847 rc = DWC2_CMPL_STOP;
849 return rc;
852 static void dwc2_complete_isoc_xfer_ddma(struct dwc2_hsotg *hsotg,
853 struct dwc2_host_chan *chan,
854 enum dwc2_halt_status halt_status)
856 struct dwc2_hcd_iso_packet_desc *frame_desc;
857 struct dwc2_qtd *qtd, *qtd_tmp;
858 struct dwc2_qh *qh;
859 u16 idx;
860 int rc;
862 qh = chan->qh;
863 idx = qh->td_first;
865 if (chan->halt_status == DWC2_HC_XFER_URB_DEQUEUE) {
866 list_for_each_entry(qtd, &qh->qtd_list, qtd_list_entry)
867 qtd->in_process = 0;
868 return;
871 if (halt_status == DWC2_HC_XFER_AHB_ERR ||
872 halt_status == DWC2_HC_XFER_BABBLE_ERR) {
874 * Channel is halted in these error cases, considered as serious
875 * issues.
876 * Complete all URBs marking all frames as failed, irrespective
877 * whether some of the descriptors (frames) succeeded or not.
878 * Pass error code to completion routine as well, to update
879 * urb->status, some of class drivers might use it to stop
880 * queing transfer requests.
882 int err = halt_status == DWC2_HC_XFER_AHB_ERR ?
883 -EIO : -EOVERFLOW;
885 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
886 qtd_list_entry) {
887 for (idx = 0; idx < qtd->urb->packet_count; idx++) {
888 frame_desc = &qtd->urb->iso_descs[idx];
889 frame_desc->status = err;
892 dwc2_host_complete(hsotg, qtd->urb->priv, qtd->urb,
893 err);
894 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
897 return;
900 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry) {
901 if (!qtd->in_process)
902 break;
903 do {
904 rc = dwc2_cmpl_host_isoc_dma_desc(hsotg, chan, qtd, qh,
905 idx);
906 if (rc < 0)
907 return;
908 idx = dwc2_desclist_idx_inc(idx, qh->interval,
909 chan->speed);
910 if (rc == DWC2_CMPL_STOP)
911 goto stop_scan;
912 if (rc == DWC2_CMPL_DONE)
913 break;
914 } while (idx != qh->td_first);
917 stop_scan:
918 qh->td_first = idx;
921 static int dwc2_update_non_isoc_urb_state_ddma(struct dwc2_hsotg *hsotg,
922 struct dwc2_host_chan *chan,
923 struct dwc2_qtd *qtd,
924 struct dwc2_hcd_dma_desc *dma_desc,
925 enum dwc2_halt_status halt_status,
926 u32 n_bytes, int *xfer_done)
928 struct dwc2_hcd_urb *urb = qtd->urb;
929 u16 remain = 0;
931 if (chan->ep_is_in)
932 remain = dma_desc->status >> HOST_DMA_NBYTES_SHIFT &
933 HOST_DMA_NBYTES_MASK >> HOST_DMA_NBYTES_SHIFT;
935 dev_vdbg(hsotg->dev, "remain=%d dwc2_urb=%p\n", remain, urb);
937 if (halt_status == DWC2_HC_XFER_AHB_ERR) {
938 dev_err(hsotg->dev, "EIO\n");
939 urb->status = -EIO;
940 return 1;
943 if ((dma_desc->status & HOST_DMA_STS_MASK) == HOST_DMA_STS_PKTERR) {
944 switch (halt_status) {
945 case DWC2_HC_XFER_STALL:
946 dev_vdbg(hsotg->dev, "Stall\n");
947 urb->status = -EPIPE;
948 break;
949 case DWC2_HC_XFER_BABBLE_ERR:
950 dev_err(hsotg->dev, "Babble\n");
951 urb->status = -EOVERFLOW;
952 break;
953 case DWC2_HC_XFER_XACT_ERR:
954 dev_err(hsotg->dev, "XactErr\n");
955 urb->status = -EPROTO;
956 break;
957 default:
958 dev_err(hsotg->dev,
959 "%s: Unhandled descriptor error status (%d)\n",
960 __func__, halt_status);
961 break;
963 return 1;
966 if (dma_desc->status & HOST_DMA_A) {
967 dev_vdbg(hsotg->dev,
968 "Active descriptor encountered on channel %d\n",
969 chan->hc_num);
970 return 0;
973 if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL) {
974 if (qtd->control_phase == DWC2_CONTROL_DATA) {
975 urb->actual_length += n_bytes - remain;
976 if (remain || urb->actual_length >= urb->length) {
978 * For Control Data stage do not set urb->status
979 * to 0, to prevent URB callback. Set it when
980 * Status phase is done. See below.
982 *xfer_done = 1;
984 } else if (qtd->control_phase == DWC2_CONTROL_STATUS) {
985 urb->status = 0;
986 *xfer_done = 1;
988 /* No handling for SETUP stage */
989 } else {
990 /* BULK and INTR */
991 urb->actual_length += n_bytes - remain;
992 dev_vdbg(hsotg->dev, "length=%d actual=%d\n", urb->length,
993 urb->actual_length);
994 if (remain || urb->actual_length >= urb->length) {
995 urb->status = 0;
996 *xfer_done = 1;
1000 return 0;
1003 static int dwc2_process_non_isoc_desc(struct dwc2_hsotg *hsotg,
1004 struct dwc2_host_chan *chan,
1005 int chnum, struct dwc2_qtd *qtd,
1006 int desc_num,
1007 enum dwc2_halt_status halt_status,
1008 int *xfer_done)
1010 struct dwc2_qh *qh = chan->qh;
1011 struct dwc2_hcd_urb *urb = qtd->urb;
1012 struct dwc2_hcd_dma_desc *dma_desc;
1013 u32 n_bytes;
1014 int failed;
1016 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1018 dma_desc = &qh->desc_list[desc_num];
1019 n_bytes = qh->n_bytes[desc_num];
1020 dev_vdbg(hsotg->dev,
1021 "qtd=%p dwc2_urb=%p desc_num=%d desc=%p n_bytes=%d\n",
1022 qtd, urb, desc_num, dma_desc, n_bytes);
1023 failed = dwc2_update_non_isoc_urb_state_ddma(hsotg, chan, qtd, dma_desc,
1024 halt_status, n_bytes,
1025 xfer_done);
1026 if (failed || (*xfer_done && urb->status != -EINPROGRESS)) {
1027 dwc2_host_complete(hsotg, urb->priv, urb, urb->status);
1028 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1029 dev_vdbg(hsotg->dev, "failed=%1x xfer_done=%1x status=%08x\n",
1030 failed, *xfer_done, urb->status);
1031 return failed;
1034 if (qh->ep_type == USB_ENDPOINT_XFER_CONTROL) {
1035 switch (qtd->control_phase) {
1036 case DWC2_CONTROL_SETUP:
1037 if (urb->length > 0)
1038 qtd->control_phase = DWC2_CONTROL_DATA;
1039 else
1040 qtd->control_phase = DWC2_CONTROL_STATUS;
1041 dev_vdbg(hsotg->dev,
1042 " Control setup transaction done\n");
1043 break;
1044 case DWC2_CONTROL_DATA:
1045 if (*xfer_done) {
1046 qtd->control_phase = DWC2_CONTROL_STATUS;
1047 dev_vdbg(hsotg->dev,
1048 " Control data transfer done\n");
1049 } else if (desc_num + 1 == qtd->n_desc) {
1051 * Last descriptor for Control data stage which
1052 * is not completed yet
1054 dwc2_hcd_save_data_toggle(hsotg, chan, chnum,
1055 qtd);
1057 break;
1058 default:
1059 break;
1063 return 0;
1066 static void dwc2_complete_non_isoc_xfer_ddma(struct dwc2_hsotg *hsotg,
1067 struct dwc2_host_chan *chan,
1068 int chnum,
1069 enum dwc2_halt_status halt_status)
1071 struct list_head *qtd_item, *qtd_tmp;
1072 struct dwc2_qh *qh = chan->qh;
1073 struct dwc2_qtd *qtd = NULL;
1074 int xfer_done;
1075 int desc_num = 0;
1077 if (chan->halt_status == DWC2_HC_XFER_URB_DEQUEUE) {
1078 list_for_each_entry(qtd, &qh->qtd_list, qtd_list_entry)
1079 qtd->in_process = 0;
1080 return;
1083 list_for_each_safe(qtd_item, qtd_tmp, &qh->qtd_list) {
1084 int i;
1086 qtd = list_entry(qtd_item, struct dwc2_qtd, qtd_list_entry);
1087 xfer_done = 0;
1089 for (i = 0; i < qtd->n_desc; i++) {
1090 if (dwc2_process_non_isoc_desc(hsotg, chan, chnum, qtd,
1091 desc_num, halt_status,
1092 &xfer_done))
1093 break;
1094 desc_num++;
1098 if (qh->ep_type != USB_ENDPOINT_XFER_CONTROL) {
1100 * Resetting the data toggle for bulk and interrupt endpoints
1101 * in case of stall. See handle_hc_stall_intr().
1103 if (halt_status == DWC2_HC_XFER_STALL)
1104 qh->data_toggle = DWC2_HC_PID_DATA0;
1105 else if (qtd)
1106 dwc2_hcd_save_data_toggle(hsotg, chan, chnum, qtd);
1109 if (halt_status == DWC2_HC_XFER_COMPLETE) {
1110 if (chan->hcint & HCINTMSK_NYET) {
1112 * Got a NYET on the last transaction of the transfer.
1113 * It means that the endpoint should be in the PING
1114 * state at the beginning of the next transfer.
1116 qh->ping_state = 1;
1122 * dwc2_hcd_complete_xfer_ddma() - Scans the descriptor list, updates URB's
1123 * status and calls completion routine for the URB if it's done. Called from
1124 * interrupt handlers.
1126 * @hsotg: The HCD state structure for the DWC OTG controller
1127 * @chan: Host channel the transfer is completed on
1128 * @chnum: Index of Host channel registers
1129 * @halt_status: Reason the channel is being halted or just XferComplete
1130 * for isochronous transfers
1132 * Releases the channel to be used by other transfers.
1133 * In case of Isochronous endpoint the channel is not halted until the end of
1134 * the session, i.e. QTD list is empty.
1135 * If periodic channel released the FrameList is updated accordingly.
1136 * Calls transaction selection routines to activate pending transfers.
1138 void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
1139 struct dwc2_host_chan *chan, int chnum,
1140 enum dwc2_halt_status halt_status)
1142 struct dwc2_qh *qh = chan->qh;
1143 int continue_isoc_xfer = 0;
1144 enum dwc2_transaction_type tr_type;
1146 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1147 dwc2_complete_isoc_xfer_ddma(hsotg, chan, halt_status);
1149 /* Release the channel if halted or session completed */
1150 if (halt_status != DWC2_HC_XFER_COMPLETE ||
1151 list_empty(&qh->qtd_list)) {
1152 /* Halt the channel if session completed */
1153 if (halt_status == DWC2_HC_XFER_COMPLETE)
1154 dwc2_hc_halt(hsotg, chan, halt_status);
1155 dwc2_release_channel_ddma(hsotg, qh);
1156 dwc2_hcd_qh_unlink(hsotg, qh);
1157 } else {
1158 /* Keep in assigned schedule to continue transfer */
1159 list_move(&qh->qh_list_entry,
1160 &hsotg->periodic_sched_assigned);
1161 continue_isoc_xfer = 1;
1164 * Todo: Consider the case when period exceeds FrameList size.
1165 * Frame Rollover interrupt should be used.
1167 } else {
1169 * Scan descriptor list to complete the URB(s), then release
1170 * the channel
1172 dwc2_complete_non_isoc_xfer_ddma(hsotg, chan, chnum,
1173 halt_status);
1174 dwc2_release_channel_ddma(hsotg, qh);
1175 dwc2_hcd_qh_unlink(hsotg, qh);
1177 if (!list_empty(&qh->qtd_list)) {
1179 * Add back to inactive non-periodic schedule on normal
1180 * completion
1182 dwc2_hcd_qh_add(hsotg, qh);
1186 tr_type = dwc2_hcd_select_transactions(hsotg);
1187 if (tr_type != DWC2_TRANSACTION_NONE || continue_isoc_xfer) {
1188 if (continue_isoc_xfer) {
1189 if (tr_type == DWC2_TRANSACTION_NONE)
1190 tr_type = DWC2_TRANSACTION_PERIODIC;
1191 else if (tr_type == DWC2_TRANSACTION_NON_PERIODIC)
1192 tr_type = DWC2_TRANSACTION_ALL;
1194 dwc2_hcd_queue_transactions(hsotg, tr_type);