Merge branch 'for-3.11' of git://linux-nfs.org/~bfields/linux
[linux-2.6.git] / drivers / md / dm.c
blob9e39d2b64bf8f3cc4a864e300ff61f5020b67dda
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
6 */
8 #include "dm.h"
9 #include "dm-uevent.h"
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
23 #include <trace/events/block.h>
25 #define DM_MSG_PREFIX "core"
27 #ifdef CONFIG_PRINTK
29 * ratelimit state to be used in DMXXX_LIMIT().
31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
32 DEFAULT_RATELIMIT_INTERVAL,
33 DEFAULT_RATELIMIT_BURST);
34 EXPORT_SYMBOL(dm_ratelimit_state);
35 #endif
38 * Cookies are numeric values sent with CHANGE and REMOVE
39 * uevents while resuming, removing or renaming the device.
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
44 static const char *_name = DM_NAME;
46 static unsigned int major = 0;
47 static unsigned int _major = 0;
49 static DEFINE_IDR(_minor_idr);
51 static DEFINE_SPINLOCK(_minor_lock);
53 * For bio-based dm.
54 * One of these is allocated per bio.
56 struct dm_io {
57 struct mapped_device *md;
58 int error;
59 atomic_t io_count;
60 struct bio *bio;
61 unsigned long start_time;
62 spinlock_t endio_lock;
66 * For request-based dm.
67 * One of these is allocated per request.
69 struct dm_rq_target_io {
70 struct mapped_device *md;
71 struct dm_target *ti;
72 struct request *orig, clone;
73 int error;
74 union map_info info;
78 * For request-based dm - the bio clones we allocate are embedded in these
79 * structs.
81 * We allocate these with bio_alloc_bioset, using the front_pad parameter when
82 * the bioset is created - this means the bio has to come at the end of the
83 * struct.
85 struct dm_rq_clone_bio_info {
86 struct bio *orig;
87 struct dm_rq_target_io *tio;
88 struct bio clone;
91 union map_info *dm_get_mapinfo(struct bio *bio)
93 if (bio && bio->bi_private)
94 return &((struct dm_target_io *)bio->bi_private)->info;
95 return NULL;
98 union map_info *dm_get_rq_mapinfo(struct request *rq)
100 if (rq && rq->end_io_data)
101 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
102 return NULL;
104 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
106 #define MINOR_ALLOCED ((void *)-1)
109 * Bits for the md->flags field.
111 #define DMF_BLOCK_IO_FOR_SUSPEND 0
112 #define DMF_SUSPENDED 1
113 #define DMF_FROZEN 2
114 #define DMF_FREEING 3
115 #define DMF_DELETING 4
116 #define DMF_NOFLUSH_SUSPENDING 5
117 #define DMF_MERGE_IS_OPTIONAL 6
120 * A dummy definition to make RCU happy.
121 * struct dm_table should never be dereferenced in this file.
123 struct dm_table {
124 int undefined__;
128 * Work processed by per-device workqueue.
130 struct mapped_device {
131 struct srcu_struct io_barrier;
132 struct mutex suspend_lock;
133 atomic_t holders;
134 atomic_t open_count;
137 * The current mapping.
138 * Use dm_get_live_table{_fast} or take suspend_lock for
139 * dereference.
141 struct dm_table *map;
143 unsigned long flags;
145 struct request_queue *queue;
146 unsigned type;
147 /* Protect queue and type against concurrent access. */
148 struct mutex type_lock;
150 struct target_type *immutable_target_type;
152 struct gendisk *disk;
153 char name[16];
155 void *interface_ptr;
158 * A list of ios that arrived while we were suspended.
160 atomic_t pending[2];
161 wait_queue_head_t wait;
162 struct work_struct work;
163 struct bio_list deferred;
164 spinlock_t deferred_lock;
167 * Processing queue (flush)
169 struct workqueue_struct *wq;
172 * io objects are allocated from here.
174 mempool_t *io_pool;
176 struct bio_set *bs;
179 * Event handling.
181 atomic_t event_nr;
182 wait_queue_head_t eventq;
183 atomic_t uevent_seq;
184 struct list_head uevent_list;
185 spinlock_t uevent_lock; /* Protect access to uevent_list */
188 * freeze/thaw support require holding onto a super block
190 struct super_block *frozen_sb;
191 struct block_device *bdev;
193 /* forced geometry settings */
194 struct hd_geometry geometry;
196 /* sysfs handle */
197 struct kobject kobj;
199 /* zero-length flush that will be cloned and submitted to targets */
200 struct bio flush_bio;
204 * For mempools pre-allocation at the table loading time.
206 struct dm_md_mempools {
207 mempool_t *io_pool;
208 struct bio_set *bs;
211 #define MIN_IOS 256
212 static struct kmem_cache *_io_cache;
213 static struct kmem_cache *_rq_tio_cache;
215 static int __init local_init(void)
217 int r = -ENOMEM;
219 /* allocate a slab for the dm_ios */
220 _io_cache = KMEM_CACHE(dm_io, 0);
221 if (!_io_cache)
222 return r;
224 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
225 if (!_rq_tio_cache)
226 goto out_free_io_cache;
228 r = dm_uevent_init();
229 if (r)
230 goto out_free_rq_tio_cache;
232 _major = major;
233 r = register_blkdev(_major, _name);
234 if (r < 0)
235 goto out_uevent_exit;
237 if (!_major)
238 _major = r;
240 return 0;
242 out_uevent_exit:
243 dm_uevent_exit();
244 out_free_rq_tio_cache:
245 kmem_cache_destroy(_rq_tio_cache);
246 out_free_io_cache:
247 kmem_cache_destroy(_io_cache);
249 return r;
252 static void local_exit(void)
254 kmem_cache_destroy(_rq_tio_cache);
255 kmem_cache_destroy(_io_cache);
256 unregister_blkdev(_major, _name);
257 dm_uevent_exit();
259 _major = 0;
261 DMINFO("cleaned up");
264 static int (*_inits[])(void) __initdata = {
265 local_init,
266 dm_target_init,
267 dm_linear_init,
268 dm_stripe_init,
269 dm_io_init,
270 dm_kcopyd_init,
271 dm_interface_init,
274 static void (*_exits[])(void) = {
275 local_exit,
276 dm_target_exit,
277 dm_linear_exit,
278 dm_stripe_exit,
279 dm_io_exit,
280 dm_kcopyd_exit,
281 dm_interface_exit,
284 static int __init dm_init(void)
286 const int count = ARRAY_SIZE(_inits);
288 int r, i;
290 for (i = 0; i < count; i++) {
291 r = _inits[i]();
292 if (r)
293 goto bad;
296 return 0;
298 bad:
299 while (i--)
300 _exits[i]();
302 return r;
305 static void __exit dm_exit(void)
307 int i = ARRAY_SIZE(_exits);
309 while (i--)
310 _exits[i]();
313 * Should be empty by this point.
315 idr_destroy(&_minor_idr);
319 * Block device functions
321 int dm_deleting_md(struct mapped_device *md)
323 return test_bit(DMF_DELETING, &md->flags);
326 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
328 struct mapped_device *md;
330 spin_lock(&_minor_lock);
332 md = bdev->bd_disk->private_data;
333 if (!md)
334 goto out;
336 if (test_bit(DMF_FREEING, &md->flags) ||
337 dm_deleting_md(md)) {
338 md = NULL;
339 goto out;
342 dm_get(md);
343 atomic_inc(&md->open_count);
345 out:
346 spin_unlock(&_minor_lock);
348 return md ? 0 : -ENXIO;
351 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
353 struct mapped_device *md = disk->private_data;
355 spin_lock(&_minor_lock);
357 atomic_dec(&md->open_count);
358 dm_put(md);
360 spin_unlock(&_minor_lock);
363 int dm_open_count(struct mapped_device *md)
365 return atomic_read(&md->open_count);
369 * Guarantees nothing is using the device before it's deleted.
371 int dm_lock_for_deletion(struct mapped_device *md)
373 int r = 0;
375 spin_lock(&_minor_lock);
377 if (dm_open_count(md))
378 r = -EBUSY;
379 else
380 set_bit(DMF_DELETING, &md->flags);
382 spin_unlock(&_minor_lock);
384 return r;
387 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
389 struct mapped_device *md = bdev->bd_disk->private_data;
391 return dm_get_geometry(md, geo);
394 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
395 unsigned int cmd, unsigned long arg)
397 struct mapped_device *md = bdev->bd_disk->private_data;
398 int srcu_idx;
399 struct dm_table *map;
400 struct dm_target *tgt;
401 int r = -ENOTTY;
403 retry:
404 map = dm_get_live_table(md, &srcu_idx);
406 if (!map || !dm_table_get_size(map))
407 goto out;
409 /* We only support devices that have a single target */
410 if (dm_table_get_num_targets(map) != 1)
411 goto out;
413 tgt = dm_table_get_target(map, 0);
415 if (dm_suspended_md(md)) {
416 r = -EAGAIN;
417 goto out;
420 if (tgt->type->ioctl)
421 r = tgt->type->ioctl(tgt, cmd, arg);
423 out:
424 dm_put_live_table(md, srcu_idx);
426 if (r == -ENOTCONN) {
427 msleep(10);
428 goto retry;
431 return r;
434 static struct dm_io *alloc_io(struct mapped_device *md)
436 return mempool_alloc(md->io_pool, GFP_NOIO);
439 static void free_io(struct mapped_device *md, struct dm_io *io)
441 mempool_free(io, md->io_pool);
444 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
446 bio_put(&tio->clone);
449 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
450 gfp_t gfp_mask)
452 return mempool_alloc(md->io_pool, gfp_mask);
455 static void free_rq_tio(struct dm_rq_target_io *tio)
457 mempool_free(tio, tio->md->io_pool);
460 static int md_in_flight(struct mapped_device *md)
462 return atomic_read(&md->pending[READ]) +
463 atomic_read(&md->pending[WRITE]);
466 static void start_io_acct(struct dm_io *io)
468 struct mapped_device *md = io->md;
469 int cpu;
470 int rw = bio_data_dir(io->bio);
472 io->start_time = jiffies;
474 cpu = part_stat_lock();
475 part_round_stats(cpu, &dm_disk(md)->part0);
476 part_stat_unlock();
477 atomic_set(&dm_disk(md)->part0.in_flight[rw],
478 atomic_inc_return(&md->pending[rw]));
481 static void end_io_acct(struct dm_io *io)
483 struct mapped_device *md = io->md;
484 struct bio *bio = io->bio;
485 unsigned long duration = jiffies - io->start_time;
486 int pending, cpu;
487 int rw = bio_data_dir(bio);
489 cpu = part_stat_lock();
490 part_round_stats(cpu, &dm_disk(md)->part0);
491 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
492 part_stat_unlock();
495 * After this is decremented the bio must not be touched if it is
496 * a flush.
498 pending = atomic_dec_return(&md->pending[rw]);
499 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
500 pending += atomic_read(&md->pending[rw^0x1]);
502 /* nudge anyone waiting on suspend queue */
503 if (!pending)
504 wake_up(&md->wait);
508 * Add the bio to the list of deferred io.
510 static void queue_io(struct mapped_device *md, struct bio *bio)
512 unsigned long flags;
514 spin_lock_irqsave(&md->deferred_lock, flags);
515 bio_list_add(&md->deferred, bio);
516 spin_unlock_irqrestore(&md->deferred_lock, flags);
517 queue_work(md->wq, &md->work);
521 * Everyone (including functions in this file), should use this
522 * function to access the md->map field, and make sure they call
523 * dm_put_live_table() when finished.
525 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
527 *srcu_idx = srcu_read_lock(&md->io_barrier);
529 return srcu_dereference(md->map, &md->io_barrier);
532 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
534 srcu_read_unlock(&md->io_barrier, srcu_idx);
537 void dm_sync_table(struct mapped_device *md)
539 synchronize_srcu(&md->io_barrier);
540 synchronize_rcu_expedited();
544 * A fast alternative to dm_get_live_table/dm_put_live_table.
545 * The caller must not block between these two functions.
547 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
549 rcu_read_lock();
550 return rcu_dereference(md->map);
553 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
555 rcu_read_unlock();
559 * Get the geometry associated with a dm device
561 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
563 *geo = md->geometry;
565 return 0;
569 * Set the geometry of a device.
571 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
573 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
575 if (geo->start > sz) {
576 DMWARN("Start sector is beyond the geometry limits.");
577 return -EINVAL;
580 md->geometry = *geo;
582 return 0;
585 /*-----------------------------------------------------------------
586 * CRUD START:
587 * A more elegant soln is in the works that uses the queue
588 * merge fn, unfortunately there are a couple of changes to
589 * the block layer that I want to make for this. So in the
590 * interests of getting something for people to use I give
591 * you this clearly demarcated crap.
592 *---------------------------------------------------------------*/
594 static int __noflush_suspending(struct mapped_device *md)
596 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
600 * Decrements the number of outstanding ios that a bio has been
601 * cloned into, completing the original io if necc.
603 static void dec_pending(struct dm_io *io, int error)
605 unsigned long flags;
606 int io_error;
607 struct bio *bio;
608 struct mapped_device *md = io->md;
610 /* Push-back supersedes any I/O errors */
611 if (unlikely(error)) {
612 spin_lock_irqsave(&io->endio_lock, flags);
613 if (!(io->error > 0 && __noflush_suspending(md)))
614 io->error = error;
615 spin_unlock_irqrestore(&io->endio_lock, flags);
618 if (atomic_dec_and_test(&io->io_count)) {
619 if (io->error == DM_ENDIO_REQUEUE) {
621 * Target requested pushing back the I/O.
623 spin_lock_irqsave(&md->deferred_lock, flags);
624 if (__noflush_suspending(md))
625 bio_list_add_head(&md->deferred, io->bio);
626 else
627 /* noflush suspend was interrupted. */
628 io->error = -EIO;
629 spin_unlock_irqrestore(&md->deferred_lock, flags);
632 io_error = io->error;
633 bio = io->bio;
634 end_io_acct(io);
635 free_io(md, io);
637 if (io_error == DM_ENDIO_REQUEUE)
638 return;
640 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
642 * Preflush done for flush with data, reissue
643 * without REQ_FLUSH.
645 bio->bi_rw &= ~REQ_FLUSH;
646 queue_io(md, bio);
647 } else {
648 /* done with normal IO or empty flush */
649 trace_block_bio_complete(md->queue, bio, io_error);
650 bio_endio(bio, io_error);
655 static void clone_endio(struct bio *bio, int error)
657 int r = 0;
658 struct dm_target_io *tio = bio->bi_private;
659 struct dm_io *io = tio->io;
660 struct mapped_device *md = tio->io->md;
661 dm_endio_fn endio = tio->ti->type->end_io;
663 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
664 error = -EIO;
666 if (endio) {
667 r = endio(tio->ti, bio, error);
668 if (r < 0 || r == DM_ENDIO_REQUEUE)
670 * error and requeue request are handled
671 * in dec_pending().
673 error = r;
674 else if (r == DM_ENDIO_INCOMPLETE)
675 /* The target will handle the io */
676 return;
677 else if (r) {
678 DMWARN("unimplemented target endio return value: %d", r);
679 BUG();
683 free_tio(md, tio);
684 dec_pending(io, error);
688 * Partial completion handling for request-based dm
690 static void end_clone_bio(struct bio *clone, int error)
692 struct dm_rq_clone_bio_info *info = clone->bi_private;
693 struct dm_rq_target_io *tio = info->tio;
694 struct bio *bio = info->orig;
695 unsigned int nr_bytes = info->orig->bi_size;
697 bio_put(clone);
699 if (tio->error)
701 * An error has already been detected on the request.
702 * Once error occurred, just let clone->end_io() handle
703 * the remainder.
705 return;
706 else if (error) {
708 * Don't notice the error to the upper layer yet.
709 * The error handling decision is made by the target driver,
710 * when the request is completed.
712 tio->error = error;
713 return;
717 * I/O for the bio successfully completed.
718 * Notice the data completion to the upper layer.
722 * bios are processed from the head of the list.
723 * So the completing bio should always be rq->bio.
724 * If it's not, something wrong is happening.
726 if (tio->orig->bio != bio)
727 DMERR("bio completion is going in the middle of the request");
730 * Update the original request.
731 * Do not use blk_end_request() here, because it may complete
732 * the original request before the clone, and break the ordering.
734 blk_update_request(tio->orig, 0, nr_bytes);
738 * Don't touch any member of the md after calling this function because
739 * the md may be freed in dm_put() at the end of this function.
740 * Or do dm_get() before calling this function and dm_put() later.
742 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
744 atomic_dec(&md->pending[rw]);
746 /* nudge anyone waiting on suspend queue */
747 if (!md_in_flight(md))
748 wake_up(&md->wait);
751 * Run this off this callpath, as drivers could invoke end_io while
752 * inside their request_fn (and holding the queue lock). Calling
753 * back into ->request_fn() could deadlock attempting to grab the
754 * queue lock again.
756 if (run_queue)
757 blk_run_queue_async(md->queue);
760 * dm_put() must be at the end of this function. See the comment above
762 dm_put(md);
765 static void free_rq_clone(struct request *clone)
767 struct dm_rq_target_io *tio = clone->end_io_data;
769 blk_rq_unprep_clone(clone);
770 free_rq_tio(tio);
774 * Complete the clone and the original request.
775 * Must be called without queue lock.
777 static void dm_end_request(struct request *clone, int error)
779 int rw = rq_data_dir(clone);
780 struct dm_rq_target_io *tio = clone->end_io_data;
781 struct mapped_device *md = tio->md;
782 struct request *rq = tio->orig;
784 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
785 rq->errors = clone->errors;
786 rq->resid_len = clone->resid_len;
788 if (rq->sense)
790 * We are using the sense buffer of the original
791 * request.
792 * So setting the length of the sense data is enough.
794 rq->sense_len = clone->sense_len;
797 free_rq_clone(clone);
798 blk_end_request_all(rq, error);
799 rq_completed(md, rw, true);
802 static void dm_unprep_request(struct request *rq)
804 struct request *clone = rq->special;
806 rq->special = NULL;
807 rq->cmd_flags &= ~REQ_DONTPREP;
809 free_rq_clone(clone);
813 * Requeue the original request of a clone.
815 void dm_requeue_unmapped_request(struct request *clone)
817 int rw = rq_data_dir(clone);
818 struct dm_rq_target_io *tio = clone->end_io_data;
819 struct mapped_device *md = tio->md;
820 struct request *rq = tio->orig;
821 struct request_queue *q = rq->q;
822 unsigned long flags;
824 dm_unprep_request(rq);
826 spin_lock_irqsave(q->queue_lock, flags);
827 blk_requeue_request(q, rq);
828 spin_unlock_irqrestore(q->queue_lock, flags);
830 rq_completed(md, rw, 0);
832 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
834 static void __stop_queue(struct request_queue *q)
836 blk_stop_queue(q);
839 static void stop_queue(struct request_queue *q)
841 unsigned long flags;
843 spin_lock_irqsave(q->queue_lock, flags);
844 __stop_queue(q);
845 spin_unlock_irqrestore(q->queue_lock, flags);
848 static void __start_queue(struct request_queue *q)
850 if (blk_queue_stopped(q))
851 blk_start_queue(q);
854 static void start_queue(struct request_queue *q)
856 unsigned long flags;
858 spin_lock_irqsave(q->queue_lock, flags);
859 __start_queue(q);
860 spin_unlock_irqrestore(q->queue_lock, flags);
863 static void dm_done(struct request *clone, int error, bool mapped)
865 int r = error;
866 struct dm_rq_target_io *tio = clone->end_io_data;
867 dm_request_endio_fn rq_end_io = NULL;
869 if (tio->ti) {
870 rq_end_io = tio->ti->type->rq_end_io;
872 if (mapped && rq_end_io)
873 r = rq_end_io(tio->ti, clone, error, &tio->info);
876 if (r <= 0)
877 /* The target wants to complete the I/O */
878 dm_end_request(clone, r);
879 else if (r == DM_ENDIO_INCOMPLETE)
880 /* The target will handle the I/O */
881 return;
882 else if (r == DM_ENDIO_REQUEUE)
883 /* The target wants to requeue the I/O */
884 dm_requeue_unmapped_request(clone);
885 else {
886 DMWARN("unimplemented target endio return value: %d", r);
887 BUG();
892 * Request completion handler for request-based dm
894 static void dm_softirq_done(struct request *rq)
896 bool mapped = true;
897 struct request *clone = rq->completion_data;
898 struct dm_rq_target_io *tio = clone->end_io_data;
900 if (rq->cmd_flags & REQ_FAILED)
901 mapped = false;
903 dm_done(clone, tio->error, mapped);
907 * Complete the clone and the original request with the error status
908 * through softirq context.
910 static void dm_complete_request(struct request *clone, int error)
912 struct dm_rq_target_io *tio = clone->end_io_data;
913 struct request *rq = tio->orig;
915 tio->error = error;
916 rq->completion_data = clone;
917 blk_complete_request(rq);
921 * Complete the not-mapped clone and the original request with the error status
922 * through softirq context.
923 * Target's rq_end_io() function isn't called.
924 * This may be used when the target's map_rq() function fails.
926 void dm_kill_unmapped_request(struct request *clone, int error)
928 struct dm_rq_target_io *tio = clone->end_io_data;
929 struct request *rq = tio->orig;
931 rq->cmd_flags |= REQ_FAILED;
932 dm_complete_request(clone, error);
934 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
937 * Called with the queue lock held
939 static void end_clone_request(struct request *clone, int error)
942 * For just cleaning up the information of the queue in which
943 * the clone was dispatched.
944 * The clone is *NOT* freed actually here because it is alloced from
945 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
947 __blk_put_request(clone->q, clone);
950 * Actual request completion is done in a softirq context which doesn't
951 * hold the queue lock. Otherwise, deadlock could occur because:
952 * - another request may be submitted by the upper level driver
953 * of the stacking during the completion
954 * - the submission which requires queue lock may be done
955 * against this queue
957 dm_complete_request(clone, error);
961 * Return maximum size of I/O possible at the supplied sector up to the current
962 * target boundary.
964 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
966 sector_t target_offset = dm_target_offset(ti, sector);
968 return ti->len - target_offset;
971 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
973 sector_t len = max_io_len_target_boundary(sector, ti);
974 sector_t offset, max_len;
977 * Does the target need to split even further?
979 if (ti->max_io_len) {
980 offset = dm_target_offset(ti, sector);
981 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
982 max_len = sector_div(offset, ti->max_io_len);
983 else
984 max_len = offset & (ti->max_io_len - 1);
985 max_len = ti->max_io_len - max_len;
987 if (len > max_len)
988 len = max_len;
991 return len;
994 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
996 if (len > UINT_MAX) {
997 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
998 (unsigned long long)len, UINT_MAX);
999 ti->error = "Maximum size of target IO is too large";
1000 return -EINVAL;
1003 ti->max_io_len = (uint32_t) len;
1005 return 0;
1007 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1009 static void __map_bio(struct dm_target_io *tio)
1011 int r;
1012 sector_t sector;
1013 struct mapped_device *md;
1014 struct bio *clone = &tio->clone;
1015 struct dm_target *ti = tio->ti;
1017 clone->bi_end_io = clone_endio;
1018 clone->bi_private = tio;
1021 * Map the clone. If r == 0 we don't need to do
1022 * anything, the target has assumed ownership of
1023 * this io.
1025 atomic_inc(&tio->io->io_count);
1026 sector = clone->bi_sector;
1027 r = ti->type->map(ti, clone);
1028 if (r == DM_MAPIO_REMAPPED) {
1029 /* the bio has been remapped so dispatch it */
1031 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1032 tio->io->bio->bi_bdev->bd_dev, sector);
1034 generic_make_request(clone);
1035 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1036 /* error the io and bail out, or requeue it if needed */
1037 md = tio->io->md;
1038 dec_pending(tio->io, r);
1039 free_tio(md, tio);
1040 } else if (r) {
1041 DMWARN("unimplemented target map return value: %d", r);
1042 BUG();
1046 struct clone_info {
1047 struct mapped_device *md;
1048 struct dm_table *map;
1049 struct bio *bio;
1050 struct dm_io *io;
1051 sector_t sector;
1052 sector_t sector_count;
1053 unsigned short idx;
1056 static void bio_setup_sector(struct bio *bio, sector_t sector, sector_t len)
1058 bio->bi_sector = sector;
1059 bio->bi_size = to_bytes(len);
1062 static void bio_setup_bv(struct bio *bio, unsigned short idx, unsigned short bv_count)
1064 bio->bi_idx = idx;
1065 bio->bi_vcnt = idx + bv_count;
1066 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
1069 static void clone_bio_integrity(struct bio *bio, struct bio *clone,
1070 unsigned short idx, unsigned len, unsigned offset,
1071 unsigned trim)
1073 if (!bio_integrity(bio))
1074 return;
1076 bio_integrity_clone(clone, bio, GFP_NOIO);
1078 if (trim)
1079 bio_integrity_trim(clone, bio_sector_offset(bio, idx, offset), len);
1083 * Creates a little bio that just does part of a bvec.
1085 static void clone_split_bio(struct dm_target_io *tio, struct bio *bio,
1086 sector_t sector, unsigned short idx,
1087 unsigned offset, unsigned len)
1089 struct bio *clone = &tio->clone;
1090 struct bio_vec *bv = bio->bi_io_vec + idx;
1092 *clone->bi_io_vec = *bv;
1094 bio_setup_sector(clone, sector, len);
1096 clone->bi_bdev = bio->bi_bdev;
1097 clone->bi_rw = bio->bi_rw;
1098 clone->bi_vcnt = 1;
1099 clone->bi_io_vec->bv_offset = offset;
1100 clone->bi_io_vec->bv_len = clone->bi_size;
1101 clone->bi_flags |= 1 << BIO_CLONED;
1103 clone_bio_integrity(bio, clone, idx, len, offset, 1);
1107 * Creates a bio that consists of range of complete bvecs.
1109 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1110 sector_t sector, unsigned short idx,
1111 unsigned short bv_count, unsigned len)
1113 struct bio *clone = &tio->clone;
1114 unsigned trim = 0;
1116 __bio_clone(clone, bio);
1117 bio_setup_sector(clone, sector, len);
1118 bio_setup_bv(clone, idx, bv_count);
1120 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1121 trim = 1;
1122 clone_bio_integrity(bio, clone, idx, len, 0, trim);
1125 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1126 struct dm_target *ti, int nr_iovecs,
1127 unsigned target_bio_nr)
1129 struct dm_target_io *tio;
1130 struct bio *clone;
1132 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, ci->md->bs);
1133 tio = container_of(clone, struct dm_target_io, clone);
1135 tio->io = ci->io;
1136 tio->ti = ti;
1137 memset(&tio->info, 0, sizeof(tio->info));
1138 tio->target_bio_nr = target_bio_nr;
1140 return tio;
1143 static void __clone_and_map_simple_bio(struct clone_info *ci,
1144 struct dm_target *ti,
1145 unsigned target_bio_nr, sector_t len)
1147 struct dm_target_io *tio = alloc_tio(ci, ti, ci->bio->bi_max_vecs, target_bio_nr);
1148 struct bio *clone = &tio->clone;
1151 * Discard requests require the bio's inline iovecs be initialized.
1152 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1153 * and discard, so no need for concern about wasted bvec allocations.
1155 __bio_clone(clone, ci->bio);
1156 if (len)
1157 bio_setup_sector(clone, ci->sector, len);
1159 __map_bio(tio);
1162 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1163 unsigned num_bios, sector_t len)
1165 unsigned target_bio_nr;
1167 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1168 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1171 static int __send_empty_flush(struct clone_info *ci)
1173 unsigned target_nr = 0;
1174 struct dm_target *ti;
1176 BUG_ON(bio_has_data(ci->bio));
1177 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1178 __send_duplicate_bios(ci, ti, ti->num_flush_bios, 0);
1180 return 0;
1183 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1184 sector_t sector, int nr_iovecs,
1185 unsigned short idx, unsigned short bv_count,
1186 unsigned offset, unsigned len,
1187 unsigned split_bvec)
1189 struct bio *bio = ci->bio;
1190 struct dm_target_io *tio;
1191 unsigned target_bio_nr;
1192 unsigned num_target_bios = 1;
1195 * Does the target want to receive duplicate copies of the bio?
1197 if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1198 num_target_bios = ti->num_write_bios(ti, bio);
1200 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1201 tio = alloc_tio(ci, ti, nr_iovecs, target_bio_nr);
1202 if (split_bvec)
1203 clone_split_bio(tio, bio, sector, idx, offset, len);
1204 else
1205 clone_bio(tio, bio, sector, idx, bv_count, len);
1206 __map_bio(tio);
1210 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1212 static unsigned get_num_discard_bios(struct dm_target *ti)
1214 return ti->num_discard_bios;
1217 static unsigned get_num_write_same_bios(struct dm_target *ti)
1219 return ti->num_write_same_bios;
1222 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1224 static bool is_split_required_for_discard(struct dm_target *ti)
1226 return ti->split_discard_bios;
1229 static int __send_changing_extent_only(struct clone_info *ci,
1230 get_num_bios_fn get_num_bios,
1231 is_split_required_fn is_split_required)
1233 struct dm_target *ti;
1234 sector_t len;
1235 unsigned num_bios;
1237 do {
1238 ti = dm_table_find_target(ci->map, ci->sector);
1239 if (!dm_target_is_valid(ti))
1240 return -EIO;
1243 * Even though the device advertised support for this type of
1244 * request, that does not mean every target supports it, and
1245 * reconfiguration might also have changed that since the
1246 * check was performed.
1248 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1249 if (!num_bios)
1250 return -EOPNOTSUPP;
1252 if (is_split_required && !is_split_required(ti))
1253 len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1254 else
1255 len = min(ci->sector_count, max_io_len(ci->sector, ti));
1257 __send_duplicate_bios(ci, ti, num_bios, len);
1259 ci->sector += len;
1260 } while (ci->sector_count -= len);
1262 return 0;
1265 static int __send_discard(struct clone_info *ci)
1267 return __send_changing_extent_only(ci, get_num_discard_bios,
1268 is_split_required_for_discard);
1271 static int __send_write_same(struct clone_info *ci)
1273 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1277 * Find maximum number of sectors / bvecs we can process with a single bio.
1279 static sector_t __len_within_target(struct clone_info *ci, sector_t max, int *idx)
1281 struct bio *bio = ci->bio;
1282 sector_t bv_len, total_len = 0;
1284 for (*idx = ci->idx; max && (*idx < bio->bi_vcnt); (*idx)++) {
1285 bv_len = to_sector(bio->bi_io_vec[*idx].bv_len);
1287 if (bv_len > max)
1288 break;
1290 max -= bv_len;
1291 total_len += bv_len;
1294 return total_len;
1297 static int __split_bvec_across_targets(struct clone_info *ci,
1298 struct dm_target *ti, sector_t max)
1300 struct bio *bio = ci->bio;
1301 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1302 sector_t remaining = to_sector(bv->bv_len);
1303 unsigned offset = 0;
1304 sector_t len;
1306 do {
1307 if (offset) {
1308 ti = dm_table_find_target(ci->map, ci->sector);
1309 if (!dm_target_is_valid(ti))
1310 return -EIO;
1312 max = max_io_len(ci->sector, ti);
1315 len = min(remaining, max);
1317 __clone_and_map_data_bio(ci, ti, ci->sector, 1, ci->idx, 0,
1318 bv->bv_offset + offset, len, 1);
1320 ci->sector += len;
1321 ci->sector_count -= len;
1322 offset += to_bytes(len);
1323 } while (remaining -= len);
1325 ci->idx++;
1327 return 0;
1331 * Select the correct strategy for processing a non-flush bio.
1333 static int __split_and_process_non_flush(struct clone_info *ci)
1335 struct bio *bio = ci->bio;
1336 struct dm_target *ti;
1337 sector_t len, max;
1338 int idx;
1340 if (unlikely(bio->bi_rw & REQ_DISCARD))
1341 return __send_discard(ci);
1342 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1343 return __send_write_same(ci);
1345 ti = dm_table_find_target(ci->map, ci->sector);
1346 if (!dm_target_is_valid(ti))
1347 return -EIO;
1349 max = max_io_len(ci->sector, ti);
1352 * Optimise for the simple case where we can do all of
1353 * the remaining io with a single clone.
1355 if (ci->sector_count <= max) {
1356 __clone_and_map_data_bio(ci, ti, ci->sector, bio->bi_max_vecs,
1357 ci->idx, bio->bi_vcnt - ci->idx, 0,
1358 ci->sector_count, 0);
1359 ci->sector_count = 0;
1360 return 0;
1364 * There are some bvecs that don't span targets.
1365 * Do as many of these as possible.
1367 if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1368 len = __len_within_target(ci, max, &idx);
1370 __clone_and_map_data_bio(ci, ti, ci->sector, bio->bi_max_vecs,
1371 ci->idx, idx - ci->idx, 0, len, 0);
1373 ci->sector += len;
1374 ci->sector_count -= len;
1375 ci->idx = idx;
1377 return 0;
1381 * Handle a bvec that must be split between two or more targets.
1383 return __split_bvec_across_targets(ci, ti, max);
1387 * Entry point to split a bio into clones and submit them to the targets.
1389 static void __split_and_process_bio(struct mapped_device *md,
1390 struct dm_table *map, struct bio *bio)
1392 struct clone_info ci;
1393 int error = 0;
1395 if (unlikely(!map)) {
1396 bio_io_error(bio);
1397 return;
1400 ci.map = map;
1401 ci.md = md;
1402 ci.io = alloc_io(md);
1403 ci.io->error = 0;
1404 atomic_set(&ci.io->io_count, 1);
1405 ci.io->bio = bio;
1406 ci.io->md = md;
1407 spin_lock_init(&ci.io->endio_lock);
1408 ci.sector = bio->bi_sector;
1409 ci.idx = bio->bi_idx;
1411 start_io_acct(ci.io);
1413 if (bio->bi_rw & REQ_FLUSH) {
1414 ci.bio = &ci.md->flush_bio;
1415 ci.sector_count = 0;
1416 error = __send_empty_flush(&ci);
1417 /* dec_pending submits any data associated with flush */
1418 } else {
1419 ci.bio = bio;
1420 ci.sector_count = bio_sectors(bio);
1421 while (ci.sector_count && !error)
1422 error = __split_and_process_non_flush(&ci);
1425 /* drop the extra reference count */
1426 dec_pending(ci.io, error);
1428 /*-----------------------------------------------------------------
1429 * CRUD END
1430 *---------------------------------------------------------------*/
1432 static int dm_merge_bvec(struct request_queue *q,
1433 struct bvec_merge_data *bvm,
1434 struct bio_vec *biovec)
1436 struct mapped_device *md = q->queuedata;
1437 struct dm_table *map = dm_get_live_table_fast(md);
1438 struct dm_target *ti;
1439 sector_t max_sectors;
1440 int max_size = 0;
1442 if (unlikely(!map))
1443 goto out;
1445 ti = dm_table_find_target(map, bvm->bi_sector);
1446 if (!dm_target_is_valid(ti))
1447 goto out;
1450 * Find maximum amount of I/O that won't need splitting
1452 max_sectors = min(max_io_len(bvm->bi_sector, ti),
1453 (sector_t) BIO_MAX_SECTORS);
1454 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1455 if (max_size < 0)
1456 max_size = 0;
1459 * merge_bvec_fn() returns number of bytes
1460 * it can accept at this offset
1461 * max is precomputed maximal io size
1463 if (max_size && ti->type->merge)
1464 max_size = ti->type->merge(ti, bvm, biovec, max_size);
1466 * If the target doesn't support merge method and some of the devices
1467 * provided their merge_bvec method (we know this by looking at
1468 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1469 * entries. So always set max_size to 0, and the code below allows
1470 * just one page.
1472 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1474 max_size = 0;
1476 out:
1477 dm_put_live_table_fast(md);
1479 * Always allow an entire first page
1481 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1482 max_size = biovec->bv_len;
1484 return max_size;
1488 * The request function that just remaps the bio built up by
1489 * dm_merge_bvec.
1491 static void _dm_request(struct request_queue *q, struct bio *bio)
1493 int rw = bio_data_dir(bio);
1494 struct mapped_device *md = q->queuedata;
1495 int cpu;
1496 int srcu_idx;
1497 struct dm_table *map;
1499 map = dm_get_live_table(md, &srcu_idx);
1501 cpu = part_stat_lock();
1502 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1503 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1504 part_stat_unlock();
1506 /* if we're suspended, we have to queue this io for later */
1507 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1508 dm_put_live_table(md, srcu_idx);
1510 if (bio_rw(bio) != READA)
1511 queue_io(md, bio);
1512 else
1513 bio_io_error(bio);
1514 return;
1517 __split_and_process_bio(md, map, bio);
1518 dm_put_live_table(md, srcu_idx);
1519 return;
1522 static int dm_request_based(struct mapped_device *md)
1524 return blk_queue_stackable(md->queue);
1527 static void dm_request(struct request_queue *q, struct bio *bio)
1529 struct mapped_device *md = q->queuedata;
1531 if (dm_request_based(md))
1532 blk_queue_bio(q, bio);
1533 else
1534 _dm_request(q, bio);
1537 void dm_dispatch_request(struct request *rq)
1539 int r;
1541 if (blk_queue_io_stat(rq->q))
1542 rq->cmd_flags |= REQ_IO_STAT;
1544 rq->start_time = jiffies;
1545 r = blk_insert_cloned_request(rq->q, rq);
1546 if (r)
1547 dm_complete_request(rq, r);
1549 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1551 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1552 void *data)
1554 struct dm_rq_target_io *tio = data;
1555 struct dm_rq_clone_bio_info *info =
1556 container_of(bio, struct dm_rq_clone_bio_info, clone);
1558 info->orig = bio_orig;
1559 info->tio = tio;
1560 bio->bi_end_io = end_clone_bio;
1561 bio->bi_private = info;
1563 return 0;
1566 static int setup_clone(struct request *clone, struct request *rq,
1567 struct dm_rq_target_io *tio)
1569 int r;
1571 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1572 dm_rq_bio_constructor, tio);
1573 if (r)
1574 return r;
1576 clone->cmd = rq->cmd;
1577 clone->cmd_len = rq->cmd_len;
1578 clone->sense = rq->sense;
1579 clone->buffer = rq->buffer;
1580 clone->end_io = end_clone_request;
1581 clone->end_io_data = tio;
1583 return 0;
1586 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1587 gfp_t gfp_mask)
1589 struct request *clone;
1590 struct dm_rq_target_io *tio;
1592 tio = alloc_rq_tio(md, gfp_mask);
1593 if (!tio)
1594 return NULL;
1596 tio->md = md;
1597 tio->ti = NULL;
1598 tio->orig = rq;
1599 tio->error = 0;
1600 memset(&tio->info, 0, sizeof(tio->info));
1602 clone = &tio->clone;
1603 if (setup_clone(clone, rq, tio)) {
1604 /* -ENOMEM */
1605 free_rq_tio(tio);
1606 return NULL;
1609 return clone;
1613 * Called with the queue lock held.
1615 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1617 struct mapped_device *md = q->queuedata;
1618 struct request *clone;
1620 if (unlikely(rq->special)) {
1621 DMWARN("Already has something in rq->special.");
1622 return BLKPREP_KILL;
1625 clone = clone_rq(rq, md, GFP_ATOMIC);
1626 if (!clone)
1627 return BLKPREP_DEFER;
1629 rq->special = clone;
1630 rq->cmd_flags |= REQ_DONTPREP;
1632 return BLKPREP_OK;
1636 * Returns:
1637 * 0 : the request has been processed (not requeued)
1638 * !0 : the request has been requeued
1640 static int map_request(struct dm_target *ti, struct request *clone,
1641 struct mapped_device *md)
1643 int r, requeued = 0;
1644 struct dm_rq_target_io *tio = clone->end_io_data;
1646 tio->ti = ti;
1647 r = ti->type->map_rq(ti, clone, &tio->info);
1648 switch (r) {
1649 case DM_MAPIO_SUBMITTED:
1650 /* The target has taken the I/O to submit by itself later */
1651 break;
1652 case DM_MAPIO_REMAPPED:
1653 /* The target has remapped the I/O so dispatch it */
1654 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1655 blk_rq_pos(tio->orig));
1656 dm_dispatch_request(clone);
1657 break;
1658 case DM_MAPIO_REQUEUE:
1659 /* The target wants to requeue the I/O */
1660 dm_requeue_unmapped_request(clone);
1661 requeued = 1;
1662 break;
1663 default:
1664 if (r > 0) {
1665 DMWARN("unimplemented target map return value: %d", r);
1666 BUG();
1669 /* The target wants to complete the I/O */
1670 dm_kill_unmapped_request(clone, r);
1671 break;
1674 return requeued;
1677 static struct request *dm_start_request(struct mapped_device *md, struct request *orig)
1679 struct request *clone;
1681 blk_start_request(orig);
1682 clone = orig->special;
1683 atomic_inc(&md->pending[rq_data_dir(clone)]);
1686 * Hold the md reference here for the in-flight I/O.
1687 * We can't rely on the reference count by device opener,
1688 * because the device may be closed during the request completion
1689 * when all bios are completed.
1690 * See the comment in rq_completed() too.
1692 dm_get(md);
1694 return clone;
1698 * q->request_fn for request-based dm.
1699 * Called with the queue lock held.
1701 static void dm_request_fn(struct request_queue *q)
1703 struct mapped_device *md = q->queuedata;
1704 int srcu_idx;
1705 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
1706 struct dm_target *ti;
1707 struct request *rq, *clone;
1708 sector_t pos;
1711 * For suspend, check blk_queue_stopped() and increment
1712 * ->pending within a single queue_lock not to increment the
1713 * number of in-flight I/Os after the queue is stopped in
1714 * dm_suspend().
1716 while (!blk_queue_stopped(q)) {
1717 rq = blk_peek_request(q);
1718 if (!rq)
1719 goto delay_and_out;
1721 /* always use block 0 to find the target for flushes for now */
1722 pos = 0;
1723 if (!(rq->cmd_flags & REQ_FLUSH))
1724 pos = blk_rq_pos(rq);
1726 ti = dm_table_find_target(map, pos);
1727 if (!dm_target_is_valid(ti)) {
1729 * Must perform setup, that dm_done() requires,
1730 * before calling dm_kill_unmapped_request
1732 DMERR_LIMIT("request attempted access beyond the end of device");
1733 clone = dm_start_request(md, rq);
1734 dm_kill_unmapped_request(clone, -EIO);
1735 continue;
1738 if (ti->type->busy && ti->type->busy(ti))
1739 goto delay_and_out;
1741 clone = dm_start_request(md, rq);
1743 spin_unlock(q->queue_lock);
1744 if (map_request(ti, clone, md))
1745 goto requeued;
1747 BUG_ON(!irqs_disabled());
1748 spin_lock(q->queue_lock);
1751 goto out;
1753 requeued:
1754 BUG_ON(!irqs_disabled());
1755 spin_lock(q->queue_lock);
1757 delay_and_out:
1758 blk_delay_queue(q, HZ / 10);
1759 out:
1760 dm_put_live_table(md, srcu_idx);
1763 int dm_underlying_device_busy(struct request_queue *q)
1765 return blk_lld_busy(q);
1767 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1769 static int dm_lld_busy(struct request_queue *q)
1771 int r;
1772 struct mapped_device *md = q->queuedata;
1773 struct dm_table *map = dm_get_live_table_fast(md);
1775 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1776 r = 1;
1777 else
1778 r = dm_table_any_busy_target(map);
1780 dm_put_live_table_fast(md);
1782 return r;
1785 static int dm_any_congested(void *congested_data, int bdi_bits)
1787 int r = bdi_bits;
1788 struct mapped_device *md = congested_data;
1789 struct dm_table *map;
1791 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1792 map = dm_get_live_table_fast(md);
1793 if (map) {
1795 * Request-based dm cares about only own queue for
1796 * the query about congestion status of request_queue
1798 if (dm_request_based(md))
1799 r = md->queue->backing_dev_info.state &
1800 bdi_bits;
1801 else
1802 r = dm_table_any_congested(map, bdi_bits);
1804 dm_put_live_table_fast(md);
1807 return r;
1810 /*-----------------------------------------------------------------
1811 * An IDR is used to keep track of allocated minor numbers.
1812 *---------------------------------------------------------------*/
1813 static void free_minor(int minor)
1815 spin_lock(&_minor_lock);
1816 idr_remove(&_minor_idr, minor);
1817 spin_unlock(&_minor_lock);
1821 * See if the device with a specific minor # is free.
1823 static int specific_minor(int minor)
1825 int r;
1827 if (minor >= (1 << MINORBITS))
1828 return -EINVAL;
1830 idr_preload(GFP_KERNEL);
1831 spin_lock(&_minor_lock);
1833 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1835 spin_unlock(&_minor_lock);
1836 idr_preload_end();
1837 if (r < 0)
1838 return r == -ENOSPC ? -EBUSY : r;
1839 return 0;
1842 static int next_free_minor(int *minor)
1844 int r;
1846 idr_preload(GFP_KERNEL);
1847 spin_lock(&_minor_lock);
1849 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1851 spin_unlock(&_minor_lock);
1852 idr_preload_end();
1853 if (r < 0)
1854 return r;
1855 *minor = r;
1856 return 0;
1859 static const struct block_device_operations dm_blk_dops;
1861 static void dm_wq_work(struct work_struct *work);
1863 static void dm_init_md_queue(struct mapped_device *md)
1866 * Request-based dm devices cannot be stacked on top of bio-based dm
1867 * devices. The type of this dm device has not been decided yet.
1868 * The type is decided at the first table loading time.
1869 * To prevent problematic device stacking, clear the queue flag
1870 * for request stacking support until then.
1872 * This queue is new, so no concurrency on the queue_flags.
1874 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1876 md->queue->queuedata = md;
1877 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1878 md->queue->backing_dev_info.congested_data = md;
1879 blk_queue_make_request(md->queue, dm_request);
1880 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1881 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1885 * Allocate and initialise a blank device with a given minor.
1887 static struct mapped_device *alloc_dev(int minor)
1889 int r;
1890 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1891 void *old_md;
1893 if (!md) {
1894 DMWARN("unable to allocate device, out of memory.");
1895 return NULL;
1898 if (!try_module_get(THIS_MODULE))
1899 goto bad_module_get;
1901 /* get a minor number for the dev */
1902 if (minor == DM_ANY_MINOR)
1903 r = next_free_minor(&minor);
1904 else
1905 r = specific_minor(minor);
1906 if (r < 0)
1907 goto bad_minor;
1909 r = init_srcu_struct(&md->io_barrier);
1910 if (r < 0)
1911 goto bad_io_barrier;
1913 md->type = DM_TYPE_NONE;
1914 mutex_init(&md->suspend_lock);
1915 mutex_init(&md->type_lock);
1916 spin_lock_init(&md->deferred_lock);
1917 atomic_set(&md->holders, 1);
1918 atomic_set(&md->open_count, 0);
1919 atomic_set(&md->event_nr, 0);
1920 atomic_set(&md->uevent_seq, 0);
1921 INIT_LIST_HEAD(&md->uevent_list);
1922 spin_lock_init(&md->uevent_lock);
1924 md->queue = blk_alloc_queue(GFP_KERNEL);
1925 if (!md->queue)
1926 goto bad_queue;
1928 dm_init_md_queue(md);
1930 md->disk = alloc_disk(1);
1931 if (!md->disk)
1932 goto bad_disk;
1934 atomic_set(&md->pending[0], 0);
1935 atomic_set(&md->pending[1], 0);
1936 init_waitqueue_head(&md->wait);
1937 INIT_WORK(&md->work, dm_wq_work);
1938 init_waitqueue_head(&md->eventq);
1940 md->disk->major = _major;
1941 md->disk->first_minor = minor;
1942 md->disk->fops = &dm_blk_dops;
1943 md->disk->queue = md->queue;
1944 md->disk->private_data = md;
1945 sprintf(md->disk->disk_name, "dm-%d", minor);
1946 add_disk(md->disk);
1947 format_dev_t(md->name, MKDEV(_major, minor));
1949 md->wq = alloc_workqueue("kdmflush",
1950 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1951 if (!md->wq)
1952 goto bad_thread;
1954 md->bdev = bdget_disk(md->disk, 0);
1955 if (!md->bdev)
1956 goto bad_bdev;
1958 bio_init(&md->flush_bio);
1959 md->flush_bio.bi_bdev = md->bdev;
1960 md->flush_bio.bi_rw = WRITE_FLUSH;
1962 /* Populate the mapping, nobody knows we exist yet */
1963 spin_lock(&_minor_lock);
1964 old_md = idr_replace(&_minor_idr, md, minor);
1965 spin_unlock(&_minor_lock);
1967 BUG_ON(old_md != MINOR_ALLOCED);
1969 return md;
1971 bad_bdev:
1972 destroy_workqueue(md->wq);
1973 bad_thread:
1974 del_gendisk(md->disk);
1975 put_disk(md->disk);
1976 bad_disk:
1977 blk_cleanup_queue(md->queue);
1978 bad_queue:
1979 cleanup_srcu_struct(&md->io_barrier);
1980 bad_io_barrier:
1981 free_minor(minor);
1982 bad_minor:
1983 module_put(THIS_MODULE);
1984 bad_module_get:
1985 kfree(md);
1986 return NULL;
1989 static void unlock_fs(struct mapped_device *md);
1991 static void free_dev(struct mapped_device *md)
1993 int minor = MINOR(disk_devt(md->disk));
1995 unlock_fs(md);
1996 bdput(md->bdev);
1997 destroy_workqueue(md->wq);
1998 if (md->io_pool)
1999 mempool_destroy(md->io_pool);
2000 if (md->bs)
2001 bioset_free(md->bs);
2002 blk_integrity_unregister(md->disk);
2003 del_gendisk(md->disk);
2004 cleanup_srcu_struct(&md->io_barrier);
2005 free_minor(minor);
2007 spin_lock(&_minor_lock);
2008 md->disk->private_data = NULL;
2009 spin_unlock(&_minor_lock);
2011 put_disk(md->disk);
2012 blk_cleanup_queue(md->queue);
2013 module_put(THIS_MODULE);
2014 kfree(md);
2017 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2019 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2021 if (md->io_pool && md->bs) {
2022 /* The md already has necessary mempools. */
2023 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2025 * Reload bioset because front_pad may have changed
2026 * because a different table was loaded.
2028 bioset_free(md->bs);
2029 md->bs = p->bs;
2030 p->bs = NULL;
2031 } else if (dm_table_get_type(t) == DM_TYPE_REQUEST_BASED) {
2033 * There's no need to reload with request-based dm
2034 * because the size of front_pad doesn't change.
2035 * Note for future: If you are to reload bioset,
2036 * prep-ed requests in the queue may refer
2037 * to bio from the old bioset, so you must walk
2038 * through the queue to unprep.
2041 goto out;
2044 BUG_ON(!p || md->io_pool || md->bs);
2046 md->io_pool = p->io_pool;
2047 p->io_pool = NULL;
2048 md->bs = p->bs;
2049 p->bs = NULL;
2051 out:
2052 /* mempool bind completed, now no need any mempools in the table */
2053 dm_table_free_md_mempools(t);
2057 * Bind a table to the device.
2059 static void event_callback(void *context)
2061 unsigned long flags;
2062 LIST_HEAD(uevents);
2063 struct mapped_device *md = (struct mapped_device *) context;
2065 spin_lock_irqsave(&md->uevent_lock, flags);
2066 list_splice_init(&md->uevent_list, &uevents);
2067 spin_unlock_irqrestore(&md->uevent_lock, flags);
2069 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2071 atomic_inc(&md->event_nr);
2072 wake_up(&md->eventq);
2076 * Protected by md->suspend_lock obtained by dm_swap_table().
2078 static void __set_size(struct mapped_device *md, sector_t size)
2080 set_capacity(md->disk, size);
2082 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2086 * Return 1 if the queue has a compulsory merge_bvec_fn function.
2088 * If this function returns 0, then the device is either a non-dm
2089 * device without a merge_bvec_fn, or it is a dm device that is
2090 * able to split any bios it receives that are too big.
2092 int dm_queue_merge_is_compulsory(struct request_queue *q)
2094 struct mapped_device *dev_md;
2096 if (!q->merge_bvec_fn)
2097 return 0;
2099 if (q->make_request_fn == dm_request) {
2100 dev_md = q->queuedata;
2101 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2102 return 0;
2105 return 1;
2108 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2109 struct dm_dev *dev, sector_t start,
2110 sector_t len, void *data)
2112 struct block_device *bdev = dev->bdev;
2113 struct request_queue *q = bdev_get_queue(bdev);
2115 return dm_queue_merge_is_compulsory(q);
2119 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2120 * on the properties of the underlying devices.
2122 static int dm_table_merge_is_optional(struct dm_table *table)
2124 unsigned i = 0;
2125 struct dm_target *ti;
2127 while (i < dm_table_get_num_targets(table)) {
2128 ti = dm_table_get_target(table, i++);
2130 if (ti->type->iterate_devices &&
2131 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2132 return 0;
2135 return 1;
2139 * Returns old map, which caller must destroy.
2141 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2142 struct queue_limits *limits)
2144 struct dm_table *old_map;
2145 struct request_queue *q = md->queue;
2146 sector_t size;
2147 int merge_is_optional;
2149 size = dm_table_get_size(t);
2152 * Wipe any geometry if the size of the table changed.
2154 if (size != get_capacity(md->disk))
2155 memset(&md->geometry, 0, sizeof(md->geometry));
2157 __set_size(md, size);
2159 dm_table_event_callback(t, event_callback, md);
2162 * The queue hasn't been stopped yet, if the old table type wasn't
2163 * for request-based during suspension. So stop it to prevent
2164 * I/O mapping before resume.
2165 * This must be done before setting the queue restrictions,
2166 * because request-based dm may be run just after the setting.
2168 if (dm_table_request_based(t) && !blk_queue_stopped(q))
2169 stop_queue(q);
2171 __bind_mempools(md, t);
2173 merge_is_optional = dm_table_merge_is_optional(t);
2175 old_map = md->map;
2176 rcu_assign_pointer(md->map, t);
2177 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2179 dm_table_set_restrictions(t, q, limits);
2180 if (merge_is_optional)
2181 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2182 else
2183 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2184 dm_sync_table(md);
2186 return old_map;
2190 * Returns unbound table for the caller to free.
2192 static struct dm_table *__unbind(struct mapped_device *md)
2194 struct dm_table *map = md->map;
2196 if (!map)
2197 return NULL;
2199 dm_table_event_callback(map, NULL, NULL);
2200 rcu_assign_pointer(md->map, NULL);
2201 dm_sync_table(md);
2203 return map;
2207 * Constructor for a new device.
2209 int dm_create(int minor, struct mapped_device **result)
2211 struct mapped_device *md;
2213 md = alloc_dev(minor);
2214 if (!md)
2215 return -ENXIO;
2217 dm_sysfs_init(md);
2219 *result = md;
2220 return 0;
2224 * Functions to manage md->type.
2225 * All are required to hold md->type_lock.
2227 void dm_lock_md_type(struct mapped_device *md)
2229 mutex_lock(&md->type_lock);
2232 void dm_unlock_md_type(struct mapped_device *md)
2234 mutex_unlock(&md->type_lock);
2237 void dm_set_md_type(struct mapped_device *md, unsigned type)
2239 md->type = type;
2242 unsigned dm_get_md_type(struct mapped_device *md)
2244 return md->type;
2247 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2249 return md->immutable_target_type;
2253 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2255 static int dm_init_request_based_queue(struct mapped_device *md)
2257 struct request_queue *q = NULL;
2259 if (md->queue->elevator)
2260 return 1;
2262 /* Fully initialize the queue */
2263 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2264 if (!q)
2265 return 0;
2267 md->queue = q;
2268 dm_init_md_queue(md);
2269 blk_queue_softirq_done(md->queue, dm_softirq_done);
2270 blk_queue_prep_rq(md->queue, dm_prep_fn);
2271 blk_queue_lld_busy(md->queue, dm_lld_busy);
2273 elv_register_queue(md->queue);
2275 return 1;
2279 * Setup the DM device's queue based on md's type
2281 int dm_setup_md_queue(struct mapped_device *md)
2283 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2284 !dm_init_request_based_queue(md)) {
2285 DMWARN("Cannot initialize queue for request-based mapped device");
2286 return -EINVAL;
2289 return 0;
2292 static struct mapped_device *dm_find_md(dev_t dev)
2294 struct mapped_device *md;
2295 unsigned minor = MINOR(dev);
2297 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2298 return NULL;
2300 spin_lock(&_minor_lock);
2302 md = idr_find(&_minor_idr, minor);
2303 if (md && (md == MINOR_ALLOCED ||
2304 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2305 dm_deleting_md(md) ||
2306 test_bit(DMF_FREEING, &md->flags))) {
2307 md = NULL;
2308 goto out;
2311 out:
2312 spin_unlock(&_minor_lock);
2314 return md;
2317 struct mapped_device *dm_get_md(dev_t dev)
2319 struct mapped_device *md = dm_find_md(dev);
2321 if (md)
2322 dm_get(md);
2324 return md;
2326 EXPORT_SYMBOL_GPL(dm_get_md);
2328 void *dm_get_mdptr(struct mapped_device *md)
2330 return md->interface_ptr;
2333 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2335 md->interface_ptr = ptr;
2338 void dm_get(struct mapped_device *md)
2340 atomic_inc(&md->holders);
2341 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2344 const char *dm_device_name(struct mapped_device *md)
2346 return md->name;
2348 EXPORT_SYMBOL_GPL(dm_device_name);
2350 static void __dm_destroy(struct mapped_device *md, bool wait)
2352 struct dm_table *map;
2353 int srcu_idx;
2355 might_sleep();
2357 spin_lock(&_minor_lock);
2358 map = dm_get_live_table(md, &srcu_idx);
2359 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2360 set_bit(DMF_FREEING, &md->flags);
2361 spin_unlock(&_minor_lock);
2363 if (!dm_suspended_md(md)) {
2364 dm_table_presuspend_targets(map);
2365 dm_table_postsuspend_targets(map);
2368 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2369 dm_put_live_table(md, srcu_idx);
2372 * Rare, but there may be I/O requests still going to complete,
2373 * for example. Wait for all references to disappear.
2374 * No one should increment the reference count of the mapped_device,
2375 * after the mapped_device state becomes DMF_FREEING.
2377 if (wait)
2378 while (atomic_read(&md->holders))
2379 msleep(1);
2380 else if (atomic_read(&md->holders))
2381 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2382 dm_device_name(md), atomic_read(&md->holders));
2384 dm_sysfs_exit(md);
2385 dm_table_destroy(__unbind(md));
2386 free_dev(md);
2389 void dm_destroy(struct mapped_device *md)
2391 __dm_destroy(md, true);
2394 void dm_destroy_immediate(struct mapped_device *md)
2396 __dm_destroy(md, false);
2399 void dm_put(struct mapped_device *md)
2401 atomic_dec(&md->holders);
2403 EXPORT_SYMBOL_GPL(dm_put);
2405 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2407 int r = 0;
2408 DECLARE_WAITQUEUE(wait, current);
2410 add_wait_queue(&md->wait, &wait);
2412 while (1) {
2413 set_current_state(interruptible);
2415 if (!md_in_flight(md))
2416 break;
2418 if (interruptible == TASK_INTERRUPTIBLE &&
2419 signal_pending(current)) {
2420 r = -EINTR;
2421 break;
2424 io_schedule();
2426 set_current_state(TASK_RUNNING);
2428 remove_wait_queue(&md->wait, &wait);
2430 return r;
2434 * Process the deferred bios
2436 static void dm_wq_work(struct work_struct *work)
2438 struct mapped_device *md = container_of(work, struct mapped_device,
2439 work);
2440 struct bio *c;
2441 int srcu_idx;
2442 struct dm_table *map;
2444 map = dm_get_live_table(md, &srcu_idx);
2446 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2447 spin_lock_irq(&md->deferred_lock);
2448 c = bio_list_pop(&md->deferred);
2449 spin_unlock_irq(&md->deferred_lock);
2451 if (!c)
2452 break;
2454 if (dm_request_based(md))
2455 generic_make_request(c);
2456 else
2457 __split_and_process_bio(md, map, c);
2460 dm_put_live_table(md, srcu_idx);
2463 static void dm_queue_flush(struct mapped_device *md)
2465 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2466 smp_mb__after_clear_bit();
2467 queue_work(md->wq, &md->work);
2471 * Swap in a new table, returning the old one for the caller to destroy.
2473 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2475 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2476 struct queue_limits limits;
2477 int r;
2479 mutex_lock(&md->suspend_lock);
2481 /* device must be suspended */
2482 if (!dm_suspended_md(md))
2483 goto out;
2486 * If the new table has no data devices, retain the existing limits.
2487 * This helps multipath with queue_if_no_path if all paths disappear,
2488 * then new I/O is queued based on these limits, and then some paths
2489 * reappear.
2491 if (dm_table_has_no_data_devices(table)) {
2492 live_map = dm_get_live_table_fast(md);
2493 if (live_map)
2494 limits = md->queue->limits;
2495 dm_put_live_table_fast(md);
2498 if (!live_map) {
2499 r = dm_calculate_queue_limits(table, &limits);
2500 if (r) {
2501 map = ERR_PTR(r);
2502 goto out;
2506 map = __bind(md, table, &limits);
2508 out:
2509 mutex_unlock(&md->suspend_lock);
2510 return map;
2514 * Functions to lock and unlock any filesystem running on the
2515 * device.
2517 static int lock_fs(struct mapped_device *md)
2519 int r;
2521 WARN_ON(md->frozen_sb);
2523 md->frozen_sb = freeze_bdev(md->bdev);
2524 if (IS_ERR(md->frozen_sb)) {
2525 r = PTR_ERR(md->frozen_sb);
2526 md->frozen_sb = NULL;
2527 return r;
2530 set_bit(DMF_FROZEN, &md->flags);
2532 return 0;
2535 static void unlock_fs(struct mapped_device *md)
2537 if (!test_bit(DMF_FROZEN, &md->flags))
2538 return;
2540 thaw_bdev(md->bdev, md->frozen_sb);
2541 md->frozen_sb = NULL;
2542 clear_bit(DMF_FROZEN, &md->flags);
2546 * We need to be able to change a mapping table under a mounted
2547 * filesystem. For example we might want to move some data in
2548 * the background. Before the table can be swapped with
2549 * dm_bind_table, dm_suspend must be called to flush any in
2550 * flight bios and ensure that any further io gets deferred.
2553 * Suspend mechanism in request-based dm.
2555 * 1. Flush all I/Os by lock_fs() if needed.
2556 * 2. Stop dispatching any I/O by stopping the request_queue.
2557 * 3. Wait for all in-flight I/Os to be completed or requeued.
2559 * To abort suspend, start the request_queue.
2561 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2563 struct dm_table *map = NULL;
2564 int r = 0;
2565 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2566 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2568 mutex_lock(&md->suspend_lock);
2570 if (dm_suspended_md(md)) {
2571 r = -EINVAL;
2572 goto out_unlock;
2575 map = md->map;
2578 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2579 * This flag is cleared before dm_suspend returns.
2581 if (noflush)
2582 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2584 /* This does not get reverted if there's an error later. */
2585 dm_table_presuspend_targets(map);
2588 * Flush I/O to the device.
2589 * Any I/O submitted after lock_fs() may not be flushed.
2590 * noflush takes precedence over do_lockfs.
2591 * (lock_fs() flushes I/Os and waits for them to complete.)
2593 if (!noflush && do_lockfs) {
2594 r = lock_fs(md);
2595 if (r)
2596 goto out_unlock;
2600 * Here we must make sure that no processes are submitting requests
2601 * to target drivers i.e. no one may be executing
2602 * __split_and_process_bio. This is called from dm_request and
2603 * dm_wq_work.
2605 * To get all processes out of __split_and_process_bio in dm_request,
2606 * we take the write lock. To prevent any process from reentering
2607 * __split_and_process_bio from dm_request and quiesce the thread
2608 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2609 * flush_workqueue(md->wq).
2611 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2612 synchronize_srcu(&md->io_barrier);
2615 * Stop md->queue before flushing md->wq in case request-based
2616 * dm defers requests to md->wq from md->queue.
2618 if (dm_request_based(md))
2619 stop_queue(md->queue);
2621 flush_workqueue(md->wq);
2624 * At this point no more requests are entering target request routines.
2625 * We call dm_wait_for_completion to wait for all existing requests
2626 * to finish.
2628 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2630 if (noflush)
2631 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2632 synchronize_srcu(&md->io_barrier);
2634 /* were we interrupted ? */
2635 if (r < 0) {
2636 dm_queue_flush(md);
2638 if (dm_request_based(md))
2639 start_queue(md->queue);
2641 unlock_fs(md);
2642 goto out_unlock; /* pushback list is already flushed, so skip flush */
2646 * If dm_wait_for_completion returned 0, the device is completely
2647 * quiescent now. There is no request-processing activity. All new
2648 * requests are being added to md->deferred list.
2651 set_bit(DMF_SUSPENDED, &md->flags);
2653 dm_table_postsuspend_targets(map);
2655 out_unlock:
2656 mutex_unlock(&md->suspend_lock);
2657 return r;
2660 int dm_resume(struct mapped_device *md)
2662 int r = -EINVAL;
2663 struct dm_table *map = NULL;
2665 mutex_lock(&md->suspend_lock);
2666 if (!dm_suspended_md(md))
2667 goto out;
2669 map = md->map;
2670 if (!map || !dm_table_get_size(map))
2671 goto out;
2673 r = dm_table_resume_targets(map);
2674 if (r)
2675 goto out;
2677 dm_queue_flush(md);
2680 * Flushing deferred I/Os must be done after targets are resumed
2681 * so that mapping of targets can work correctly.
2682 * Request-based dm is queueing the deferred I/Os in its request_queue.
2684 if (dm_request_based(md))
2685 start_queue(md->queue);
2687 unlock_fs(md);
2689 clear_bit(DMF_SUSPENDED, &md->flags);
2691 r = 0;
2692 out:
2693 mutex_unlock(&md->suspend_lock);
2695 return r;
2698 /*-----------------------------------------------------------------
2699 * Event notification.
2700 *---------------------------------------------------------------*/
2701 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2702 unsigned cookie)
2704 char udev_cookie[DM_COOKIE_LENGTH];
2705 char *envp[] = { udev_cookie, NULL };
2707 if (!cookie)
2708 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2709 else {
2710 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2711 DM_COOKIE_ENV_VAR_NAME, cookie);
2712 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2713 action, envp);
2717 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2719 return atomic_add_return(1, &md->uevent_seq);
2722 uint32_t dm_get_event_nr(struct mapped_device *md)
2724 return atomic_read(&md->event_nr);
2727 int dm_wait_event(struct mapped_device *md, int event_nr)
2729 return wait_event_interruptible(md->eventq,
2730 (event_nr != atomic_read(&md->event_nr)));
2733 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2735 unsigned long flags;
2737 spin_lock_irqsave(&md->uevent_lock, flags);
2738 list_add(elist, &md->uevent_list);
2739 spin_unlock_irqrestore(&md->uevent_lock, flags);
2743 * The gendisk is only valid as long as you have a reference
2744 * count on 'md'.
2746 struct gendisk *dm_disk(struct mapped_device *md)
2748 return md->disk;
2751 struct kobject *dm_kobject(struct mapped_device *md)
2753 return &md->kobj;
2757 * struct mapped_device should not be exported outside of dm.c
2758 * so use this check to verify that kobj is part of md structure
2760 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2762 struct mapped_device *md;
2764 md = container_of(kobj, struct mapped_device, kobj);
2765 if (&md->kobj != kobj)
2766 return NULL;
2768 if (test_bit(DMF_FREEING, &md->flags) ||
2769 dm_deleting_md(md))
2770 return NULL;
2772 dm_get(md);
2773 return md;
2776 int dm_suspended_md(struct mapped_device *md)
2778 return test_bit(DMF_SUSPENDED, &md->flags);
2781 int dm_suspended(struct dm_target *ti)
2783 return dm_suspended_md(dm_table_get_md(ti->table));
2785 EXPORT_SYMBOL_GPL(dm_suspended);
2787 int dm_noflush_suspending(struct dm_target *ti)
2789 return __noflush_suspending(dm_table_get_md(ti->table));
2791 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2793 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size)
2795 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
2796 struct kmem_cache *cachep;
2797 unsigned int pool_size;
2798 unsigned int front_pad;
2800 if (!pools)
2801 return NULL;
2803 if (type == DM_TYPE_BIO_BASED) {
2804 cachep = _io_cache;
2805 pool_size = 16;
2806 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2807 } else if (type == DM_TYPE_REQUEST_BASED) {
2808 cachep = _rq_tio_cache;
2809 pool_size = MIN_IOS;
2810 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2811 /* per_bio_data_size is not used. See __bind_mempools(). */
2812 WARN_ON(per_bio_data_size != 0);
2813 } else
2814 goto out;
2816 pools->io_pool = mempool_create_slab_pool(MIN_IOS, cachep);
2817 if (!pools->io_pool)
2818 goto out;
2820 pools->bs = bioset_create(pool_size, front_pad);
2821 if (!pools->bs)
2822 goto out;
2824 if (integrity && bioset_integrity_create(pools->bs, pool_size))
2825 goto out;
2827 return pools;
2829 out:
2830 dm_free_md_mempools(pools);
2832 return NULL;
2835 void dm_free_md_mempools(struct dm_md_mempools *pools)
2837 if (!pools)
2838 return;
2840 if (pools->io_pool)
2841 mempool_destroy(pools->io_pool);
2843 if (pools->bs)
2844 bioset_free(pools->bs);
2846 kfree(pools);
2849 static const struct block_device_operations dm_blk_dops = {
2850 .open = dm_blk_open,
2851 .release = dm_blk_close,
2852 .ioctl = dm_blk_ioctl,
2853 .getgeo = dm_blk_getgeo,
2854 .owner = THIS_MODULE
2857 EXPORT_SYMBOL(dm_get_mapinfo);
2860 * module hooks
2862 module_init(dm_init);
2863 module_exit(dm_exit);
2865 module_param(major, uint, 0);
2866 MODULE_PARM_DESC(major, "The major number of the device mapper");
2867 MODULE_DESCRIPTION(DM_NAME " driver");
2868 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2869 MODULE_LICENSE("GPL");